# Don'T THROW IN THE TOWEL, THROW IN TRADE CREDIT!

Banu Demir Bilkent U. and CEPR Beata Javorcik Oxford, ESOP and CEPR

September 2017

## MOTIVATION

- How do firms adjust to increased competition resulting from globalization?
  - exit of the least productive firms and reallocation of market shares towards more productive ones (Pavcnik (2002, *REStud*); Melitz (2003, *Ec*))
  - dropping the least performing products and expanding the best performing ones (Bernard, Redding, and Schott (2010, *AER*; 2011, *QJE*); Eckel and Neary (2010, *REStud*); Mayer, Melitz, and Ottaviano (2014, *AER*).

• This paper points out another margin of adjustment:

• provision of trade credit

## MOTIVATION

- How do firms adjust to increased competition resulting from globalization?
  - exit of the least productive firms and reallocation of market shares towards more productive ones (Pavcnik (2002, *REStud*); Melitz (2003, *Ec*))
  - dropping the least performing products and expanding the best performing ones (Bernard, Redding, and Schott (2010, *AER*; 2011, *QJE*); Eckel and Neary (2010, *REStud*); Mayer, Melitz, and Ottaviano (2014, *AER*).
- This paper points out another margin of adjustment:
  - provision of trade credit

Advice given to exporters by the US Department of Commerce:

- "Insisting on cash-in-advance could, ultimately, cause exporters to lose customers to competitors who are willing to offer more favorable payment terms to foreign buyers"
- "Open account terms (i.e. providing trade credit) may help win customers in competitive markets"

Advice given to exporters by the US Department of Commerce:

- "Insisting on cash-in-advance could, ultimately, cause exporters to lose customers to competitors who are willing to offer more favorable payment terms to foreign buyers"
- "Open account terms (i.e. providing trade credit) may help win customers in competitive markets"

# Do firms respond to increased competitive pressures by providing trade credit?

### PREVIEW OF THE FINDINGS

- We exploit an exogenous shock to competition in export markets and find that
  - increased competition leads exporters to provide trade credit and drop prices
  - provision of trade credit generates a dampening effect on the price response

#### Related literature

- Access to finance and exporting (broader perspective): e.g. Manova (2008, *JIE*); Amiti and Weinstein (2011, *QJE*); Paravisini et al. (2015, *ReStud*); Chaney (2016, *JEDC*)
- Domestic trade credit: e.g. Brennan et al (1988, *JF*); Petersen and Rajan (1997, *RFS*); McMillan and Woodruff (1999, *QJE*); Fisman and Raturi (2004, *REStat*); Fabbri and Klapper (2016, *JCF*)
- Financing terms in international trade: Eck et al. (2012, *RWE*); Schmidt-Eisenlohr (2013, *JIE*); Eck et al. (2014, *WE*); Antràs and Foley (2015, *JPE*); Hoefele et al. (2016, *CJE*)
- Impact of abolishing the MFA: e.g. Harrigan and Barrows (2009, *ReStat*); Khandelwal, Schott, and Wei (2013, *AER*)

Institutional Context and Data

- The MFA, a system of bilateral quotas governing the global trade in textiles and clothing since 1974, was dismantled in 2005. The decision was taken during the Uruguay Round which finished in 1994.
- Turkish exports have not been subject to any quota restrictions since 1996 (when Turkey formed a customs union with the EU).
- Chinese exports were subject to MFA quotas which were abolished (with some exceptions) on **1 January 2005**.
- Quota fill rates varied from below 10% to 100% in 2004, higher rates indicating greater constraint on Chinese exporters  $\implies$  a greater increase in competitive pressures after the quota removal.

- The MFA, a system of bilateral quotas governing the global trade in textiles and clothing since 1974, was dismantled in 2005. The decision was taken during the Uruguay Round which finished in 1994.
- Turkish exports have not been subject to any quota restrictions since 1996 (when Turkey formed a customs union with the EU).
- Chinese exports were subject to MFA quotas which were abolished (with some exceptions) on **1 January 2005**.
- Quota fill rates varied from below 10% to 100% in 2004, higher rates indicating greater constraint on Chinese exporters  $\implies$  a greater increase in competitive pressures after the quota removal.

