# **NON-LINEAR SOLUTION METHODS**

Solution Methods for Macroeconomic Models

Petr Sedláček

#### SOLUTION METHODS FOR MACROECONOMIC MODELS

- Monday Tuesday: Solving models with "representative agents"
  - Linearization in theory and practice: Dynare
  - · Non-linear solutions methods: value function iteration, projection
  - Analyzing models: parameterization/estimation, simulation/IRFs
- Wednesday Thursday: Solving models with "heterogeneous agents"
  - Models without aggregate uncertainty: basic algorithm
  - Models with aggregate uncertainty: key issues and alternatives
- Friday: "Final assignment"
  - Solve/estimate model with heterogeneous firms and aggregate uncertainty

#### **OVERVIEW FOR TODAY**

#### Non-linear solution methods

- higher-order perturbation
- projection
- · value function iteration

# Analyzing DSGE models

parameterization/estimation, simulation/IRFs

#### **OVERVIEW FOR TODAY**

- 1. Higher-order perturbation
- 2. Projection
- 3. Value function iteration

**Higher-Order Perturbation** 

#### **GETTING 1ST ORDER APPROXIMATIONS**

Recall that we can write our model as

$$\mathbb{E}_{t}F\bigg(g(h(X_{t},\sigma)+\sigma\widetilde{\epsilon}_{t+1},\sigma),g(X_{t},\sigma),h(X_{t},\sigma)+\sigma\widetilde{\epsilon}_{t+1},X_{t}\bigg)=0$$

# DERIVING COFFEIGIENTS OF TAYLOR POLYNOMIAL

For simplicity, substitute out consumption to get  $F[x_{t+2}, x_{t+1}, x_t] = 0$ 

$$F_{x} = \frac{\partial F}{\partial x_{t+2}} \frac{\partial x_{t+2}}{\partial x_{t+1}} \frac{\partial x_{t+1}}{\partial x_{t}} + \frac{\partial F}{\partial x_{t+1}} \frac{\partial x_{t+1}}{\partial x_{t}} + \frac{\partial F}{\partial x_{t}}$$

$$= \overline{F}_1 \frac{\partial x_{t+2}}{\partial x_{t+1}} \frac{\partial x_{t+1}}{\partial x_t} + \overline{F}_2 \frac{\partial x_{t+1}}{\partial x_t} + \overline{F}_3$$

$$= \overline{F}_1 h_x^2 + \overline{F}_2 h_x + \overline{F}_3 = 0$$

$$\cdot \frac{\frac{\partial F(x_{t+2}, x_{t+1}, x_t, \sigma)}{\partial x_{t+i}}|_{x_{t+2} = x_{t+1} = x_t = \overline{x}, \sigma = 0} = \overline{F}_{3-i}$$

$$\cdot \frac{\frac{\partial h(x_t, \sigma)}{\partial x_t}|_{x_t = \overline{x}, \sigma = 0 \ \forall t} = h_x$$

$$\frac{\partial h(x_t,\sigma)}{\partial x_t}|_{x_t=\overline{x},\sigma=0} \ \forall t=h_x$$

Then, approximating polynomial:  $h(x,\sigma) \approx h(\bar{x},0) + h_x(\bar{x},0)(x-\bar{x}) + h_\sigma(\bar{x},0)\sigma$ 

#### **GETTING 2ND-ORDER APPROXIMATIONS**

$$h(x,\sigma) = h(\overline{x},\overline{\sigma}) + h_x(\overline{x},\overline{\sigma})(x-\overline{x}) + h_{\sigma}(\overline{x},\overline{\sigma})(\sigma-\overline{\sigma})$$
  
+  $1/2[h_{xx}(\overline{x},\overline{\sigma})(x-\overline{x})^2 + 2h_{x\sigma}(\overline{x},\overline{\sigma})(x-\overline{x})(\sigma-\overline{\sigma})$   
+  $h_{\sigma\sigma}(\overline{x},\overline{\sigma})(\sigma-\overline{\sigma})^2]$ 

# GETTING 2ND-ORDER DERIVATIVE W.R.T. $X_t$

$$F_{XX} = \frac{\partial F_X}{\partial X_t} = h_X^2 (\overline{F}_{11} h_X^2 + \overline{F}_{12} h_X + \overline{F}_{13}) + \overline{F}_{12} h_X h_{XX} + h_X (\overline{F}_{21} h_X^2 + \overline{F}_{22} h_X + \overline{F}_{23}) + \overline{F}_2 h_{XX} + (\overline{F}_{31} h_X^2 + \overline{F}_{32} h_X + \overline{F}_{33}) = 0$$

$$\cdot \frac{\partial^{2} F(x_{t+2}, x_{t+1}, x_{t}, \sigma)}{\partial x_{t+i} \partial x_{t+j}} |_{x_{t+2} = x_{t+1} = x_{t} = \overline{x}, \sigma = 0} = \overline{F}_{3-i, 3-j}$$

$$\cdot \frac{\partial h(x_{t}, \sigma)}{\partial x_{t}^{2}} |_{x_{t} = \overline{x}, \sigma = 0} \ \forall t = h_{XX}$$

# GETTING 2ND-ORDER DERIVATIVE W.R.T. $X_t$

- the above is *linear* in  $h_{xx}$
- the same holds for higher-order derivatives
- $\cdot$  i.e. easy to solve for coefficients of approximating polynomial
- but, careful with accuracy and in simulation (pruning)

