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Abstract

This dissertation explores the relationship between financial frictions and the real economy.
It studies three channels of macro-financial transmission: market power of financial intermedi-
aries, credit portfolio risk that originates from granular borrowers, and aggregate implications of
countercyclical bank income risk.

The first Chapter of the dissertation develops a quantitative model with financial intermediaries
that are heterogeneous along four empirically-motivated dimensions: balance sheet size, credit
market power, default risk, and efficiency. The framework highlights a trilemma for bank regulation:
financial competition, efficiency, and stability are incompatible – no policy intervention can improve
all three facets simultaneously. This trilateral trade-off is shown to extend to numerous classic and
new issues in macroeconomics and banking such as deposit insurance, capital requirements, the
“too-big-to-fail” hazard, emergence of fintech lending, etc.

The second Chapter (joint with Hélène Rey, Ragnar Juelsrud, and Sigurd Galaasen) provides the
first bottom-up quantification of single-name credit concentration risk by applying a novel empirical
approach to administrative matched bank-firm data from Norway. The study exploits granularity
in the distribution of loan shares and shows that idiosyncratic shocks to large borrowers survive
portfolio aggregation and impact bank outcomes, contrary to conventional theories. Moreover,
granular credit shocks spill over to other firms through banks’ balance sheets, increase probability
of default for the affected firms, thus having a significant impact on the real economy.

The third Chapter (joint with Tommaso Monacelli) builds a quantitative macroeconomic model
with aggregate uncertainty and heterogeneous financial intermediaries that face counter-cyclical
idiosyncratic rate of return shocks. Counter-cyclicality of bank income risk is estimated directly
from U.S. bank-level data, holds for the past 40 years, and extends to the most recent COVID-19
recession. The channel is found to significantly amplify and prolong economic downturns.
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Chapter 1

A Macroeconomic Model with
Heterogeneous Banks

This chapter studies positively and normatively the role of bank heterogeneity in the macroecon-
omy. I build an empirically-motivated macroeconomic model with a banking sector that features
uninsurable idiosyncratic rate of return shocks, endogenous markups, costly default, and endoge-
nous entry. The framework highlights a trilemma for bank regulation: the government cannot
simultaneously improve financial competition, efficiency, and stability. Three validated channels
impact the transmission of policy regimes on the macroeconomy: an economies of scale channel
from larger banks beingmore efficient, an endogenous competition channel from larger banks charg-
ing higher markups, and a financial stability channel from smaller banks facing shorter distance to
default. The trilemma extends to deposit insurance schemes, heterogeneous capital requirements,
the “too-big-to-fail” hazard, and optimal constrained efficient allocations. I discuss implications of
the framework for the ongoing rise of banking concentration, emergence of fintech credit, targeted
stabilization policies like bank-level bailouts and liquidity facilities, and intermediary asset pricing.

I am indebted to Hélène Rey for the invaluable guidance and support. I thank Michele Andreolli, Fernando
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Francisco Gomes, Veronica Guerrieri, Kyle Dempsey, Tarek Hassan, Zhiguo He, Kilian Huber, Luigi Iovino, Ragnar
Juelsrud, Diego Kaenzig, Anil Kashyap, Nobu Kiyotaki, Ralph Koĳen, JosebaMartinez, Michael MacMahon, Frederic
Mishkin, Tommaso Monacelli, Simon Mongey, Plamen Nenov, Tsvetelina Nenova, Elias Papaioannou, Pascal Paul,
Franck Portier, Albert Queralto, Morten Ravn, Ricardo Reis, Kenneth Rogoff, Petr Sadlacek, Andrew Scott, Vania
Stavrakeva, Vincent Sterk, Kjetil Storesletten, Ludwig Straub, Paolo Surico, JennyTang, JohnVickers, AnnetteVissing-
Jorgensen, Randall Wright, Francesco Zanetti, Tong Zhang and participants at various conferences and seminars for
helpful feedback. I also thank Andrea Pasqualini for sharing his data on bank markups. I am grateful to the UniCredit
Foundation, the AQRAssetManagement Institute, and theWheeler Institute for Business andDevelopment for financial
support. Part of this research was conducted while I was visiting the Research Department of Norges Bank, whose
hospitality I gratefully acknowledge. All errors are my own.
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1.1 Introduction

Is there a trade-off between competition, efficiency, and stability in the modern banking system?
This question has remained at the core of policy-relevant empirical and theoretical research on
banking over the past decades (Corbae and Levine, 2018). In this paper, I argue that we should
think of these three dimensions through the lenses of a “trilemma”: any policy intervention that
enhances one of these structural facets necessarily exacerbates one or more of the remaining two.
This is a simple and novel generalization of the canonical financial competition-stability debate in
a world where banks also differ systematically in their market power. The trilemma offers a fresh
perspective on classic issues in bank regulation like the “too-big-to-fail” hazard, deposit guarantee
schemes, and capital requirements. It also has immediate implications for new trends in banking
such as the rise of concentration and emergence of fintech-intermediated credit. Furthermore,
the trilemma can guide practical implementation of unconventional monetary and fiscal tools like
targeted bailouts and liquidity facilities.

The banking industry trilemma arises naturally in a tractable macroeconomic model with a
financial intermediation sector that is consistent with the following four motivating facts:

Fact 1: The banking industry is highly concentrated. Moreover, the industry is becoming more
concentrated over time. This is true for the U.S. as well as for the Euro area (Corbae and D’Erasmo,
2020b; Constancio, 2016). As of the end of 2020, the 10 largest banks in the U.S. controlled
roughly 60% of the nationwide loan market. We need a quantifiable framework that can generate
reasonable cross-sectional dispersion and concentration of bank size.

Fact 2: There are economies of scale in lending; larger banks are more efficient than smaller
banks. Multiple empirical studies have confirmed presence of either cost- or productivity-driven
economies of scale in banking (Wheelock and Wilson, 2012, 2018; Berger and Mester, 1997;
Berger and Hannan, 1998). As a bank’s balance sheet grows, both marginal and fixed costs begin
to shrink relative to assets under management. Economies of scale is also the cornerstone of core
principles in canonical banking theory such as delegated monitoring (Diamond, 1984). A realistic
quantitative model must therefore be able to generate heterogeneity in intermediary productive or
lending efficiency.

Fact 3: Bank markups are heterogeneous; larger banks charge higher loan markups than
smaller banks. This relatively novel stylized fact has appeared in theworks of Corbae andD’Erasmo
(2020a) and Pasqualini (2021). Authors apply a variant of the production-function approach that
De Loecker et al. (2020) have popularized for the study of market power and find that bank markups
are concentrated in the right tail of the size distribution. Elsewhere, Benetton (2021) in a structural
model of the UK mortgage market also finds that larger banks charger higher loan markups. We
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thus need a model with imperfect financial competition and variable markups.

Fact 4: Bank default risk declines with bank size; default is costly for the real economy.
Using quarterly bank-level data on U.S. commercial banks we will establish that exit risk is heavily
concentrated in the left tail of the bank size distribution. The literature on the social costs of financial
crises is vast and some of the notable contributions include Reinhart and Rogoff (2009), Schularick
and Taylor (2012), Romer andRomer (2017), and Laeven andValencia (2018). Literature consensus
seems to be that financial crises, especially systemic banking crisis episodes, lead to considerable,
prolonged declines in economic activity, financial intermediation, and consumer welfare. We need
a model where heterogeneous banks face endogenous exit risk that is costly for society.

To formalize these facts into a coherent framework, I build a parsimonious dynamic general
equilibrium macroeconomic model with heterogeneous banks. There are four main buildings
blocks to this quantitative theory. First, we start with a stripped-down version of the workhorse
representative-bank macroeconomic environment of Gertler and Kiyotaki (2010) and Gertler and
Karadi (2011) and nest them as a special case. Second, banks engage in monopolistic competition
in the credit market with non-CES demand, as in Kimball (1995). This is a tractable way to engineer
variable loan markups that increase with relative balance sheet size. This setup nests the Dixit and
Stiglitz (1977) (CES) aggregator as a special case and has been applied widely in the literature on
monopolistic competition with non-financial firms (Klenow andWillis, 2016;Midrigan et al., 2018;
Baqaee et al., 2021).1 Third, banks face partially uninsurable idiosyncratic rate of return risk in the
spirit of Benhabib et al. (2019). This assumption ismotivated, among others, by the recent empirical
work of Galaasen et al. (2020) who find, using administrative loan-level data from Norway, that
idiosyncratic firm shocks survive portfolio aggregation and have a significant impact on bank returns
and the aggregate economy. Uninsurable idiosyncratic shocks create an exogenous bank net worth
fluctuation problem analogous to the canonical Bewley-Huggett-Aiyagari-Imrohoglu environment
(Bewley, 1977; Huggett, 1990; Aiyagari, 1994; Imrohoglu, 1996).2 Finally, idiosyncratic risk is a
source of insolvency risk for banks, who can default on their short-term debt obligations. Default
is costly and the cost increases with the size of the bank.

The calibrated model is validated by reproducing all four facts that we document above. First,
the model generates realistic, concentrated stationary distributions of bank net worth, assets, book
and market leverage ratios, markups, relative prices, default probabilities, and deposit rates. This
reconciles Fact 1. Second, in equilibrium smaller banks (a) are “unlucky” with a bad history of
idiosyncratic shocks, (b) have shorter distance to default, and (c) face higher equilibrium interest

1To the best of my knowledge, mine is the first attempt to apply this highly effective modelling technique to the
case of monopolistically competitive lending markets.

2Embedding the “Bewley problem” into the banking sector of a dynamic general equilibrium framework is a
second contribution of the paper.
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Figure 1.1: The Banking Industry Trilemma

Notes: Figure visualizes the competition-efficiency-stability trade-off that arises in the model. Competition stands
for the average equilibrium bank markup. Efficiency is the average marginal cost or the inverse of the credit supply
elasticity of banks. Stability is the average probability of bank default due to insolvency.

rates on short-term debt. All three factors contribute to smaller banks facing higher marginal costs.
Stationary marginal cost heterogeneity determines the economies of scale channel - bigger banks
have a higher lending capacity because they are endogenously more cost- and productive-efficient.
This result is consistent with Fact 2. Third, because of the Kimball aggregator, high-net-worth
banks choose to charge higher markups. This is the endogenous competition channel that replicates
Fact 3. Fourth and finally, larger banks face a lower equilibrium probability of default but their
endogenous exit carries a greater cost for the economy. This is the financial stability channel, which
is in line with Fact 4.

We can now discuss the key unifying theme of all quantitative results - the banking industry
trilemma. Figure 1.1 helps to visualize this result. In the stationary equilibrium, we obtain
simultaneously that bigger banks are more efficient, default less often, but charge higher markups
than smaller banks. There is therefore a trade-off between the economies of scale, endogenous
competition, and financial stability channels. Any regulation-induced reallocation of credit towards
the right tail of the bank size distribution improves aggregate stability and efficiency but reduces
competition via rising markups. On the other hand, any reallocation of credit towards low net-worth
banks decreases the average markup but worsens efficiency and stability. All in all, no singular
regulatory intervention can improve all three dimensions of the banking system simultaneously as
long as the efficiency-competition-stability trade-off is part of the economic environment. It is a
policy trilemma.

I illustrate the workings of the trilemma on several classic topics in bank regulation. First,
regulatory capital requirements that increase with bank leverage can improve financial stability
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by reducing the aggregate leverage ratio and systemic risk. However, this intervention meddles
with the banks precautionary lending motive and their ability (and desire) to grow. As a result, the
regulated economy is less efficient as aggregate lending falls and costs rise. Second, introducing full
deposit insurance generally has a positive effect on lending and growth but a large negative effect
on stability and a positive effect on markups. Third, an extension of the model with the “too-big-to-
fail” subsidy causes all macroeconomic aggregates like lending and production to increase while
systemic fragility goes up.3 Finally, constrained-efficient allocations and optimal heterogeneous
bank taxation, which fully internalize the impact of all bank choices (assets, debt, markups) on
aggregate prices and returns, improve gross welfare but severely worsen systemic financial stability.
When default is sufficiently costly ex-post, net welfare effects could be negative.

In the rest of the paper, I apply the framework and the trilemma to several old and new issues
in macro-banking. First, the global banking industry is becoming more and more concentrated.
My theory predicts that this permanent “granularity” shock will make the banking system more
efficient, stable, but less competitive. Second, the worldwide share of fintech and bigtech in
financial intermediation is growing rapidly (Claessens et al., 2018). My framework predicts that
the emergence and rise of fintech credit will lead to economic growth, a significant increase in the
number of active banks, but ultimately a decline in financial stability since the economy would
be populated with too many small and risky intermediaries which lack the scale to withstand
idiosyncratic uncertainty.

Themodel has two additional auxiliary implications that could be useful in their own right. First,
on the implementation of various unconventional, bank-level stabilization policies that have become
very popular since the 2007-2008 Great Financial Crisis. I find that policies that shift relative prices
or marginal costs, such as targeted liquidity facilities, are more effective when applied only to small
banks. On the other hand, aggregate efficiency gains from unanticipated targeted equity injections
(“bailouts”) increase with the size of the impacted intermediary. Second, the model offers a fresh
perspective on intermediary asset pricing with heterogeneity. My framework can generate a sizable
unconditional risk premium due to heterogeneity in liquidity and default risk premia. Moreover,
the distribution of bank size is procyclical, implying that liquidity and default risk premia are
countercyclical, thus generating endogenous counter-cyclicality in the aggregate risk premium.

