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FIXED-EFFECT REGRESSIONS ON NETWORK DATA
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Department of Economics, University College London

This paper considers inference on fixed effects in a linear regression model estimated
from network data. An important special case of our setup is the two-way regression
model. This is a workhorse technique in the analysis of matched data sets, such as
employer-employee or student-teacher panel data. We formalize how the structure of
the network affects the accuracy with which the fixed effects can be estimated. This
allows us to derive sufficient conditions on the network for consistent estimation and
asymptotically valid inference to be possible. Estimation of moments is also considered.
We allow for general networks and our setup covers both the dense and the sparse case.
We provide numerical results for the estimation of teacher value-added models and
regressions with occupational dummies.

KEYWORDS: Connectivity, fixed effects, graph, Laplacian, limited mobility, teacher
value-added, two-way regression model.

1. INTRODUCTION

DATA ON THE INTERACTION BETWEEN AGENTS are in increasing supply. A workhorse
technique to analyze such data is a linear regression model with agent-specific parame-
ters. It has been used to investigate a variety of questions. For example, application of a
two-way regression model to matched employer-employee data decomposes (log) wages
into worker heterogeneity, firm heterogeneity, and residual variation. Following Abowd,
Kramarz, and Margolis (1999), the correlation between the estimated worker and firm
effects is regarded as a measure of assortative matching. A positive correlation indicates
that high quality workers are employed in more productive firms. Using the same de-
composition, Card, Heining, and Kline (2013) study the extent to which the evolution of
wage inequality is due to changes in the variance of worker and firm heterogeneity. Nim-
czik (2018) reports the whole distribution of the estimated worker and firm effects. In a
similar fashion, the literature on student achievement backs out student and teacher ef-
fects from test score data. The estimated teacher heterogeneity is interpreted as teacher
value-added and their variance as a measure of their importance (see Jackson, Rockoff,
and Staiger (2014) for an overview of this literature). These estimates are used to as-
sess teachers and are important inputs to personnel evaluations and merit pay programs
(Rothstein (2010)).!
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!Fixed-effect regressions of this kind are now part of the standard toolkit of many empiricists in a variety
of different areas. Finkelstein, Gentzkow, and Williams (2016) and Amiti and Weinstein (2018) use them
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In spite of their widespread use, there is little to no work on the theoretical properties
of such fixed-effect approaches. In fact, the few results that are available point to issues
of downward bias in the estimation of the correlation between worker and firm effects,
finding a spurious negative correlation in many data sets (Andrews, Gill, Schank, and Up-
ward (2008, 2012)), and upward bias in the estimator of the variance of teacher effects
(Rockoff (2004)). The presence of bias here is not surprising. Indeed, the individual ef-
fects are estimated with noise. Their sampling error then introduces bias in the estimator
of nonlinear functionals. A more complicated issue is the assessment of the statistical pre-
cision with which the fixed effects are estimated and, more generally, the development of
distribution theory. This is important as it allows conditions for consistency and rates of
convergence to be established, and yields insight into whether standard test statistics can
be expected to be approximately size correct and have nontrivial power. None of these
issues has been addressed so far. Providing such theory is not only relevant for inference
on the individual effects and their moments, but may also serve as a stepping stone to
address related problems. For example, without theory for the fixed-effect estimator the
behavior of the falsification test for value-added models of Rothstein (2010) remains un-
known, and correct standard errors for regressions of outcomes on estimated fixed effects
(Kettemann, Mueller, and Zweimiiller (2017)) cannot be derived.

The data structure arising from interactions between agents is different from that of
standard cross-section or panel data. It is typically difficult to see how the data carry in-
formation about certain parameters. In this paper we present sufficient conditions for
consistency and asymptotic normality of least-squares estimators of fixed effects in linear
regression models. We see the data as a network and represent it by a graph where agents
are vertices and edges between vertices are present if these agents interact. It is intuitive
that the structure of this graph should be a key determinant of the accuracy of statistical
inference. We formalize this here. Our setup places no a priori restrictions on the graph
structure, and our results apply to both dense and sparse settings. A data structure of
particular importance is that of a bipartite graph. Here, the data concerns two types of
individuals and interactions only occur between the types but not within each type. This
is the case in our motivating examples above and we treat this bipartite case in detail. In
fact, while we deal with general graphs, our regression setup is designed to capture the
main features of the prototypical two-way regression model. We focus on inference on
the individual effects but our results also serve as a stepping stone for the analysis of esti-
mators of other parameters, such as the variance and other moments of (the distribution
of) the individual effects, and we provide some results on these as well. We do not discuss
inference on common slope coefficients. In contemporary work, Verdier (2018) provides
such results for two-way regression models. The fixed-effect model for test scores, for ex-
ample, can be used to assess the effect of class-size reductions on student achievement
while controlling for student and teacher heterogeneity.

The ability to accurately estimate the individual effect of a given vertex depends on
how well this vertex is connected to the rest of the network. Our theory involves both
global and local measures of network connectivity. The main global connectivity mea-
sure we use is the smallest nonzero eigenvalue of the (normalized) Laplacian matrix of
the graph.? It reflects how easy it is to disconnect a network by removing edges from it.

to separate supply and demand factors in healthcare utilization from data on patient migration and in firm
investment behavior from financial data on banks loans, respectively. Chetty and Hendren (2018) evaluate the
importance of growing up in a specific neighborhood on labor market outcomes later on in life.