#### **OVERVIEW FOR TODAY**

- 1. Higher-order perturbation
- 2. Projection
- 3. Value function iteration

# Projection

#### NEOCLASSICAL GROWTH MODEL

Let's return to our favorite DSGE model

$$c_t^{-\gamma} = \beta \mathbb{E}_t c_{t+1}^{-1} \left( \alpha z_{t+1} k_{t+1}^{\alpha - 1} + 1 - \delta \right)$$
$$c_t + k_{t+1} = z_t k_t^{\alpha} + (1 - \delta) k_t$$
$$\ln z_t = \rho \ln z_{t-1} + \epsilon_t$$

### **POLICY RULES**

What are the policy rules?

$$c_t = \mathbf{c}(k_t, Z_t)$$
$$k_{t+1} = \mathbf{k}(k_t, Z_t)$$

How are they determined?

$$u_{c}(c_{t}) = \beta \mathbb{E}_{t} u_{c}(c_{t+1}) \left( \alpha Z_{t+1} k_{t+1}^{\alpha - 1} + 1 - \delta \right)$$
$$c_{t} + k_{t+1} = y_{t} + (1 - \delta) k_{t}$$

# BUT WE DON'T KNOW WHAT POLICY RULES LOOK LIKE!

# Function approximation

- analytical solutions rarely exist
- $\cdot \, o$  need to approximate the policy functions

$$c_t \approx \widetilde{c}(k_t, Z_t; \psi_c)$$

$$k_{t+1} \approx \widetilde{k}(k_t, Z_t; \psi_k)$$

- · what are we solving for?
  - the coefficients of the approximations:  $\psi_{\it c}$  and  $\psi_{\it k}$

# BUT WE DON'T KNOW WHAT POLICY RULES LOOK LIKE!

# Numerical integration

- analytical solutions rarely exist
- $\cdot \rightarrow$  need to calculate expectations of (unknown) functions

$$u_c(c_t) = \beta \mathbb{E}_t u_c(c_{t+1}) \left[ \alpha Z_{t+1} k_{t+1}^{\alpha - 1} + 1 - \delta \right]$$

# BUT WE DON'T KNOW WHAT POLICY RULES LOOK LIKE!

# Numerical integration

- · analytical solutions rarely exist
- $\cdot \rightarrow$  need to calculate expectations of (unknown) functions

$$u_{c}(c_{t}) = \beta \int u_{c}(c_{t+1}) \left[\alpha Z_{t+1} R_{t+1}^{\alpha-1} + 1 - \delta\right] dF(\epsilon)$$

# **PROJECTION**

Non-linear (global) solution method: "brute force" use of

- function approximation
- numerical integration

# Projection

**FUNCTION APPROXIMATION** 

#### WHY FUNCTION APPROXIMATION?

- · we are after policy rules
  - these are functions of state variables
  - moreover, closed form solutions rarely exist
  - $\cdot \, o \,$  work with approximations of true functions
- let's think about this problem more generally first
- · later we'll talk about how to implement it with DSGE models

#### MAIN IDEA OF FUNCTION APPROXIMATION

Consider we want to approximate a function

$$y = f(x)$$

- 1. choose a family of functions to use as interpolants
  - popular choice is the family of polynomials
  - but others also exist
    - trigonometric functions (fourier approximation)
    - rational functions (pade approximation)
- 2. find coefficients of interpolant
  - · such that interpolant and true function agree at certain points

#### MAIN IDEA OF FUNCTION APPROXIMATION

We've already made enormous progress at this point:

· we have reduced the problem to a finite dimension!

$$y \approx \bar{f}(x) = a_0 T_0(x) + a_1 T_1(x) + ... + a_n T_n(x)$$

- where  $a_j$  are coefficients of the polynomial for j = 0,..,n
- and  $T_i(x)$  are basis functions

 $a_i$ 's solve the above at each chosen node, i = 1, ..., n + 1

$$y_i = f(x_i) = a_0 + \sum_{j=1}^n a_j T_j(x_i)$$
$$y = T(x)a$$

#### MAIN IDEA OF FUNCTION APPROXIMATION

- the above (interpolation) method is a special case
- regression is a method of interpolation!
  - when the number of grid points i
  - is generally larger than the number of basis functions
  - · what if you run a regression of n points on n regressors?

### WEIERSTRASS' APPROXIMATION THEOREM

**Theorem** Let f be a continous real-valued function defined on the real interval [a,b]. For every  $\epsilon > 0$ , there exists a polynomial p such that for all  $x \in [a,b]$  we have  $|f(x) - p(x)| < \epsilon$ .

#### In other words

- there exists a polynomial
- that approximates any continuous function
- arbitrarily well

#### PROBLEM WITH WEIERSTRASS...

- it is useless from a practical point of view
- because it gives no guidance on how to find p

There are (at least) 2 important choices to be made

- what type of polynomial to use
- and where to evaluate it (grid points)

An example is using monomials and equidistant nodes

turns out to be a bad idea

# Projection

FUNCTION APPROXIMATION: BASIS FUNCTIONS

#### WHY NOT MONOMIALS?

the choice of monomial basis functions implies

$$\begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_1 & \cdots & x_1^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \cdots & x_n^{n-1} \end{bmatrix} \begin{bmatrix} a_0 \\ \vdots \\ a_n \end{bmatrix}$$

- the first matrix on the RHS is a Vandermonde matrix
- · even though it is non-singular, it is often ill-behaved
- intuition from regression?

