
INTRODUCTION AND LINEARIZATION

Solution Methods for Macroeconomic Models
Petr Sedláček

SOLUTION METHODS FOR MACROECONOMIC MODELS

• Monday - Tuesday: Solving models with “representative agents”
• Linearization in theory and practice: Dynare
• Non-linear solutions methods: value function iteration, projection
• Analyzing models: parameterization/estimation, simulation/IRFs

• Wednesday - Thursday: Solving models with “heterogeneous agents”
• Models without aggregate uncertainty: basic algorithm
• Models with aggregate uncertainty: key issues and alternatives

• Friday: “Final assignment”
• Solve/estimate model with heterogeneous firms and aggregate uncertainty

1/87

Introduction

OVERVIEW FOR TODAY

Introduction into numerical methods
Perturbation

• main idea

• first-order perturbation and certainty equivalence

• implementation in Dynare

DIY linearization

• main idea and algorithm

2/87

OVERVIEW FOR TODAY

1. Introduction

2. A DSGE model

3. Perturbation

4. Perturbation in Dynare

5. DIY linearization

3/87

Introduction

WHY DSGE’S?

WHY (DSGE) MODELS?

Why not only use tons of data?

• even with super-cool techniques like machine learning?

DSGE models give

• more discipline than reduced-form methods

• discipline comes from “cross-equation” restrictions
• stochastics of exogenous variables
• together with forward-looking behavior of agents
• result in implication for evolution of endogenous variables

4/87

PRIOR TO DSGE MODELS...

• long tradition of large macroeconometric models

• these reduced-form systems have certain drawbacks
• no “GE”
• no forward-looking behavior

• changes after Kydland and Prescott (1982)
• other critical contributions by Hansen, Lucas, Sargent and Sims

• a nice discussion of current state of macro (and identification)
• Jón Steinsson: A New Macroeconomics?

5/87

https://eml.berkeley.edu/~jsteinsson/papers/ANewMacro.pdf

Introduction

WHAT WILL WE COVER?

WHAT WILL WE COVER?

Computational tools for “Rep-Agent models”

• what do we need to solve for?
• policy rules (functions)

• why is this a tough problem?
• forward looking behavior
• dynamics today depend on expectations of future dynamics
• focus on recursive problems
• even then

• analytical solutions are rare
• “S” in DSGE necessitates computation of expectations

6/87

WHAT WILL WE COVER?

1) Tools for solving (rep-agent) DSGE models
• characterize unknown functions (in several ways)

• perturbation
• projection
• value function iteration

2) Tools for parameterizing DSGE models
• discuss calibration, estimation, matching moments
• quick intro into Maximum Likelihood estimation

3) Tools for solving heterogeneous-agent DSGE models
• builds on the above + algorithm to solve for equilibrium
• alternative methods for solutions with aggregate uncertainty

7/87

NOTE ON “SOLVING” MODELS

Solving models is not the end goal!

• can you use steady state comparisons “only”?
• many interesting questions don’t involve business cycles!

• if you’re set on business cycles, how important is non-linearity?
• solving models linearly is always a good idea (at least initially)
• can you “rephrase” your model to fit your solution strategy?
• often much easier than sticking to hard-to-solve non-linear model

8/87

OVERVIEW FOR TODAY

1. Introduction

2. A DSGE model

3. Perturbation

4. Perturbation in Dynare

5. DIY linearization

9/87

Neoclassical Growth Model

NEOCLASSICAL GROWTH MODEL

• representative household maximizing expected lifetime utility

• household owns production technology

• capital is the only factor of production

• resources spent on consumption and investment into capital

• each period existing capital depreciates at certain rate

• production subject to exogenous fluctuations in productivity

10/87

PRODUCTION

yt = Ztkαt

Zt = 1− ρ+ ρZt−1 + ϵt

Eϵt = 0

Eϵ2t = σ2z

11/87

HOUSEHOLD DECISION

max
{ct,kt+1}∞t=0

E0
∞∑
t=0

βtu(ct)

s.t. ct + kt+1 = yt + (1− δ)kt

k0 given

Z0 given

12/87

Neoclassical Growth Model

SOLUTION

SOLUTION

What is the solution?

