LECTURE 5: GRANULARITY

Heterogeneous Agents in Macroeconomics

Rustam Jamilov

University of Oxford Fall, 2023

Power law is a scaling relationship between X and Y of the type:

$$Y = \alpha X^{\beta} \tag{1}$$

(ロ)、(部)、(E)、(E)、 E) のへで 1/16

 β is the power law exponent and α a constant.

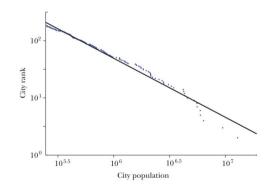
Simple empirical test for power law dynamics in practice with OLS:

$$\log(\mathsf{Rank}) = \alpha - \beta \log(\mathsf{Size}) \tag{2}$$

POWER LAWS

$$\log(\mathsf{Rank}) = 7.88 - 1.03 \log(\mathsf{Size})$$

Figure 1 A Plot of City Rank versus Size for all US Cities with Population over 250,000 in 2010

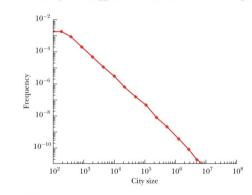


Source: Author, using data from the Statistical Abstract of the United States (2012). Notes: The dots plot the empirical data. The line is a power law fit ($R^2 = 0.98$), regressing ln Rank on ln Size. The slope is -1.03, close to the ideal Zipf's law, which would have a slope of -1.

୬ ଼ ୍ 2/16

POWER LAWS

Figure 2 Density Function of City Sizes (Agglomerations) for the United Kingdom



Source: Rozenfeld et al. (2011).

Notes: We see a pretty good power law fit starting at about 500 inhabitants. The Pareto exponent is actually statistically non-different from 1 for size S > 12,000 inhabitants.

PARETO DISTRIBUTION

Probability that a random variable *X* is greater than some *x* is:

$$\mathsf{Pr}(X > x) = \begin{cases} \alpha^{\xi} \times x^{-\xi} & x \ge \alpha \\ 1 & x < \alpha \end{cases}$$

 ξ is called the Pareto exponent or the Pareto tail.

A lower ξ means higher inequality and concentration in the distribution.

A Pareto principle states that 80% of acts or consequences originate from 20% of agents. In practice, the Pareto principle roughly corresponds to $\xi \sim 1.2$.

For $\xi \in (1,2]$ the variance of *X* is infinite and standard central limit theorems break down.

ZIPF'S LAW

A special case of the above for $\xi = 1$ is the "Zipf's Law".

Suppose there are N firms in an economy with independent shocks.

Aggregate fluctuations are proportional to $\frac{1}{\sqrt{N}}$. As $N \to \infty$, idiosyncratic fluctuations have a negligible effect.

Under Zipf's law, the above is no longer true. Aggregate volatility instead decays according to $\frac{1}{\ln N}$, which is much weaker.

If the distribution of firms is fat-tailed, diversification from firm-level disturbances is smaller as the variance of idiosyncratic shocks does not wash out as *N* grows.

Islands economy with N firms, no network effects, and exogenous production.

Firm *i* produces a quantity S_{it} of the good. Growth rate is:

$$\frac{\Delta S_{i,t+1}}{S_{i,t}} = \frac{S_{i,t+1} - S_{i,t}}{S_{i,t}} = \sigma_i \epsilon_{i,t+1}$$

 σ_i is idiosyncratic volatility and $\epsilon_{i,t+1}$ are i.i.d. random shocks.

Total economywide GDP is:

$$Y_t = \sum_{i=1}^N S_{i,t} \tag{4}$$

・ロ ・ ・ 一 ・ ・ ミ ・ ・ ミ ・ つ へ () 6/16

(3)

GDP growth is:

$$\frac{\Delta Y_{t+1}}{Y_t} = \frac{1}{Y_t} \sum_{i=1}^N \Delta S_{i,t+1} = \sum_{i=1}^N \sigma_i \frac{S_{i,t}}{Y_t} \epsilon_{i,t+1}$$

Since shocks $\epsilon_{i,t+1}$ are uncorrelated, GDP volatility is:

$$\sigma_{GDP} = \left(\mathsf{var} \frac{\Delta Y_{t+1}}{Y_t} \right)^{\frac{1}{2}} = \left(\sum_{i=1}^N \sigma_i^2 \times \left(\frac{S_{i,t}}{Y_t} \right)^2 \right)^{\frac{1}{2}}$$
(6)

Aggregate variance is the weighted sum of idiosyncratic shocks' variances σ_i^2 with weights equal to the squared share of firm-level output.

(5)

Assume that firms all have the same volatility $\sigma_i = \sigma$. Then:

$$\sigma_{GDP} = \sigma \left[\sum_{i=1}^{N} \left(\frac{S_{i,t}}{Y_t} \right)^2 \right]^{\frac{1}{2}} = \sigma \mathcal{H}$$
(7)

where ${\cal H}$ is the square root of the sales Herfindahl-Hirschman index: a measure of concentration.

Suppose all firms share identical size equal to $\frac{1}{N}$ of GDP and identical σ . Then:

$$\sigma_{GDP} = \frac{\sigma}{\sqrt{N}} \tag{8}$$

↓ □ ▶ ↓ □ ▶ ↓ ■ ▶ ↓ ■ ▶ ↓ ■ ♡ Q ○ 8/16

Now, calibrate. Suppose $\sigma = 0.1$. N=1 million. Then:

$$\sigma_{GDP} = rac{\sigma}{\sqrt{N}} = rac{0.1}{1,000} = 0.01\%$$

Aggregate volatility is roughly 1%. Idiosyncratic volatility of shocks that are drawn from a distribution with finite variance is way too small.