#### **ORTHOGONAL POLYNOMIALS**

- monomials often suffer from high correlation
- orthogonal polynomials are constructed
- to have orthogonal basis functions (w.r.t. some measure)

$$\int_{a}^{b} T_{i}(x)T_{j}(x)w(x) = 0 \quad \forall i, j \quad i \neq j$$

• w(x) is some weighting function

Popular orthogonal polynomials are Chebyshev polynomials

# **CHEBYSHEV POLYNOMIALS**

- defined on interval [-1, 1]
- weighting function

$$w(x) = \frac{1}{(1-x^2)^{1/2}}$$

basis functions

$$T_0(x) = 1$$
 $T_1(x) = x$ 
 $T_{j+1}(x) = 2xT_j(x) - T_{j-1}(x) \quad j > 1$ 

# Projection

**FUNCTION APPROXIMATION: NODES** 

- · suppose we have an equidistant grid
- it turns out that the higher the order of polynomial
- the larger the "swings" between grid points
- these oscillations become more dramatic at the end points!

#### Weierstraas' theorem

- there exists a uniformly converging polynomial approximation
- to find it, however, we have to be smart about the nodes







Intuition

#### **CHEBYSHEV NODES**

# Chebyshev nodes ensure uniform convergence

- the roots  $(z_i)$  at which the basis functions are equal to 0
- e.g.  $T_2(x) = 2x^2 1 \rightarrow \text{nodes of } z_1 = -1/2 \text{ and } z_2 = 1/2$
- i.e. get n Chebyshev nodes by solving the n<sup>th</sup> basis function
- this is the reason for the popularity of Chebyshev polynomials
- Chebyshev nodes can be computed according to

$$z_j = -\cos\left(\frac{(2j-1)\pi}{2n}\right)$$

#### INTERVAL CONVERSION

- to approximate on an interval [a, b]
- · we must rescale the Chebyshev nodes
- find  $\alpha$  and  $\beta$  for which

$$x = \alpha z + \beta$$
$$\beta - \alpha = a$$
$$\beta + \alpha = b$$

• then if  $z \in [-1, 1]$  and  $x \in [a, b]$  then

$$x = \frac{b-a}{2}z + \frac{a+b}{2}$$

# Projection

**FUNCTION APPROXIMATION: SPLINES** 

### SPLINES - MAIN IDEA

- polynomials approximate over entire domain
  - spectral method
- splines split support into sections
  - · finite element method
- $\cdot$  splines can be expressed as linear combinations of basis fces
- but they are not polynomials
  - · basis functions are zero for most of the domain

### PIECE-WISE LINEAR SPLINES

· the easiest type is piece-wise linear

$$f(x) \approx \left(1 - \frac{x - x_i}{x_{i+1} - x_i}\right) f_i + \left(\frac{x - x_i}{x_{i+1} - x_i}\right) f_{i+1} \quad x \in [x_i, x_{i+1}]$$

- · in general not differentiable at nodes
- could be problematic  $\rightarrow$  use higher-order polynomials

### **CUBIC SPLINES**

• fit a 3-rd order polynomial in each segment

$$f(x) \approx a_i + b_i x + c_i x^2 + d_i x^3 \quad x \in [x_i, x_{i+1}]$$

$$S(x) = \begin{cases} S_1(x) & x_0 \le x \le x_1 \\ S_i(x) & x_{i-1} \le x \le x_i \\ S_n(x) & x_{n-1} \le x \le x_n \end{cases}$$

• i.e. we have n separate cubic splines for n + 1 nodes

### **CUBIC SPLINES**

- n splines give 4n coefficients to determine
- what conditions pin down the 4n coefficients?
  - 2 + 2(n 1) function values at the nodes
  - 2(n-1) smoothness conditions (for 0 < i < n)

$$S_i'(x_i) = S_{i+1}'(x_i)$$

$$S_i''(x_i) = S_{i+1}''(x_i)$$

- 2 boundary conditions
  - "natural (simple)"  $S_1''(x_0) = 0$  and  $S_n''(x_n) = 0$
  - · or "clamped"  $S'_1(x_0) = 0$  and  $S'_n(x_n) = 0$

### BEFORE WE MOVE ON...

- $\boldsymbol{\cdot}$  sovling DSGE models means getting policy functions
- · so how does function approximation work in DSGE models?

# Projection

NUMERICAL INTEGRATION

### WHY NUMERICAL INTEGRATION?

- in economics, there are plenty of integrals
  - expectations
- evaluating integrals can be a tough problem
  - the functional form may be nasty
  - · we may not even have the functional form
  - · we may be able to evaluate it, but not draw from it
    - · as in e.g. Bayesian estimation
- therefore, we need a way around this...