• a sequence {ct, kt+1}∞t=0
• maximizing the expected discounted sum of per-period utilities

Sounds like a tough problem!

• different k0 → optimal sequences different!

• different realizations of Zt → optimal sequences different!

13/87

SOLUTION

Trick is to

• replace sequential problem with 2-period decisions→ recursiveness

• must make sure that each 2-period decision is globally optimal
• Principle of Optimality (Bellman)

• decisions depend on state variables
• agents facing the same state variables make the same decisions

• independent of the time period they are in

• realizations of exogenous shocks, pre-determined variables (e.g. capital stock)
• not always easy to know what the state variables are!

14/87

POLICY RULES

• what are the state variables?
• beginning-of-period capital and productivity

• what are the policy rules?
ct = c(kt, Zt)

kt+1 = k(kt, Zt)

• how are they determined?

uc(ct) = βEtuc(ct+1)
(
αZt+1kα−1t+1 + 1− δ

)
ct + kt+1 = yt + (1− δ)kt

15/87

Neoclassical Growth Model

USE OF COMPUTATIONAL TOOLS

WHERE DO WE USE OUR COMPUTATIONAL TOOLS?

• analytical solutions rarely exist

• → need to approximate the policy functions (perturbation or projection)

ct ≈ c̃(kt, Zt;ψc)

kt+1 ≈ k̃(kt, Zt;ψk)

• what are we solving for?
• the coefficients of the approximations: ψc and ψk
• requires specifying a domain (needs to be bounded)
• → consider “stationarized” models (no growth)

16/87

WHERE DO WE USE OUR COMPUTATIONAL TOOLS?

Alternatively, specify the recursive problem using the Bellman equation

V(k−1, Z) = max
c,k

u(c) + EβV(k, Z+1) s.t.

c+ k = Zkα−1 + (1− δ)k−1
Z+1 = 1− ρ+ ρZ+ ϵ

• approximate the value function (Bellman eq. evaluated at optimal choices)
• → value function iteration
• what are we solving for?

• maximized values of V(., .) at different points of the state-space
• requires specifying a domain (needs to be bounded)
• → consider “stationarized” models (no growth)

17/87

SPECIAL CASE OF ANALYTICAL SOLUTION

• assume log utility (γ = 1)

• and full depreciation (δ = 1)

• this is the Brock-Mirman model

Turns out that this version has an analytical solution:

kt+1 = αβZtkαt

ct = (1− αβ)Ztkαt

18/87

Neoclassical Growth Model

TAKING STOCK

TAKING STOCK

Neoclassical growth model

• workhorse DSGE model which we’ll encounter throughout the course

• solution consists of policy functions

• computational tools necessary to approximate such policy functions

19/87

OVERVIEW FOR TODAY

1. Introduction

2. A DSGE model

3. Perturbation

4. Perturbation in Dynare

5. DIY linearization

20/87

Perturbation

PERTURBATION: BASIC IDEA

• Perturbation is a way to approximate a function
• more generally, it is a way of taking derivatives
• as such it has broad applications

• it uses Taylor’s theorem

• it also uses the Implicit function theorem

21/87

Perturbation

THEORETICAL UNDERPINNING

TAYLOR’S THEOREM

Theorem Let k ≥ 1 be an integer and let function f : R → R be k times
differentiable at point a ∈ R. Then there exists a function hk : R → R such that

f(x) = f(a) + f′(a)(x− a) + f′′(a)
2! (x− a)2 + · · ·+ f(k)(a)

k! (x− a)k + hk(x)(x− a)k,

and limx→a hk(x) = 0.

22/87

IMPLICIT FUNCTION THEOREM

Theorem Let f : Rn+m → Rm be a continuously differentiable function and let
Rn+m have coordinates (x, y). Fix a point (x, y) with f(x, y) = 0. If the Jacobian
matrix Jf,y(x, y) is invertible, then there exists an open set U of Rn containing x
such that there exists a unique continuously differentiable function g : U→ Rm

such that
g(x) = y

and
f(x,g(x)) = 0 for all x ∈ U.

