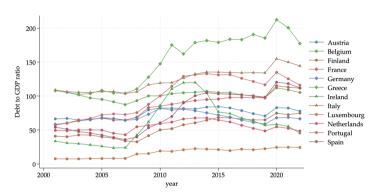
MONETARY UNIONS WITH HETEROGENEOUS FISCAL SPACE

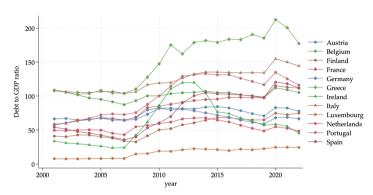
Marco Bellifemine LSE


Adrien Couturier LSE

Rustam Jamilov Oxford

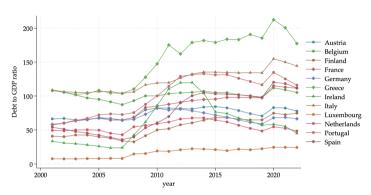
NBER International Seminar on Macroeconomics

June, 2024


PUBLIC DEBT IN THE EUROZONE

Notes: Only countries that were members of the eurozone as of 2001 are included. Source: International Monetary Fund.

▶ Euro area: supra-national monetary authority, separate national fiscal authorities


PUBLIC DEBT IN THE EUROZONE

Notes: Only countries that were members of the eurozone as of 2001 are included. Source: International Monetary Fund.

- ▶ Euro area: supra-national monetary authority, separate national fiscal authorities
- ▶ But persistent ex-ante heterogeneity in fiscal space

PUBLIC DEBT IN THE EUROZONE

Notes: Only countries that were members of the eurozone as of 2001 are included. Source: International Monetary Fund.

- ▶ Euro area: supra-national monetary authority, separate national fiscal authorities
- But persistent ex-ante heterogeneity in fiscal space

What are the implications for monetary policy?

Building on "The Regional Keynesian Cross" (Bellifemine, Couturier & Jamilov (2023))

▶ Develop a HANK model of a currency union with heterogeneous public debt

- ▶ Develop a HANK model of a currency union with heterogeneous public debt
 - HA (break Ricardian equivalence + high MPCs): fiscal response important channel of MP
 - Non-tradability: can study het. response to MP across countries

- ▶ Develop a HANK model of a currency union with heterogeneous public debt
 - HA (break Ricardian equivalence + high MPCs): fiscal response important channel of MP
 - Non-tradability: can study het. response to MP across countries
- ▶ High public debt countries more responsive to monetary policy

- ▶ Develop a HANK model of a currency union with heterogeneous public debt
 - HA (break Ricardian equivalence + high MPCs): fiscal response important channel of MP
 - Non-tradability: can study het. response to MP across countries
- High public debt countries more responsive to monetary policy
 - ♦ High debt → budget exposure to int. rates → limited ammunition to run primary deficits
 - Consumption and inflation react more to MP shocks in high debt countries

- Develop a HANK model of a currency union with heterogeneous public debt
 - HA (break Ricardian equivalence + high MPCs): fiscal response important channel of MP
 - Non-tradability: can study het. response to MP across countries
- High public debt countries more responsive to monetary policy
 - ♦ High debt → budget exposure to int. rates → limited ammunition to run primary deficits
 - Consumption and inflation react more to MP shocks in high debt countries
- Central bank faces a stabilization-synchronization trade-off

- Develop a HANK model of a currency union with heterogeneous public debt
 - HA (break Ricardian equivalence + high MPCs): fiscal response important channel of MP
 - Non-tradability: can study het. response to MP across countries
- High public debt countries more responsive to monetary policy
 - ♦ High debt → budget exposure to int. rates → limited ammunition to run primary deficits
 - Consumption and inflation react more to MP shocks in high debt countries
- Central bank faces a stabilization-synchronization trade-off
 - Response of MP to shocks stabilizes average inflation but transmits differently to countries
 - \diamond What architecture can alleviate the trade-off? \longrightarrow study policy proposals

MODEL

Currency union with countries j, within-country incomplete markets:

$$\max_{\{c_{jit}, a_{jit}\}_{t \geq 0}} \mathbb{E}_0 \sum_{t \geq 0} \beta^t u(c_{jit}, \ell_{jit}), \text{ s.t. } c_{jit} + a_{jit} = (1 - \tau) w_{jt} e_{jit} \ell_{jit} + t_{jt} + \frac{1 + i_{t-1}}{1 + \pi_{jt}} a_{jit-1}, \ a_{jit} \geq \underline{a}$$

MODEL.