### INTUITIVE INTEGRATION METHOD

Consider you want to compute the integral  $\int_a^b g(x)dH(x)$ 

• where x is a random variable with CDF H(x)

Monte-Carlo integration uses the following approximation

$$\int_{a}^{b} g(x)dH(x) \approx \frac{\sum_{t=1}^{T} g(x_{t})}{T}$$

 $\{x_t\}_{t=1}^T$  is a series drawn from a random number generator

This procedure is very simple and intuitive but

- it is not very accurate (fast)
- more powerful procedures available → numerical integration

### MAIN IDEA OF NUMERICAL INTEGRATION

- we want to calculate  $I = \int_a^b f(x) dx$
- the basic idea is to approximate it with  $I \approx \sum_{i=1}^{n} \omega_i f(x_i)$



### MAIN IDEA OF NUMERICAL INTEGRATION

$$I \approx \sum_{i=1}^{n} \omega_{i} f(x_{i})$$

- · therefore, we face (at least) three choices
  - choice of quadrature weights,  $\omega_i$ 's
  - · choice of quadrature nodes, x<sub>i</sub>'s
  - · choice of number of evaluations, n

## TYPES OF QUADRATURE METHODS

## Newton-Cotes quadrature methods

- break interval into equidistant intervals
- approximate f(x) with a low-order polynomial
- use integrals of polynomials as the approximations

## Gaussain quadrature methods

- · same idea as with Newton-Cotes
- more clever in choosing quadrature nodes

# Projection

NUMERICAL INTEGRATION: NEWTON-COTES

### **NEWTON-COTES**

## Types of Newton-Cotes quadrature methods

- mid-point rule
  - · interpolant is a constant
- trapezoid rule
  - · interpolant is linear
- Simpson's rule
  - interpolant is quadratic

## SIMPSON'S QUADRATURE

$$I \approx \sum_{i} \omega_{i} P_{2}(x_{i})$$

• choose 3 equidistant nodes in (each) interval [a, b]:

• 
$$x_0 = a, x_1 = a + h \text{ and } x_2 = a + 2h = b$$

- choose polynomial type to approximate f(x)
  - Simpson's quadrature uses Lagrange polynomials
  - the beauty is that Simpson's rule can be standardized!

### LAGRANGE BASIS FUNCTIONS

$$L_{j}(x) = a_{0}L_{0}(x) + ... + a_{n}L_{n}(x)$$

$$L_{j}(x) = \frac{(x - x_{0})...(x - x_{j-1})(x - x_{j+1})...(x - x_{n})}{(x_{j} - x_{0})...(x_{j} - x_{j-1})(x_{j} - x_{j+1})...(x_{j} - x_{n})}$$

- $\cdot$   $L_i$ 's are polynomials so the approximation is a polynomial
- the approximation gives an exact fit at the n + 1 nodes

$$L_j(x) = \begin{cases} 1 & \text{if } x = x_j \\ 0 & \text{if } x \in \{x_0, ..., x_n\} \setminus x_j \end{cases}$$

• what are the coefficients of the polynomial?

## SIMPSON'S QUADRATURE

$$I \approx \int_{a}^{b} (f_{0}L_{0}(x) + f_{1}L_{1}(x) + f_{2}L_{2}(x)) dx$$
$$= f_{0} \int_{a}^{b} L_{0}(x)dx + f_{1} \int_{a}^{b} L_{1}(x)dx + f_{2} \int_{a}^{b} L_{2}(x)dx$$

· doing the integration results in

$$\int_{a}^{b} L_{0}(x)dx = 1/3h \quad \int_{a}^{b} L_{1}(x)dx = 4/3h \quad \int_{a}^{b} L_{2}(x)dx = 1/3h$$

- · i.e. you can find quadrature weights
- *independent* of the functional form of *f*!

## SIMPSON'S QUADRATURE

The above can be easily extended to n + 1 equidistant nodes

- · total number of nodes must be odd
- this gives us n/2 segments of length h
- · apply the above idea for each of the segments

$$\int_{a}^{b} f(x)dx \approx \left(\frac{1}{3}f_{0} + \frac{4}{3}f_{1} + \frac{2}{3}f_{2} + \frac{4}{3}f_{3} + \frac{2}{3}f_{4} + \cdots + \frac{2}{3}f_{n-2} + \frac{4}{3}f_{n-1} + \frac{1}{3}f_{n}\right)h$$

## Projection

NUMERICAL INTEGRATION: GAUSSIAN

QUADRATURE

### **GAUSSIAN QUADRATURE**

- Newton-Cotes formulas are simple due to equidistant nodes
- moreover, one can show that with Newton-Cotes
  - we get the exact answer when the true function
  - is a polynomial of order n-1
- but we can get more accuracy by choosing nodes cleverly
  - we get the exact answer if the true function
  - is a polynomial of order 2n 1!
  - i.e. 5 nodes give exact (accurate) answers for true functions
  - · which are (approximated by) a 9th order polynomial!

## PROCEDURE OF GAUSSIAN QUADRATURE

Using *n* nodes, we can approximate  $\int_{-1}^{1} f(x)dx$  as

$$\int_{-1}^{1} f(x) dx \approx \sum_{i=1}^{n} \omega_{i} f(\zeta_{i})$$

- i.e. we have 2n parameters
- need 2*n* conditions to pin down our parameters
- $\cdot \rightarrow$  ensure correct answer for first 2n basis functions

$$1, x, x^2, \cdots, x^{2n-1}$$

## PROCEDURE OF GAUSSIAN QUADRATURE

How to choose weights and nodes?