- The MFA, a system of bilateral quotas governing the global trade in textiles and clothing since 1974, was dismantled in 2005. The decision was taken during the Uruguay Round which finished in 1994.
- Turkish exports have not been subject to any quota restrictions since 1996 (when Turkey formed a customs union with the EU).
- Chinese exports were subject to MFA quotas which were abolished (with some exceptions) on **1 January 2005**.
- Quota fill rates varied from below 10% to 100% in 2004, higher rates indicating greater constraint on Chinese exporters ⇒ a greater increase in competitive pressures after the quota removal.
   Fill rates

- The MFA, a system of bilateral quotas governing the global trade in textiles and clothing since 1974, was dismantled in 2005. The decision was taken during the Uruguay Round which finished in 1994.
- Turkish exports have not been subject to any quota restrictions since 1996 (when Turkey formed a customs union with the EU).
- Chinese exports were subject to MFA quotas which were abolished (with some exceptions) on **1 January 2005**.
- Quota fill rates varied from below 10% to 100% in 2004, higher rates indicating greater constraint on Chinese exporters  $\implies$  a greater increase in competitive pressures after the quota removal.

▶ Fill rates

### Data

- Universe of Turkey's exports of T&C to EU15 for 2003-2005
- Data disaggregated by firm, product (6-digit HS product code), destination country, and year
- For each observation, dataset reports
  - Value (free-on-board)
  - Quantity (measured in specified units, e.g. number, pair, etc.)
  - **Breakdown of financing**: cash in advance, open account, letter of credit, and documentary collection
- Data on quota fill rates comes from *Système Intégré de Gestion de Licenses*

- Cash in advance (CIA): importer pre-pays and receives the goods later.
- Open account (OA): payment is due after goods are delivered in the destination (usually 30 to 90 days)—closest category to trade credit in domestic transactions.
- Letter of credit (LC): payment is guaranteed by the importer's bank provided that delivery conditions specified in the contract have been met.
- **Documentary collection (DC)**: involves bank intermediation without payment guarantee—still more secure than OA and CIA.

- Cash in advance (CIA): importer pre-pays and receives the goods later.
- Open account (OA): payment is due after goods are delivered in the destination (usually 30 to 90 days)—closest category to trade credit in domestic transactions.
- Letter of credit (LC): payment is guaranteed by the importer's bank provided that delivery conditions specified in the contract have been met.
- **Documentary collection (DC)**: involves bank intermediation without payment guarantee—still more secure than OA and CIA.

- Cash in advance (CIA): importer pre-pays and receives the goods later.
- Open account (OA): payment is due after goods are delivered in the destination (usually 30 to 90 days)—closest category to trade credit in domestic transactions.
- Letter of credit (LC): payment is guaranteed by the importer's bank provided that delivery conditions specified in the contract have been met.
- **Documentary collection (DC)**: involves bank intermediation without payment guarantee—still more secure than OA and CIA.

- Cash in advance (CIA): importer pre-pays and receives the goods later.
- Open account (OA): payment is due after goods are delivered in the destination (usually 30 to 90 days)—closest category to trade credit in domestic transactions.
- Letter of credit (LC): payment is guaranteed by the importer's bank provided that delivery conditions specified in the contract have been met.
- **Documentary collection (DC)**: involves bank intermediation without payment guarantee—still more secure than OA and CIA.

# FINANCING BREAKDOWN OF TURKEY'S T&C EXPORTS

|                      | 20   | 002    |
|----------------------|------|--------|
|                      | EU   | Non-EU |
| Share of OA exports  | 0.60 | 0.58   |
| Share of CIA exports | 0.01 | 0.03   |
| Share of LC exports  | 0.07 | 0.21   |
| Share of DC exports  | 0.32 | 0.18   |

# Share of OA Exports before and after the END of the MFA



*Notes:* A marker represents the average share of OA exports over firms, products and destination countries for a given quota-fill rate and year. Lines represent fitted values of (uncond.) linear predictions.

# Theoretical Motivation • Details

# PREDICTIONS: RESPONSE TO INCREASE IN COMPETITION

The share of export sales on trade credit increases with the outside option of foreign buyers.

# PREDICTIONS: RESPONSE TO INCREASE IN COMPETITION

The effect of a change in the outside option of foreign buyers on the average price of the exporter is twofold. It has a **negative direct effect**, which arises from a fall in the optimal price under each financing term. It also has a **positive indirect effect** through the change in the fraction of buyers sold on trade credit. The overall effect depends on the relative magnitudes of the two effects.