The Laplacian matrix is similar to the adjacency matrix as a device to represent a graph and can be ob-
tained from it. Both matrices are formally defined below. Eigenvalues and eigenvectors of these and related
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The other measures of connectivity that we use are the degrees of the vertices as well as
various harmonic means thereof. All of these measures arise naturally when studying the
variance of the fixed-effect estimator. We highlight the interplay between them in deriv-
ing conditions for consistent estimation and for inference based on standard first-order
asymptotics to be possible. As the network grows the smallest eigenvalue may approach
zero, and so the graph may become more sparse, provided the relevant harmonic mean
grows sufficiently fast. These findings mimic conditions on the bandwidth in nonparamet-
ric estimation problems, although they will typically show up in second-order terms here.
This explains why estimation at the parametric rate may be feasible even in sparse net-
works. Our results also show that inference on averages over the individual effects is more
demanding on the network structure and, even after bias reduction, may only be feasible
in quite dense networks.

Our analysis shows that it is useful to inspect measures of global and local connectivity
when interpreting estimation results from network data. We do so here for two data sets.
The first is a large network of teachers in elementary schools in North Carolina, where
the object of interest would be teacher value-added. This is arguably one of the most
important applications of the two-way regression model. This graph is only very weakly
connected and our theory does not support the use of large-sample arguments. When a
simple model with homoskedastic errors is applied to these data, standard errors based on
conventional first-order approximations for teacher value-added are, on average, about
40% smaller than the actual standard deviations. Further, the sample variance of the es-
timated teacher effects has a substantial upward bias. This bias translates into an overly
optimistic view on the ability of teacher value-added to explain variation in test scores.
To provide an example of a data set that yields a much stronger connected graph, we also
construct an occupational network from the British Household Panel Survey (BHPS).
This graph would arise in the context of wage regressions with occupational dummies, for
example. Here, our connectivity measures are much more supportive of standard inferen-
tial approaches and, indeed, again in a simple model, we find that conventional first-order
approximations are quite accurate.

The remainder of this paper is organized as follows. Section 2 details the structure of
the data under study and introduces the regression model of interest. Special attention is
given to the bipartite graph and the two-way regression model. Section 3 provides distri-
bution theory for the least-squares estimator of the individual effects and also discusses
estimation of their moments. Section 4 contains details on our two numerical illustra-
tions. Section 5 concludes. The Supplemental Material (Jochmans and Weidner (2019))
to this paper contains some additional results and illustrations, as well as the proofs of all
theorems.

2. REGRESSION ANALYSIS OF NETWORK DATA
2.1. Data Structure

Consider an undirected graph G := G(V, E), where m := |E| edges are placed between
n := |V| vertices. We allow for multiple edges between vertices (i.e., G can be a multi-
graph) and the edges may be assigned a weight. We do not consider loops (i.e., no edge

matrices have also been found to be of use in determining equilibrium conditions in games played on net-
works (Bramoullé, Kranton, and D’Amours (2014)) and in (statistical) community detection (Schiebinger,
Wainwright, and Yu (2015)).
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connects a vertex with itself). Without loss of generality, we label the vertices by natu-
ral numbers, so that V' is {1, ..., n}. The multiset E contains the m > 0 unordered pairs
(i, j) from the product set JV x V' that are linked by an edge, possibly with repetition.
The same pair (i, j) will appear multiple times in E if they share more than one edge; we
let E; ;) C E denote the set of edges between them. We have E; ;) = E; ;) and may have
E ;) =¢. We will label the edges by natural numbers, so each edge e has assigned to it an
integer ¢, € {1, ..., m}. For later use we note that vertices i and j are said to be connected
if G contains a path from i to j, and that the graph G is said to be connected if every pair
of vertices in the graph is connected.

For an edge e € E, let w, > 0 be its weight. An unweighted graph has w, =1 for all
e € E. The graph G may be represented by its m x n (oriented) incidence matrix B, with
entries

Jw, ifeeE;; forsomejel andi <,
(B),,i:=1—+w, ifecek;;forsomejel andi> j, 1
0 otherwise.

Here, the choice of sign gives each edge e an orientation. As will become apparent, our
analysis below is invariant to this choice of orientation. The graph may also be represented
through its n x n adjacency matrix 4, which has elements

(A),/ = Z We.

€€k,

The incidence matrix and adjacency matrix are related through the n x n Laplacian matrix
L as

L:=BB=D-A4

for D :=diag(d,, ..., d,) the diagonal n x n (weighted) degree matrix, where the degree
of vertex i is

di = Z(A)U
j=1

When G is an unweighted graph, for example, d; equals the number of edges that involve
vertex i. For a vertex i, we will let [i] :={j e V : E;, # ¥} denote the set of its direct
neighbors. Observe that d; may be large even if i has few neighbors (i.e., when |[[]] is
small) as the edge weights (A4); for j € [i] may be large. An example is a multigraph
where many edges exist between i and some j € [i].