• solve for  $\omega_i$  and  $\zeta_i \forall i$  s.t.

$$\int_{-1}^{1} x^{j} dx = \sum_{i=1}^{n} \omega_{i} \zeta_{i}^{j} \quad j = 0, 1, \cdots, 2n-1$$

- i.e. solve a system of 2n equations in 2n unknowns
- note that the solution is independent of f!
  - i.e. choice of nodes and weights is independent of f

### GAUSS-LEGENDRE QUADRATURE

- the above method (for interval between -1 and 1)
- is called Gauss-Legendre quadrature
- · nodes  $(\zeta_i^{\text{GL}})$  and weights  $(\omega_i^{\text{GL}})$  satisfy above 2n conditions
- the approximation is then given by

$$\int_{-1}^{1} f(x) dx \approx \sum_{i=1}^{n} \omega_{i}^{GL} f(\zeta_{i}^{GL})$$

### **GAUSS-HERMITE QUADRATURE**

- when the true function is given by f(x) = g(x)W(x) where
  - g(x) can be approximated well by a polynomial
  - but f(x) cannot
- then adjust the quadrature procedure depending on W(x)
- Gauss-Hermite quadrature is used when  $W(x) = \exp(-x^2)$
- why is this an interesting case?

## **GAUSS-HERMITE QUADRATURE**

· nodes and weights chosen s.t.

$$\int_{-\infty}^{\infty} x^j \exp(-x^2) dx = \sum_{i=1}^n \omega_i \zeta_i^j \quad j = 0, 1, \dots, 2n-1$$

· the approximation is then given by

$$\int_{-\infty}^{\infty} g(x) \exp(-x^2) dx \approx \sum_{i=1}^{n} \omega_i^{GH} g(\zeta_i^{GH})$$

- · often, we need to revert to "change of variable" to convert original problem
  - · why?

# Projection

MAIN IDEA

## PROJECTION: MAIN IDEA

## Policy rules are

- · (unknown) functions of state variables
- $\cdot \, o$  use function approximation and numerical integration

True rational expectations solution given by:

$$c_t = c(k_t, Z_t)$$

$$k_{t+1} = k(k_t, Z_t)$$

Approximate  $c(k_t, Z_t)$  with polynomial  $P_n(k_t, Z_t; \psi_n)$ 

• what about  $k(k_t, Z_t)$ ?

## PROJECTION: MAIN IDEA

- · what are we solving for?
- · how do we do it?

Define error terms

$$e(k_t, Z_t) = -c_t^{-\gamma} + \mathbb{E}_t[\beta c_{t+1}^{-\gamma} \alpha Z_{t+1} k_{t+1}^{\alpha-1}]$$

- substitute  $c_t$  with  $P_n(k_t, Z_t; \psi_n)$
- · there is  $N_n$  elements of  $\psi_n$  but only one Euler equation...

# Projection

**DETAILS** 

### **DETAILS OF THE SETUP**

Define M grid points  $\{k_i, Z_i\}$ 

$$e(k_i, Z_i; \psi_n) = -P_n(k_i, Z_i; \psi_n)^{-\gamma} + \alpha \beta \mathbb{E} \begin{bmatrix} P_n(k', Z'; \psi_n)^{-\gamma} \times \\ Z' \times \\ (k')^{\alpha - 1} \end{bmatrix}$$

• but what about k' and Z'?

### DETAILS OF THE SETUP

$$e(k_i, Z_i; \psi_n) = -P_n(k_i, Z_i; \psi_n)^{-\gamma} + \\ \mathbb{E} \begin{bmatrix} \alpha \beta \times \\ P_n \left( Z_i k_i^{\alpha} - P_n(k_i, Z_i; \psi_n), \exp(\rho \ln(Z_i) + \epsilon'); \psi_n \right)^{-\gamma} \times \\ \exp(\rho \ln(Z_i) + \epsilon') \times \\ \left( Z_i k_i^{\alpha} - P_n(k_i, Z_i; \psi_n) \right)^{\alpha - 1} \end{bmatrix}$$
what about  $\epsilon'$ ?

but what about e'?

### DETAILS OF THE SETUP

$$e(k_i, Z_i; \psi_n) = -P_n(k_i, Z_i; \psi_n)^{-\gamma} + \\ \sum_{j=1}^J \frac{\omega_j}{\sqrt{\pi}} \begin{bmatrix} \rho_n \left( Z_i k_i^{\alpha} - P_n(k_i, Z_i; \psi_n), \exp(\rho \ln(Z_i) + \sqrt{2}\sigma\zeta_j); \psi_n \right)^{-\gamma} \times \\ \exp(\rho \ln(Z_i) + \sqrt{2}\sigma\zeta_j) \times \\ (Z_i k_i^{\alpha} - P_n(k_i, Z_i; \psi_n))^{\alpha - 1} \end{bmatrix}$$

$$\cdot \omega_j \text{ and } \zeta_j \text{ are Gauss-Hermite quadrature weights and nodes}$$

•  $\omega_i$  and  $\zeta_i$  are Gauss-Hermite quadrature weights and nodes

# COMPUTATION VS ITERATION

## How to solve for coefficients of $P_n$ ?

- equation solver/minimization routine
- iteration procedures
  - fixed-point iteration
  - · time-iteration

## How to solve for coefficients of $P_n$ ?

How to choose polynomial and grid points?