# NUMERICAL EXAMPLE: PRICE AND TRADE CREDIT ADJUSTMENT



Notes: The figure plots the average prices and the share of sales on trade credit against increasing values of  $u_{0,b}$ .

# NUMERICAL EXAMPLE: PRICE AND TRADE CREDIT ADJUSTMENT



*Notes:* The figure plots the ratio of the change in average prices without the trade credit (indirect) channel to total price change against the initial share of sales on trade credit.

# **Empirical Strategy and Results**

#### DIFFERENCE-IN-DIFFERENCES APPROACH

• Did Turkey experience a greater shift towards OA financing (i.e., exports with trade credit) in the post-MFA period in products that were subject to binding MFA quotas in 2004 relative to the other T&C products?

#### DIFFERENCE-IN-DIFFERENCES APPROACH

• Baseline equation for  $t = \{2004, 2005\}$ 

 $\Delta X_{ijdt} = \beta_0 + \beta_1 Post_t * Treat_j + \alpha_{dt} + \alpha_j + \alpha_{it} + \epsilon_{ijdt}$ 

- $\Delta X_{ijdt}$  denotes change in outcome variable X at the firm-product-destination level at time t
  - share of exports with trade credit  $(Sh^{OA})$
  - unit value  $(\ln UV)$
- $Post_t$  is a binary variable that is equal to one for t = 2005, and zero otherwise
- *Treat<sub>j</sub>* is an indicator for quota-constrained products.
- We expect  $\beta_1 > 0$  for  $X = Sh^{OA}$ , and  $\beta_1 < 0$  for  $X = \ln UV$ .
- Standard errors clustered at the product level.

### DEFINING TREATMENT

**1** Binary treatment:

$$\begin{aligned} Treat_j &= 1 \text{, if Quota fill } \text{rate}_{j,t=2004} > 0.5 \\ Treat_j &= 0 \text{, Otherwise} \end{aligned}$$

**2** Product-specific quota fill rate in 2004: Quota fill rate<sub>j,t=2004</sub>

# Change in share of exports with trade credit before the end of the MFA (t = 2004)



Notes:  $\Delta Sh^{OA}$  denotes annual change in the share of exports on OA terms. A marker represents average  $\Delta Sh^{OA}$  over firms, products and destination countries for a given quota-fill rate and year. Lines represent fitted values of (unconditional) linear predictions. The vertical line represents the quota fill rate of 0.5 as of 2004.

## Change in share of exports with trade credit before and after the end of the MFA



Notes:  $\Delta Sh^{OA}$  denotes annual change in the share of exports on OA terms. A marker represents average  $\Delta Sh^{OA}$  over firms, products and destination countries for a given quota-fill rate and year. Lines represent fitted values of (unconditional) linear predictions. The vertical line represents the quota fill rate of 0.5 as of 2004.

# Change in average prices before the end of the MFA (t = 2004)



Notes:  $\Delta \ln UV$  denotes annual change in the logarithm of unit values. A marker represents average  $\Delta \ln UV$  over firms, products and destination countries for a given quota-fill rate and year. Lines represent fitted values of (unconditional) linear predictions. The vertical line represents the quota fill rate of 0.5 as of 2004.

# Change in average prices before and after the end of the MFA



Notes:  $\Delta \ln UV$  denotes annual change in the logarithm of unit values. A marker represents average  $\Delta \ln UV$  over firms, products and destination countries for a given quota-fill rate and year. Lines represent fitted values of (unconditional) linear predictions. The vertical line represents the quota fill rate of 0.5 as of 2004.