2.2. Regression Model and Least-Squares Estimator

Now, given a graph G, for each edge e € E we observe an outcome y,, and a p-vector
of covariates x.,. Allowing G to be a multigraph covers the (unbalanced) panel data case,
where multiple outcomes are available for some vertex pairs. Collect all outcomes in the
m-vector y and all covariates in the m x p matrix X. Let @ := (¢4, ..., )’ be an n-vector
of vertex-specific parameters and let B := (8, ..., B,)" be a p-vector of regression slopes.
Our interest lies in estimating the model

y=Ba+XB+u, 2)
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where u is an m-vector of regression errors.” We will treat B and X as fixed throughout.
This implies that we consider the network as nonrandom and exogenous.* Our focus is on
the vector a. In the two-way regression model of our motivating examples, these are the
worker and firm effects or the student and teacher effects, respectively. By the definition
of B, one of these effects will enter (2) with a minus sign. While this may appear to be
an unusual convention from an applied perspective, it is convenient for our theoretical
analysis. As will be explained below, this sign convention is without loss of generality in
the two-way model, where the underlying graph is bipartite.

In (2) the outcomes for a given vertex pair (i, j) depend on the individual effects
through their difference «; — ;. This implies that our model is overparameterized. In-
deed, we have Bt, = 0, where ¢, := (1,...,1) is the n-vector of ones, as each row of
B sums up to zero. It follows that the mean of the vertex-specific parameters cannot be
learned from the data and a normalization is required. We impose that

> (e +ay) =0, 3)

i=1 j=1

which will prove a convenient choice for our purposes. Denoting the degree vector by d :=
(di,...,d,), we may write the constraint (3) compactly as d'@ = 0. A normalization can
be dispensed with if interest lies in parameter differences, that is, a; — «;, as in Finkelstein,
Gentzkow, and Williams (2016), for example. Results for such differences that parallel
those developed below are given in the Supplemental Material.

The standard estimator of e is the constrained least-squares estimator

Q¢

= (&,...,&,) = argmin |Myy— MyBa|?*, 4)

ac{acR":d’ a=0)

where ||-| denotes the Euclidean norm, My :=1I,, — X(X'X)"'X’, and I, is the identity
matrix of dimension m x m. The following theorem gives conditions under which this
estimator exists and is unique. For any matrix C, we denote its Moore—Penrose pseudoin-
verse by C'. When C is n x n, we let C* := D™*(D™"?CD~"*)'D~"*, 1t is easily shown
that CC*C = C and C*CC* = C*. Therefore, C” is a pseudoinverse of C.

THEOREM 1—Existence: Let G be connected, let rank(X) = p, and let rank((X, B)) =
p+n—1.Then

&= (B'MxB) BMyy
and is unique.

The need for a pseudoinverse arises because B'M x B is singular, which follows from the
fact that Bt,, = 0. The use of the particular pseudoinverse (B'M xB)* is a consequence of
our normalization d'a = 0. A change of normalization would imply a different pseudoin-
verse in the statement of Theorem 1. The result of the theorem is intuitive and generalizes

3A change of edge orientation corresponds to a sign flip in the corresponding outcome and regressor matri-
ces. This does not affect the least-squares estimator of (2).

*Exogeneity of the network is the standard assumption in the literature building on Abowd, Kramarz, and
Margolis (1999). Accounting for endogenous network formation requires more complicated models and has
started to receive some attention; see Bonhomme, Lamadon, and Manresa (2018) and Lentz, Piyapromdee,
and Robin (2018).
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results in the literature on matched employer—-employee data (Abowd, Creecy, and Kra-
marz (2002)). When the graph G is disconnected, a separate normalization of the form
in (3) is needed for each connected component of G. Our results then apply to each of
these subgraphs. In practice, the analysis is typically confined to the largest connected
component of G (see, for example, Card, Heining, and Kline (2013, p. 988)).

While & is routinely used, its statistical properties are not well understood. Our aim
here is to shed light on how the structure of the network G affects its sampling behavior
and, with it, the reliability of standard inferential procedures based on &. For our analysis,
edge-specific covariates mostly complicate notation and presentation. It will on occasion
be convenient to first analyze (2) when B is treated as known and the outcome vector is
redefined as y — XB. Then

&:=(B'B)'B'(y— XP)

is the least-squares estimator of e subject to (3). To appreciate how the structure of G
relates to our problem of estimating the parameter «, suppose first that u ~ (0, o*I,,).
Then

var(&) = o’L". Q)

So, up to a scale factor, the variance of & is completely determined by the Laplacian of
G. If, in addition, we were to assume that u ~ N (0, oI ,,), we would be in the classical re-
gression setting and, given unbiasedness of &, size-correct inference could be performed
for any sample size. It is not clear, however, how one should proceed with nonclassical
regression errors.