- use Chebyshev nodes
  - guaranteed uniform convergence
- use Chebyshev polynomials
  - especially useful for iteration procedures
  - rescaling is needed (defined only between −1 and 1)

### **SOLVERS AND MINIMIZATION ROUTINES**

Smart in updating  $\psi_n$ , but high-dimensions costly

- Collocation:  $M = N_n$ 
  - use equation solver to obtain  $\psi_n$  at which  $e(k_i, Z_i; \psi_n) = 0 \quad \forall i$
- Galerkin:  $M > N_n$ 
  - · use minimization routine to obtain  $\psi_n$
  - minimize  $e(k_i, Z_i; \psi_n)$

#### **ITERATION METHODS**

# Can deal with high $N_n$ , sometimes guaranteed to converge

- in both fixed-point and time-iteration
  - 1. use latest "guess" of  $\psi_n$  in Eurler equation and compute implied  $c_i$
  - 2. use  $c_i$  values from 1 to get new guess of  $\psi_n$
  - 3. update your guess of coefficients  $\psi_n$
- · difference between fixed-point and time-iteration
- is in implementation of 1

#### **FIXED-POINT ITERATION**

Define  $\psi_n^q$  as value of  $\psi_n$  in qth iteration

1. At each grid point calculate  $c_i$  using  $\psi_n^{q-1}$ 

$$C_{i}^{-\gamma} = \frac{\alpha \beta \times}{\sum_{j=1}^{J} \frac{\omega_{j}}{\sqrt{2}}} \begin{bmatrix} \alpha \beta \times \\ P_{n} \left( Z_{i} k_{i}^{\alpha} - P_{n}(k_{i}, Z_{i}; \psi_{n}^{q-1}), \exp(\rho \ln(Z_{i}) + \sqrt{2}\sigma \zeta_{j}); \psi_{n}^{q-1} \right)^{-\gamma} \times \\ \exp(\rho \ln(Z_{i}) + \sqrt{2}\sigma \zeta_{j}) \times \\ (Z_{i} k_{i}^{\alpha} - P_{n}(k_{i}, Z_{i}; \psi_{n}^{q-1}))^{\alpha - 1} \end{bmatrix}$$

### **FIXED-POINT ITERATION**

- 2. Use obtained  $c_i$ 's to get new guess of  $\psi_n$ 
  - e.g. for n = 2, define

$$X = \begin{bmatrix} 1 & k_1 & Z_1 & k_1^2 & k_1 Z_1 & Z_1^2 \\ 1 & k_2 & Z_2 & k_2^2 & k_2 Z_2 & Z_2^2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & k_M & Z_M & k_M^2 & k_M Z_M & Z_M^2 \end{bmatrix}$$

- · compute  $\hat{\psi}_n^q = (X'X)^{-1}X'Y$ , where
- $Y = (c_1, c_2, ..., c_M)$  from step 1

#### **FIXED-POINT ITERATION**

- 3. Use past guess and newly estimated values for  $\psi_n$  for new guess
  - typically making slower steps is more stable:

$$\psi_n^q = \lambda \psi_n^{q-1} + (1 - \lambda)\hat{\psi}_n^q$$

- $\cdot \lambda \in [0,1)$ 
  - high values of  $\lambda$  increase chances of convergence
  - but they also slow things down

#### TIME-ITERATION

### Basic idea is the same as with fixed-point iteration

- $\cdot$  1. use latest "guess" of coefficients  $\psi_n$  in Eurler equation  $o c_i$
- 2. use  $c_i$  values from 1 to get new guess of  $\psi_n$
- $\cdot$  3. update your guess of coefficients  $\psi_n$

# But this time use latest guess of $\psi_n$ only

- for next period's choices
  - makes the solution of  $c_i$  trickier
  - · guarantees convergence (under conditions similar to VFI)

#### TIME-ITERATION

There is something slightly inconsistent with fixed-point iteration:

$$C_{i}^{-\gamma} = \frac{\alpha \beta \times}{\sum_{j=1}^{J} \frac{\omega_{j}}{\sqrt{2}}} \left[ P_{n} \left( Z_{i} k_{i}^{\alpha} - P_{n}(k_{i}, Z_{i}; \psi_{n}^{q-1}), \exp(\rho \ln(Z_{i}) + \sqrt{2}\sigma \zeta_{j}); \psi_{n}^{q-1} \right)^{-\gamma} \times \exp(\rho \ln(Z_{i}) + \sqrt{2}\sigma \zeta_{j}) \times (Z_{i} k_{i}^{\alpha} - P_{n}(k_{i}, Z_{i}; \psi_{n}^{q-1}))^{\alpha-1} \right]$$

#### TIME-ITERATION

Time iteration uses  $\psi_n^{q-1}$  only for next period's choices!

$$C_{i}^{-\gamma} = \frac{\alpha \beta \times}{\sum_{j=1}^{J} \frac{\omega_{j}}{\sqrt{2}}} \begin{bmatrix} \rho_{n} \left( Z_{i} k_{i}^{\alpha} - c_{i}, \exp(\rho \ln(Z_{i}) + \sqrt{2}\sigma\zeta_{j}); \psi_{n}^{q-1} \right)^{-\gamma} \times \\ \exp(\rho \ln(Z_{i}) + \sqrt{2}\sigma\zeta_{j}) \times \\ \left( Z_{i} k_{i}^{\alpha} - c_{i} \right)^{\alpha - 1} \end{bmatrix}$$