# SUMMARY STATISTICS

|                                       | 2004                     |         | 2005          |         |
|---------------------------------------|--------------------------|---------|---------------|---------|
| Avg product per firm                  | 8.620                    |         | 8.940         |         |
|                                       | (10.                     | .548)   | (11.          | 223)    |
| Avg destination per firm              | 5.                       | 755     | 5.748         |         |
|                                       | (4.6)                    | 093)    | (4.0          | 046)    |
| Avg product per firm-destination      | 4.                       | 520     | 4.682         |         |
|                                       | (5.                      | 109)    | (5.3)         | 302)    |
| Avg value per firm-product-dest (USD) | $279,866 \\ (1,226,811)$ |         | $262,\!621$   |         |
|                                       |                          |         | (1, 153, 157) |         |
|                                       | Treat                    | Control | Treat         | Control |
| Number of firms                       | 338                      | 1652    | 372           | 1780    |
| Number of products                    | 95                       | 313     | 95            | 316     |
| Share of OA exports                   | 0.697                    | 0.658   | 0.771         | 0.691   |
|                                       | (0.422)                  | (0.437) | (0.388)       | (0.426) |
| Log of unit value                     | 1.171                    | 1.810   | 1.108         | 1.829   |
|                                       | (0.542)                  | (1.163) | (0.535)       | (1.168) |
| Log of value                          | 10.324                   | 10.322  | 10.226        | 10.281  |
|                                       | (2.007)                  | (2.296) | (1.961)       | (2.262) |

# BASELINE RESULTS: TRADE CREDIT

$$\Delta Sh_{ijdt}^{OA} = \beta_0 + \beta_1 Post_t * Treat_j + \alpha_{dt} + \alpha_j + \alpha_{it} + \epsilon_{ijdt}$$

|                                                | (1)       | (2)        | (3)       | (4)          |
|------------------------------------------------|-----------|------------|-----------|--------------|
| $Post_t * Treat_j$                             | 0.0489*** | $0.0375^*$ |           |              |
|                                                | (0.0149)  | (0.0195)   |           |              |
| $Post_t *$ Quota fill rate <sub>j,t=2004</sub> |           |            | 0.0631*** | $0.0467^{*}$ |
|                                                |           |            | (0.0174)  | (0.0239)     |
| Ν                                              | 17852     | 17852      | 17852     | 17852        |
| $R^2$                                          | 0.0258    | 0.234      | 0.0259    | 0.234        |
| Country-year FE                                | +         | +          | +         | +            |
| Product FE                                     | +         | +          | +         | +            |
| Firm-year FE                                   |           | +          |           | +            |

# BASELINE RESULTS: PRICES

$$\Delta \ln UV_{ijdt} = \beta_0 + \beta_1 Post_t * Treat_j + \alpha_{dt} + \alpha_j + \alpha_{it} + \epsilon_{ijdt}$$

|                                                | (1)        | (2)        | (3)                    | (4)                           |
|------------------------------------------------|------------|------------|------------------------|-------------------------------|
| $Post_t * Treat_j$                             | -0.0669*** | -0.0745*** |                        |                               |
|                                                | (0.0236)   | (0.0284)   |                        |                               |
| $Post_t *$ Quota fill rate <sub>j,t=2004</sub> |            |            | -0.0985***<br>(0.0279) | <b>-0.0839</b> **<br>(0.0370) |
| N                                              | 17852      | 17852      | 17852                  | 17852                         |
| $R^2$                                          | 0.0511     | 0.271      | 0.0513                 | 0.271                         |
| Country-year FE                                | +          | +          | +                      | +                             |
| Product FE                                     | +          | +          | +                      | +                             |
| Firm-year FE                                   |            | +          |                        | +                             |

# **Placebo test**

### PLACEBO DATE

Assign January 2004 as the placebo date of the MFA quota removal and restrict the sample to the 2003-2004 period:

| Dependent variable: | $\Delta Sh_{ijdt}^{OA}$ | $\Delta \ln U V_{ijdt}$ |
|---------------------|-------------------------|-------------------------|
| $D2004_t * Treat_j$ | 0.0242                  | 0.00837                 |
| ·                   | (0.0293)                | (0.0618)                |
| Ν                   | 7717                    | 7717                    |
| $R^2$               | 0.251                   | 0.281                   |
| Country-year FE     | +                       | +                       |
| Product FE          | +                       | +                       |
| Firm-year FE        | +                       | +                       |

Longer time period

# LONG-TERM EFFECTS

 $DYear_t$  is a dummy variable that takes on the value one for t = Year, and zero otherwise.