The validity of standard large-sample arguments is not immediate here. From (5) we
have

(5,

Ai _ 52 : 6
var(a;) = o d (6)

where
S:=D"'"’LD"*=1,—D'?4D"?

is the normalized Laplacian. Equation (6) follows from the fact that L* = D~'2§"D™'/2,
such that (L*); = (S);;/d;.5 While (6) shows the importance of the sample size in the vari-
ance of &; through the presence of the degree d,, it does not imply that var(&;) shrinks as
d; — oo; neither would it give a convergence rate if it did. This is because the normalized
Laplacian S also changes when G grows.

Let A; < Ay <--- < A, be the eigenvalues of S. The spectrum of Laplacian matrices is
well studied (see, e.g., Chung (1997)). We have 0 < A; < 2 for all i. We always have that
A1 =0, with ¢, as eigenvector. The number of zero eigenvalues \; equals the number of
connected components in G. Hence, if G is connected, then A, > 0 is the smallest nonzero
eigenvalue of the normalized Laplacian.

Our theory involves conditions on A, and on the degree structure of the network
through various harmonic means thereof. The eigenvalue A, can be seen as a measure

>Our choice of normalization (3) guarantees the appearance of the Moore-Penrose pseudoinverse of S in
L*, which is the main reason for that choice. We are grateful to Nadine Geiger for pointing out an inconsistency
in our normalization in an earlier version of this paper.
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of global connectivity of G. To see this, we note that it can be linked to the Cheeger con-

stant
Y

. ieU j¢U
C:= min ————
Ue{UcV:0<) ey difZi¢U d;) E di

ieU

The constant C € [0, 1] measures how difficult it is to separate G into two disconnected
components by removing edges from it. The numerator in the definition of C is the total
weight of the removed edges; the denominator is the total degree in the smallest of the
two components. A larger value of C implies a more strongly connected graph, and it is
linked to A, through the inequalities

1
2CZA221—J1—CQZEC2 (7

which are owing to Friedland and Nabben (2002). Thus, like the Cheeger constant, A, is
a measure of global connectivity of the graph G. Our results below allow for A, — 0 as
G grows, and so cover situations where the graph becomes increasingly more sparse. We
will give explicit rates on A, for consistent estimation to be possible.

EXAMPLE 1—FErdds—-Rényi graph: Consider the Erdés and Rényi (1959) random-
graph model, where edges between n vertices are formed independently with probability
pn- The threshold on p, for G to be connected is In(n)/n (Hoffman, Kahle, and Paquette
(2013)). That is, if p, = cIn(n)/n for a constant ¢, then, as n — oo, with probability ap-
proaching 1, G is disconnected if ¢ < 1 and connected if ¢ > 1. In the former case, A, — 0,
while in the latter case, A, — 1, almost surely.

2.3. Two-Way Regression Model on Bipartite Graph

To relate our model to our main motivating examples, consider the case of a bipartite
graph G, thatis, V' =1, UV, and V; NV, = @, and where edges are formed only between
the subsets V] and }; but not within. So for an edge (i, j), we necessarily have that i € 1]
and j € ;. A bipartite graph describes the interaction between two types of units, such as
workers and firms or students and teachers. The outcome of interest here would typically
be (log) wages or earnings and test scores, respectively. If we have panel data, so G is a
multigraph, we may observe workers match with different firms over time and observe
students in different classrooms or across multiple subjects. In fact, in these applications,
such longitudinal data are necessary for G to be connected. A two-way regression model
for such data takes the form

y=Bip+Bm+XB+u, ®)

where p 1= (1,..., uy) and 0 := (01, ..., M) are the n, :=|V}| and n, := |V;| param-
eter vectors for the two types of units, and the m x n; and m x n, matrices B; and B, have
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entries

1 ifeekE; forsome jel,,
(Bl)sei = .
0 otherwise,

(By). = 1 ifeekE) forsomeiel],
2210 otherwise.

This is a workhorse specification to capture heterogeneity across units in linked data sets.
It can be cast into (2) by setting

o = {:‘Li }f{el/l,

—n; ifiel,,

sorting the units in /' by type so that we can write @ = (u’, —n’)’, and constructing the
m x n matrix B = (B, —B,) by concatenation. Choosing the sign in front of 7; is without
loss of generality because links are only formed between, but never within, the subsets 1
and V;. The need for a normalization built into our general specification arises here from
the fact that (8) is invariant to reparameterizations of the form (w;, n;) = (w;+c¢, 7, —c)
for any c.

The two-way regression model provides an interesting example where a weighted graph
arises naturally. In many applications, the researcher is primarily interested in learning
the parameters of one type, say those i € V5. This is so in teacher value-added models,
for example. There, interest lies in estimating the 7, teacher effects while controlling for
unobserved student-specific heterogeneity through the inclusion of #, student effects (see,

e.g., Jackson, Rockoff, and Staiger (2014)). Partialling-out the vector g from the two-way
model in (8) gives

My y= My B)n+ (Mp X)B+Mpu, My :=1,—B\(BB)B. (9

From standard partitioned-regression theory, the least-squares estimator of 1 from this
equation is numerically identical to the one obtained from joint estimation of g and 5
in (8). However, the formulation in (9) is helpful in understanding the behavior of the
estimator of 5. The properties of the matrix B,M B, drive the sampling behavior of 1.
This matrix is the Laplacian of a weighted one-mode projection (Newman (2010, p. 124))
of the bipartite graph G on the n, vertices in V5.