#### Номотору

It's always important to have good starting conditions

- begin with a point with good starting values
- solve for that setup
- adjust slowly towards desired (final) setup
- use solution from previous step as new starting values

#### TAKING STOCK

# Projection is a brute-force application of

- function approximation
  - careful choice of nodes and polynomial types
- numerical integration
  - · careful choice of nodes, type of quadrature
- time vs fixed-point iteration

#### **OVERVIEW FOR TODAY**

- 1. Higher-order perturbation
- 2. Projection
- 3. Value function iteration

VALUE FUNCTION ITERATION

### OUR MODEL IN "BELLMAN FORM"

We can write our neoclassical growth model as

$$V(z, k) = \max_{c, k'} u(c) + \beta \mathbb{E}V(z', k')$$

$$c + k' = zk^{\alpha}$$

$$z' = 1 - \rho + \rho z + \epsilon$$

$$k_0, z_0 \text{ given, } \epsilon \sim N(0, \sigma^2)$$

### OUR MODEL IN "BELLMAN FORM"

More generally, we're looking for a value function, V(x), i.e. the solution to

$$V(x) = \max_{u} r(x, u) + \beta V(x')$$
$$u = g(x)$$
$$x' = h(x, u)$$

- r(x, u): payoff function
- g(x): policy rule which maps states x into controls (u)
- h(x, u): law of motion for states
- · we've ignored uncertainty, but it all carries over also to stochastic case

### SOLVING FOR V

$$V(x) = \max_{u} r(x, u) + \beta V(h(x, u))$$

Define the Bellman operator B

- maps any function V into a new function BV
- $BV(x) = \max_{u} r(x, u) + \beta V(h(x, u))$

If V(x) is the solution to the Bellman equation

- then it is the fixed point of B
- i.e. B maps V into V

### **SOLVING FOR V**

The name suggests that we will repeatedly apply B

$$V_{1}(x) = BV_{0}(x) = \max_{u} r(x, u) + \beta V_{0}(h(x, u))$$

$$V_{2}(x) = B(BV_{0})(x) = \max_{u} r(x, u) + \beta V_{1}(h(x, u))$$
...
$$V_{n}(x) = B^{n}V_{0}(x) = \max_{u} r(x, u) + \beta V_{n-1}(h(x, u))$$

If V(x) is the solution to the Bellman equation

- then it is the fixed point of B
- $V_n$  will converge to the true value function V!
- ·  $\lim_{n\to\infty} B^n V_0 = V$
- this happens if B is a contraction mapping

#### UNDERLYING THEORY

Dynamic programming comes with some powerful theory

- · unlike many other solution methods, VFI comes with theoretical results
- existence, uniqueness, convergence etc (of course, under certain conditions)

# Value Function Iteration

**IMPLEMENTATION** 

### DIFFERENT WAYS OF SOLVING FOR V

- 1. Guess and verify
- 2. Value function iteration
  - Basic algorithm
  - Some speed improvements

#### **GUESS AND VERIFY**

As the name suggests, not greatly sophisticated

• But can still be powerful

## General steps

- 1. Set up Bellman equation
- 2. Derive optimality conditions
- 3. Guess function form of value function
- 4. Verify guess in optimality conditions (and derive coefficients)

#### PRACTICAL VALUE FUNCTION ITERATION

Usually, closed form solutions to Bellman equation don't exist

- 1. discrete-state approximations
  - · force state vector to lie on a finite and discrete grid
  - · solve numerically for value function
- 2. smooth approximations
  - use function approximation (e.g. polynomials)
  - to numerically solve for the value function

### CONSIDER THE NEOCLASSICAL GROWTH MODEL

$$V(k,z) = \max_{c,k'} U(c) + \beta \mathbb{E}V(k',z')$$
s.t. $c + k' = zf(k) + (1 - \delta)k$ 

$$z' = (1 - \rho)\overline{z} + \rho z + \epsilon'$$

$$\epsilon \sim N(0, \sigma^2)$$

$$c, k \ge 0$$

$$k_0 \text{ given}$$

- with anything but log-utility and  $\delta=1$
- $\cdot \rightarrow$  need to approximate V(k) numerically

### CONSIDER THE NEOCLASSICAL GROWTH MODEL

$$V(k,z) = \max_{k'} U(zf(k) + (1-\delta)k - k') + \beta \mathbb{E}V(k',z')$$

$$z' = (1 - \rho)\overline{z} + \rho z + \epsilon'$$

$$\epsilon \sim N(0, \sigma^2)$$

$$c, k \ge 0$$

$$k_0 \text{ given}$$

- $\cdot$  with anything but log-utility and  $\delta=1$
- $\cdot \rightarrow$  need to approximate V(k) numerically

### DISCRETE-STATE APPROXIMATIONS: GRID

# Approximate value function V with N function values

- how to choose grid points for k?
  - ideally, choose high N, but time is finite!
  - moreover, tougher with more dimensions (state variables)
- what are the bounds  $\underline{k}$  and  $\overline{k}$ ?
- equidistant vs other spacing?
  - · where to put denser grid?
  - grid in levels or logs of capital?