| Dependent variable: | $\Delta Sh_{ijdt}^{OA}$ | $\Delta \ln U V_{ijdt}$ |
|---------------------|-------------------------|-------------------------|
| $D2004_t * Treat_i$ | 0.0209                  | -0.0128                 |
| U U                 | (0.0319)                | (0.0577)                |
| $D2005_t * Treat_j$ | $0.0491^{*}$            | $-0.0837^{*}$           |
| ·                   | (0.0297)                | (0.0444)                |
| $D2006_t * Treat_j$ | 0.0124                  | -0.0849                 |
|                     | (0.0341)                | (0.0528)                |
| $D2007_t * Treat_j$ | 0.0187                  | -0.0577                 |
|                     | (0.0282)                | (0.0511)                |
| N                   | 25062                   | 25062                   |
| $R^2$               | 0.236                   | 0.268                   |
| Country-year FE     | +                       | +                       |
| Product FE          | +                       | +                       |
| Firm-year FE        | +                       | +                       |

# Controlling for survival

### CONTROLLING FOR SURVIVAL

- Selection bias if exports on OA terms in 2004 were more likely to survive in the post-MFA period.
- Follow Mulligan and Rubinstein (2008, *QJE*) and Paravasini et al.(2015, *RStud*) to address the possible selection bias.
  - Estimate the probability that a given export flow (ijd, 2004) continued in 2005.
  - Estimate the baseline specification in first differences for the whole sample and for 40th percentile of the estimated continuation probability.

|                     | Probit               | OLS                     |                         |                         |                         |
|---------------------|----------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Dependent variable: | Survival probability | $\Delta Sh_{ijdt}^{OA}$ | $\Delta Sh_{ijdt}^{OA}$ | $\Delta \ln U V_{ijdt}$ | $\Delta \ln U V_{ijdt}$ |
|                     | All                  | All                     | > 40th pctl             | All                     | > 40th  pctl            |
| $Post_t * Treat_j$  |                      | 0.0380**                | 0.0333                  | -0.0654**               | -0.0926***              |
|                     |                      | (0.0158)                | (0.0223)                | (0.0266)                | (0.0358)                |
| $\ln X_{iid}$ 2003  | $0.194^{***}$        |                         |                         |                         |                         |
| <i>iju</i> ,2003    | (0.0104)             |                         |                         |                         |                         |
| $ShQ_{iidt=0}^{OA}$ | -0.00001             |                         |                         |                         |                         |
| • iju,i=0           | (0.0590)             |                         |                         |                         |                         |
| Treat               | -0.0261              |                         |                         |                         |                         |
|                     | (0.0614)             |                         |                         |                         |                         |
| Ν                   | 8454                 | 17852                   | 7909                    | 17852                   | 7909                    |
| $R^2$               |                      | 0.156                   | 0.147                   | 0.175                   | 0.178                   |
| Country FE          | +                    |                         |                         |                         |                         |
| Firm FE             | +                    | +                       | +                       | +                       | +                       |
| Country-year FE     |                      | +                       | +                       | +                       | +                       |
| Product FE          |                      | +                       | +                       | +                       | +                       |

Interplay between providing trade credit and lowering prices

#### Empirical approach

- High initial share of OA-financing  $\implies$  less room for adjustment of financing
- Test whether flows with a high initial share of OA-financing (sales on trade credit) experienced a larger fall in prices:

$$\begin{split} \Delta \ln UV_{ijdt} &= \phi_0 + \phi_1 ShQ_{ijd,t=0}^{OA} * Post_t * Treat_j \\ &+ \phi_2 Post_t * Treat_j + \phi_3 ShQ_{ijd,t=0}^{OA} * Post_t \\ &+ \phi_4 ShQ_{ijd,t=0}^{OA} * Treat_j + \phi_5 ShQ_{ijd,t=0}^{OA} + \alpha_{dt} + \alpha_j \\ &+ \alpha_{it} + e_{ijdt}, \end{split}$$

•  $ShQ_{ijd,t=0}^{OA}$  average share of OA exports for a flow ijd over 2002-2003.