Moreover, the partial derivatives of g in U are given by the matrix product
∂g
∂xj

(x) = −[Jf,y(x,g(x))]−1
[
∂f
∂xj

(x,g(x))
]

23/87

Perturbation

DETAILS

BACK TO THE NEOCLASSICAL MODEL

• the above is all very nice

• but at this point a bit abstract

• lets see if we can write the neoclassical growth model

• in a way that looks like the notation we just used...

24/87

OPTIMALITY CONDITIONS

c−γ
t = βEtc−γ

t+1αZt+1k
α−1
t+1

ct + kt+1 = Ztkαt

Zt = (1− ρ) + ρZt−1 + σϵt

• σ controls the degree of uncertainty

25/87

WHAT ARE WE AFTER?

• rewrite the above equations as

EtF[ct+1, ct, kt+1, Zt+1, kt, Zt] = 0

• what are the states (x) and “policy” variables (g(x))?

xt = [kt, Zt]

xt+1 = h(xt, σ) + σϵ̃t+1

ct = g(xt, σ)

• notice that uncertainty (σ) explicitly enters the policy function!

26/87

REWRITE THE SYSTEM

EtF
(
g(h(xt, σ) + σϵ̃t+1, σ),g(xt, σ),h(xt, σ) + σϵ̃t+1, xt

)
= 0

27/87

Perturbation

1ST ORDER PERTURBATION AND CERTAINTY
EQUIVALENCE

PERTURBING THE SYSTEM

• perturbation methods find a local approximation of g and h
• it is local around a certain point (x, σ)
• in particular, a Taylor approximation around (x, σ) gives

g(x, σ) ≈g(x, σ) + gx(x, σ)(x− x) + gσ(x, σ)(σ − σ)

+ 1/2[gxx(x, σ)(x− x)2 + 2gxσ(x, σ)(x− x)(σ − σ)

+ gσσ(x, σ)(σ − σ)2] + · · ·

h(x, σ) ≈h(x, σ) + hx(x, σ)(x− x) + hσ(x, σ)(σ − σ)

+ 1/2[hxx(x, σ)(x− x)2 + 2hxσ(x, σ)(x− x)(σ − σ)

+ hσσ(x, σ)(σ − σ)2] + · · ·

28/87

WHAT ARE WE SOLVING FOR?

• we approximate the policy functions with a polynomial

• the unknown coefficients are the n-order derivatives at (x, σ)

• how do we solve for them?

• recall that F[xt, σ] = 0 for any value of x and σ

• → derivatives (of any order) of F also 0!

Fxk,σj [xt, σ] = 0 ∀x, σ, j, k

29/87

WHERE ARE WE APPROXIMATING?

• particularly convenient point is the non-stochastic steady state
• i.e. σ = 0 and xt = x
• c = g(x, 0) and x = h(x, 0)

• why is so convenient?

• in principle you can approximate around any point

30/87

GETTING THE POLICY FUNCTION DERIVATIVES

• under 1st order perturbation we have

g(x, σ) ≈ g(x, 0) + gx(x, 0)(x− x) + gσ(x, 0)σ

h(x, σ) ≈ h(x, 0) + hx(x, 0)(x− x) + hσ(x, 0)σ

• we also know that
g(x, 0) = c

h(x, 0) = x

• solve for the derivatives (coefficients of approximating Taylor polynomial)

Fxk,σj [xt, σ] = 0 ∀x, σ, j, k

31/87

DERIVING COEFFICIENTS OF TAYLOR POLYNOMIAL

For simplicity, substitute out consumption to get F[xt+2, xt+1, xt] = 0

Fx =
∂F
∂xt+2

∂xt+2
∂xt+1

∂xt+1
∂xt

+
∂F
∂xt+1

∂xt+1
∂xt

+
∂F
∂xt

=F1
∂xt+2
∂xt+1

∂xt+1
∂xt

+ F2
∂xt+1
∂xt

+ F3

=F1h2x + F2hx + F3 = 0

• ∂F(xt+2,xt+1,xt,σ)
∂xt+i |xt+2=xt+1=xt=x,σ=0 = F3−i

• ∂h(xt,σ)
∂xt |xt=x,σ=0 ∀t = hx

32/87

Perturbation

UNCERTAINTY

BACK TO 1ST ORDER CASE

h(x, σ) = h(x, 0) + hx(x, 0)(x− x) + hσ(x, 0)(σ − σ)

• we can find hx from a 2nd order system

• further higher-order terms can be solved from linear systems

• but what about hσ?