Literature. This paper contributes to several literature strands.
First, I build on a long literature that studies the tradeoffs between financial competition,

stability, and growth (efficiency). One view is that competition reduces franchise values of the
banks and induces more risky behavior. (Keeley, 1990; Hellman et al., 2000; Repullo, 2004; Beck

3This finding is consistent with the idea that the TBTF subsidy makes private leverage choices of individual banks
strategic complements (Farhi and Tirole, 2017).
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et al., 2006). There is also an alternative view that riskiness of loans correlates with the level of
the interest rate. As a result, greater competition may reduce default risk (Boyd and Nicolo, 2005;
Martinez-Miera and Repullo, 2010). My contribution is to reconsider these classic trade-offs in a
novel general equilibrium environment where bank markups are endogenously heterogeneous and
scale-dependent.4

Second, several studies have emphasized the role of financial heterogeneity and rely, like my
model does, on some form of idiosyncratic risk and ex-post heterogeneity. Such papers include
Corbae and D’Erasmo (2020a), Bianchi and Bigio (2020), Rios Rull et al. (2020). Rios Rull et al.
(2020) study countercyclical capital buffers in a partial-equilibrium setting with idiosyncratic bank
default risk. Bianchi and Bigio (2020) study competitive banks’ liquidity management problem
in a model with idiosyncratic deposit withdrawal shocks. Corbae and D’Erasmo (2020a) study
oligopolistically competitive banks that are subject to idiosyncratic shocks on the liability side of the
balance sheet. My main contributions are twofold. First, I study market power and heterogeneity
stemming from the asset side of the banks balance sheet with a highly flexible monopolistic
financial competition setup that can accommodate both constant (CES) and variable (Kimball)
markups. Second, I explore normative implications in a realistic but complex environment with
incomplete markets, variable bank markups, and default risk.

Third, mymodel is related to the literature that introduces ex-ante heterogeneity among financial
intermediaries. Coimbra and Rey (2019) develop a general equilibrium model with ex-ante hetero-
geneity in intermediary value-at-risk constraints and endogenous financial stability. Their model
features, like ours, dynamic intensive and extensive margins of bank risk-taking. My approach dif-
fers from theirs in two substantial ways. First, in my model market incompleteness and uninsured
idiosyncratic return risk achieve persistent ex-post heterogeneity of bank returns and balance sheet
characteristics. Second, my model departs from the assumption of perfect competition in bank
lending. This channel delivers rich ex-post variation in markups and relative prices.5

Finally, this paper contributes to a long-running literature that introduces credit frictions and
financial intermediaries into general equilibrium macroeconomic models. I build on the workhorse
macro-banking setup of Gertler and Kiyotaki (2010) and Gertler and Karadi (2011), whom my
model nests as special cases. A very incomplete list of salient equilibrium models with a financial
sector includes Gromb and Vayanos (2002), Brunnermeier and Pedersen (2009), Adrian and Shin
(2010, 2014), Jermann and Quadrini (2013), Brunnermeier and Sannikov (2014), He and Krish-

4A growing literature also looks at imperfect competition in the market for bank deposits and liabilities in general,
a channel that we abstract from in this paper (Drechsler et al., 2017; Egan et al., 2017). Corbae and Levine (2018)
review the state of the literature on financial competition in their 2018 Jackson Hole Symposium address. Their work
stresses the theoretical interactions between competition, financial fragility, and monetary policy.

5Other papers that develop models with elements of financial heterogeneity include Boissay et al. (2016), Begenau
and Landvoigt (2020), Stavrakeva (2020), Begenau et al. (2020), Goldstein et al. (2020), Dempsey (2020).
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namurthy (2013), Nuno and Thomas (2017), Gertler et al. (2016, 2020), Fernandez-Villaverde
et al. (2019), Lee et al. (2020), Bigio and Sannikov (2021) etc. These frameworks largely abstract
from distributional considerations in the financial sector and work with a representative financial
intermediary/entrepreneur/arbitrageur whose relative scale generally cannot be pinned down.

Outline. The rest of the paper is structured as follows. Section 1.2 provides three motivating
facts on the cross section of U.S. banks. Section 1.3 lays out the model. Section 1.4 discusses how
we take the model to the data. Section 1.5 presents the main quantitative analysis of the paper.
Section 1.6 concludes. Finally, the Online Appendix contains additional applications, derivations,
extensions, numerical algorithms, and data description.

1.2 Cross-Sectional Banking Data

In this section I document three motivating cross-sectional facts on bank balance sheet size,
leverage, markups and exit risk. We will use these facts in order to keep the model accountable.

1.2.1 Leverage

What is the relationship between bank leverage and balance sheet size? We answer this
question using the data from Consolidated Reports of Condition and Income (the Call Reports).
Every insured bank in the U.S. must submit these reports to the Federal Reserve on a quarterly
basis. Following Adrian and Shin (2010) we measure balance sheet size with total assets. Leverage
is defined as the ratio of total assets to total equity. I focus on the 2010:q1-2019:q4 period, based
on which the model in the next section will be calibrated. Table 1.5 in Section 1.13 of the Online
Appendix describes how every variable is defined and constructed.

Figure 1.2 plots a binned scatter plot between total assets and leverage. Both are quarterly
growth percentages. The x-axis is binned into 100 percentiles of the assets growth distribution.
For each bin, we compute the average of quarterly leverage growth within that bin. We see a clear
positive correlation between assets and leverage, implying “procyclical” leverage in the words of
Adrian and Shin (2010). The positive relationship between leverage and size of financial firms has
been recently highlighted in Coimbra and Rey (2019). Gopinath et al. (2017) document a similar
fact on a large sample of non-financial firms.

1.2.2 Lending Markups

What is the relationship between bank balance sheet size and lending markups? Estimation of
market power in the banking industry is a relatively new literature. The main empirical approach
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Figure 1.2: Bank Assets and Leverage
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Notes: Binned scatter plot of bank assets and leverage growth in the data. The x-axis is binned into 100 percentiles of
the distribution of quarterly assets growth. The y-axis is the bin-specific average of quarterly leverage growth. Leverage
is defined as book assets over book equity. The leverage and assets growth distributions have been pre-trimmed at the
1% and 99% levels. Quarterly data is pooled over 2010:q1-2019q4. Source: Call Reports.

involves the production function estimation methodology popularized by De Loecker et al. (2020).
Variants of this approach have been recently applied to the case of U.S. banks by Corbae and
D’Erasmo (2020a) and Pasqualini (2021) who also estimates markdowns on the liability side.
Elsewhere,Wang et al. (2020) andBenetton (2021) obtain bankmarkups using structural estimation.

In the context of the present paper, we borrow estimates of markups from Pasqualini (2021),
to whom I refer the interested reader for details related to methodology. Figure 1.3 plots a binned
scatter plot between bank assets and absolute markups. Annual data is pooled over 2010-2019 and
is based on the Call Reports. The x-axis is binned into 100 percentiles of the assets distribution.
For each bin, we compute the bin-specific unweighted average of markups. From the plot we see
a clear, strong positive correlation between assets and markups. This qualitative relationship is
emphasized also by Corbae and D’Erasmo (2020a) and Benetton (2021). It appears that larger
banks charge higher markups over their marginal costs.
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Figure 1.3: Bank Assets and Markups
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Notes: Binned scatter plot of bank assets and lending markups in the data. The x-axis is binned into 100 percentiles
of the distribution of Log (Assets). The y-axis is the bin-specific average of lending markups. Markups and assets
distributions have been pre-trimmed at the 1% and 99% levels. Annual data is pooled over 2010-2019. Markups are
from Pasqualini (2021) and assets are from Call Reports.

1.2.3 Exit Risk

What is the relationship between bank balance sheet size and exit risk? I impute bank exit
risk using two separate approaches.6 The first approach relies on bank balance sheet and income
statement data from the Call Reports. We begin by constructing an indicator variable Exitit for
each bank i and quarter t which takes the value of unity if the bank exits in quarter t+1. We then
run the following logit regression of Exitit on assets.

Pr{Exitit = 1} = U0 + U1Log (Assets)it + `t + nit (1.1)

Where `t is a quarterly fixed effect. It captures the idea that the likelihood of exit is potentially
aggregate state-dependent. Standard errors are robust to heteroskedasticity and serial correlation.
When Log (Assets) are held to their mean value, the predicted probability of exit is 1.074%. We
can also compute the probability of exit conditional on different asset values. Figure 1.4 plots
the margins plot from our logit regression and depicts all the point and interval estimates of the

6As we will see in the model, I won’t be differentiating between outright exit from being acquired by another
institution. The secondary mergers and acquisitions market will not be explicitly modelled. As a result, we do not
differentiate between these two sources of exit in our data treatment.
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Figure 1.4: Bank Assets and Exit Risk
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Notes: Marginal point and interval estimates from the logit regression of the indicator for bank exit Exitit on Log
(Assets) with a time fixed effect and standard errors that are robust to serial correlation and heteroskedasticity. The
margins plot shows conditional probabilities of exit at various values of Log (Assets). Quarterly data is pooled over
2010:q1-2019q4. Source: Call Reports.

conditional probability. The predicted probability of exit ranges from roughly 4% for the first
percentile of the asset distribution to 0.33% for banks in the top percentile. This result is quite
intuitive: smaller banks are more exposed to exit risk.

As a robustness check, I also impute the likelihood of bank exit based on the Laeven and
Valencia (2018) database of banking crises from around the Globe.7 According to the authors,
there have been 107 unique banking crises events over the past 48 years across 165 countries.8 That
makes the unconditional probability of a crisis equal to roughly 1.35%, which is in the ballpark
with the 1.074% that we computed from the Call Reports.

Because the model will feature costly bank default, we also require proxies for the real costs of
banking crises. For this purpose, we again rely on the empirical findings in Laeven and Valencia
(2018). Authors estimate that output losses around systemic banking crises historically average
around 7.6% of the difference between potential and actual GDP per year. They also find that these
losses tend to be larger in advanced economies (11.67%), which are more financially sophisticated,
than in emerging countries (4.67%). I will use this evidence to motivate that default of larger
intermediaries in the model is more costly ex-post than of smaller banks.

7In the model, bank exit will be synonymous with financial crises.
8I focus exclusively on incidents of banking crises only, excluding concurring sovereign or exchange rate crises.
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1.3 A Model with Heterogeneous Intermediaries

In this section, I present the model, discuss its key building blocks, and analyze equilibrium
properties.

1.3.1 Overview

Time is discrete and infinite. The economy consists of a representative household, a continuum
of financial intermediaries that are ex-ante identical but ex-post heterogeneous, a representative
final goods producer, and a representative capital goods producer. The household is risk-averse,
supplies labor inelastically to the final goods firm in exchange for a competitive wage, and saves
intertemporally through one-period bank deposits. The deposit market is perfectly competitive and
there is no deposit insurance in the baseline economy; we will introduce it in Section 1.5.2.

Banks accumulate own net worth, acquire deposits from households to whom they pay the
equilibrium deposit rate the following period, cover non-interest expenses that are non-linear in
assets under management, and perform two investment activities. First, banks invest into claims on
zero-profit capital goods firms who produce aggregate capital.9 Competition is monopolistic and
demand is non-CES (Kimball).10 After the capital stock is produced and priced, banks immediately
lend it competitively to the final goods producer in return for realized returns on capital the following
period.11 In addition to the systematic return, each bank receives a bank-specific idiosyncratic return
draw. These shocks are persistent and not perfectly insurable. Along the extensive margin, banks
exit due to exogenous and endogenous reasons. Upon exogenous exit, banks pass on all remaining
net worth to households, which motivates our constant dividend payout rule. Endogenous exit
is due to default (fundamental insolvency). Finally, entry is exogenous in the baseline economy.
Entry and the mass of active banks are endogenized in Section 1.7.2 of the Online Appendix where
we discuss fintech-intermediated credit.12

9We abstract from bond financing which is another major source of external funding for firms (De Fiore and Uhlig,
2011).

10Why don’t we set up an oligopolistic credit market? There are at least three reasons. First, although the number of
active banking franchises in the U.S. and Europe is dwindling, there are still more than 5,000 active commercial banks
in the U.S. at the time of writing. A monopolistic competition structure feels much more appropriate given the number
of agents in the market. Second, it is more reasonable that individual banks do not internalize the impact of their
private choices on aggregate outcomes. Banks in our model are “atomistic” because of the monopolistic competition
assumption. But they are still “granular” in the sense that concentration of the distribution matters for macroeconomic
outcomes (Gabaix, 2011). Third and finally, tractability. There is little more that an oligopoly model can give us that
the monopolistic competition block with variable markups cannot. A flexible two-parameter departure from perfect
competition cannot be taken for granted in an environment with incomplete markets and uninsurable idiosyncratic
shocks like ours.

11Ownership of the capital stock is in pro rata terms.
12In Section 1.11.3 of the Online Appendix we show how the baseline economy can be extended to feature two

sectors that are heterogeneous in the degree of financial competition.
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An important advantage of the model is that any of the two essential building blocks - monop-
olistic financial competition and uninsurable idiosyncratic bank return shocks - can be shut down
without affecting the other. In other words, we can analyze an economy with heterogeneity but
perfect competition, monopolistic competition but homogeneity, or any re-calibrated combination
in between.

1.3.2 Technology

Final Good Production The final good is produced from aggregate capital and labor using a
Cobb-Douglas technology:

Yt = AKU
t L

1–U
t (1.2)

where 0 < U < 1. Wages (Wt) and returns to capital (Rk
t ) are competitive and follow directly

from the firm’s optimization problem:

Rk
t+1 =

AUKU–1
t+1

Pt
Wt = (1 – U)AKU

t (1.3)

where A is aggregate productivity and Pt is the price of capital. Capital depreciates fully every
period after it’s used in production.

Capital Good Production A representative, perfectly competitive capital producing firm begins
the period with no equity and issues claims to banks in return for the aggregate capital bundle. The
firm makes zero profits.

The capital good Kt is produced from a bundle of financial varieties kt(j) for j ∈ [0, 1]. Financial
varieties are intermediated by the banking sector and assembled with the Kimball aggregator:

Kt =
∫1

0
Υ

(
kt(j)
Kt

)
dj (1.4)

where the function Υ(x) is increasing, concave, and satisfies Υ(1) = 1. It can be shown that the
Dixit-Stiglitz aggregator is a special case with Υ(x) = x

\–1
\ , where \ > 1 is the constant elasticity

of substitution.
The maximization problem of the capital goods firm is:

max
kt(j)

[
PtKt –

∫1

0
pt(j)kt(j)dj

]
subject to technology 3.4. This yields a demand function for bank funds:
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pt(j) = Υ′
(
kt(j)
Kt

)
Zt (1.5)

where

Zt B

(∫1

0
Υ′

(
kt(j)
Kt

)
kt(j)
Kt

dj

)–1

(1.6)

is the Kimball demand index. In the Dixit-Stiglitz special case, Zt = \
\–1 , and (1.5) reduces to

pt(j) =
(
kt(j)
Kt

) –1
\ Pt.