| Dependent variable:                     | $\Delta Sh_{ijdt}^{OA}$ | $\Delta Sh_{ijdt}^{OA}$ | $\Delta \ln U V_{ijdt}$ | $\Delta \ln U V_{ijdt}$ |
|-----------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| $ShQ_{ijd,t=0}^{OA} * Post_t * Treat_j$ | -0.0688*                | -0.119***               | -0.111*                 | $-0.122^{*}$            |
|                                         | (0.0408)                | (0.0442)                | (0.0589)                | (0.0730)                |
| Post + Treat                            | 0.0778*                 | 0.0021**                | 0.00275                 | 0.0201                  |
| $FOSt_t * I Feat_j$                     | 0.0118                  | 0.0921                  | 0.00275                 | -0.0301                 |
|                                         | (0.0405)                | (0.0432)                | (0.0470)                | (0.0518)                |
| $ShQ_{iid,t=0}^{OA} * Post_t$           | $0.178^{***}$           | 0.359***                | 0.0458                  | 0.00157                 |
| - <b>J</b>                              | (0.0151)                | (0.0323)                | (0.0325)                | (0.0436)                |
| $ShQ_{\cdots}^{OA} \circ * Treat_{t}$   | -0.0193                 | 0.0403                  | 0.0205                  | -0.00206                |
| ijd,t=0                                 | (0.0208)                | (0.0246)                | (0.0328)                | (0.0438)                |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                         |                         |                         |                         |
| $ShQ_{ijd,t=0}^{OA}$                    | $-0.289^{***}$          | -0.474***               | 0.00848                 | 0.0226                  |
|                                         | (0.0114)                | (0.0190)                | (0.0178)                | (0.0253)                |
| Ν                                       | 13790                   | 13790                   | 13790                   | 13790                   |
| $R^2$                                   | 0.121                   | 0.341                   | 0.0538                  | 0.276                   |
| Country-year FE                         | +                       | +                       | +                       | +                       |
| Product FE                              | +                       | +                       | +                       | +                       |
| Firm-year FE                            |                         | +                       |                         | +                       |

### CONCLUSIONS

- Provision of trade credit is another margin of adjustment to increased competition in export markets.
- Increase in competition after the end of the MFA forced Turkish exporters of quota-bound T&C products to provide more trade credit and lower prices.
- Provision of trade credit generated a dampening effect on the price response.
- Price responses to competitive shocks may be underestimated unless the trade credit channel is accounted for.

### DISTRIBUTION OF QUOTA FILL RATES AS OF 2004



*Notes:* The figure shows the distribution of quota fill rates (as of 2004) in our data. Observations where  $\frac{1}{1000}$  quota fill rates are equal to zero are excluded for visibility as they account for about 70% of the sample.

▶ Back



## Setup

- A simplified version of Schmidt-Eisenlohr (2013) and Antràs and Foley (2015) with heterogenous buyer valuations.
- A Turkish exporter of an intermediate product meets a randomly matched set of foreign buyers, indexed by k.
- Each foreign buyer has a unit demand for the product, which she values at  $s_k$ .
- Buyer valuations are drawn from a common and known distribution  $g(s_k)$  with positive support on the interval  $(\underline{s}, \infty)$  and a continuous cumulative distribution  $G(s_k)$ .
- Exporter incurs a constant marginal cost that is normalized to zero.
- All agents are risk neutral and have complete information about each others' costs and preferences.

- Exporter has the full bargaining power and makes take-it-or-leave-it offers to independent buyers.
- If the offer is rejected, the buyer reverts to its outside option:  $u_{0,b}$ .
- We assume contractual frictions: contract negotiated at time t = 0 is enforced with some probability  $\lambda$  which increases with rule of law in the relevant country.
- Timing:
  - Under OA: exporter produces and ships the goods at t = 0 →importer pays after one period.
  - Under CIA: importer pays at t=0  $\rightarrow \mathrm{goods}$  arrive at destination d after one period
  - Under LC: importer's bank guarantees payment to the exporter after the arrival of goods at the destination.

- Exporter has the full bargaining power and makes take-it-or-leave-it offers to independent buyers.
- If the offer is rejected, the buyer reverts to its outside option:  $u_{0,b}$ .
- We assume contractual frictions: contract negotiated at time t = 0 is enforced with some probability  $\lambda$  which increases with rule of law in the relevant country.
- Timing:
  - Under OA: exporter produces and ships the goods at t = 0 $\rightarrow$ importer pays after one period.
  - Under CIA: importer pays at t=0  $\rightarrow \mathrm{goods}$  arrive at destination d after one period
  - Under LC: importer's bank guarantees payment to the exporter after the arrival of goods at the destination.