33/87

GETTING 1ST-ORDER DERIVATIVE W.R.T. σ

EtF
(
h(h(xt, σ) + σϵ̃t+1, σ) + σϵ̃t+2,h(xt, σ) + σϵ̃t+1, xt

)
=

= EtF
(
x′′, x′, x) = 0

EtFσ(x′′, x′, x, σ)|x=x,σ=0 =

= Et [Fx′′ [hσ + hx(ϵ̃t+1 + hσ) + ϵ̃t+2] + Fx′(hσ + ϵ̃t+1)]

= Fx′′hσ(1+ hx) + Fx′hσ = 0

34/87

CERTAINTY EQUIVALENCE

Certainty equivalence result

• the variance of shocks does not matter for policy rules

• important limitation of 1st order approximation
• what economic questions cannot be studied in this case?

• what about higher order approximations?

35/87

GETTING 2-ORDER DERIVATIVE W.R.T. σ

• only gσσ and hσσ matter for policy function

• this affects the constant in the policy rule

• can still have important implications
• certain economic questions can be addressed
• can have indirect effect on dynamics (how?)

• need 3rd order to capture effect of uncertainty on “slopes”

36/87

Perturbation

ACCURACY

LOCAL APPROXIMATION?

• perturbation is also known as local approximation

• when does the question of accuracy arise?

• what could go wrong?

37/87

ACCURACY OF PERTURBATION

The theory guarantees local convergence
• global convergence could be good, but depends on approximated function
• e.g. if true function is a polynomial→ approximations converge to truth

Theory doesn’t say anything about convergence properties
• e.g. not clear whether 2nd order is better than 1st
• nonlinear higher-order polynomials always have “weird” shapes
• this can occur close or far away from the steady state!

Wouter’s example: Consider the true function to be defined on x ∈ [0.7, 2] s.t.

f(x) = −690.59+ 3202.4x− 5739.45x2 + 4954.2x3 − 2053.6x4 + 327.1x5

38/87

WOUTER’S EXAMPLE: ALL KINDS OF WILD THINGS CAN HAPPEN

39/87

WOUTER’S EXAMPLE: ALL KINDS OF WILD THINGS CAN HAPPEN

a bit like this... 40/87

https://www.youtube.com/watch?v=3uILbW44DHM

Perturbation

TAKING STOCK

TAKING STOCK

Perturbation:

• (in our context) means of approximating policy rules

• relies on Taylor polynomial and Implicit function theorem

Pros:

• easy to implement (you’ll see)

• can handle large state-space (heterogeneity)

Cons:

• can’t handle certain features (non-differentiabilities)

• “local” solution method

41/87

OVERVIEW FOR TODAY

1. Introduction

2. A DSGE model

3. Perturbation

4. Perturbation in Dynare

5. DIY linearization

42/87

Dynare

WHAT IS DYNARE AND WHY USE IT?

• (free) software for perturbation solutions and more
• also estimation: ML, Bayesian
• many options

• you MUST know what it is doing

• once you do, its a very useful tool

43/87

WHERE/HOW TO GET DYNARE

• download at www.dynare.org

• install and

• in Matlab set path to .../Dynare/Matlab

• read the documentation

44/87

WHAT DOES DYNARE DO?