Discrete ChoiceMicrofoundation It is possible to theoretically underpin the monopolistic credit
demand system above using discrete choice theory where each borrower chooses both the size of
the loan and the bank/variety to borrow from (McFadden, 1984). The approach generalizes the case
of a representative capital goods producer to a large number of borrowers that are heterogeneous
in their preferences for individual banks. In other words, there are firm-bank fixed-effect shocks.
These shocks are cross-sectionally correlated and the degree of correlation maps into the constant
elasticity of substitution \. Section 1.11.1 of the Online Appendix provides a detailed guide for the
analytically convenient case of n = 0.

Market power at the level of a bank can now be viewed as being isomorphic to consumer
(firms, in this case) preferences for financial services that are not perfect substitutes across banks.
Even if a particular bank chargers higher prices, it can still remain in business if borrower-bank-
specific preference shocks are sufficiently diverse. The problem of heterogeneous firms is static.
In our dynamic setting, as long as the distribution of preferences is not dynamic or aggregate state-
dependent, the identical problem would yield the same solution every period. We therefore proceed
working with this representative-firm approximation of the more sophisticated heterogeneous-firms
environment that is understood to be operating in the background.

1.3.3 Banks

The general credit demand system in (3.4)-(1.6) is taken as given by every bank. Intermediaries
start the period with initial net worth n ∈ N ⊂ R+ and must choose assets k(j), deposits d(j), and
price of claims p(j) while respecting the balance sheet constraint:

dt(j) + nt(j) = pt(j)kt(j) (1.7)
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Every bank faces non-interest expenses 1
Z1
kt(j)Z2 where parameter Z2 can help govern the degree

of non-linearity and scale-variance. Section 1.10.1 in the Online Appendix demonstrates how
whenever Z2 6= 1 aggregate state-dependency on n(j) is achieved, i.e. bank characteristics matter
for aggregation.

When choosing the size of the balance sheet, banks can borrow deposits d(j) from the household,
subject to the bank-specific interest rate R̄t(j) that will be determined in general equilibrium. At the
end of each period, every bank earns realized returns on claims on the final goods firm. Each bank
earns a portfolio return RT

t (j) that comprises the return on aggregate capital Rk
t , which is common

to all j, and an idiosyncratic component bt(j) which is specific to each j:

RT
t (j) = ^bt(j) + (1 – ^)Rk

t (1.8)

Where 0 < ^ < 1 is a parameter that governs the ability to hedge idiosyncratic shocks. We
discuss a possible microfoundation for the RT(j) formulation in Section 1.11.2 of the Online
Appendix. The idiosyncratic return, b ∈ Ξ, follows an AR(1) process:

bt(j) = (1 – db)`b + dbbt–1(j) + fbnt(j) (1.9)

Analogously, let the finite state Markov representation of (3.10) be G(bt+1, bt). We can now
state the law of motion of bank-level net worth:

nt+1(j) = RT
t+1(j)pt(j)kt(j) – R̄t(j)dt(j) –

1
Z1
kt(j)Z2 (1.10)

Following Gertler and Karadi (2011) and Gertler and Kiyotaki (2010), there is a moral hazard
problem in the banking sector. Banks have an incentive to divert franchise assets with the ability
to divert no more than a fraction _ of the total value of revenues p(j)k(j). If deciding to divert,
the banker always escapes but the franchise enters bankruptcy the following period. The banker
is indifferent between operating honestly and diverting when whatever he is able to divert exactly
equals the value of the franchise. This yields the following incentive constraint that puts a limit on
bank leverage.

_pt(j)kt(j) ≤ Vt(j) (1.11)

where Vt(j) is the franchise value of the intermediary, to be defined below. Each bank in the
economy can default with an endogenous probability h(j), which is taken as given and determined
in equilibrium. Default risk is due to fundamental insolvency, i.e. when net worth at normal market
prices is non-positive.:

ht(j) = Pr
(
nt+1(j) ≤ 0

)
(1.12)
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Conditional on insolvency, the household recovers a fraction of promised payments xt(j), an
object that we define later. Because at normal market prices the recovery rate xt(j) is increasing
in bank size, insolvency risk will be concentrated in the left tail of the stationary bank net worth
distribution, which is in line with our empirical analysis in Section 1.2.

Let [(n, b) be a probability measure, defined on the Borel algebra B that is generated by open
subsets of the product space B = N×Φ, corresponding to the distribution of incumbent banks with
net worth n and idiosyncratic return realizations b. The law of motion for the distribution is:

[t+1(nt+1, bt+1) = Φ([t) (1.13)

We define Φ in detail below.

Dynamic Problem of the Incumbent Banker The following summarizes the dynamic problem
of the incumbent. We adopt recursive notation because the solution does not depend on a specific
bank j but on the relevant state variables only. Define s = {n, b} as the bank’s idiosyncratic state
vector. There is no aggregate risk. The bank maximizes its franchise value which is defined as the
discounted stream of future flows of net worth. With an exogenous probability f the incumbent
may exit involuntarily, in which case its net worth gets transferred lump sum to the household.
The banker discounts the future by adopting and augmenting the household’s stochastic discount
factor Λ, which is determined in equilibrium and defined when we discuss the household problem.
Each banker takes as given aggregate quantities {K,D,N}, prices {P,Rk}, the cross-sectional
distribution [ and its law of motionΦ, bank-specific deposit rates R̄ and portfolio returns RT. Each
bank solves:

V(s) = max
{k,p,d}

{
Es’|s

[
Λ′

(
(1 – f)n′ + fV(s′)

)]}
(1.14)

s.t. conditions 3.4-3.14.

We can simplify the problem above considerably by reformulating it into a one-argument
problem. Each bank now chooses the leverage ratio q = pk

n by maximizing:

max
q

[
`aq + aa

]
(1.15)

subject to the same constraints as before and where `a = (1–h)Λ̃′
[
RT′ – R̄

]
is the excess return

on risky investments, aa = (1 – h)Λ̃′
[
R̄ –

1
Z1
kt(j)Z2

n

]
is the cost of liabilities. In both instances,

Λ̃′ = Λ
(
1 – f + fV(s′)

)
is the augmented household marginal rate of substitution.
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Section 1.10.2 of the Online Appendix shows that the solution to the above problem, while
taking all aggregate quantities and equilibrium prices as given, yields the following relative price
rule:

Proposition 1 (Markups and Marginal Costs Decomposition).

p(j)
P

= `(x)
k(j)Z2–1

RT(j) – R̄(j)
(1.16)

where `(x) is a markup function, which potentially depends on relative size x = k(j)
K , and

k(j)Z2–1

RT(j)–R̄(j)
the endogenous marginal cost. In the two paragraphs that follow, we zoom in on these

two sources of bank heterogeneity in the model: markups and marginal costs.

1.3.4 Variable Markups

For the baseline case with endogenously variable bank markups, I use the Klenow and Willis
(2016) specification for Υ(x):

Υ(x) = 1 + (\ – 1) exp
1
n
n
\
n –1

[
Γ

(
\

n
,

1
n

)
– Γ

(
\

n
,
x
n
\

n

)]
(1.17)

where n ≥ 0 is a parameter that governs variation in the superelasticity n
\
and Γ (s, q) is the

upper-incomplete Gamma function:

Γ (s, q) B
∫∞
q
ts–1 exp–t dt (1.18)

TheCES aggregator is a special case of (1.17)when n = 0. With theKlenow-Willis specification,
we have:

Υ′(x) =
\ – 1
\

(
exp

1 – x
n
\

n

)
(1.19)

The size-dependent elasticity is thus \x–
n
\ . It can be seen clearly that the elasticity declines

with relative size. This, in turn, implies the following markup function:

`(x) =
\x–

n
\

\x–
n
\ – 1

(1.20)

As long as n > 0, banks with a higher relative quantity of assets on their books (x = k
K ) will face

a lower elasticity of substitution. This, in turn, induces larger banks to choose higher `(x). When
n = 0, the credit markup is constant and equals the usual ` = \

\–1 . Calibration of the superelasticity
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Figure 1.5: Bank Markups
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Notes: Absolute bank markups with the Kimball (“Variable Markups”’) and CES (“Constant Markup”) aggregators.

can be achieved in a simple way by varying n
\
. When taking the model to the data, we will use the

empirical cross-section of bank markups to deduce the two parameters.
Figure 1.5 illustrates the differences between Kimball-Klenow-Willis and Dixit-Stiglitz aggre-

gators. Increasing n makes the demand curve less “convex”, everything else equal. Larger banks
are in the area of relative satiation. Because they face lower substitution elasticities, they choose to
charge higher markups since further reduction of relative prices does not induce the same desirable
quantity effect. Also note how the shape of the markup function lines up exactly with the empirical
relationship from Section 1.2. We will discuss the calibration strategy that achieves this in Section
1.4.

1.3.5 Marginal Costs and Economies of Scale

Cross-sectional bank heterogeneity in themodel also runs throughmarginal costs. Themarginal
cost is a complex non-linear function of four key objects: total portfolio return RT(j), interest rate
on deposits R̄(j), the scale effect in K, and the probability of default a(j) (which affects marginal
costs indirectly, through R̄(j)). Note that dependency on aggregate demand K is only possible when
non-interest expenses are not linear with respect to k(j), a condition we return to in the next section
where we discuss scale variance. The effect of each of the four determinants on the marginal
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Figure 1.6: Marginal Costs and Economies of Scale
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cost is summarized on the left panel of Figure 1.6. First, we observe that bank-level marginal
costs are increasing in aggregate demand. Greater demand for bank finances puts upward pressure
on the cost of funds. Second, marginal costs increase in both default risk and interest rates on
deposits. Because there is no deposit insurance in the baseline economy, the two are intricately
linked and have the same effect on the total marginal cost. Finally, the marginal cost is decreasing
in the portfolio return RT(j), which acts as a profitability shifter and is a source of all ex-post
heterogeneity in balance sheet prices and quantities.

Marginal cost heterogeneity gives rise to economies of scale. In order to illustrate themechanism
in the cleanest possible way, we define two new objects: the marginal propensity to lend (MPL)
and the marginal propensity to price (MPP). At the level of a bank, MPL(j) is constructed as the
elasticity of assets k(j) to changes in net worth n(j). MPP(j) is defined analogously to the MPL as
the elasticity of bank-level relative prices p(j) with respect to shocks to bank net worth n(j):

MPL =
∫
B

mk(j)
mn(j)

[(dn, db) MPP =
∫
B

mp(j)
mn(j)

[(dn, db) (1.21)

The right panel of Figure 1.6 visualizes the MPL and MPP objects as functions of net worth.
We see that MPP(j) and MPL(j) are inversely related, which is due to the Kimball demand function
and negative correlation of assets and relative prices. In equilibrium, low-net-worth banks are
those that (a) have a poor history of idiosyncratic return realizations, (b) have shorter distance to
default, and (c) face higher equilibrium deposit rates. All three factors contribute to smaller banks
facing higher marginal costs which, in turn, feeds into lower efficiency and lending capacity, which
is summarized with a higher (lower) MPL (MPP). This is the economies of scale channel. For
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contrast, in the representative-bank counterfactual, the MPL and MPP distributions are flat and
correspond to the corresponding objects of the median intermediary. Depending on the extensive
margin and the relative shares of very large and very small banks in the distribution, heterogeneity
becomes important for the transmission of net worth shocks to aggregate lending and investment.

1.3.6 Entry and Exit

In the baseline version of the model, entry is exogenous. Upon entry, each bank receives a
lump-sum endowment of net worth n0 from the household and an idiosyncratic return draw that
equals `b . As mentioned before, we relax the assumption of exogenous entry in Section 1.7.2 of
the Online Appendix when we discuss the rise of fintech credit in an extension with endogenous
entry. The incumbent intermediary is subject to two sources of exit risk: involuntary homogenous
exit rate f and the endogenous probability of default a(j), which is bank-specific. Default is due
to fundamental insolvency, which occurs when n(j) is drawn down to 0.13 Intermediary default is
costly and results in ex-post efficiency losses that are measured in units of output. Default costs are
potentially bank size-dependent. If a bank exits, the exiting bank’s market will never be taken over
by any of the incumbents.

1.3.7 Cross-Sectional Distribution of Banks

Denote d̄(n, b) a dummy variable which takes the value of unity if an individual bank exits in
time t. Denote Mt the mass of entering banks. This mass is predetermined and equals the mass of
banks which exited due to the exogenous shock (1–f) or default. The mass of active intermediaries
thus remains time-invariant. The distribution of banks in the economy evolves according to:

[′(n′, b′) =
∑
b

G(b′, b)
∫
1{(n,b)|K(n,b)∈B} × 1{d̄(n,b)=0}[(dn, db) + M′n0 (1.22)

Where 1 is the indicator function that takes the value of unity when the argument {.} is true
and zero otherwise. Recall that G(x′, x) is the Markov chain for b of the incumbents.

1.3.8 Households

The representative household is tasked with choosing the supply of deposits to each bank bt(j)
and consumption Ct, subject to the standard balance sheet constraint:

13Bank runs are ruled out for tractability. For macroeconomic models with systemic bank runs see, for example,
Uhlig (2010) or Gertler et al. (2020).
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max
Ct,bt(j)

[
Et
∞∑
t=1

Vt
C1–fh
t

1 – fh

]
s.t.