### Open account

- With probability  $1 \lambda_d$ , rule of law in destination country d breaks down.
- Turkish exporter can recover only a fraction  $\gamma \in (0, 1)$  of the agreed payment,  $p_k^{OA}$ .
- Participation constraint of the foreign buyer k:

$$E[\Pi_{b,k}^{OA}] = \frac{s_k - p_k^{OA}}{1 + r_d} \ge u_{0,b}$$

• Expected profit of the Turkish exporter:

$$E[\Pi_{e,k}^{OA}] = \frac{\lambda_d p_k^{OA} + (1 - \lambda_d) \gamma p_k^{OA}}{1 + r}$$

•  $r_d$  and r denote cost of financing in destination d and in Turkey, respectively.

### CASH IN ADVANCE

- With probability  $1 \lambda_{TUR}$ , rule of law in Turkey breaks down.
- For eign buyer can recover only a fraction  $\delta \in (0,1)$  of the shipment value.
- Participation constraint of the foreign buyer k:

$$E[\Pi_{b,k}^{CIA}] = \frac{\lambda_{TUR} + (1 - \lambda_{TUR})\delta}{1 + r_d} s_k - p_k^{CIA} \ge u_{0,b}$$

• Expected profits of the exporter and the importer:

$$E[\Pi_{e,k}^{CIA}] = p_k^{CIA}$$

### LETTER OF CREDIT

- Exporter receives payment with certainty.
- The importer has to pay its bank an ad-valorem fee f > 1 which increases the cost of financing to  $f(1 + r_d) > (1 + r_d)$ , and a fixed fee F > 0 to cover document handling and monitoring costs.
- Expected profits of the exporter and the importer:

$$E[\Pi_{b,k}^{LC}] = \frac{s_k - p_k^{LC}}{1 + r_d} - f p_k^{LC} - F \ge u_{0,b}$$

• Expected profits of the exporter and the importer:

$$E[\Pi_{e,k}^{LC}] = \frac{p_k^{LC}}{1+r}$$

### PRICES

The exporter sets price under each financing term such that the buyer's participation constraint binds:

$$p_k^{CIA} = \frac{\lambda_{TUR} + (1 - \lambda_{TUR})\delta}{1 + r_k} s_k - u_{0,b},$$
  

$$p_k^{OA} = s_k - (1 + r_d)u_{0,b},$$
  

$$p_k^{LC} = \frac{s_k - (1 + r_d)(u_{0,b} + F)}{1 + f(1 + r_d)}$$

#### CHOICE OF FINANCING TERM

• The exporter chooses the financing term that gives the highest expected profits:

$$E[\Pi_{e,k}^{CIA}] = \frac{\lambda_{TUR} + (1 - \lambda_{TUR})\delta}{1 + r_d} s_k - u_{0,b},$$
  

$$E[\Pi_{e,k}^{OA}] = \frac{\lambda_d + (1 - \lambda_d)\gamma}{1 + r} (s_k - (1 + r_d)u_{0,b}),$$
  

$$E[\Pi_{e,k}^{LC}] = \frac{1}{1 + r} \frac{s_k - (1 + r_d)(u_{0,b} + F)}{1 + f(1 + r_d)}$$

- Compare OA (trade credit) to LC (bank) financing.
- Consistent with negligible share of CIA financing in the data.
- Also consistent with quality of institutions  $(\lambda_{TUR})$  being weaker in Turkey than in EU15.

#### CHOICE OF FINANCING TERM

• The exporter chooses the financing term that gives the highest expected profits:

$$E[\Pi_{e,k}^{CIA}] = \frac{\lambda_{TUR} + (1 - \lambda_{TUR})\delta}{1 + r_d} s_k - u_{0,b},$$
  

$$E[\Pi_{e,k}^{OA}] = \frac{\lambda_d + (1 - \lambda_d)\gamma}{1 + r} (s_k - (1 + r_d)u_{0,b}),$$
  

$$E[\Pi_{e,k}^{LC}] = \frac{1}{1 + r} \frac{s_k - (1 + r_d)(u_{0,b} + F)}{1 + f(1 + r_d)}$$

- Compare OA (trade credit) to LC (bank) financing.
- Consistent with negligible share of CIA financing in the data.
- Also consistent with quality of institutions  $(\lambda_{TUR})$  being weaker in Turkey than in EU15.