Dynare implements a perturbation solution to your model
• model described by Et[F(yt, xt)] = Et[F(g(xt), xt)] = 0

• where state variables are denoted by xt = [x1,t, ..., xn,t]
• and choice variables are denoted by yt = g(xt)

• g(.) denote policy rules

• Dynare approximates policy rules, g(.)
• that satisfy first order conditions Et[F(g(xt), xt)] = 0

Result of approximation (e.g. 1st order perturbation)

yt = g(xt) ≈ y+ (xt − x)′a

• “bars” indicate steady states
• a coefficient of approximating (Taylor) polynomial

45/87

Dynare

NOTATION

DYNARE’S MAIN FILE

• main file type is a *.mod file

• into this file you specify
• variables of your model
• parameters and their values
• model equations (linearized or not)
• initial values (ideally steady state)
• solution method (1st or higher order)

• many other options (IRFs, simulations, moments etc.)
• you can also estimate models

46/87

NOTATION IN DYNARE

• variables known at the beginning of period

• are dated as t− 1!
• kt: capital choice in period t
• kt−1: capital stock available in t

47/87

POLICY RULES

• Dynare produces perturbation approximation to policy rules

• for now consider linear approximations

• linear in what?!
• Dynare doesn’t know that “k” means capital
• k could be

• level of capital
• log of capital

• its up to you to decide

• Dynare will produce policy rules for specified variables

48/87

POLICY RULES

• in neoclassical growth model

• Dynare generates following policy rules

kt = k+ akk(kt−1 − k) + akz(zt−1 − z) + akϵϵt

• i.e. it splits structural shocks into
• past value and
• innovation
• i.e. if zt = 1− ρ+ ρzt−1 + ϵt then akz = ρakϵ

49/87

Dynare

BLOCKS

DYNARE BLOCKS

A Dynare file has several blocks:

1. list of variables

2. list of exogenous shocks

3. list of model parameters and their values

4. model block (optimality conditions)

5. shock properties

6. initial values

7. solution (and other) commands

50/87

DEFINITIONS AND PARAMETRIZATION

1. Specify variables
• specified by typing “var” and then listing variables

2. Specify exogenous shocks
• specified by typing “varexo” and then listing shocks

3. Specify parameters and their values
• specified by typing “parameters” and then listing parameters
• each parameter must then be assigned a value

• either directly in Dynare file
• or by loading it from outside Dynare file
• the latter is more convenient for calibration

51/87

MODEL BLOCK

4. Model block contains equilibrium conditions

• initialize block by typing “model;”

• end it by typing “end;”

• in between simply write your model equations

Specifics

• Dynare figures out there are expectations when you write (+1)

• e.g. the Euler equation:
c (̂-gamma)=beta*c(+1) (̂-gamma)*(alpha*Z(+1)k (̂alpha-1)+1-delta)

52/87

SHOCK PROPERTIES

5. Shock properties

• initialize the block by typing “shocks;”

• end it by typing “end;”

• in between specify shock properties
• e.g. “var e; stderr sigZ;”
• can specify more, like correlations etc.

53/87

INITIAL VALUES

6. Initial values

• initialize block by typing “initval;”

• end it by typing “end;”

• inbetween list the initial values of all variables
• ideally give Dynare the steady state
• often difficult to compute, so supply it yourself

54/87

SOLUTION

7. Give Dynare the green light to solve the model

• “stoch_simul(options)”

• options include
• order of perturbation: e.g. “order=1” for linear
• length of IRFs: e.g. IRF=20
• many, many more

To actually run Dynare type dynare filename.mod

55/87

OTHER USEFUL FEATURES

• “resid” command shows equation errors
• it plugs initial values into model equations
• they should all be zero in steady state
• useful for finding out typos

56/87

Dynare

EXAMPLE CODE

RBC MODEL IN DYNARE30/10/18 12:02 C:\Work\Teaching\Sum...\neoclassModel.mod 1 of 1

// neoclassical growth model solution and simulation

var c, k, y, z;
varexo e;
parameters alpha, beta, delta, nu, rhoz, sigz, kss, css;

load params;

set_param_value('alpha' ,par.alpha); // returns to scale parameter
set_param_value('beta' ,par.beta); // discount factor
set_param_value('delta' ,par.delta); // depreciation rate
set_param_value('nu' ,par.nu); // relative risk aversion coefficient
set_param_value('rhoz' ,par.rhoz); // autocorrelation of productivity shock
set_param_value('sigz' ,par.sigz); // standard deviation of productivity shock

set_param_value('kss' ,par.k); // steady state capital
set_param_value('css' ,par.c); // steady state consumption

model;
c^(-nu) = beta*c(+1)^(-nu)*(alpha*z(+1)*k^(alpha-1) + 1 - delta);
c + k = y + k(-1)*(1-delta);
y = z*k(-1)^alpha;
z = 1 - rhoz + rhoz*z(-1) + e;
end;

initval;
k = kss;
c = css;
y = kss^alpha;
z = 1;
end;

shocks;
var e; stderr sigz;
end;

resid;
steady;

stoch_simul(order=1,nomoments, irf=0, periods = 5000);