Ct +
∫1

0
bt(j)dj ≤ Wt +

∫1

0
R̄t(j)bt–1(j)dj + ct

Where c are any lump sum transfers or taxes. First order conditions for deposits yield the
following equation:

R̄t(j) =
1 – ht(j)xt(j)E

(
RT
t+1(j)Λt+1

)(
1 – ht(j)

)
E (Λt+1)

(1.23)

Where Λt+1 = V
u′(ct+1)
u′(ct) is the stochastic discount factor and u′(c) = c–fh . Deposits are

risky because of possible bank default and absence of deposit insurance schemes. The consumer
acknowledges default risk and demands a menu of deposit rates, which depend on the deposit
recovery rate xt(j):

xt(j) = min
[

qt(j)
qt(j) – 1

, 1
]

With q the market leverage ratio, defined as before.

1.3.9 Stationary Industry Equilibrium

Credit market clearing requires:

K =
∫
B

(
k(n, b)

)
[(dn, db) (1.24)

Similarly, clearing the deposit market requires:∫1

0
b(j)dj =

∫
B

(
d(n, b)

)
[(dn, db) (1.25)

The goods market requires the final good to be used either for household consumption or firm
investment. The latter includes investment demand that is intermediated both by the incumbent and
entering bankers:

Y = C + I

We consider equilibria without aggregate uncertainty such that all aggregate quantities, prices,
and measures are time-invariant. A Stationary Industry Equilibrium is defined as a set of functions
that include the value function of the banker V(s), optimal policies for bank capital investment k(s)
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and deposit demand d(s), household consumption C and deposit supply b(j), competitive wage W
and capital Rk pricing functions, the aggregate price of capital P, a marginal utility process Λ, and
the menu of market-clearing deposit rates R̄(s) such that:

1. The household’s choices {C, b(j)} are optimal conditional on {W, R̄(j)}

2. The banks choices {k, p, d, `} are optimal conditional on {Λ,K, P, R̄(s), [}

3. Returns on factors of production are: Rk = UAKU–1
P , W = (1 – U)AKU

4. Aggregate assets, deposits, and net worth {K,D,N} are consistent with the cross-sectional
distribution and the monopolistic credit demand system

5. The credit market clears as in (3.27). The deposit market clears as in (3.28)

6. The cross-sectional distribution evolves according to (3.25) and is consistent with bank-level
demand functions

1.3.10 Numerical Algorithm

There are four basic steps in the computational algorithm. First, we must solve individual
dynamic optimization problems of financial intermediaries (incumbent and new entrants, if entry
is endogenous) and of the household. Because the banking sector is not scale invariant, individual
bank characteristics {n(j), b(j)} matter for aggregation. Second, banks face an occasionally binding
constraint on leverage that could bind anywhere in the state space. Third, the market for deposit
holdingsmust clear for each bank type. Finally, there are 3 key aggregate endogenous state variables
that we need to pin down in general equilibrium: Λ, K and P. For K and P, we use a variant of the
Maliar et al. (2010) stochastic simulation approach.

The algorithm is described in detail in Section 1.12 of the Online Appendix.

1.4 Taking the Model to the Data

In this section I discuss the parameterization strategy, moments that the model manages or fails
to match, and some key cross-sectional patterns in the banking sector.

1.4.1 Parameterization

All chosen parameters are shown in Table 1.1. The model period is one quarter. We begin by
describing standard macro parameters. We set the share of aggregate capital in production U to
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Table 1.1: Parameter Values

Parameter Description Value

Macro

U Share of capital in production 0.36
V Discount factor 0.996
fh Risk aversion 1

Banking

f Dividend payout ratio 0.9
l Share of divertible assets 0.1
n0 New banker endowment 30% of N
1
Z1

Monitoring cost linear 0.01
Z2 Monitoring cost quadratic 1.19

Monopolistic Credit Market

\ CES elasticity 3.2
n
\

Superelasticity 0.165

Idiosyncratic Bank Return Risk

^ Fraction of portfolio exposed to idiosyncratic risk 0.3
db Serial correlation of idiosyncratic risk 0.52
fb SD of idiosyncratic risk 0.085

Costly Bank Default

d1 Default cost constant 0.0511
d2 Default cost linear 0.0075

0.36. The discount factor V is chosen to target a steady-state annual risk-free rate of 1.60%. We
assume log-utility in consumption.

For parameters in the banking block, we set the exogenous survival probability to f = 0.9,
which is consistent with a life expectancy of the average banker equalling 10 years, similarly to
Gertler and Kiyotaki (2010). The fraction of divertible assets _ = 0.1 targets a steady state bank
leverage ratio of roughly 7. Endowment of new entrants is set to 30% of average net worth N, which
helps to achieve an empirically realistic average entry rate of 5% whenever entry is endogenous.
Parameters that govern non-interest expenses (Z1, Z2) are chosen to be consistent with empirical
evidence on increasing returns to scale in banking while allowing the banking problem to remain
concave (Wheelock and Wilson, 2018).14

14Our results do not rely on whether these costs are concave or convex, although convexity is much more computa-
tionally convenient. The knife-edge case of Z2 = 1 is discussed in Section 1.10.1.
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Parameters of the monopolistic credit market block are chosen to hit two targets. First, based
on the empirical evidence in Corbae and D’Erasmo (2020a) and Pasqualini (2021), the median
markup of commercial banks in the U.S. over the 2010-2019 period was roughly 1.45, i.e. 145%
over the marginal cost.15 The average elasticity of \ = 3.2 helps achieve a CES markup of 1.45.
Second, the superelasticity n

\
= 0.165 generates the variable markup function seen on Figure 1.5.16

Parameters from the idiosyncratic return shocks block are chosen in order to match three facts.
First, we motivate ^ as the portfolio share that banks allocate to the risky, shadow banking activities.
Prior to the Great Financial Crisis the share of shadow banking activities in the broader financial
intermediation sector of the U.S. was roughly 1/3 (Gorton and Metrick, 2010). Second, fb is
chosen in order to get the average probability of involuntary exit in line with the data. I described
how those probabilities are estimated from the data in Section 1.2.3. Third, persistence db is chosen
in order to get the skewness of various banking characteristics in the right ballpark.17

Costly bank default is calibrated based on the prior discussion in Section 1.2.3. I assume that
default of a bank in the 90th percentile of the assets distribution in the model corresponds to a
banking crisis in a developed economy as defined in Laeven and Valencia (2018) using the World
Bank methodology. Similarly, default of a bank in the 10th percentile of the model distribution
corresponds to a crisis in an emerging economy. I use a polynomial of order one to map each
bank’s size to the cost of default:

Default Cost(j) = d1 + d2k(j) (1.26)

where d1 and d2 are set to 0.0511 and 0.0075, respectively. These parameters help match the
average output loss of 7.6% and the distribution of losses that range from 4.67% to 11.67% in the
data.

1.4.2 Validation

15Using an approach that does not rely on production functions, Jamilov (2020) estimates branch-level loan price
and quantity elasticities with respect to instrumented shocks to local credit demand. The author finds that the average
nationwide elasticity is 1.2, yielding a large average markup of 6.

16A noteworthy computational nuance is that a larger superelasticity increases the dispersion of the markup
distribution but also imposes a tighter mechanical limit on bank assets. Bank-specific elasticity of demand may never
drop below unity, meaning the limit on assets is \

\
n . We keep track of whether this limit binds on any point of the state

space.
17db is one of the key parameters in the model that directly impacts concentration in the banking sector. A large db

(e.g. 0.99) achieves a high degree of concentration and a very right-skewed distribution of leverage, which brings the
model closer to the data. On the other hand, Galaasen et al. (2020) find that idiosyncratic borrower shocks that impact
bank portfolio outcomes are volatile but not autocorrelated. We therefore set db to 0.529 which is a compromise
between empirical evidence on the persistence of idiosyncratic credit shocks and the ability of the model to match
banking distributions perfectly.
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Table 1.2: Moments

Data Model

Mean 10% 90% Mean 10% 90%

Markups 1.44 0.99 1.98 1.44 1.35 1.53
Probability of Default 1.07% 0.87% 1.37% 1.02% 0.00% 2.97%
Real Cost of Default 7.60% 4.67% 11.67% 7.93% 6.79% 8.93%
Net Interest Income / Assets 3.45% 2.71% 4.21% 2.66% 0.88% 5.33%
Non-Interest Expenses / Assets 2.96% 1.98% 4.00% 2.21% 1.80% 2.58%
Interest Expenses / Assets 0.62% 0.22% 1.15% 0.61% 0.45% 0.82%
Book Leverage 9.42 6.68 11.98 6.09 4.84 7.26

Notes: key moments in the model and in the data. Variables are defined in Table 1.5. Probabilities are annualized.
Markups are absolute. Data source: Call Reports. Quarterly data is over 2010:q1-2019:q4.

Moments Table 1.2 lists all key banking moments in the data and in the model. Empirical
data comes from the Call Reports. The sample covers the 2010:q1-2019:q4 period. Model data
comes from a stochastic simulation of the baseline economy with N=1 intermediaries and T=2,000
quarters. Table 1.5 in the Online Appendix describes how we construct and define each variable or
ratio. We start with the distribution of markups. Themodel does a good job of matching the average
markup. The dispersion is slightly lower in the model, a point that is related to our discussion in
Footnote 16. The success of nailing down the average markup is to a large extent due to flexibility
of the Kimball aggregator.

The model also succeeds in getting exit risk right. The average probability of default (1.02%)
is almost exactly equal to the empirical counterpart (1.07%). The dispersion of default risk is
slightly greater than in the data. Real costs of default, including the mean and percentiles of the
distribution, also match the data well. The net interest margin, non-interest expenses, and interest
expenses ratios are all in line with the data as well.

Finally, bank leverage ratios are generally lower than in the data. The reason for this is
the following mechanism. The presence of idiosyncratic bank return shocks creates a powerful
precautionary lending motive for banks. Banks in the model are effectively risk averse, because
the household is, and are thus rushing to outgrow the leverage constraint and the positive default
risk region as soon as possible. This leads to a rapid accumulation of net worth. Interestingly, this
implies that the riskier the economy is exogenously, the less risky it can become endogenously.
This relationship arises in various setups, such as in Fostel and Geanakoplos (2008). Exogenous
constraints on the precautionary lending motive, such as a lower bound on the deposit rate or
additional lending adjustment costs could potentially help solve the issue and increase equilibrium
leverage.
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Figure 1.7: Stationary Distributions in the Model
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Distributions Wenow look at all stationary cross-sectional distributions that themodel generates.
Figure 1.7 plots univariate histograms for bank assets k(j), net worth n(j), deposits d(j), market
leverage q(j) relative prices p(j), markups `(j), default risk a(j), deposit rates R̄(j), and franchise
values V(j). In line with the data, the credit market is concentrated, i.e. there is a small fraction
of large and profitable intermediaries with a significant market share of assets, deposits, and net
worth. The distribution of markups has the same dispersed and slightly right-skewed shape as in,
for example, Pasqualini (2021): the right tail is driven by the largest banks in the economy who
charge the highest markups. Distributions of default risk and deposit rates, which feed into relative
prices through the marginal cost channel, are of a similar right-skewed and dispersed shape. Here,
in contrast, the right tail is driven by the low net-worth intermediaries with risky balance sheets
and high marginal costs.

Cross-Sectional Correlations We now focus on the three essential cross-sectional patterns from
the data that the model reproduces. They are important because together they constitute the policy
trade-offs which we define and discuss in Section 1.5. First, in line with the data, the model
generates a positive cross-sectional correlation between bank leverage and assets growth. Figure
1.8 visualizes the result in Panel (a). The two variables come from a stochastic simulation of the
model with N=1 intermediaries and T=2,000 quarters. The positive association can be clearly seen
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Figure 1.8: Cross-Sectional Patterns in the Model

(a) Assets and Leverage

-1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(b) Assets and Markups

1.2

1.3

1.4

1.5

1.6

1.7

(c) Assets and Default Risk

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Notes: Cross-sectional relationships between measures of bank size, default risk, book leverage, and markups in the
model. All panels show scatter plots based on a stochastic simulation of the baseline model with N=1 intermediaries
and T=2,000 quarters.

from the scatter plot.
Second, the model correctly predicts that larger banks choose to charge higher markups `(j).

This can be seen clearly from Panel (b) of Figure 1.8. Interestingly, the shape of the markup
function is similar in both the model and the data - it is increasing and slightly convex. Third and
finally, the model predicts that the cross section of default risk a(j) is concentrated in the left tail
of the assets distribution. Figure 1.8, Panel (c) shows the relationship on a scatter plot. It can
be readily seen that large intermediaries are essentially risk-free. In the lower percentiles of the
distribution, however, exit risk escalates rapidly and goes beyond 10%.

I conclude this section by emphasizing that although the model does not match every aspect
of the U.S. banking data perfectly, it does very well in capturing the relationships between scale,
competition, and stability - the three facets of the policy trade-off we are about to discuss next.
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Figure 1.9: The Banking Industry Trilemma
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1.5 Quantitative Analysis of Bank Regulation

In this section I first define the tradeoff between bank competition, stability, and efficiency. I
then discuss how introducing heterogeneous capital requirements or deposit insurance affects the
macroeconomy through the prism of this tradeoff. I proceed by solving for constrained-efficient
allocations of a social planner. Finally, I analyze aggregate effects of the too-big-to-fail subsidy.18

1.5.1 The Competition, Efficiency, and Stability Trilemma

The tradeoff between financial competition, efficiency, and stability arises due to the interaction
of three channels: economies of scale, endogenous competition, and financial stability. Figure 1.9
visualizes the mechanism. The picture plots the stationary distribution of bank net worth in the
background. Overlayed are scatter plots for absolute markups `(j), relative marginal costs, and
absolute probabilities of default a(j) in percent p.a. The economies of scale channel is represented by
the negative relationship between marginal costs and net worth - larger banks are more cost-efficient
and have a greater marginal propensity to lend MPL(j). The endogenous competition channel is
seen from the positive relationship between markups and net worth. Finally, the financial stability

18If any of the results or claims are not clear from the figures, Table 1.3 summarizes allocations across all scenarios.
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channel is seen from the negative relationship between the default probability and net worth. The
trilemma exists because banks that are efficient and stable are the same ones that charge higher
markups. Efficiency gains from having more banks with low a(j) and high MPL(j) is counteracted
by them contributing to a higher average markup and, as a result, greater welfare losses from bank
market power.