► Currency union with countries *j*, within-country incomplete markets:

$$\max_{\{c_{jit}, a_{jit}\}_{t \geq 0}} \mathbb{E}_0 \sum_{t \geq 0} \beta^t u(c_{jit}, \ell_{jit}), \text{ s.t. } c_{jit} + a_{jit} = (1 - \tau) w_{jt} e_{jit} \ell_{jit} + t_{jt} + \frac{1 + i_{t-1}}{1 + \pi_{jt}} a_{jit-1}, \ a_{jit} \geq \underline{a}$$

► Two consumption goods, tradables & non-tradables:

$$\diamond \quad \mathsf{Demand:} \ c_{\mathit{jit}} = \mathcal{D}\left(c_{\mathit{jit}}^{\mathit{NT}}, c_{\mathit{jit}}^{\mathit{T}}; \nu\right), \quad c_{\mathit{jit}}^{\mathit{T}} = \mathcal{T}\left(\left\{c_{\mathit{jit}}^{\mathit{T}}(j')\right\}_{j'}; \nu\right)$$

MODEL.

► Currency union with countries *j*, within-country incomplete markets:

$$\max_{\{c_{jit}, a_{jit}\}_{t \geq 0}} \mathbb{E}_0 \sum_{t \geq 0} \beta^t u(c_{jit}, \ell_{jit}), \text{ s.t. } c_{jit} + a_{jit} = (1 - \tau) w_{jt} e_{jit} \ell_{jit} + t_{jt} + \frac{1 + i_{t-1}}{1 + \pi_{jt}} a_{jit-1}, \ a_{jit} \geq \underline{a}$$

► Two consumption goods, tradables & non-tradables:

$$\diamond \quad \mathsf{Demand:} \ c_{\mathit{jit}} = \mathcal{D}\left(c_{\mathit{jit}}^{\mathit{NT}}, c_{\mathit{jit}}^{\mathit{T}}; \nu\right), \quad c_{\mathit{jit}}^{\mathit{T}} = \mathcal{T}\left(\left\{c_{\mathit{jit}}^{\mathit{T}}(j')\right\}_{j'}; \nu\right)$$

 \diamond Supply: $\ell_{jit} = \mathcal{S}\left(\ell_{jit}^{NT}, \ell_{jit}^{T}; \eta\right)$, linear prod., national labor unions

MODEL.

► Currency union with countries *j*, within-country incomplete markets:

$$\max_{\{c_{jit}, a_{jit}\}_{t \geq 0}} \mathbb{E}_0 \sum_{t \geq 0} \beta^t u(c_{jit}, \ell_{jit}), \text{ s.t. } c_{jit} + a_{jit} = (1 - \tau) w_{jt} e_{jit} \ell_{jit} + t_{jt} + \frac{1 + i_{t-1}}{1 + \pi_{jt}} a_{jit-1}, \ a_{jit} \geq \underline{a}$$

- ► Two consumption goods, tradables & non-tradables:
 - $\diamond \quad \mathsf{Demand:} \ c_{\mathit{jit}} = \mathcal{D}\left(c_{\mathit{jit}}^{\mathit{NT}}, c_{\mathit{jit}}^{\mathit{T}}; \nu\right), \quad c_{\mathit{jit}}^{\mathit{T}} = \mathcal{T}\left(\left\{c_{\mathit{jit}}^{\mathit{T}}(j')\right\}_{j'}; \nu\right)$
 - \diamond Supply: $\ell_{jit} = \mathcal{S}\left(\ell_{ijt}^{NT}, \ell_{ijt}^{T}; \eta\right)$, linear prod., national labor unions

Only dimension of regional heterogeneity

Fiscal reaction function + heterogeneous SS public debt:

$$B_{jt} - B_{jt-1} = -\gamma_{\ell} (L_{jt} - \bar{L}_{j}) - \gamma_{b} (B_{jt-1} - \bar{B}_{j}), \quad B_{jt} - B_{jt-1} = D_{jt} + r_{jt}B_{jt}$$