57/87

RBC MODEL IN DYNARE

30/10/18 12:02 C:\Work\Teaching\Sum...\neoclassModel.mod 1 of 1

// neoclassical growth model solution and simulation

var c, k, y, z;
varexo e;
parameters alpha, beta, delta, nu, rhoz, sigz, kss, css;

load params;

set_param_value('alpha' ,par.alpha); // returns to scale parameter
set_param_value('beta' ,par.beta); // discount factor
set_param_value('delta' ,par.delta); // depreciation rate
set_param_value('nu' ,par.nu); // relative risk aversion coefficient
set_param_value('rhoz' ,par.rhoz); // autocorrelation of productivity shock
set_param_value('sigz' ,par.sigz); // standard deviation of productivity shock

set_param_value('kss' ,par.k); // steady state capital
set_param_value('css' ,par.c); // steady state consumption

model;
c^(-nu) = beta*c(+1)^(-nu)*(alpha*z(+1)*k^(alpha-1) + 1 - delta);
c + k = y + k(-1)*(1-delta);
y = z*k(-1)^alpha;
z = 1 - rhoz + rhoz*z(-1) + e;
end;

initval;
k = kss;
c = css;
y = kss^alpha;
z = 1;
end;

shocks;
var e; stderr sigz;
end;

resid;
steady;

stoch_simul(order=1,nomoments, irf=0, periods = 5000);

58/87

RBC MODEL IN DYNARE

Dynare’s output (coefficients of policy rules)

• remember the quirks of Dynare!

59/87

RBC MODEL IN DYNARE

Now let’s increase the size of shocks (from σ = 0.01 to σ = 0.1)

• what happens to the solution?

60/87

WHAT ABOUT A LOG-LINEAR APPROXIMATION?

61/87

WHAT ABOUT A LOG-LINEAR APPROXIMATION?

62/87

WHAT ABOUT A LOG-LINEAR APPROXIMATION?

Dynare’s output (coefficients of policy rules): linear

Dynare’s output (coefficients of policy rules): log-linear

63/87

WHAT ABOUT A LOG-LINEAR APPROXIMATION?

Does it matter for the dynamics?

Output impulse response

0 2 4 6 8 10 12 14 16 18 20

time

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

pe
rc

en
t

approximation in levels
approximation in logs
using true production function

64/87

WHAT ABOUT A LOG-LINEAR APPROXIMATION?

Does it matter for the dynamics?

Output impulse response

0 2 4 6 8 10 12 14 16 18 20

time

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

pe
rc

en
t

level approx. - log approx.
level approx. - "true" prod. fce. approx.

65/87

Dynare

TIPS AND TRICKS

INCORPORATING DYNARE INTO A BROADER CODE

Often very useful to have the .mod file as a part of bigger code

• e.g. when calibrating a model, conducting your own simulation, IRFs etc

• to make this efficient, it requires a few tricks

Tips/tricks

• keeping variables in memory

• loading, instead of setting, parameter values

• saving solution in a separate file

• the idea of homotopy

66/87

KEEPING VARIABLES IN MEMORY

As a default, Dynare clears all variables from memory

• to over-ride this, include noclearall after your Dynare command

• e.g. dynare neoclassModel.mod noclearall

67/87

SETTING PARAMETER VALUES

In the “parameter block” of the .mod file, you need to specify all parameter values
• either you set them directly, e.g. beta=0.99
• or you can load parameter values

Loading parameter values
• In a “standard” Matlab program, you can set all your parameter values

68/87

SETTING PARAMETER VALUES

In the “parameter block” of the .mod file, you need to specify all parameter values
• either you set them directly, e.g. beta=0.99
• or you can load parameter values