## SHARE OF OA FINANCING

• s<sup>\*</sup>: valuation of the marginal buyer—the exporter is indifferent between offering trade credit (OA) and asking for bank financing (LC)

$$E[\Pi_e^{OA}(s^*)] = E[\Pi_e^{LC}(s^*)]$$
  
$$\implies s^* = (1+r_d)u_{0,b} + \frac{(1+r_d)F}{1-\tilde{\lambda}_d(1+f(1+r_d))},$$

where 
$$\tilde{\lambda}_d = \lambda_d + (1 - \lambda_d)\gamma \in (0, 1).$$

- For any  $s_k$  s.t.  $s_k < s^*$ , offering trade credit is more profitable than asking for bank credit.
- Share of export sales on trade credit:

$$\mu(s^*) = \int_{\underline{s}}^{s^*} dG(s_k)$$

### SHARE OF OA FINANCING

• s<sup>\*</sup>: valuation of the marginal buyer—the exporter is indifferent between offering trade credit (OA) and asking for bank financing (LC)

$$E[\Pi_e^{OA}(s^*)] = E[\Pi_e^{LC}(s^*)]$$
  
$$\implies s^* = (1+r_d)u_{0,b} + \frac{(1+r_d)F}{1-\tilde{\lambda}_d(1+f(1+r_d))},$$

where 
$$\tilde{\lambda}_d = \lambda_d + (1 - \lambda_d)\gamma \in (0, 1).$$

- For any  $s_k$  s.t.  $s_k < s^*$ , offering trade credit is more profitable than asking for bank credit.
- Share of export sales on trade credit:

$$\mu(s^*) = \int_{\underline{s}}^{s^*} dG(s_k)$$

### AVERAGE PRICES

• Define the average price as

$$\bar{p}_d = \int_{\underline{s}}^{s^*} [s_k - (1+r_d)u_{0,b}] dG(s_k) + \int_{s^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{s^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{s^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{s^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{s^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{s^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{s^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{s^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{s^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{s^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{s^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{s^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{s^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{s^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{s^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{s^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{s^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{s^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{s^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{s^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{s^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{s^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{s^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{s^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{s^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{s^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{s^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{s^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{s^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{s^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{s^*}$$

• Effect of  $u_{0,b}$  on prices

$$\frac{d\bar{p_e}}{du_{0,b}} = \underbrace{-(1+r_d) \left[ \int_{\underline{s}}^{s^*} dG(s_k) + \frac{1}{1+f(1+r_d)} \int_{s^*}^{\infty} dG(s_k) \right]}_{\text{Direct effect}} + \underbrace{\left[ p^{OA}(s^*) - p^{LC}(s^*) \right] g(s^*) \frac{ds^*}{du_{0,b}}}_{\text{Indirect effect}}$$

### AVERAGE PRICES

• Define the average price as

$$\bar{p}_d = \int_{\underline{s}}^{\underline{s}^*} [s_k - (1+r_d)u_{0,b}] dG(s_k) + \int_{\underline{s}^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{\underline{s}^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{\underline{s}^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{\underline{s}^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{\underline{s}^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{\underline{s}^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{\underline{s}^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{\underline{s}^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{\underline{s}^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{\underline{s}^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{\underline{s}^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{\underline{s}^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{\underline{s}^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{\underline{s}^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{\underline{s}^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{\underline{s}^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{\underline{s}^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{\underline{s}^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{\underline{s}^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{\underline{s}^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{\underline{s}^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{\underline{s}^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{\underline{s}^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{\underline{s}^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{\underline{s}^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{\underline{s}^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{\underline{s}^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{\underline{s}^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1+r_d)} dG(s_k) + \int_{\underline{s}^*}^{\infty} \frac{s_k - (1+r_d)(u_{0,b} + F)}{1 + f(1$$

• Effect of  $u_{0,b}$  on prices

$$\frac{d\bar{p_e}}{du_{0,b}} = \underbrace{-(1+r_d) \left[ \int_{\underline{s}}^{s^*} dG(s_k) + \frac{1}{1+f(1+r_d)} \int_{s^*}^{\infty} dG(s_k) \right]}_{\text{Direct effect}} \underbrace{+ \left[ p^{OA}(s^*) - p^{LC}(s^*) \right] g(s^*) \frac{ds^*}{du_{0,b}}}_{\text{Indirect effect}}$$