MODEL

► Currency union with countries *j*, within-country incomplete markets:

$$\max_{\{c_{jit}, a_{jit}\}_{t \geq 0}} \mathbb{E}_0 \sum_{t \geq 0} \beta^t u(c_{jit}, \ell_{jit}), \text{ s.t. } c_{jit} + a_{jit} = (1 - \tau) w_{jt} e_{jit} \ell_{jit} + t_{jt} + \frac{1 + i_{t-1}}{1 + \pi_{jt}} a_{jit-1}, \ a_{jit} \geq \underline{a}$$

► Two consumption goods, tradables & non-tradables:

$$\diamond \quad \mathsf{Demand:} \ c_{\mathit{jit}} = \mathcal{D}\left(c_{\mathit{jit}}^{\mathit{NT}}, c_{\mathit{jit}}^{\mathit{T}}; \nu\right), \quad c_{\mathit{jit}}^{\mathit{T}} = \mathcal{T}\left(\left\{c_{\mathit{jit}}^{\mathit{T}}(j')\right\}_{j'}; \nu\right)$$

- \diamond Supply: $\ell_{\it{jit}} = \mathcal{S}\left(\ell_{\it{ijt}}^{\it{NT}}, \ell_{\it{ijt}}^{\it{T}}; \eta\right)$, linear prod., national labor unions
 - Only dimension of regional heterogeneity
- ► Fiscal reaction function + heterogeneous SS public debt:

$$B_{jt} - B_{jt-1} = -\gamma_{\ell} \left(L_{jt} - \bar{L}_{j} \right) - \gamma_{b} \left(B_{jt-1} - \bar{B}_{j} \right), \quad B_{jt} - B_{jt-1} = D_{jt} + r_{jt} B_{jt}$$

 \blacktriangleright Union-wide monetary policy setting nominal rate i_t , targets average inflation across EZ

MODEL

► Currency union with countries *j*, within-country incomplete markets:

$$\max_{\{c_{jit}, a_{jit}\}_{t \geq 0}} \mathbb{E}_0 \sum_{t \geq 0} \beta^t u(c_{jit}, \ell_{jit}), \text{ s.t. } c_{jit} + a_{jit} = (1 - \tau) w_{jt} e_{jit} \ell_{jit} + t_{jt} + \frac{1 + i_{t-1}}{1 + \pi_{jt}} a_{jit-1}, \ a_{jit} \geq \underline{a}$$

► Two consumption goods, tradables & non-tradables:

$$\diamond \quad \mathsf{Demand:} \ c_{\mathit{jit}} = \mathcal{D}\left(c_{\mathit{jit}}^{\mathit{NT}}, c_{\mathit{jit}}^{\mathit{T}}; \nu\right), \quad c_{\mathit{jit}}^{\mathit{T}} = \mathcal{T}\left(\left\{c_{\mathit{jit}}^{\mathit{T}}(j')\right\}_{j'}; \nu\right)$$

 \diamond Supply: $\ell_{jit} = \mathcal{S}\left(\ell_{jit}^{NT}, \ell_{jit}^{T}; \eta\right)$, linear prod., national labor unions

ho: share of non-tradable labor income

Only dimension of regional heterogeneity

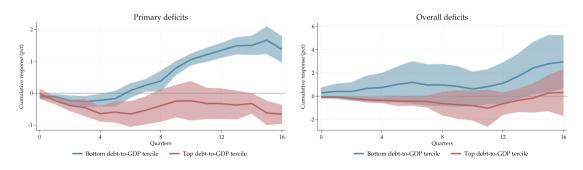
► Fiscal reaction function + heterogeneous SS public debt:

$$B_{jt} - B_{jt-1} = -\gamma_{\ell} \left(L_{jt} - \bar{L}_{j} \right) - \gamma_{b} \left(B_{jt-1} - \bar{B}_{j} \right), \quad B_{jt} - B_{jt-1} = D_{jt} + r_{jt} B_{jt}$$