Loading parameter values
• in a “standard” Matlab program, you can set all your parameter values
• then, save all the parameter values as e.g. save params par
• in your .mod file, load those parameters as load params
• finally, set parameters to loaded values using
set_param_value('alpha', par.alpha);

69/87

WOUTER’S dynarerocks FILE

All Dynare output is saved in oo_
• e.g. IRFs of capital to a productivity shock are in oo_.irfs.k_e
• decision rule coefficients are in oo_.dr.ghx, in a particular order

Wouter’s disp_dr.m function
• includes command that saves decision rules in format you see on screen

• unfortunately, specific to Dynare versions and Wouter got tired of updating

70/87

WOUTER’S dynarerocks FILE

All Dynare output is saved in oo_

• e.g. IRFs of capital to a productivity shock are in oo_.irfs.k_e

• decision rule coefficients are in oo_.dr.ghx, in a particular order

Wouter’s disp_dr.m function

• includes command that saves decision rules in format you see on screen

• matrix is conveniently called dynarerocks.mat

• i.e. in order to load decision rules, simply type load dynarerocks

71/87

LOOPS AND HOMOTOPY

All the above is super-useful when calibrating a model

• often, you can solve a model under “some” parametrization

• but getting to your preferred parametrization is harder
• you might not know what it is
• you might not have good initial values (steady state)

• in both of the above cases, it is useful to use the homotopy idea
• move slowly from what you know to where you want to be

72/87

LOOPS AND HOMOTOPY

Example: suppose you want to solve [F(x;α1)] = 0

• and suppose you know the solution to [F(x;α0)] = 0

• using solution of [F(x;α0)] = 0 as initial guess in [F(x;α1)] = 0 may not work!

Instead, solve a sequence of “intermediate” cases [F(x;ωα0 + (1− ω)α1)] = 0

• where ω ∈ [0, 1]

• allows transition between what you know (α0) to where you’re heading (α1)
1. solve model for ω0 = 1, save x
2. use x from 1 as initial conditions for case where ω1 < ω0 and save x again
3. repeat 2 until ωJ = 0

73/87

Dynare

TAKING STOCK

TAKING STOCK

Dynare

• incredibly useful software for perturbation solutions of DSGE models

• can solve, estimate (ML, Bayesian), simulate, produce IRFs etc.

• read documentation for specific syntax

74/87

OVERVIEW FOR TODAY

1. Introduction

2. A DSGE model

3. Perturbation

4. Perturbation in Dynare

5. DIY linearization

75/87

DIY Linearization

DIY LINEARIZATION: STARTING POINT

Linearization of models is great

• fast and can deal with large state-spaces

• models can be estimated “easily”

• great starting point to see if model is reasonable

But, linearization also has important drawbacks

• accuracy only guaranteed around approximation point

• certainty equivalence!

• can’t handle some features, e.g. occasionally binding constraints

76/87

DIY LINEARIZATION: PURPOSE

In its basic form:

• opens up “blackbox” of Dynare

• easy to implement and fast

Allows for important extensions

• linearization around an arbitrary point

• solving of regime-switching models

Developed by Pontus, see Rendahl (2017), “Linear Time Iteration”

77/87

https://drive.google.com/file/d/1xRXucBsSWvLn_BjH8woJoUb1m7ay3D9g/view

DIY Linearization

GENERAL FORMULATION

GENERAL FORMULATION OF DSGE MODELS

As before, we can write a DSGE model in the following form

Et[F(xt−1, xt, xt+1)] = 0

• F[.]: system of equilibrium conditions
• x: vector of endogenous and exogenous (possibly stochastic) variables
• x∗: corresponding steady state values

1st order perturbation solution based on Taylor expansion around x∗:

F(x∗, x∗, x∗) + Jxt−1(xt−1 − x∗) + Jxt(xt − x∗) + Jxt+1Et(xt+1 − x∗) = 0

Jxt−1︸︷︷︸
A

(xt−1 − x∗)︸ ︷︷ ︸
ut−1

+ Jxt︸︷︷︸
B

(xt − x∗)︸ ︷︷ ︸
ut

+ Jxt+1︸︷︷︸
C

Et(xt+1 − x∗)︸ ︷︷ ︸
ut+1

= 0

78/87

GENERAL FORMULATION OF DSGE MODELS

Aut−1 + But + Cut+1 = 0

• arbitrarily general (e.g. many states)
• easy to solve
• can quickly check uniqueness/stability (Blanchard/Khan conditions)