At the heart of the trilemma are two intertwined bilateral tradeoffs. First, the canonical
competition-stability tradeoff. Monopolistic competition allows high-net-worth banks to reach
greater equilibrium franchise values through higher markups. This, in turn, reduces appetite for
private risk-taking, lowering the probability of insolvency in equilibrium. Second, the competition-
efficiency tradeoff. High-net-worth intermediaries charge higher markups but they are also more
efficient from the cost- and productivity standpoints, as discussed previously.19 Each of the two
bilateral tradeoffs can be viewed to rely on the variable markups channel. However, even with
constantmarkupswe still entertain an efficiency-stability frontier, similarly to Ranciere et al. (2008).
Macroeconomic aggregates will be negatively associated with systemic stability, in equilibrium, as
we will see by the end of this section.

It is crucial to emphasize that the trilemma does not imply that it is impossible for the regulator
to improve net welfare. Net quantitative effects always depend on calibration of the credit demand
superelasticity, the cost of default function, and of the idiosyncratic risk process. Suppose we
consider an economy where the largest intermediaries are state-run. Physical costs of default of
banks in the right tail would therefore potentially always outweigh any efficiency losses from high
markups in “normal times”. We are merely claiming that if a regulator attempts to improve any
side of the trilemma, one or all of the remaining two dimensions would necessarily deteriorate
as a matter of unintended consequences. Whether the policy shock or the unintended side-effects
dominate is a quantitative question.

1.5.2 Deposit Insurance

We now explore how in our calibrated model various policy schemes affect the macroeconomy
through the prism of the aforementioned trilemma. We begin with deposit insurance. When deposit
guarantees are switched on, the distribution of equilibrium deposit rates R̄(j) is flat. To achieve this
as an endogenous result, banks continue to take as given their individual default probability a(j),
but we break the mapping between a(j), the deposit recovery rates x(j), and rates R̄(j). We then

19There is an alternative view that argues larger banks are not more efficient than smaller banks (Huber, 2021).
My model is consistent with Huber (2021) because of the endogenous competition channel. The author considered
a quasi-natural experiment that shocks bank size without affecting local competition. In my framework, increases to
bank size conditional on holding competition constant do necessarily improve efficiency. However, if markups are
endogenous and heterogeneous, as they seem to be in reality, then unconditional increases to bank size have ambiguous
effects on net efficiency if markups also rise. This is precisely the competition-efficiency trade-off.
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Figure 1.10: Deposit Insurance Scheme
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re-solve the model as usual. In other words, there is no equilibrium pass-through from balance
sheet riskiness to the prices of debt. The government promises to honour any deposit shortfalls due
to endogenous bank exit, and both banks and the household interpret this (rationally) as a unitary
and inelastic recovery rate on all deposits in the distribution. We assume that the government funds
the scheme via non-distortionary lump-sum taxes on the household.

Figure 1.10 shows the outcome of this policy. In the background is the new stationary distri-
bution of bank net worth which is consistent with the equilibrium with deposit insurance. The
flat-lined black scatter plot shows the invariance of the equilibrium R̄(j) with respect to bank size.
For contrast, the red scatter plot represents the counterfactual rates if guarantees were turned off;
notice the usual inverse relationship with n(j) in that case. It can be seen from the Figure that the
biggest beneficiaries from the introduction of deposit guarantees are low-net-worth banks with high
marginal costs.

Figure 1.11 demonstrates the macroeconomic effects of deposit insurance. At t=0, we start
from the baseline stationary industry market equilibrium. At t=20, the economy has permanently
converged to its version with full deposit insurance. Lending, output, and net output (net of realized
costs of bank default) all increase since funds are now cheaper to obtain. In line with much of the
theoretical and empirical evidence on the interactions between risk-taking and deposit insurance,
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Figure 1.11: Macroeconomic Effects of Deposit Insurance
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Notes: macroeconomic effects of switching on deposit guarantees. Net output is defined as output Yt net of real costs
of bank default.

we see a positive effect on average default risk. Since the deposit insurance scheme favors small
banks by more, the market share of of low-net-worth banks increases and concentration (Assets
HHI) falls. As a result, the average markup falls. Finally, aggregate risk premium, defined as
Rk – R̄ (annualized return on aggregate capital minus the average deposit rate) falls since aggregate
quantities rise and prices fall - both effects lower Rk.

Notice how the mechanism of the trilemma holds - introducing deposit insurance has increased
lending and output but also raised systemic riskiness. Quantitatively, net output has still grown
because default costs turn out to be negligble. Recall that the number of banks is time invariant
because for now we still operate with an exogenous entry margin.

1.5.3 Heterogeneous Leverage Regulation

The second market intervention that we consider is heterogeneous capital requirements. One
possibility to impact private risk-taking and aggregate fragility is to impose regulatory limits on
q(j). In practice, this corresponds to micro-prudential regulation which is a common practice
by governments around the world. Recall that in the market economy, leverage falls with bank
size while _ is homogenous across all banks. We now consider a scenario where _(j) is ex-ante
heterogeneous and falls linearly with bank net worth. Banks in the top decile of the distribution
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Figure 1.12: Heterogeneous Capital Requirements
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Notes: distribution of bank net worth and scatter plots for _ under homogenous and heterogeneous capital requirement
regimes.

face the same _]=10 = 0.1 as before. However, banks in the lowest decile face _]=1 = 0.3. All banks
in the deciles that are in between face a _(j) that is interpolated based on the exogenous grid of net
worth and their position in the distribution. What this policy is designed to achieve is to restrict
leverage of precisely those intermediaries who are the most likely to have high leverage to begin
with.

Figure 1.12 shows how the policy works in the model. Overlayed on the new equilibrium
distribution of net worth are the homogenous _ from the baseline economy and _(j) from the
economy with capital requirements. The negative slope of the _(j) scatter plot implies that the
policy has achieved its desired objective - limitations on leverage are proportional to actual leverage,
here summarized by n(j) as the sufficient summary statistic. Recall that q(j) falls with n(j), as
demonstrated and discussed earlier in Figure 1.26.

Figure 1.13 portrays the macroeconomic effects of this policy. Similarly to before, t=0 and
t=20 correspond to the baseline regime and the case with heterogeneous _(j), respectively. We
see that all aggregate quantities have fallen, including lending, output, and net output. This is
driven by the fact that the leverage constraint is now tighter precisely for the agents for which it
is more likely to bind - the low-net-worth banks. As a result, aggregate demand for deposits and
bank leverage are down. Notice how default risk has fallen by a considerable amount - the average
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Figure 1.13: Macroeconomic Effects of Heterogeneous Capital Requirements
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probability of default is almost 0%. The policy is highly successful in terms of reducing systemic
financial fragility. The tradeoff here comes from the reduction in efficiency, intermediation, and
production. Risk premia are up because aggregate capital is down and prices are (slightly) up.
Concentration is slightly up because the new _(j) regime is detrimental for precautionary lending
growth for practically all banks in the economy, with the exception of the largest intermediaries
who had outgrown the constraint completely. Because the distribution is more concentrated, the
average markup increases. All in all, reduction in systemic risk is achieved at the cost of higher
aggregate markups and lower efficiency.

1.5.4 Constrained Efficiency and Optimal Policy

Constrained efficiency Wenow consider constrained-efficient allocations of a hypothetical social
planner as a stepping stone for optimal policy analysis. The planning problem is identical to that of
the baseline economy with one crucial exception. In this section, the planner picks the quadruple
{k, d, p, `} in order to maximize the franchise value V while understanding that RT is endogenous
through the impact of the quadruple on Rk and P. Consider the law of motion of net worth that the
social planner faces:
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Figure 1.14: Market Equilibrium and Constrained Efficient Allocations
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nt+1(j) = RT
(
n(j), b(j), {kt(j), dt(j), pt(j)}

)
pt(j)kt(j) – R̄t(j)dt(j) –

1
Z1
kt(j)Z2 (1.27)

Compare this formula to Equation 3.11 from the market equilibrium. The difference is that
RT is no longer taken as given. Numerically, the banking problem is solved under the assumption
that Rk and P are both polynomials in {n(j), b(j), {kt(j), dt(j), pt(j)}}. We use projection methods
to solve for the coefficients that are consistent with equilibrium. See Section 1.12 of the Online
Appendix for more details on the numerical algorithm.

Figure 1.14 presents the two-dimensional optimal choice of next-period bank net worth n′(j).
We contrast decisions of the social planner with the market outcome. Comparing the two cases
reveals that misallocation is present in the decentralized equilibrium along both the net worth and
idiosyncratic risk dimensions. Specifically, the market outcome yields too little lending because of
an aggregate credit supply externality.20 Monopolistic credit competition leads to underutilization
of risky capital as a resource in production. Unlike the social planner, individual banks do not
internalize the impact of their private choices on aggregate returns. In addition, misallocation is
more severe for higher levels of net worth. This is consistent with the idea that markups are variable

20This is a credit market version of the classical aggregate demand externality (Blanchard and Kiyotaki, 1987; Farhi
and Werning, 2016).
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Figure 1.15: Systemic Risk Implications of Constrained Efficiency
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Notes: distribution of bank net worth and scatter plots for a(j) under alternative market regimes.

and increase with net worth. Recall that demand for firm claims is more satiated in the right tail of
the bank size distribution.

Figure 1.15 shows how equilibrium financial stability responds to social planner’s actions. We
continue to define financial stability as the probability of bank default due to insolvency a(j).
We plot the new stationary distribution of net worth and a(j) scatter plots that correspond to the
constrained efficient (black square) and market (red circle) allocations. Here we observe that the
social planner’s solution induces an increase in system-wide default risk. Low-n(j) intermediaries
become particularly more risky. This result is a case in point of the financial stability-competition
trade-off (Hellman et al., 2000). Specifically, the social planner targets the credit supply externality
by reallocating resources towards agents with the highest marginal propensity to lend - the bigger
banks. However, smaller intermediaries are fundamentally more prone to insolvency risk to begin
with. Small, risky banks become relatively riskier. Average probability of default, as a result, goes
up and the economy is more fragile.

Optimal policy We decentralize constrained efficient allocations with taxes on banks gross
returns. Importantly, these policies are size- and income-dependent because misallocation and
markups correlate with the joint distribution of bank net worth and idiosyncratic risk. Theoretically,
gross returns taxes are easier to operationalize because they target specifically the wedge in the
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Figure 1.16: Optimal Policy
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bank-specific total portfolio return process and the law of motion of net worth. Specifically, we
conjecture a size and idiosyncratic return specific tax rule g

(
n(j), b(j)

)
and impose it on the market

equilibrium. Computationally, we assume that taxes are polynomials in n(j) and b(j) and solve
for coefficients that are consistent with a minimal distance between the equilibrium and the social
planner allocations. Note that negative taxes (subsidies) are allowed, which is important when
working with underutilization of resources due to monopolistic competition. The law of motion of
bank net worth with tax policies is now:

nt+1(j) = RT
t (j)

[
1 – g

(
n(j), b(j)

)]
pt(j)kt(j) – R̄t(j)dt(j) –

1
Z1
kt(j)Z2 (1.28)

Effectively, on each point in the grid, we search for tax values that equalize socially optimal and
market allocations.

Figure 1.16 plots the stationary distribution of net worth from the social planner’s problem with
the scatter plot for optimal taxes g(j). Notice how all intermediaries in the state space receive a
subsidy. The subsidy is the highest (in absolute terms) for big banks. The intuition for this result
is related to the economies of scale channel: marginal propensity to lend (MPL) increases with
bank net worth. The social planner finds it most efficient to correct the under-lending externality
by stimulating/subsidizing lending of those with the highest marginal propensity to respond to
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Figure 1.17: Optimal Taxes under CES and Kimball Aggregators
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taxes. In general equilibrium, this increases aggregate output and household consumption. In the
stationary distribution, the annualized tax ranges from -38% to -2% with the average tax of about
-9.38% per year.

The Role of the Aggregator An interesting auxiliary exercise is to compare normative implica-
tions under the two alternative regimes for bank markups: constant and variable. Figure 1.17 plots
the scatter plot for optimal bank taxes under the Kimball and CES aggregators. Average taxes for
the CES and Kimball economies are -8.75% and -9.38%, respectively. In the Kimball economy
markups are not only dispersed relative to CES but also slightly right-skewed. The average markup
is thus slightly higher because the size distribution is also right-skewed. In both scenarios, sub-
sidies are also heavily size-dependent: they increase with net worth, mirroring the shape of the
MPL function and the economies of scale channel. Underutilization of capital is thus greater in
the Kimball economy, the wedge between the constrained best and the market outcome is greater,
and the corrective tax (subsidy) that the planner wishes to impose is higher. The CES aggregator
therefore potentially “understates” the welfare costs of lending market power of banks.
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Figure 1.18: Too Big to Fail
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Notes: distribution of bank net worth and scatter plots for a(j) for the baseline economy with and without the TBTF
subsidy.

1.5.5 Too Big to Fail

Absence of effective bank failure-resolution rules and laws pre-Lehman meant that systemically
important banks, particularly those with U.S. headquarters, benefited from implicit “too-big-to-fail”
(TBTF) subsidies. Probability of an ex-post government bailout of large financial institutions was
close to one, which was priced by the market into lower debt financing costs after the adjustment
for insolvency and illiquidity risks. Conditional on this safety net being part of the environment,
market participants lose their incentive to monitor the intermediaries and banks lose the incentive
to act prudently, which further exacerbates the problem (Stern and Feldman, 2004).21

In the context of our model, we operationalize the TBTF hazard problem the following way.
The probability of default a(j) of any bank in the top decile of the distribution of net worth is zero,
regardless of balance sheet properties. We pick the top decile simply for quantitative tractability.
The bottom nine deciles instead face a a(j) that is consistent with their size-risk profile as usual.
The policy function for a(j) is therefore kinked, and all banks understand this. The pass-through
from a(j) to R̄(j) functions normally - all banks face the cost of debt that is consistent with their
probability of default. This implies that some banks will face an exogenously imposed “cost of

21In recent years, multiple studies have found that the TBTF problem has declined after the passage of the Dodd-
Frank Act. (Haldane, 2010; Atkeson et al., 2018)
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Figure 1.19: Macroeconomic Effects of Too Big to Fail
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Notes: macroeconomic effects of switching on the TBTF subsidy.

funds subsidy” which switches on only if the bank reaches a certain size threshold.
Figure 1.18 shows how the mechanism works. Observe how the scatter plot for a(j) in the TBTF

case is clearly kinked: banks in the right tail of the distribution face no default risk exogenously.
In contrast, in the baseline economy some of the same banks in the right tail face a positive a(j).
In addition, it is interesting that most banks in the bottom nine deciles now face a higher a(j).
The TBTF subsidy, even if it affects only the largest intermediaries, makes leverage choices of all
banks strategic complements (Farhi and Tirole, 2017). The subsidy reinforces the already strong
precautionary lending motive - banks choose higher equilibrium leverage because it allows them to
accumulate more net worth with less downside risk.