 \blacktriangleright Union-wide monetary policy setting nominal rate i_t , targets average inflation across EZ

$$D_{jt} = \underbrace{-\gamma^L (L_{jt} - \bar{L}_j) - \gamma^B (B_{jt} - \bar{B}_j)}_{\text{Overall deficits (fiscal rule)}} - \underbrace{r_{jt} B_{jt}}_{\text{Debt servic. cost}}$$

Government's budget constraint + fiscal rule:


♦ Mechanism: overall deficits = primary deficits + debt servicing costs

$$D_{jt} = -\gamma^{L}(L_{jt} - \bar{L}_{j}) - \gamma^{B}(B_{jt} - \bar{B}_{j}) - r_{jt}B_{jt}$$
Primary def. Overall deficits (fiscal rule) Debt servic. cost

- ♦ Mechanism: overall deficits = primary deficits + debt servicing costs
- ♦ Mechanism: public debt → budget exposure to int. rates → absorbed by primary deficit

$$\begin{array}{cccc} D_{jt} & = & \underbrace{-\gamma^L(L_{jt} - \bar{L}_j) - \gamma^B(B_{jt} - \bar{B}_j)}_{\text{Overall deficits (fiscal rule)}} & - & \underbrace{r_{jt}B_{jt}}_{\text{Debt servic. costs}} \end{array}$$

- ♦ Mechanism: overall deficits = primary deficits + debt servicing costs
- ♦ Mechanism: public debt → budget exposure to int. rates → absorbed by primary deficit

$$D_{jt} = \underbrace{-\gamma^L (L_{jt} - \bar{L}_j) - \gamma^B (B_{jt} - \bar{B}_j)}_{\text{Overall deficits (fiscal rule)}} - \underbrace{r_{jt} B_{jt}}_{\text{Debt servic. costs}}$$

- ♦ Mechanism: overall deficits = primary deficits + debt servicing costs
- ♦ Mechanism: public debt → budget exposure to int. rates → absorbed by primary deficit
- National Keynesian Cross:

$$\widehat{c}_{j} = \underbrace{M^{r}\widehat{r}_{j}}_{\text{Direct eff.}} + \underbrace{M^{r}\widehat{t}_{j}}_{\text{Fiscal react.}} + \underbrace{\rho M \widehat{c}_{j}}_{\text{Multiplier}} + \underbrace{(1-\rho)M\widehat{c}^{T}}_{\text{Foreign demand}} + \underbrace{M \widehat{w}_{j}}_{\text{Real wage}} - \underbrace{\nu M \left(\rho \widehat{w}_{j}^{NT} - (1-\rho)\widehat{s}_{j}\right)}_{\text{Expenditure switching}}$$

$$\widehat{c}_{j} \equiv \left(d \log c_{j1}, d \log c_{j2}, \dots\right)', \quad (M^{r})_{ts} = \frac{\partial \log c_{jt}}{\partial \log(1 + r_{js})}, \quad (M^{t})_{ts} = \frac{\partial \log c_{jt}}{\partial \log t_{js}}, \quad (M)_{ts} = \frac{\partial \log c_{jt}}{\partial \log y_{js}}, \quad \widehat{s}_{j} : \text{ToT}$$

Government's budget constraint + fiscal rule:

$$D_{jt} = \underbrace{-\gamma^L (L_{jt} - \bar{L}_j) - \gamma^B (B_{jt} - \bar{B}_j)}_{\text{Overall deficits (fiscal rule)}} - \underbrace{r_{jt} B_{jt}}_{\text{Debt servic. costs}}$$

- ♦ Mechanism: overall deficits = primary deficits + debt servicing costs
- ♦ Mechanism: public debt → budget exposure to int. rates → absorbed by primary deficit
- National Keynesian Cross:

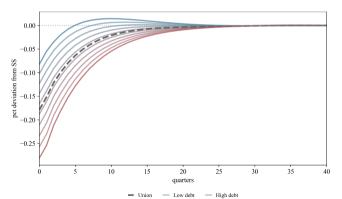
$$\widehat{\boldsymbol{c}}_{j} = \underbrace{\boldsymbol{M}^{r}\widehat{\boldsymbol{r}}_{j}}_{\text{Direct eff.}} + \underbrace{\boldsymbol{M}^{t}\widehat{\boldsymbol{t}}_{j}}_{\text{Fiscal react.}} + \underbrace{\boldsymbol{\rho}\widehat{\boldsymbol{M}}\widehat{\boldsymbol{c}}_{j}}_{\text{Multiplier}} + \underbrace{(1-\rho)\boldsymbol{M}\widehat{\boldsymbol{c}}^{T}}_{\text{Foreign demand}} + \underbrace{\boldsymbol{M}\widehat{\boldsymbol{w}}_{j}}_{\text{Real wage}} - \underbrace{\boldsymbol{\nu}\boldsymbol{M}\left(\rho\widehat{\boldsymbol{w}}_{j}^{NT} - (1-\rho)\widehat{\boldsymbol{s}}_{j}\right)}_{\text{Expenditure switching}}$$

♦ High public debt → smaller primary deficit response → larger consumption response

$$D_{jt} = \underbrace{-\gamma^L (L_{jt} - \bar{L}_j) - \gamma^B (B_{jt} - \bar{B}_j)}_{\text{Overall deficits (fiscal rule)}} - \underbrace{r_{jt} B_{jt}}_{\text{Debt servic. costs}}$$

- ♦ Mechanism: overall deficits = primary deficits + debt servicing costs
- ♦ Mechanism: public debt → budget exposure to int. rates → absorbed by primary deficit
- National Keynesian Cross:

$$\widehat{\boldsymbol{c}}_{j} = \underbrace{\boldsymbol{M}^{r}\widehat{\boldsymbol{r}}_{j}}_{\text{Direct eff.}} + \underbrace{\boldsymbol{M}^{l}\widehat{\boldsymbol{t}}_{j}}_{\text{Fiscal react.}} + \underbrace{\boldsymbol{\rho}\boldsymbol{M}\widehat{\boldsymbol{c}}_{j}}_{\text{Multiplier}} + \underbrace{(1-\rho)\boldsymbol{M}\widehat{\boldsymbol{c}}^{T}}_{\text{Foreign demand}} + \underbrace{\boldsymbol{M}\widehat{\boldsymbol{w}}_{j}}_{\text{Real wage}} - \underbrace{\boldsymbol{\nu}\boldsymbol{M}\left(\rho\widehat{\boldsymbol{w}}_{j}^{NT} - (1-\rho)\widehat{\boldsymbol{s}}_{j}\right)}_{\text{Expenditure switching}}$$

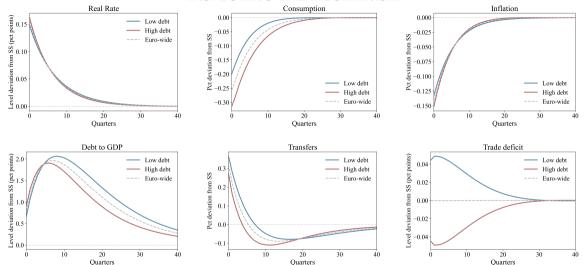

- \diamond High public debt \longrightarrow smaller primary deficit response \longrightarrow larger consumption response
- \diamond New Keynesian Phillips curve: larger consumption response \longrightarrow larger inflation response

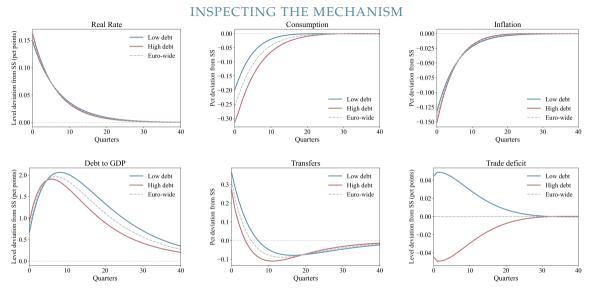
HETEROGENEOUS MONETARY TRANSMISSION IN THE UNION

► A monetary union with 10 countries, debt-to-GDP ratios of 8%-180% (≈ EZ)

HETEROGENEOUS MONETARY TRANSMISSION IN THE UNION

- ► A monetary union with 10 countries, debt-to-GDP ratios of 8%-180% (≈ EZ)
 - Large dispersion in the consumption response
 - ♦ Low public debt countries less responsive ← more space for primary deficits


Note: consumption resp. to a shock increasing interest rates i₁ by 1 p.p. (annualized) on impact, with quarterly persistence 0.85.