#### **DISCRETE-STATE APPROXIMATIONS: SHOCKS**

# Approximate value function V with N function values

· in computing value function, we need

$$\mathbb{E}V(k',z')=\int V(k',z')h(z'|z)dz'$$

- how to discretize stochastic process of z?
- · replace continuous Markov chain with a discrete one  $\tilde{z}$ 
  - takes on values from finite set  $Z = \{z_1, z_2, ..., z_m\}$  with
  - transition matrix P with elements  $p_{i,j} = Prob(\widetilde{Z}' = z_j | \widetilde{Z} = z_i)$

$$\mathbb{E}V(k',\widetilde{z}') = \sum_{j=1}^{\infty} p_{i,j}V(k',z'_j)$$

But how to choose Z and P?

# DISCRETIZING SHOCKS: TAUCHEN (1986)

Based on fact that given  $z_i$ 

$$z' \sim N(\mu_{z_i}, \sigma^2)$$

$$\mu_{z_i} = (1 - \rho)\overline{z} + \rho z_i$$

- · choose *m* equally spaced values between
- $z_1 = \overline{z} k\sigma_z$  and  $z_m = \overline{z} + k\sigma_z$ 
  - $\sigma_z = \sigma/\sqrt{1-\rho^2}$  is the unconditional st. deviation of z
- in interior, define  $w = z_j z_{j-1}$ , and set

$$p_{i,j} = Pr[z_j - w/2 \le \mu_{z_i} + \epsilon \le z_j + w/2]$$

at end-points set

$$p_{i,1} = Pr[\mu_{z_i} + \epsilon \le z_1 + w/2], \ p_{i,m} = 1 - Pr[z_m - w/2 \le \mu_{z_i} + \epsilon]$$

# DISCRETIZING SHOCKS: TAUCHEN (1986)

This procedure amounts to setting

$$p_{i,j} = \begin{cases} \Phi\left(\frac{z_1 - w/2 - \mu_{z_i}}{\sigma}\right) & \text{for } j = 1, \\ \Phi\left(\frac{z_j + w/2 - \mu_{z_i}}{\sigma}\right) - \Phi\left(\frac{z_j - w/2 - \mu_{z_i}}{\sigma}\right) & \text{for } 1 < j < m, \\ 1 - \Phi\left(\frac{z_m - w/2 - \mu_{z_i}}{\sigma}\right) & \text{for } j = m. \end{cases}$$

Clearly, the precision of this discrete approximation rises with m

# Algorithm

VALUE FUNCTION ITERATION

#### VALUE FUNCTION ITERATION ALGORITHM

- 1. choose an error tolerance **e**
- 2. discretize state space

• 
$$k = \{k_1, k_2, ..., k_n\}, z = \{z_1, z_2, ..., z_m\}$$

- 3. guess initial value function  $V^{(0)}(k,z)$ 
  - function values at grid pairs  $\{k_i, z_j\}$ , i = 1, ..., n, j = 1, ..., m
- 4. update value function using

$$V^{(l+1)}(k,z) = \max_{k'} U(zf(k) + (1-\delta)k - k') + \beta \mathbb{E}V^{(l)}(k',z')$$

- for each grid pair i, j store max of RHS as new guess
- remember to enforce c > 0
- 5. compute distance, e.g.  $d = \max_{i,j} |V_{i,j}^{(l+1)} V_{i,j}^{(l)}|$
- 6. stop if  $d \le \mathbf{e}$ , otherwise go back to 4 with new guess.

#### VALUE FUNCTION ITERATION ALGORITHM

Things to keep in mind and avoid

- is the grid too constrictive?
- is the error tolerance too large?
- is the number of grid points too small?

And remember, a good initial guess always goes a long way!

# VALUE FUNCTION ITERATION

Some speed improvements

#### SPEED IMPROVEMENTS: OCCASIONAL TRICKS

### There are several ways to increase computation speed

- utilize concavity of value function
  - $\cdot \rightarrow$  unique maximum
  - · once you find a maximum, stop looking!
- monotonicity of the policy function  $k(k_i, z_i)$ 
  - $\cdot \rightarrow k(k_i, z_j) \leq k(k_{i+1}, z_j)$  for  $k_i < k_{i+1}$
  - don't look at unnecessary grid points!

### SPEED IMPROVEMENTS: HOWARD'S ALGORITHM

# Policy function tends to converge faster than the value function

use this fact in speeding up VFI

For a given value function guess  $V^{(l)}$ 

• 
$$k^*(k_i, z_j) = \underset{k'}{\operatorname{argmax}} \ U(zf(k) + (1 - \delta)k - k') + \beta \mathbb{E}V^{(l)}(k', z')$$

• 
$$c^*(k_i, z_j) = zf(k) + (1 - \delta)k - k^*(k_i, z_j)$$

### SPEED IMPROVEMENTS: HOWARD'S ALGORITHM ... CONTINUED

In between steps 4 and 5 above

• keep the same policy function and iterate on:

$$V^{(l+1)} = U(c^*(k,z)) + \beta \mathbb{E} V^{(l)}(k^*(k,z),z')$$

- · notice there is no maximization! (most computationally expensive part)
- can solve in one step as  $V^{(\infty)} = (I \beta P)^{-1}U(c^*(k, z))$

The above is called Howard's Improvement Algorithm

#### TAKING STOCK

#### Value function iteration

- powerful, global, solution method
- has theory to back its convergence (under some conditions)
- · can handle various non-linearities, but curse of dimensionality

#### **OVERVIEW FOR TODAY**

- 1. Higher-order perturbation
- 2. Projection
- 3. Value function iteration