Figure 1.19 presents the macroeconomic effects of the TBTF problem. As usual, we are
considering two regimes with an instantaneous transition. We see that the TBTF hazard raises
output, net output, and financial intermediation activity. The subsidy allows large intermediaries
to lever up by more, thus the positive effect on aggregate demand. Higher production comes at a
cost of greater systemic riskiness. The positive impact on aggregate default risk is the result of
strategic complementarity in risk-taking - the economy is more efficient but far less stable. This
straightforward exercise illustrates how the TBTF subsidy may have caused a build-up of excessive
financial risk prior to the Great Recession.
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Table 1.3: Summary of All Allocations

Equilibrium Constrained
Efficiency

Deposit
Insurance

Capital
Regulation

Too Big to
Fail

Output 4.424 4.540 4.735 4.189 4.507
Net Output 4.420 4.535 4.730 4.189 4.503
Book Leverage 6.340 6.332 6.390 4.502 6.361
Default Risk 1.016% 1.482% 1.061% 0.001% 1.046%
Aggregate Markup 1.437 -0.345 -0.023 0.034 -0.021
Risk Premium 6.139 4.733 5.910 8.858 6.114

Notes: Macroeconomic and financial aggregates across different regulatory and market regimes. Markups are in %
deviations relative to the equilibrium markup.

1.5.6 Summary of All Allocations

To summarize our findings across different regulatory regimes and market structures, we report
all key aggregates in Table 1.3. We focus on output, net output, bank leverage, systemic risk,
the aggregate markup, and the risk premium. Output is aggregate production from the stationary
steady state. Net output is gross output adjusted for the real costs of realized bank default. Book
leverage is the unweighted average of k(j)

n(j) . Systemic risk is defined as the average probability of
bank default a(j), annualized. The aggregate markup is the unweighted average of `(j) for the
market economy; for all other cases markups are represented as percentage deviations relative to
the market economy. Risk premium is defined as Rk – R̄, i.e. return on the risky asset minus the
average interest rate on deposits, both annualized.

We start with the first column - the market economy - which is our benchmark for comparisons.
Relative to the market equilibrium, constrained efficiency achieves a higher level of output but also
leads to the highest probability of bank default among all the cases that I considered. Introduction
of deposit insurance raises aggregate output at the cost of greater leverage and systemic risk.
Heterogeneous capital requirements, on the other hand, virtually eliminate financial instability but
reduce aggregate efficiency, raise markups, and increase the intermediation spread (risk premium).
The too-big-to-fail externality increases both aggregate production and systemic riskiness.

Overall, we have seen that qualitatively no change to market structure or regulatory regime
simultaneously improves output, stability, and competition. Quantitatively, conditional on our
calibration strategy, the best outcome in terms of net output is the economy with deposit insurance.
It is worth re-emphasizing that the argument of this paper is that the banking industry trilemma
would always persist qualitatively. Of course, different parameterization approaches could amplify
one arm of the trilemma relative to the others. For example, a calibration based on an emerging
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economy with volatile financial markets could reverse the quantitative pecking order of policies,
but not the qualitative prediction that the trade-offs are always there.

1.5.7 Additional Results and Applications

The Online Appendix provides further results and quantitative applications. In Section 1.7
I analyze applications of the model to the rise of banking concentration, emergence of fintech-
intermediated credit, and intermediary asset pricing. Section 1.8 studies targeted bank-level stabi-
lization policies such as equity injections and liquidity facilities. Section 1.9 simulates MIT shocks
to aggregate productivity.

1.6 Conclusion

In this article I develop a novel macroeconomic framework for positive and normative analysis
of macroeconomic transmission through bank heterogeneity. The model introduces two workhorse
approaches in modern macro-finance - uninsurable idiosyncratic risk and imperfect competition -
into the banking sector of the workhorse Gertler and Kiyotaki (2010) macroeconomic environment.
The model is validated by replicating key cross-sectional patterns in the U.S. banking data. Bank
heterogeneity matters for the design of various economic policies that run through the bank lending
and market power channels. I analyze different regulatory schemes and issues such as deposit
guarantees, heterogeneous capital requirements and the too-big-to-fail implicit subsidy. I also study
optimal policy in a fully constrained-efficient version of the economy. Policy analysis at all levelts
points at a trilemma for bank regulation. There is a trilateral trade-off between financial competition,
stability, and efficiency. Through the lenses of this trilemma, I characterize auxiliary predictions
of the framework for the rise of banking concentration, emergence of fintech-intermediated credit,
unconventional targeted fiscal and monetary policy interventions, and intermediary asset pricing.

My model is tractable and can be readily extended to include additional parts.22 An open-
economy extension could be introduced, allowing us to study endogenous global financial cycles that
are driven by heterogeneous, imperfectly competitive intermediaries. An extension with nominal
rigidities could uncover a powerful channel of transmission that runs through bank heterogeneity
in risk-taking and market power.

22Jamilov andMonacelli (2020) build on a variant of my framework with constant markups and introduce aggregate
uncertainty. They study novel channels of business cycle amplification that arise from dynamic bank heterogeneity.
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Appendix

1.7 Quantitative Applications

In this section I explore various applications of the framework and of the bank policy trilemma.
First, we study predictions of the model for the ongoing global rise in banking concentration. We
proceed by examining implications of the emergence of fintech-intermediated credit. Finally, we
conclude with implications for intermediary asset pricing models and empirics.

1.7.1 The Rise of Banking Concentration

The banking industry around the world is becoming more and more concentrated (Corbae
and D’Erasmo, 2020b; Constancio, 2016). We do not take a stance on the cause behind the
rise of concentration. Instead, we quantify the impact of various distributions of banks on the
macroeconomy by fitting several counterfactual cross-sectional distributions of bank assets into the
stationary general equilibrium and re-evaluating all endogenous variables that would be consistent
with them. Counterfactual distributions are generated exogenously by drawing sequences of bank
assets k1 . . . kN from well-known continuous probability densities such as Uniform or Pareto. We
fit each generated sequence into the model, re-compute all policy functions, but do not run the
step which calculates new distributions. In other words, we solve for partial-equilibrium policy
functions that are consistent with the exogenously constructed distributions.

We consider 3 broad families of densities: Uniform, Lognormal, and Pareto. For the uniform
density, we generate N=2,000 random numbers from the interval [0.5Kss, 1.5Kss], where Kss stands
for the level of aggregate capital in the market equilibrium. For the lognormal density, we draw
from P(`k, f2

k ), where `k and fk are, respectively, the mean and standard deviation of the k(j)
distribution from the stationary equilibrium. For the Pareto density, we follow Gabaix (2009) and
consider the Pareto I family with a power parameter of U = 2.23

We focus on three aggregate variables of interest - the output elasticity of uniform bank net
worth shocks, the average markup, and the average probability of default. These three objects
summarize the three dimensions of the banking industry trilemma. The output elasticity can be
defined with the help of the previously analyzed marginal propensities to lend (MPL):

mY
mN

=
mY
mK︸︷︷︸
MPK

×
∫
B

mk(j)
mn(j)

`(dn, db)︸            ︷︷            ︸
MPL(j)

(1.29)

23The scale parameter is chosen to be a factor of kmin, i.e. the minimum level of assets from the market economy.
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Figure 1.20: Macroeconomic Effects of Alternative Banking Distributions
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tions.

where the first term on the right-hand side is the marginal product of capital and the second
term is the aggregate MPL. We treat a high output elasticity as a symptom of high efficiency in the
lending market.

Figure 1.20 presents the results of this exercise. We observe that the output elasticity with
respect to uniform net worth shocks is highest for the Pareto economy, followed by the baseline,
lognormal, and uniform economies. Intuitively, the degree of right-skewness can be viewed as a
sufficient statistic for the elasticity, and thus efficiency. Similarly to what we concluded based on
Figure 1.9, the bigger the share of high-n(j) banks the higher aggregate efficiency gets. Because
of the economies of scale channel, larger banks have both a greater MPL and a lower marginal
propensity to price (MPP). The fact that the Pareto economy, which is more concentrated than our
baselinemodel, has a higher elasticity is proof of themechanism. The uniform density has the lowest
elasticity which numerically corresponds very closely to the elasticity of the representative-bank
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special case.
From Figure 1.20 we also see that the average markup is the highest for the Pareto economy,

followed by the three other alternatives which are hard to distinguish from each other. The Pareto
economy is by far the most concentrated of the four, and its largest banks choose abnormally
high credit markups. As a result, the aggregate markup gets very inflated. Finally, the average
probability of default is the lowest in the Pareto economy, followed by uniform, baseline, and
lognormal economies. The degree of concentration can be viewed as a good predictor of systemic
stability: the Pareto economy is the most concentrated and is thus the least risky.

Overall, this exercise is a simple but useful demonstration of quantitative implications of the
banking trilemma. The most concentrated economy, whose distribution is drawn from a Pareto
density, is the most efficient, least competitive, and most stable. The prediction of our framework
for the future of banking is thus the following. If banking concentration continues to go up, which
seems to be a realistic assumption to make given the cost-cutting and competitive trends, then the
macroeconomy will benefit from higher efficiency stemming from the right tail, will attain a greater
buffer against financial crises, but will suffer from welfare losses due to rising financial markups.
This prediction seems to be in line with the recent time-series experience of the U.S. banking
sector: the industry has become more concentrated all the while markups have risen (Corbae and
D’Erasmo, 2020a).

1.7.2 Emergence of Fintech Credit

The global share of fintech in financial intermediary activities is growing rapidly, both in
developed and developing financial markets (Claessens et al., 2018). In order to formalize the rise
of fintech/bigtech firms, I extend the baseline model with endogenous bank entry in the spirit of
Melitz (2003). There is now infinite mass of aspiring financiers who specialize in banking services.
Before entry, every financier pays a fixed entry cost e in units of capital. The rise of fintech will
be simulated as a permanent decline in e. This is a reduced-form stand-in for various possible
technological and preference-based explanations for this trend. Having paid the sunk cost, the
financier receives an idiosyncratic return profitability draw b0 ∈ Ξ from the ergodic distribution
G0(b) that is implied by the b process. The financier is also bestowed with an initial level of
net worth n0 which is a constant fraction of the aggregate stock of net worth N. Afterwards, the
financier decides whether to operate or to immediately exit. Conditional on its state {n0, b0},
the financier operates if and only if its expected discounted franchise value exceeds e. The value
function of the entering financier is therefore:

Ve(n0, b0) ≡ max
[
V(n0, b0) – e, 0

]
(1.30)
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Figure 1.21: Fintech Credit Growth
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Notes: Simulation of the fall in bank entry costs in the economy with endogenous entry.

Free entry drives the future expected excess value of the entering intermediaries, net of startup
costs, to 0. A financier’s incentive to enter is driven by the desire to earn economic profit.
Entry keeps occurring until expected bank profits are equalized with the cost of financial variety
origination. In equilibrium, either Ve is equal to 0, the number of entrants is 0, or both.

The mass of financiers that decide to enter isM. The mass of active intermediaries, which now
includes both incumbents and new entrants, is H. The stationary distribution of banks now keeps
track of M as well as the incumbents:

`′(n′, b′) =
∑
b

G(b′, b)
∫
1{(n,b)|K(n,b)∈B} × 1{d̄(n,b)=0}[(dn, db)︸                                                                 ︷︷                                                                 ︸

Incumbents

+M′
∫
1{(n0,b)|K(n,b)∈B}G0(b)︸                               ︷︷                               ︸

New Entrants
(1.31)

The law of motion of the distribution is now:

[t+1(nt+1, bt+1) = Φ([t,Mt+1) (1.32)

Credit market clearing now requires aggregate supply to equal demand from the incumbents
and the financiers that wish to enter:
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K︸︷︷︸
Aggregate Supply

=
∫
B

(
k(n, b)

)
[(dn, db)︸                     ︷︷                     ︸

Incumbent Demand

+M
∫
B

(
k(n0, b0)

)
dG(b0)︸                         ︷︷                         ︸

Entrants Demand

+ Me︸︷︷︸
Entry Cost

(1.33)

We set e = 1.65 for the baseline case. The fintech economy has e = 0.11. The number is
calibrated such that the number of active banks in the economy roughly doubles.

Figure 1.21 shows the result of this exercise in the usual format. The model predicts that fintech
credit will be responsible for more lending, output, and the number of active intermediaries - this
is the direct extensive margin effect. Because the average intermediary is smaller, this lowers the
average markup. We also observe a considerable elevation in financial fragility. Low entry costs
essentially allow “too many” low-type lenders to enter every period by lowering the minimum
profitability threshold below which financiers do not wish to stay. A growing mass of low-size,
high-risk young intermediaries contributes to rising systemic fragility since default risk falls with
net worth. This prediction is in line with the belief among regulators and policy-markers that
fintech credit is a major source of financial stability for the 21st century.

1.7.3 Intermediary Asset Pricing

Adrian et al. (2014) and He et al. (2016), among others, have popularized the intermediary asset
pricing view: in contrast to conventionalmodels, the true pricing kernel is a function of intermediary
balance sheet ratios such as capital or leverage. This literature, however, relies predominantly on
the representative agent assumption and abstracts from distributional dimensions.