INSPECTING THE MECHANISM

- ► Two-countries calibration: Germany and Italy
 - Only differ in SS debt-to-GDP ratios (60% and 134%), identical in all other parameters

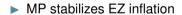
lacktriangle Calibrate fiscal rules based on Galí and Perotti (2003) $\longrightarrow \gamma^L = 1$ and $\gamma^B = 0.07$

INSPECTING THE MECHANISM

Same interest rate change induces different effects across countries

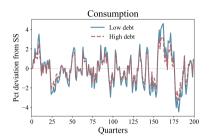
BUSINESS CYCLE PROPERTIES FOR DIFFERENT MONETARY STANCES

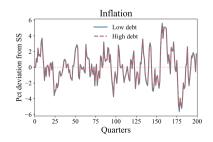
- ▶ Business cycle properties
 - Discount factor shocks


MP stabilizes EZ inflation

$$\diamond i_t = \phi \pi_t + \varepsilon_t^i$$

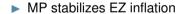
Dove vs Hawk


BUSINESS CYCLE PROPERTIES FOR DIFFERENT MONETARY STANCES

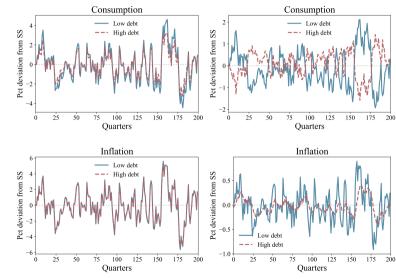

- ▶ Business cycle properties
 - Discount factor shocks

$$\diamond \ i_t = \phi \pi_t + \varepsilon_t^i$$

Dove vs Hawk

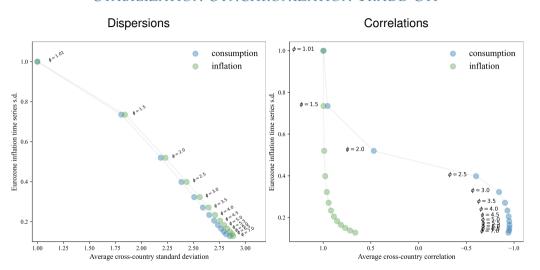


Dove, $\phi = 1.01$


BUSINESS CYCLE PROPERTIES FOR DIFFERENT MONETARY STANCES

- ▶ Business cycle properties
 - Discount factor shocks

$$\diamond \ i_t = \phi \pi_t + \varepsilon_t^i$$


Dove vs Hawk

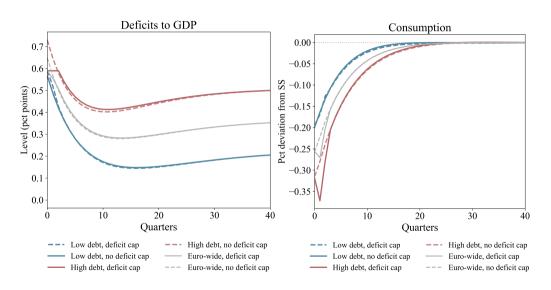
Dove, $\phi = 1.01$

Hawk, $\phi = 7$

STABILIZATION-SYNCHRONIZATION TRADE-OFF

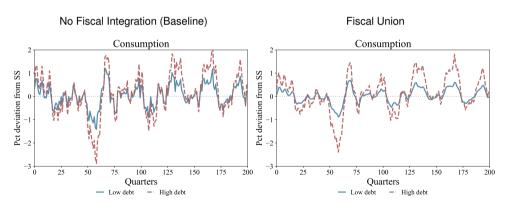
Note: we normalize all std measures to one for the smallest Taylor coefficient. Correlation measures are not normalized.