It is instructive to discuss this one-mode projection in more detail and to formalize
how it fits the general setup in (2). Projecting the bipartite graph G = G(V; U 1,, E) on
V, is done by suppressing the vertices in V;. This gives a new (unipartite) graph, say
G =G, E'). Each edge pair (e, e;) with e; € E;;, and e, € E; ;, in G for some i € V;
and Jj, j € V, gives rise to a single edge ¢ = (ey, e;) € E; ;) in §'. In the student-teacher
example, two teachers j and j' are connected by an edge in G’ if and only if there exists
at least one student i who they have both taught. Alternatively, the edge e = (¢4, €;) € E
exists because e; € E and e, € E both connect to the same vertex i € V;. Given the edges
ey, ey, this connecting vertex i is unique; for later use, we denote it by c((ey, €;)). In G’ we
have

i didi = 1)
=B =y

iel]
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edges; m’ need not equal m and, indeed, may be much larger. We again label e’ € E’ by
natural numbers &/,. The process of concatenating edges in E to form the new edge set £’
can be described by the m’ x m matrix Q with entries

1 if ¢ = (e;, e,) for some ¢, € E,
(Q)ﬁ’e/b‘e] ={—-1 ife =(ey,e) forsomee, € E,
0 otherwise.

Choosing the orientation of the rows of Q is without loss of generality. The matrix Q has
a first-differencing interpretation. Indeed, when applied to the two-way regression model
(8), we get Qy = OB,m + QX B + Qu, because OB; = 0. Thus, Q sweeps out the »; nui-
sance parameters g and transforms original outcomes into first differences. The matrix
0B, is the (oriented) incidence matrix of an unweighted graph, and this first-differenced
regression equation fits (2).° Applying least-squares directly to the first differences is in-
efficient and is not equivalent to estimation of the two-way regression model. Ordinary
least-squares estimation of (9) is numerically equivalent to weighted least-squares esti-
mation of the first-differenced equation. The relevant m’ x m’ diagonal weight matrix W

has entries (W), :=1/,/d..). Ordinary least-squares applied to (9) and to
WOy=WwWQ0Bm+WOXB+WQu (10)

yields the same result. Here, W OB, is the incidence matrix of a weighted one-mode pro-
jection of G. This G’ determines the properties of the least-squares estimator. Its Lapla-
cian is

L' :=B,(QW*Q)B,=B,My B,

where we use the fact that Q' W*Q =M B -
The adjacency matrix of G’ is the n, x n, matrix A" with entries

s LaollBunl g ;2 g,
(4') = { it ZlE(i,k)l
4 keVs

0 for j=j'.

Here, [j1 N [j'] is the set of all vertices in V] that are connected to both j € 1, and j' €
V, in the original bipartite graph G. In the student-teacher example, two teachers are
connected by an edge if there is at least one student who was taught by both teachers. The
weight (4") ;. of the edge is larger the more students there are connecting teachers j and
k, and the more courses they have taken from these teachers. The graph G’ determines
the accuracy with which teacher value-added can be estimated.

The matrix A" is also the adjacency matrix of the simple graph obtained from G’ by
replacing all edges e € E|; ;) by one weighted edge, with weight (4") ;. Figure 1 provides
an illustration of a simple bipartite graph for students (circular vertices) and teachers

®The matrix @B, will contain rows with only zero entries if there are differenced outcomes that do not
depend on 7. This is at odds with the definition of an incidence matrix. Dropping these differences from Qy,
however, restores the incidence matrix interpretation of QB,. This operation does not affect estimation of n
and so is irrelevant for our purposes. However, the differenced outcomes may provide information on 8, which
is why we prefer to work with @B, as defined here.
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FIGURE 1.—A simple unweighted bipartite graph (left) with links between V; (circular vertices) and V;
(square vertices), and the induced weighted graph (right) on V alone resulting from profiling out the parame-
ters associated with 1.

(square vertices), given in the left plot, and its induced weighted graph featuring only
teachers, given in the right plot. The thickness of the edge between (j, j') in the latter plot
reflects the magnitude of the weight (A4") ;.

The device of a one-mode projection highlights the importance of having movers in
panel data. In matched worker—firm data sets, workers do not frequently switch employers
over the course of the sampling period. This lack of mobility is one cause of the substantial
bias that is observed in the correlation coefficient between (estimated) worker and firm
effects (Abowd, Kramarz, Lengermann, and Perez-Duarte (2004), Andrews et al. (2008,
2012)). While this is now well recognized, limited mobility has broader consequences.
Indeed, it implies that few workers connect firms in the one-mode firm projection. There-
fore, the induced graph may be only weakly connected (and A, will be close to zero) and
the variance of the estimator of the firm effects may be large. This is not only detrimen-
tal for identifying sorting between workers and firms, but, indeed, complicates estimation
and inference of the firm effects as well as all their moments, such as their variance. Re-
stricting attention to large firms need not resolve this problem. An analogous argument
holds for teacher effects and their estimated variance, and so for our ability to infer the
contribution of teacher value-added to observed variation in test scores. We illustrate this
in our data below.