PROPOSITION 1

Consider an islands economy with N firms whose sizes S_i are drawn from a distribution with finite variance. Suppose they all have the same idiosyncratic volatility σ . Then, the economy's GDP volatility follows, as $N \to \infty$:

$$\sigma_{GDP} \sim \frac{\mathbb{E}[S^2]^{1/2}}{\mathbb{E}[S]} \frac{\sigma}{\sqrt{N}}$$
(9)

Proof - in class.

Volatility of GDP decays at the rate of $\frac{1}{\sqrt{N}}$ as N grows. For very large *N*, the contribution of idiosyncratic vol. to aggregate vol. becomes insignificant.

PROPOSITION 2

Consider a series of island economies indexed by $N \ge 1$. Economy N has N firms whose growth rate volatility is σ and whose sizes S_1, \ldots, S_N are drawn from a power law density:

$$\mathbb{P}(S > x) = \alpha x^{-\xi} \tag{10}$$

For $x > \alpha^{\frac{1}{\xi}}$, with exponent $\xi \ge 1$. Then, as $N \to \infty$, GDP volatility follows:

$$\sigma_{GDP} \sim egin{cases} rac{v}{\ln N}\sigma, & \textit{for} \quad \xi=1 \ rac{v}{N^{1-rac{1}{\xi}}}\sigma, & \textit{for} \quad 1<\xi<2 \ rac{v}{N^{1/2}}\sigma, & \textit{for} \quad \xi\geq2 \end{cases}$$

Where *v* is a random variable. When $v \le 2$, *v* is the square root of a Lévy distribution with exponent $\xi/2$. When $\xi > 2$, *v* is a constant. Proof - in class.

- Notation $\sigma_{\text{GDP}} \sim \frac{v}{N^{1-\frac{1}{\xi}}} \sigma$ means that $\sigma_{\text{GDP}} \times N^{1-\frac{1}{\xi}} \xrightarrow{d} v \sigma$, i.e. convergence in distribution as $N \to \infty$.
- The firm size distribution has thin tails, i.e. finite variance, iff $\xi > 2$.
- If the distribution has thin tails, σ_{GDP} decays according to $\frac{1}{\sqrt{N}}$ as in the standard model.

↓ □ ▶ ↓ @ ▶ ↓ E ▶ ↓ E ♥ Q ♥ 12/16

For $\xi < 2$, then σ_{GDP} decays much slower.

THE GRANULAR RESIDUAL

Suppose firm productivity evolves as:

$$g_{i,t} \equiv z_{it} - z_{i,t-1} = \beta' X_{it} + \epsilon_{it} \tag{11}$$

The theoretical granular residual is defined as:

$$\Gamma_t^* \coloneqq \sum_{i=1}^K \frac{S_{i,t-1}}{Y_{t-1}} \epsilon_{i,t} \tag{12}$$

This is a size-weighted sum of idiosyncratic shocks for K (usually largest) firms. The estimated granular residual is:

$$\Gamma_t \coloneqq \sum_{i=1}^{K} \frac{S_{i,t-1}}{Y_{t-1}} \hat{\epsilon}_{i,t}$$
(13)

Identification is achieved if $\Gamma_t = \Gamma_t^*$.

GABAIX AND KOIJEN (2023)

Granular instrumental variables.

Let an outcome be Y_t and the main regressor be $\bar{X}_t = \sum_{i=1}^{N} s_{i,t} x_{i,t}$, which is a size-weighted average of truly idiosyncratic shocks.

Suppose a generic relationship of the form:

$$Y_t = \alpha + \beta \bar{X}_t + \nu_t \tag{14}$$

$$x_{it} = \eta_t + u_{i,t} \tag{15}$$

Identification fails whenever η_t is correlated with ν_t , and thus \bar{X}_t is correlated with ν_t . η_t stands for any confounding factor that deems \bar{X}_t endogenous.

GABAIX AND KOIJEN (2023)

Granular IV is the size-weighted average regressor minus its equal-weighted average:

$$z_t \coloneqq \sum_{i}^{N} s_{i,t} x_{i,t} - \frac{1}{N} \sum_{i}^{N} x_{i,t}$$
(16)

$$\sum_{i}^{N} s_{i,t} x_{i,t} = \eta_t + \sum_{i}^{N} s_{i,t} u_{i,t} \quad \text{and} \quad \frac{1}{N} \sum_{i}^{N} x_{i,t} = \eta_t + \frac{1}{N} \sum_{i}^{N} u_{i,t}$$
(17)

The GIV is:

$$z_t = \sum_{i}^{N} s_{i,t} u_{i,t} - \frac{1}{N} \sum_{i}^{N} u_{i,t}$$
(18)

The exogeneity condition $\mathbb{E}(u_t \nu_t) = 0$ guarantees:

$$\mathbb{E}(z_t \nu_t) = 0 \tag{19}$$

TAKEAWAY

If the distribution of an agent's characteristic is fat-tailed, then standard central limit theorems fail.

Idiosyncratic shocks may not not wash out in the aggregate and a small number of agents can drive aggregate fluctuations.

The granular IV identifies causal empirical relationships by constructing characteristic-weighted sums of idiosyncratic shocks.

Granularity can be viewed as a specific, extreme form of heterogeneity.