POLICY EXPERIMENTS

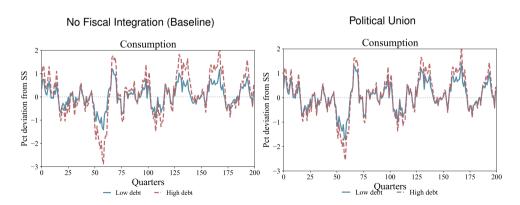

I Deficit caps

TT Fiscal union

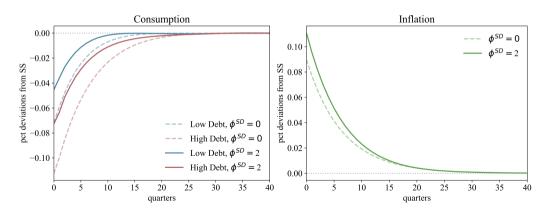
III Political Union


IV Augmented Taylor rule

DEFICIT CAPS AMPLIFY THE TRADE-OFF


FISCAL UNION

- Issue bonds to send lump-sum transfers equally across countries (€-bonds)
 - Stabilizes average activity
 - ⋄ Does not improve synchronization ← GE effects on interest rates


POLITICAL UNION

- Political union: cross-country transfers under balanced budget
 - Effective at improving synchronization
 - Countries' net contributions zero on average

AUGMENTED TAYLOR RULE

$$i_t = \phi \pi_t - \phi^{SD} \sqrt{\mathbb{V} a r_j \hat{c}_{jt}} + \varepsilon_t^i$$

CONCLUSION

Heterogeneity	in fiscal	space	across	members	of a	monetary	v union:
i leterogenent	, III IISCai	space	acioss	IIIGIIIDGI 3	OI C	i iiioiietai	y urnon.

I Leads to unequal transmission of monetary policy

II Gives rise to a trade-off between stabilization and synchronization for MP

III Deficit caps & fiscal union cannot address the trade-off; political union could

Appendix

CALIBRATION PACK

Parameter	Description	Value	Comment
β	Discount factor	0.98	Standard
σ	Inverse IES	1	Standard
arphi	Frisch Elasticity	1	Chetty et al. (2011)
ω	Preference for non-trad. consumption	0.66	Hazell et al. (2022)
α	Preference for non-trad. labor supply	0.66	Hazell et al. (2022)
ν	Cons. elasticity of subs. btw sectors	1.5	Hazell et al. (2022)
ψ	Elasticity of subs. btw tradables	1.5	Equal to ν for exposition
η	Labor elasticity of subs. btw sectors	0.45	Berger et al. (2022)
$ ho_e$	Pers. of log-productivity process	0.92	Auclert et al. (2021)
σ_e	Std. of log-productivity process	0.6	Auclert et al. (2021)
\underline{b}	Borrowing limit	0	Standard
μ	Union market power	21	Schmitt-Grohé and Uribe (2005)
θ	Wage rigidity	210	Target 0.1 slope of wage NKPC
au	Income tax rate	30%	Eurozone average
\bar{B}_1/\bar{Y}_1	Debt to GDP in country 1	134%	Italy, 2019 (source: AMECO)
\bar{B}_2/\bar{Y}_2	Debt to GDP in country 2	60%	Germany, 2019 (source: AMECO)
γ^L	Response of deficits to L	1	Galí and Perotti (2003)
γ^B	Response of deficits to debt	0.07	Galí and Perotti (2003)

REFERENCES I

- AUCLERT, A., M. ROGNLIE, M. SOUCHIER, AND L. STRAUB (2021): "Exchange Rates and Monetary Policy with Heterogeneous Agents: Sizing up the Real Income Channel," *NBER Working Paper 28873*.
- BERGER, D., K. F. HERKENHOFF, AND S. MONGEY (2022): "Labor Market Power," *American Economic Review*, 112(4).
- CHETTY, R., A. GUREN, D. MANOLI, AND A. WEBER (2011): "Are Micro and Macro Labor Supply Elasticities Consistent? A Review of Evidence on the Intensive and Extensive Margins," *American Economic Review*, 101, 471–75.
- GALÍ, J. AND R. PEROTTI (2003): "Fiscal policy and monetary integration in Europe," *Economic Policy*, 18, 533–572.
- HAZELL, J., J. HERREÑO, E. NAKAMURA, AND J. STEINSSON (2022): "The Slope of the Phillips Curve: Evidence from U.S. States," *The Quarterly Journal of Economics*, 137, 1299–1344.
- SCHMITT-GROHÉ, S. AND M. URIBE (2005): "Optimal Fiscal and Monetary Policy in a Medium-Scale Macroeconomic Model," "NBER Macroeconomics Annual, 20.