The banker’s Euler equation can be re-formulated into a classic asset pricing formula for the
risk premium:

Et
[
RT
t+1(j) – Rrf

t (j)
]

=
_

Lagrange Multiplier︷︸︸︷
i(j)

Et
(
Λ̂t+1(j)

)
︸                  ︷︷                  ︸
Liquidity Premium

+ a(j)︸︷︷︸
Default Premium

+ cov

–
Λ̂t+1(j)

Et
(
Λ̂t+1(j)

) ,RT
t+1(j)

︸                              ︷︷                              ︸
Risk Premium

∀j

Where i(j) is the Lagrange multiplier on the moral hazard (leverage) constraint. Note that the
equation must hold for every bank (j) in the distribution. If financial frictions are switched off, then
the intermediation spread is zero. Excess returns in the baseline economy arise for two reasons.
First, if the hard leverage constraint binds for any given bank j, or has a positive probability of
binding in the future, then external funds are harder to obtain. This is the liquidity-induced external
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Table 1.4: Asset Pricing Moments

Risk-Free Rate Risky Return Risk Premium

No Banks 1.016 1.004 0
Homogenous Bank 1.016 1.038 0.023

Only Monopolistic Competition 1.016 1.037 0.021
Only Idiosyncratic Risk 1.025 1.060 0.035

Baseline 1.024 1.085 0.061

Notes: main asset pricing moments for various versions of the model. All percentages are annualized.

finance premium. Second, presence of bank default risk requires additional ex-ante compensation
from the household’s perspective. Note that the canonical risk premium is absent in the stationary
equilibrium if we abstract from aggregate uncertainty.

Table 1.4 presents key asset pricing moments from the framework under different assumptions.
Without any heterogeneity, the liquidity and default risk channels generate a premium of 2.28%.
Adding monopolistic competition with variable markups and uninsurable idiosyncratic shocks gets
us a large risk premium of 6.1%. This occurs because both liquidity and default risk premia are
concentrated in the left tail of the distribution. Heterogeneity switches on the extensive margin,
and a large equilibrium share of low-net-worth banks raises aggregate riskiness of the economy. In
addition, with monopolistic competition relative prices fall heavily with bank net worth - smaller
banks are less competitive in price terms. Overall, without aggregate uncertainty and relying solely
on idiosyncratic shocks and the structure of the model we therefore can explain essentially all of
the unconditional risk premia observed in U.S. data.

1.8 Targeted Stabilization Policies

We now show how in our framework one can easily analyze targeted or bank-level regulatory
interventions. We focus on equity injections and liquidity facilities.24

24I also consider two additional policy types. First, targeted lending facility. This is a scenario when the monetary
authority takes over market lending on behalf of the intermediaries. In the model, this corresponds to the market for
differentiated capital goods. This policy alters the distribution of marginal costs in the banking sector such that the
cost of funds of the central bank is lower than of any bank in the ergodic distribution. Second, targeted bank-level
guarantees. This exercise supplements the deposit insurance scheme from Section 1.5.2 which was an aggregate policy.
Results for targeted direct lending and bank-level debt guarantees are available upon request.
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Figure 1.22: Macroeconomic Effects of Targeted Equity Injections

2 4 6 8 10

0.025

0.0255

0.026

0.0265

0.027

0.0275

0.028

0

10

20

30

40

50

60

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

Notes: Responses of aggregate output to targeted, decile-specific bank equity injections.

1.8.1 Equity Injections

Credit policy has been modelled in several representative-agent Macroeconomic frameworks,
for example He and Krishnamurthy (2013) and Curdia and Woodford (2016). We move beyond
aggregate credit policy analysis and estimate conditional macro elasticities when equity injections
are allowed on any individual bank in the distribution. We proceed in two steps. First, we break the
distribution of bank net worth into ten bins (deciles). For each decile ] = 1 . . . 10, we assume that
the government increases by one percent the net worth of each bank in ] but not anywhere else in the
economy. Second, we compute the macro elasticity with respect to targeted policies by integrating
over different ex-post distributions of bank net worth after the equity injections took place. We
thus run ten separate experiments, one per each decile of the size distribution, and compute the
conditional impact on aggregate output ten separate times.

Figure 1.22 plots the result. We observe that there are efficiency gains from injecting equity
into large intermediaries. The elasticity of aggregate output with respect to decile-specific credit
policies is an upward-sloping line. This result is driven by the shape of the MPL distribution
- larger banks have a greater equilibrium MPL, which is in turn due to big banks having lower
marginal costs and relative prices. Abstracting from any normative implications or second-level
effects on financial stability or systemic risk, if the objective of the government is purely to stimulate
aggregate lending and demand, then “bailing out” big banks yields a bigger bang for the buck.25

25These bailouts are unexpected and do not generate additional moral hazard frictions ex-ante. The implicit bailout
subsidy is internalized in an earlier Section 1.5.5.
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Figure 1.23: Macroeconomic Effects of Targeted Liquidity Facilities
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1.8.2 Liquidity Facilities

Financial crises are typically associated with tightening of liquidity constraints. As opposed to
the lack of credit worthiness of borrowers, it is the lack of liquidity on the credit supply side that
contributes to rising excess returns. In our model, banks face a liquidity constraint in the form of
the moral hazard-induced cap on leverage-taking. The fraction of divertible assets - _ - controls the
degree of constraint tightness and is generally part of the exogenous environment. We now suppose
that the government can step in and augment _ on behalf of private lenders. In particular, we allow
_ to be relaxed on any bank in the distribution. In practice, this intervention can be mapped to
discount window lending to banks secured by the credit portfolio.

In order to facilitate the cleanest possible analysis, we assume that the leverage constraint binds
on all banks in the distribution.26 With the binding leverage constraint, it is straightforward to solve
for the bank-specific leverage ratio:

q(j) =
aa(j)

_ – `a(j)
(1.34)

where, as before, q(j) is market leverage, aa(j) is the discounted cost of bank liabilities, `a(j)
are excess returns on the risky asset. Notice how according to this formula, relaxation of liquidity
conditions (as proxied by a reduction in _) increases banks appetite for leverage. Everything else
equal, this raises credit supply in the market.

We proceed by assuming that the government intervenes by lowering _] on decile ] = 1 . . . 10 of
the banks net worth distribution by 10% relative to the baseline value of 0.1. The exogenous shock

26This is a realistic assumption given that these types of policies are usually only implemented in crisis episodes,
precisely when liquidity and leverage constraints of market lenders tighten.
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is thus invariant to the region of the distribution which is targeted. The only variable parameter in
this policy intervention is the decile of the bank net worth distribution. For each of the ten policy
counterfactuals, we compute the conditional output elasticity. Figure 1.23 presents the result. We
see that the differential impact of this policy is concentrated in the left tail of the distribution -
smaller banks increase their credit by more. On the left panel we see how this translates into a
downward-sloped output elasticity curve. This result arises because the marginal effect of _] on q]

is negative and declining with bank size due to diminishing marginal costs of funds.

1.9 MIT Shocks to Aggregate Productivity

In this section we study the transmission mechanism of exogenous, unanticipated aggregate
shocks to Total Factor Productivity (At). After a sudden one standard-deviation decline, At reverts
back to the steady state with an autoregressive factor of 0.6. We assume that any policy interventions
are fully unanticipated and occur only during crisis episodes and never in the steady state or when
productivity is high.

We are interested in tracking the responses of all aggregate quantities and prices but focus on
aggregate demand Kt for compactness. Let us write Kt as an explicit function of the exogenous
transitory shock, equilibrium prices, and policy interventions {Ωt}t≥0, with {Ωt} = {Rk

t , R̄t, Pt, gt}
and where gt summarizes any policy actions of the government:

Kt
(
{Ωt}t≥0

)
=

∫
kt

(
n, b;At, {Ωt}t≥0

)
`t(dn, db) (1.35)

where kt
(
n, b;At, {Ωt}t≥0

)
is the bank-level policy function for bank credit (assets). Recall that

`(n, b) is the joint distribution of bank net worth and idiosyncratic rate of return risk.
We can decompose the total response of credit supply at t = 0 by differentiating Equation 1.35:27

dK0 =
[ ∫∞

0

mK0
mAt

dAt︸         ︷︷         ︸
Direct Effect

+
∫∞

0

(mKt
mR̄t

dR̄t +
mKt
mRk

t
dRk

t +
mKt
mPt

dPt +
mKt
mgt

dgt
)

︸                                                  ︷︷                                                  ︸
Indirect Effect

]
dt (1.36)

The first term in Equation 1.36 summarizes direct effects of the shock to productivity on credit
supply, while holding all aggregate prices and policies constant. All banks in the distribution
respond to At directly because aggregate productivity impacts the path of aggregate returns on
investment, which enters explicitly the law of motion of bank net worth through RT

t (j). The direct

27Our decomposition is similar to the one applied in Kaplan et al. (2018) who study distributional implications in
the response of aggregate consumption to monetary policy shocks.
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effect can be further decomposed into the cross section of bank-level marginal propensities to lend:∫∞
0

mK0
mAt

dAtdt =
∫∞

0

[ ∫ mk0(n, b;At, {Ω̄t}t≥0)
mAt

¯̀(dn, db)
]
dAtdt (1.37)

With Ω̄ and ¯̀ fixed at the steady-state values. That is, the total direct effect comprises
the aggregated partial-equilibrium response of credit supply to the exogenous disturbance alone
without updating aggregate general equilibrium variables and the banking distribution.

The indirect effect from Equation 1.36 includes four distinct channels of transmission. First,
aggregate productivity impacts demand for investment. Because firms require external financing
in order to produce, this immediately translates into the demand for bank lending activities. Banks,
because of credit market power, respond to increased demand by adjusting their private, bank-level
markups and prices. In addition, prices adjust also because the distribution of bank net worth shifts
and, as we concluded in previous sections, relative prices and marginal costs vary with net worth.
In the aggregate, this moves Pt, which further feeds into bank-level choices of credit supply. Recall
that banks do not internalize this GE channel, which is an aggregate credit supply externality.

Second, banks react to movements in investment demand by requesting more or less short-term
debt from the households. In the deposit market, this affects the distribution of deposit interest
rates, which drives the aggregate rate R̄t. Third, every second-level general equilibrium channel
feeds into the aggregate stock of capital which, together with the aggregate price, determines the
new level of systematic returns Rk

t .
Finally, banks will react to policy interventions from the fiscal and monetary authorities, if there

is any. In previous sections, we discussed systematic and targeted (bank-level) equity injections
and liquidity facilities. All these policies are summarized in the term gt, which is understood to
be capturing any aggregate or bank-level policy responses. Credit policies of any kind will perturb
allocations in the banking sector one way or another. Equity injections induce direct credit supply
responses because those explicitly augment one of the idiosyncratic states of the banking problem
- nt(j). Liquidity facilities impact the probability of the leverage constraint binding in the future,
which weighs in on the banks’ decision to take on more or less balance sheet risk.
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Figure 1.24: Crisis Experiment: Targeted Equity Injections
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Notes: Responses to a one standard-deviation negative shock to At, with and without targeted equity injections.
Baseline economy.

We begin the presentation of numerical results with our baseline economy that goes through an
aggregate economic crisis but does not get a response from fiscal/monetary institutions. Figure 1.24
portrays the results. For all variables except the transitory At shock, we present cumulative impulse
response functions. We observe that the economy is going through a contraction of aggregate
consumption, output, and investment of the magnitudes that are similar to the 2007-2009 Great
Recession. Bank net worth and book leverage fall. Bank balance sheets become more risky as
the aggregate (average over the entire distribution) probability of insolvency risk increases. As the
average bank in the distribution is smaller in terms of net worth, the leverage constraint binds or
is more likely to bind for a larger fraction of the intermediaries. This translates into the rise of
equilibrium excess returns. Finally, because bank franchises decline in value, fewer banks decide
to enter and the number of active intermediaries falls.
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Figure 1.25: Crisis Experiment: Liquidity Facility
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Notes: Responses to a one standard-deviation negative shock to At, with and without targeted liquidity facilities.

Figure 1.24 also plots impulses and responses under targeted, bank-level policy interventions.
First, we look at direct equity injections into only small or only large banks, and compare the
response functions. We assume that the government increases net worth of every bank in the
targeted mass by 10%. We define “small” and “large” banks as those intermediaries whose net
worth is in the bottom and top deciles of the steady-state, ergodic distribution of bank net worth,
respectively. We see that equity that is injected into big banks has a bigger bang for the buck than
the equivalent investment into small banks. This is due to the positive slope of the MPL schedule
and a bigger macro elasticity. Large banks have a greater propensity to lend than small banks
because of lower marginal costs and economies of scale..

Figure 1.25 plots the same numerical experiment but now with targeted liquidity facilities.
These policies reduce the fraction of divertible assets _ by 10% for a certain decile of the bank net
worth distribution. We see that discount-window-based lending considerably dampens recessions,
particularly if applied to small banks. This is due to the leverage constraint binding much more
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often for banks with low levels of net worth, particularly in recessions when net worth is low.
Any policy that reduces _ induces a greater credit supply response if directed to the agents that
are affected by the moral hazard friction by more. Because now the risk of a tightening leverage
constraint relatively dissipates, excess returns increase by less, which leads to lower risks of default,
more lending, and a relatively stronger macroeconomic responses (the economy is still contracting
but the cumulative magnitude is lower).

1.10 Additional Model Details and Derivations

1.10.1 Bank Scale Variance

In this section we demonstrate how the baseline economy features scale variance and nests
the representative-bank special case. We visualize the mechanism graphically on figure 1.26. We
analyze the optimal choice of bank market leverage pk

n in three different situations. First, we start
with the representative-bank case with complete markets (fb=0 and ^=0), and linear non-interest
expenses (Z2 = 1). As can be seen from the figure, linearity and complete markets make the
leverage ratio one-dimensional and independent of the state of initial net worth. Second, the
downward-sloping line on the left panel of Figure 1.26 plots optimal leverage for an extension that
allows for scale variance (Z2 > 1). Notice how leverage is now decreasing in net worth. Finally, in
the right panel of the Figure, we relax the assumption of market completeness. Moreover, because
we continue to retain scale variance, the optimal leverage ratio now depends on two states: b(j) and
n(j): low-n(j), high-b(j) banks choose the highest leverage in the economy.