So, how to solve the above (without shocks first)?
• we know we’re looking for a linear solution, i.e. ut = Fut−1

• ut−1: state variables, ut: choice variables, F: same dimension as J’s

• start with a guess, F0, plug it into the above and iterate

79/87

DIY Linearization

SOLUTION

SOLUTION ALGORITHM: BASICS

Aut−1 + But + Cut+1 = 0
Main idea of solution:
• guess how you will act tomorrow (ut+1 = F0ut)
• and use the above system to solve for how you act now

Aut−1 + But + CF0ut = 0

• we now have a new relationship between ut and ut−1
• use this as the new guess for F, i.e. F1:

Aut−1 + (B+ CF0)ut = 0

(B+ CF0)ut = −Aut−1
ut = (B+ CF0)−1(−A)ut−1

80/87

SOLUTION ALGORITHM: BASICS

Ultimately, all we need to do is iterate on

Fn+1 = (B+ CFn)−1(−A)

• n indicates iteration number

• continue until “convergence”, e.g.

||BFn + CF2n + A|| ≈ 0

• since the algorithm is very fast, can use tight criteria, e.g. 1e(−12)

81/87

SOLUTION ALGORITHM: INTRODUCING SHOCKS

Consider allowing for stochastic shocks:

Aut−1 + But + CEtut+1 + ϵt = 0

• notice, we need to keep linear structure!

• therefore, we are looking for ut = Fut−1 + Qϵt
• otherwise all the same as before

Aut−1 + But + CEt[Fut + Qϵt+1] + ϵt = 0

Aut−1 + But + CEt[Fut +Qϵt+1] + ϵt = 0

82/87

SOLUTION ALGORITHM: INTRODUCING SHOCKS

Now we have a solution given by

ut = (B+ CF)−1(−A)︸ ︷︷ ︸
F

ut−1 + (B+ CF)−1︸ ︷︷ ︸
−Q

(−ϵt)

• iteration for F is unchanged!

Fn+1 = (B+ CFn)−1(−A)

• once converged to an F, can solve for Q:

Q = −(B+ CFn)−1

• how come we don’t need to know Q for F?

83/87

DIY Linearization

SOLUTION AROUND AN ARBITRARY POINT

SOLUTION AROUND AN ARBITRARY POINT

What about solving the model around x ̸= x∗?
• key difference, introduce an “intercept”, F(x, x, x) = D
• note that now Jacobians also evaluated at x, not x∗ and ut = xt − x!
• we’re now looking for the following solution: ut = E+ Fut−1
• otherwise, all is the same as before

D+ Aut−1 + But + C(E+ Fut) = 0

ut = (B+ CF)−1(−D− CE)︸ ︷︷ ︸
E

+(B+ CF)−1(−A)︸ ︷︷ ︸
F

ut−1

• once again, iteration for F unchanged
• after solving for F, can compute E = (B+ C+ CF)−1(−D)

84/87

DIY Linearization

TAKING STOCK

TAKING STOCK

• using an iterative scheme instead of solving non-linear equations

• DIY linearization simple to implement and more flexible

85/87

OVERVIEW FOR TODAY

1. Introduction

2. A DSGE model

3. Perturbation

4. Perturbation in Dynare

5. DIY linearization

86/87

87/87

	Introduction
	Why DSGE's?
	What will we cover?

	Neoclassical Growth Model
	Solution
	Use of computational tools
	Taking stock

	Perturbation
	Theoretical Underpinning
	Details
	1st order perturbation and certainty equivalence
	Uncertainty
	Accuracy
	Taking stock

	Dynare
	Notation
	Blocks
	Example code
	Tips and tricks
	Taking stock

	DIY Linearization
	General Formulation
	Solution
	Solution around an arbitrary point
	Taking stock