3. VARIANCE BOUND AND ASYMPTOTIC ANALYSIS
3.1. Finite-Sample Bound

To work toward general distribution theory, it is instructive to start with a finite-sample
bound on the variance of the fixed-effect estimator when the errors are homoskedastic

and uncorrelated. Let
1 D\
hi = (EZ f) . (11)

Ujern

This is a (weighted) harmonic mean of the (weighted) degrees d;/(A); of all j € [i]. Note
that, for a given vertex i, 4; is increasing in the degree of its direct neighbors.
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THEOREM 2—Variance bound: Let G be connected. Suppose that u ~ (0, o*I,,). Then

o> 207 <var(a,) < o’ 1+ 1 207
— — — <var(q;) < — -—.
d,' m d,' Agh,‘ m

Theorem 2 states that, for a given degree d; and global connectivity measure A,, the
upper bound on the variance of &; is smaller if the direct neighbors of vertex i are them-
selves more strongly connected to other vertices in the network. The theorem provides
insight into how the local connectivity structure of the network, around vertex i, affects
statistical precision.

EXAMPLE 1—Continued: Consider the Erdds and Rényi (1959) random-graph model
with p, = cIn(n)/n for ¢ > 1. Let i be a randomly chosen vertex. Then, as n — oo, we
have, almost surely,

A— 1, d —c, —
Inn Inn

Consequently,

2

var(é;) = % +0(d?)

follows from Theorem 2.

Additional calculations for analytically tractable cases where A, — 0 as the network
grows are provided in the Supplemental Material.

Theorem 2 highlights the importance of A,h; — oo as a sufficient condition for the
parametric rate d. "' to be attainable for estimation of &;. This result carries over to the
model with covariates. Let

po=(xXX)"(xMx)(X'x)"

27

where ||-||, denotes the spectral norm and My :=I,, — B(B'B)*B’. Note that p € [0, 1]
is a measure of non-collinearity between the columns of X and B, with p close to zero
indicating near collinearity. Indeed, while X' X measures the total variation in X, X'M 3z X
captures the residual variation in X after its linear dependence on B has been partialled
out. For i € V, let b; be ith column of B, and let X; := X'b;/d; and £ := X'X/m in the
following theorem.

THEOREM 3—Variance bound (continued): Let G be connected. Suppose that u ~
(0, 0*I,,), rank(X) = p, and rank((X, B)) = p +n — 1. Then

[var(&;) — var(&;)| < 20°(_L=p + AL
o;) — o) < —
p \di(Ah;) m

forallieV.

This result shows that if p is bounded away from zero, introducing covariates only has a
higher-order effect on the statistical precision of the fixed-effect estimator. In particular,
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we have

2

var(&;) = Z— +o(d; "), (12)

i

provided that A,h; — oo as G grows. Furthermore, the parametric rate is achievable even
if A, is not treated as fixed, and G becomes less dense as more vertices are added to the
network.

3.2. Large-Sample Analysis

We now discuss asymptotic results under more general conditions on the regression er-
rors. The following theorem provides a first-order representation of &;. Let 3 := E(uu’).

THEOREM 4—First-order representation: Let G be connected. Assume that rank(X) =
p and rank((X, B)) = p + n — 1. Suppose that E(u) = 0 and that | 3|, < 5* = O(1). Then

ai_ai=d;i+€i+éia
where €; and €; are zero mean random variables that satisfy E(e?) <& 2(1 4 p)/(pd;iAshy)
and B(&) <%0 'x;/(pm).

From the definition of the incidence matrix in (1), the m-vector b; has as many nonzero
entries as there are edges involving vertex i. Further, b;b; = d;. Hence, the term bju/d; is
a (weighted) sample mean of the regression errors associated with the edges that involve
vertex i.

We next consider sequences of growing networks such that

=0(), d/m—0, ¥ % =0(). (13)

These are relatively weak conditions that ensure that the fact that 8 is estimated can be
ignored in large samples. Moreover, they imply that

1
=0, ——
) ”<¢di(A2h,~))

and that &, = 0,(1//m) = 0,(1/+/d;). The main implication of the theorem is that, then,
under the now familiar condition A,/k; — o0, as d; — o0,

pbu
di -

(al_a)

This result allows the errors to be heteroskedastic and correlated.

With Theorem 4 in hand, the limit distribution of &; can be deduced under conventional
conditions. As an example, we do so next for independent but heterogeneously distributed
(in.i.d.) regression errors.

THEOREM 5—Limit distribution for i.n.i.d. errors: Let the assumptions of Theorem 4
and the conditions in (13) hold. Suppose that the regression errors are independent, have
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bounded fourth-order moments and variances bounded away from zero, and that the edge
weights are bounded away from zero and from infinity. Then

al l

N

as d; — oo, provided that A\ h; — oo.

N(O 1)

When the errors u are independent and homoskedastic, we have b, 3b;, = o?b'b; = 0d,
and the variance in the theorem reduces to o /dl, which agrees with (12).

A plug-in estimator of b, 3b; is b Eb,, where 3 := diag(iit')/m and i are the residuals
from the least-squares regression. This involves estimation of a; for all j € [i]. We have
that

(b/3b, — b2b,)/d; 5 0

as d; — oo, provided that, in addition to the conditions of Theorem 5 holding, we have
that A,H; is bounded away from zero, where

-1
H, = (Z (hi/di)/dj>

jetil hj

is a weighted harmonic mean. At the heart of this result lies (a local version of) a global
convergence rate on || & — ||, which is interesting in its own right. More precisely, letting

| -1
_(iy 1 (5~ myd,
= (n ; di) and H:= (Z I, ) )

i=1
it is easy to see that

& —all=0,(vn/h),

provided that A,H is bounded away from zero.

3.3. Estimation of Moments

Suppose that the «; are sampled from some distribution. One might be interested to
learn the variance of this distribution—as in, say, Rockoff (2004) or Card, Heining, and
Kline (2013)—or some other moment. The typical estimator is the corresponding sam-
ple moment of the estimated effects. Sampling noise in the estimated individual effects
will introduce bias in the moment estimator, however. To see this, consider estimation of
the variance in a simple model without regressors. The sample variance of the estimated
effects in this case is

&M, a&/(n—1),
where M,, := 1, — 1t/ /n is the usual demeaning matrix. When u ~ (0, 0I,,), its bias is
tr(L*
L u()
(n—1)

=(n—1)") var(@),
i=1
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which clearly shows how imprecise estimation of «; contributes to the bias in the variance
estimator.

It is difficult to derive an exact expression for the bias for more general functionals.
Theorem 5 is instrumental here. Suppose that 7:= E(¢(«;)) is of interest. Its plug-in
estimator is

7= n’lzn:qo(&,»).
i=1

Under the conditions of the theorem, we can calculate the leading bias in this estimator

as
o ¢ () b.3b,/d; B
ZE( ) =oun

where ¢” denotes the second derivative, provided A, H — oo. Simple regularity conditions
on ¢ for this bias result to hold are that it is differentiable with E(¢”(a;)?) < oo and
bounded third derivative. So, quite generally, the bias will shrink like 4#~!'. Therefore,
for the bias to vanish and 7 to be consistent, we need that the degrees of the individual
vertices grow with n for an increasing fraction of the vertices.

If the functional of interest is the variance, an exact bias correction can be performed
(see Andrews et al. (2008) and Kline, Saggio, and Sglvsten (2018)). For functionals like
T, a plug-in estimator of the leading-order bias b is easily formed and so an adjusted
estimator is readily constructed. Its effectiveness as a bias-correction device will again
depend on the connectivity structure of the graph. We postpone a detailed analysis to
future work. In a recent contribution, Kline, Saggio, and Sglvsten (2018) presented limit
theory for quadratic forms in a.

4. EMPIRICAL ILLUSTRATIONS
4.1. Teacher Value-Added

We construct a graph connecting teachers as the (weighted) one-mode projection from
matched student-teacher data from the North Carolina Education Research Center. The
projection of interest is the one discussed in Section 2.3. The full data set includes scores
for a standardized test in reading in elementary schools in North Carolina and was used
by Verdier (2018) to estimate the effect of class-size reduction on student performance.
The analysis conducted here is useful to assess the precision with which teacher value-
added can be estimated. The data concern pupils in grades 4 and 5 of elementary school
over the period 2008-2012. The full teacher graph (with a single weighted edge between
neighboring teachers, as in Figure 1) has 12,057 vertices and 53,741 edges, and is discon-
nected. The largest connected component involves 41,612 edges between 11,945 teachers
and we work with this subgraph. With A, = 0.0039, the projected teacher graph is weakly
connected. Its local connectivity is summarized in Table I. The table contains the mean,
standard deviation, and deciles of the relevant degree distributions. Inspection reveals
that the degrees are small for all teachers.

The weak connectivity suggests that inference on teacher value-added will be difficult.
To get a sense of the precision of a first-order asymptotic approach, we can look at the

ratio
L)y
d, = (8",
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TABLE I
SUMMARY STATISTICS FOR THE TEACHER GRAPH

Mean St. Dev. 10th% 20th% 30th% 40th% 50th% 60th% 70th% 80th% 90th%

d; 13.87 10.76 3.00 5.50 7.50 9.00 11.00  14.00 1750  21.50  27.50
h; 7.15 7.13 2.43 3.30 4.01 4.72 5.48 6.36 7.44 9.12  12.56
H; 36.48 58.59 3.03 572 1048 1476  19.81 2620 35.67 50.65  83.48

This is the exact variance of &; to its large-sample approximation in a regression model
with homoskedastic and uncorrelated errors. This ratio is free of o> and can be computed
directly from the graph. The left plot of Figure 2 shows the deciles of the distribution
of (87),;. The asymptotic approximation is revealed to be widely inaccurate. On average,
the actual variance is about 2.5 times larger than its approximation. Even the first decile
equals 1.29. This implies that confidence intervals based on the large-sample arguments
in Theorem 4 are overoptimistic. To illustrate this, the right plot in Figure 2 gives the dis-
tribution of the width of 95% confidence intervals for the «; using both the exact variance
(solid line) and its large-sample approximation (dashed line) for the case o = 1. The
former stochastically dominates the latter.

The large variability in the estimators of teacher value-added implies a large bias in
their estimated variance. We calculate

tr(L")/(n—1) =0.3545,

so the bias in the plug-in estimator of the variance is about one-third of the error variance
when u ~ (0, 0°1,,). The large-sample approximation to the bias here is proportional to
h~'. With h = 5.4554 this yields a bias of about 18%, roughly half the size of the exact
bias.

One reason for the global connectivity of the teacher graph to be low is limited mobil-
ity of teachers between schools. If interest lies in comparing teacher effectiveness within
a given school, it suffices to restrict attention to that subgraph. Of course, the effective
sample size from which teacher value-added is estimated will remain small unless addi-
tional years of data are collected. Making accurate comparisons between schools is more

5 T T T T T T T 1 T T T T T T

09 r —
08 | 4
07t /

06 /

05t /

04 /

03
02 /
0.1F /

1 L L L L L L L 0 L L L L L
1 2 3 4 S 6 7 8 9 0 0.25 0.5 0.75 1 125 1.5 1.75

FIGURE 2.—Deciles of the distribution of (S7);; (left plot) and empirical distributions of the width of 95%
confidence bands (right plot). The width is calculated as 2 x (1.96(L;;)) (solid curve) and 2 x (1.96d[1) (dashed
curve).
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TABLE II
SUMMARY STATISTICS FOR THE OCCUPATION GRAPH

Mean St. Dev. 10th% 20th% 30th% 40th% 50th% 60th% 70th% 80th% 90th%

d; 155.06  268.82 735 16.08 27.68 4568 67.10 92.66 143.99 212.09 402.01
h; 81.50 12520 1452 20.88 2725 3516 46.23 60.61 80.72  113.67 163.74
H; 213777 45593 11.15 2290 3529 4859 66.34 102.82 17275 296.80 539.07

complicated as it requires many teachers teachers to switch schools during the sampling
period. Collecting additional years of data will not automatically lead to more precise es-
timates. Mansfield (2015) discusses the feasibility of ranking teachers within and between
schools (see also Mihaly et al. (2013) for related discussions). A previous draft of this
paper contains versions of our main theoretical results specialized to within and between
decompositions of graphs.

4.2. Occupational Network

Wage regressions on worker and occupational dummies (as in Kambourov and
Manovskii (2009), for example) provide an interesting example of a situation where more
accurate results can be obtained. We use all 18 available waves from the BHPS (for a total
of 132,097 observations) to construct the induced (weighted) occupational network. The
Standard Occupational Classification (SOC90) in the BHPS distinguishes (at the three-
digit level) between 374 occupations. We again focus on the largest connected component,
which contains 365 occupations with 14,825 weighted edges between them. As a mea-
sure of global connectivity, here we find A, = 0.3289. Compared to traditional matched
employer—employee data, our occupational network does not suffer as much from limited
mobility. One reason is that the number of occupations is relatively small compared to the
number of workers. Another is that workers may switch occupation also if they remain
employed by the same firm, for example, due to internal promotions. Finally, as we are
dealing with self-reported occupations, there is also the possibility of spurious mobility
due to misreporting. A look at the distributions summarized in Table II reveals that the
degrees and harmonic means tend to be larger here than in the teacher graph.

The distribution of (S*); now places most of its mass in the vicinity close to unity.
Its mean and standard deviation are 1.034 and 0.0521. The median is 1.0202, while the
first and ninth deciles are 1.0046 and 1.0759, respectively. This suggests that, here, the
large-sample approximation to the variance is a much more accurate reflection of actual
estimation uncertainty. Similarly, we may again calculate tr(L*)/(n — 1) = 0.0577, which
is about seven times smaller than in the previous example. Further, as 2! = 0.0566, here,
the bias approximation is quite accurate.

5. CONCLUSION

We have presented inference results on individual effects in a linear fixed-effect re-
gression model when the underlying data structure constitutes a (weighted) graph. An
important example is a two-way regression model on a bipartite graph. The main contri-
bution of this paper is to quantify the dependence of statistical precision of the estimator
on the connectivity structure of the graph. A key measure of global connectivity is the
smallest nonzero eigenvalue of the (normalized) Laplacian matrix of the graph. It reflects
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the intuitive notion of mobility in the network. A small eigenvalue captures the presence
of bottlenecks, which is detrimental to statistical precision. Several measures of local con-
nectivity, such as the degree structure and various harmonic means thereof, also arise
naturally in our analysis.

Our theoretical work highlights the importance of and the interplay between global
and local measures of network connectivity for conventional inferential approaches to be
reliable. The analysis points to a set of simple statistics that can be inspected to evaluate
whether the network is sufficiently well connected in a given application. In an application
to teacher value-added, we find that this is not the case. We further find that conventional
standard errors on teacher value-added estimates are much too small, resulting in a false
sense of (statistical) precision on these parameter estimates. In an occupational network,
on the other hand, we find much higher measures of connectivity and support for our
large-sample approximations.
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