An important feature of this class of models with financial intermediaries is linearity with
respect to net worth. This assumption normally allows the model to be aggregated explicitly. I
can formalize the departure from homogeneity by formally proving that the value function of the
bank in our model is not linear in net worth. In this case, one must track the two-dimensional state
of net worth and idiosyncratic risk in addition to aggregate factors such as the aggregate capital
stock, because bank-specific characteristics matter for the choice of {k(j), p(j), d(j)}. This result
is in direct contrast to the standard proofs in Gertler and Kiyotaki (2010), among many others.
Proposition 2 formalizes the intuition.

Proposition 2 (Bank Scale Variance). The solution to the incumbent banker’s problem, conditional
on initial net worth n(j) and idiosyncratic return b(j), is

V
(
n(j), b(j)

)
= o

(
n(j), b(j)

)
n(j)

where the marginal value of net worth is:
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Figure 1.26: Bank Scale Variance
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o

(
n(j), b(j)

)
=

(
1 – h(j)

)
E

(
Λ′

[
1 – f + fo

(
n′(j), b′(j)

)] (
R̄(j) –

1
Z1
k(j)Z2

n(j)

))
1 – i

(
n(j), b(j)

)
and the multiplier on the moral hazard leverage constraint is

i

(
n(j), b(j)

)
= max


1 –

(
1 – h(j)

)
E

(
Λ′

[
1 – f + fo

(
n′(j), b′(j)

)] (
R̄(j) –

1
Z1
k(j)Z2

n(j)

))
_q(j)

, 0


Proof: Guess that the solution to the dynamic problem is a value function V

(
n(j), b(j)

)
=

o

(
n(j), b(j)

)
n(j). Define the default risk-adjusted stochastic discount factor Λ̃ =

(
1–h(j)

)
Λ

(
1–f +

fo

(
n(j), b(j)

))
. The solution to the program is a system of equations:

E
[
Λ̃

(
RT(j) – R̄(j)

)]
= _i

(
n(j), b(j)

)
i

(
n(j), b(j)

) [
o

(
n(j), b(j)

)
– _q(j)

]
= 0

Substituting the optimality conditions together with the guess into the objective function gives
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o

(
n(j), b(j)

)
= i

(
n(j), b(j)

)
o

(
n(j), b(j)

)
+ E

[
Λ̃

(
R̄(j) –

1
Z1
k(j)Z2

n(j)

)]
Solving for o

(
n(j), b(j)

)
yields

o

(
n(j), b(j)

)
=
E
[
Λ̃

(
R̄(j) –

1
Z1
k(j)Z2

n(j)

)]
1 – i

(
n(j), b(j)

)
And the Lagrange multiplier on the leverage constraint is

i

(
n(j), b(j)

)
= max

1 –
E
[
Λ̃

(
R̄(j) –

1
Z1
k(j)Z2

n(j)

)]
_q(j)

, 0


Note that when n = then market leverage becomes q(j) = k(j)

\–1
\ K

1
\ Pn(j)–1. The guess is

verified if i
(
n(j), b(j)

)
< 1. Net worth-dependency is guaranteed by Z2 6= 1 (for a given Z1 6= 0) so

that each bankwith a different n(j) chooses its own leverage ratio q(j). Furthermore, with ^ > 0, q(j)
also explicitly depends on b(j). As a result, explicit aggregation in the banking sector is not possible
as the linearity condition is not satisfied. Financial intermediaries are ex-post heterogeneous in
terms of returns, which feeds into all other balance sheet and income statement characteristics
because of scale dependency.28 �

1.10.2 Bank Markups and Marginal Costs

In this section we provide a proof for Proposition 4. Assumptions: bank-level choices are made
while R̄(j), RT(j), a(j) are taken as given. Leverage constraint is slack. Without loss of generality,
assume Z1 = Z2.

Show that the bank price-setting rule is:

p(j)
P

= `(x)
k(j)Z2–1

RT(j) – R̄(j)
Each bank j solves

max
k(j)

{
Λ̃

(
1 – h(j)

) [
RT(j)p(j)k(j) – R̄

(
p(j)k(j) – n(j)

)
–

1
Z2
k(j)Z2

]}
s.t. pt(j) = Υ′

(
k(j)
K

)
Zt

28Note that {n, \} do not impact scale-dependency but do change the level and curvature of the o
(
n(j), b(j)

)
surface.
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where Z B
(∫1

0 Υ
′
(
k(j)
K

)
k(j)
K dj

)–1
. The first order condition is

Λ̃

(
1 – a(j)

) {(
RT(j) – R̄(j)

) (
p(j) + k(j)

mp(j)
mk(j)

– k(j)Z2–1
)}

= 0

Assume that the impact of p(j) on the aggregate index P is not internalized. The elasticity is:

mk(j)
mp(j)

p(j)
k(j)

= x–
n
\

where x is relative bank size. The markup function `(x) is:

`(x) =
\x–

n
\

\x–
n
\ – 1

The marginal cost MC(j) is given by:

MC(j) B
1

RT(j) – R̄(j)
k(j)Z2–1

The price-setting rule given marginal costs is thus:

p(j)
P

=
\x–

n
\

\x–
n
\ – 1

k(j)Z2–1

RT(j) – R̄(j)
where the first term on the right hand side is the markup and the second term is the marginal

cost.

Constant Markup Whenever n = 0 the relative price price rule becomes:

p(j) =
\

\ – 1
MC(j)

where \
\–1 is the constant markup over the marginal cost which is now:

MC(j) B
1

RT(j) – R̄(j)

[(p(j)
P

)–\
K
] Z2–1

Solving out aggregate prices gives:

p(j)
P

=
[

\

\ – 1
1

RT(j) – R̄(j)
1
P
KZ2–1

] 1
1+\(Z2–1)

Note that this equation resembles the canonical price rule in Blanchard and Kiyotaki (1987).
�
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1.11 Microfoundations and Extensions

1.11.1 Discrete Choice Microfoundation

This section provides a brief theoretical foundation for the representative-agent capital goods
producer’s monopolistically competitive credit demand system. My approach follows closely
Anderson et al. (1989). We focus on the analytically more convenient case when n = 0. Assume
there are M borrowers and H banks. Each banker i posts its price schedule. Each borrower j
observes the price menu and receives an idiosyncratic preference shock nij which is borrower-
creditor specific.

Assume the production function of a borrowing firm j is log k(j). All borrowers are indexed by
their favorite bank branch n̄ . They suffer disutility measured in Euclidean distance between their
preferred type and any given type i. Unit cost of that disutility, as well as the distance between
varieties have been set to unity. Profit function of each firm takes on the following form.

Qi (n̄ ; ki) = log ki + Y – piki︸              ︷︷              ︸
Homogenous across j

–
M∑
k=1

(
n̄k – nki

)2

︸           ︷︷           ︸
Heterogeneous across j

i=1 . . . H (1.38)

The first term in the equation is common across all borrowers and is bank-specific. The second
term is the bank-borrower fixed effect that captures disutility from not borrowing from the ideal
branch n̄ . Without loss of generality, we impose M = H – 1 for analytical convenience. We define
credit market access as the set of consumers that are indifferent between borrowing from any two
branches n:

Ε̄
j =

log p(j)
pn

4
(1.39)

The choice variables are (a) which branch to borrow from and (b) how much k(j). The price of the
loan p(j) corresponds to the price on a claim on returns to capital in the main text. Y is endogenous
real income that in equilibrium will equal K, i.e. the book value of capital after assembly and
aggregation.

Every borrower in the credit market access space borrows 1
pn

units of differentiated loans from
bank n. Demand kn becomes:

kn =
1
pn

∫ n̄1

–∞
. . .

∫ n̄n–1

–∞
f
(
Ε̄
j
)
dn̄ (1.40)

Where we assume that kn is strictly positive for all prices p(j), is n-1 times continuously differen-
tiable, and all cross-price derivatives are positive for all i and j. Solution for the credit demand
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function above involves taking n-1 derivatives of kn w.r.t. p1, . . . , pH–1:

mH–1kn
mp1 . . . mpH–1

=
1

p1 . . . pn
41–Hf

(
Ε̄
j
)

(1.41)

We assume that the firm borrower demand function is logistic in the cross-price differential p(j)–p(i)
for any two branches i and j. The density function associated with a logit credit demand is given
by:

f (n̄) = H
4
\̄

H–1
(H – 1) !

∏H–1
i=1 exp

(
–4/\̄n i

)
[
1 + ∑(j)H–1 exp

(
–4/\̄n j

) ]H (1.42)

Plugging our model-specific credit market access variable into the logit density, and evaluating the
first order condition yields

mH–1kn
mp1 . . . mpH–1

= H\̄1–H (H – 1) !
∏(j)Hp(j)–1/\̄–1[∑(j)Hp(j)–1/\̄

]H (1.43)

Integrating gives us optimal credit demand

kn = Hp–1/\̄–1
n

[∑
(j)Hp(j)–1/\̄

]–1
(1.44)

Now, we impose the following parameter restriction: \̄ = 1
\–1 . Furthermore, impose the accounting

identity that the total sum of firm-level loans is equal to the income of the representative capital
goods producer: Hk(j) = K. We retrieve the CES credit demand function of firm j in main text:

k(j) =
(p(j)
P

)–\
K (1.45)

We have thus shown that the representative-agent capital goods producer setup in main text is
isomorphic to a heterogeneous-borrower environment with idiosyncratic preferences for branch
amenities. The logit parameter \̄ captures the variance of borrower preferences and maps conve-
niently to the CES elasticity \. The relationship is inversed, so a higher \̄ is associated with a lower
elasticity of credit supply, i.e. greater credit market power. In the limit, if \̄ → ∞ we recover a
case with a single pure monopoly provider of credit. As \̄ → 0 we recover the case of perfect
competition in the banking sector. Because the problem discussed in this section is static, and
assuming the distribution of shocks is time-invariant, heterogeneous firms would solve the same
static problem every period and arrive at the same solution. It’s therefore convenient, as we do in
the main text, to work the representative-agent representation of this distribution.
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1.11.2 Portfolio Returns

In this section we explain how our formulation of total portfolio returns (Equation 3.9) can
be microfounded. Suppose there are N banks and credit markets. These credit markets could
be understood in at least three different ways: units in geographical space (counties), segmented
industries, or segmented financial varieties (products/services). The model is isomorphic to any
of these interpretations. Now suppose that each bank b specializes in one credit market c and
overweighs it by 0 < ^ < 1. Concentration can be motivated by a variety of theories, including but
not limited to “home” bias in bank lending (Juelsrud and Wold, 2020) or asymmetric information
(Van Nieuwerburgh and Veldkamp, 2009). Assume that market-specific returns Rj are not diver-
sifiable/insurable. This assumption can be motivated by the empirical findings in Galaasen et al.
(2020). Then, the bank-specific portfolio return can be written as:

Rb =
N∑
j

1
N
Rj + ^Rc – ^R–c (1.46)

where R–c is the return on a portfolio that excludes the bank’s favorite market c. Now, we
assume that N is large enough such that R–c is approximately equal to the return on the market
portfolio Rk. That is, credit markets are atomistic:

Rb ≈ Rk + ^Rc – ^Rk = ^Rc + (1 – ^)Rk

Which is the same formulation that we used in Equation 3.9, except that in the model Rc is b(j)
and follows an autoregressive process. Now, total return across all banks can be written as:

Rtotal =
N∑
b

1
N
^Rc + (1 – ^)

N∑
b

Rk = Rk

That is, in the aggregate, credit market-specific idiosyncratic returns vanish and banks are
exposed only to the systematic component of returns Rk. What makes idiosyncratic return risk an
intertemporal problem for banks are (a) scale variance and (b) persistence of b(j).

1.11.3 Two-Sector Extension

The baseline economy in the main text features a single capital goods sector which is inter-
mediated by imperfectly competitive banks. It’s possible to generalize our setup to two types of
capital goods. Suppose the first capital good Kat is imperfectly differentiated across the mass of
banks Ht. These are the financial varieties which we discuss in main text. The second good type
Kbt is a perfect substitute across lenders. This proxies standard fixed-term commercial loans which
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are homogenized across banks, who in turn face perfect competition in this market. We continue
to assume that there is a representative capital goods producer that is financially constrained and
requires bank funds in order to produce the capital stock. The production stage of the capital stock
now consists of two steps. First, we determine the equilibrium fraction of differentiated capital
goods Kat. The capital goods firm solves the following problem:

min
Kat,Kbt

PtKat + Kbt s.t. Kj
atK

1–j
bt = Kt (1.47)

Where 0 < j < 1 is the elasticity of substitution across the types of capital goods. The solution
delivers a set of two familiar equations: PtKat = jKt and Kbt = (1 – j)Kt. That is, the share
of financial varieties in the economy is time-invariant and is equal to j. The second stage of the
problem is determination of the demand for individual varieties kt(j) within the Kat sector.

The parameter j could be taken to the data and mapped to the scale and intensity of shadow
banking activities before the Crisis (Gorton and Metrick, 2010). Parameter statics in j could be
used to simulate advancements in financial innovation and/or the rise of complexity in the credit
market.

1.12 Numerical Solution Algorithm

In this section we lay out the numerical algorithm that is used to solve different variants of the
model. We first describe how to solve the baseline unregulated market economy. We then show
how to solve for constrained efficient allocations of the social planner and how to decentralize them.

1.12.1 Unregulated Market Equilibrium

Below we list state variables of the model and sketch the solution algorithm.
Exogenous idiosyncratic shocks: {b(j)}. Exogenous idiosyncratic states: {n(j)}

Endogenous idiosyncratic states: {h(j), R̄(j)}. Endogenous aggregate states: {K, P,Λ}

Algorithm - Stationary Industry Equilibrium

1. Guess some initial values for aggregate endogenous states {K, P,Λ}. Compute Rk. Guess
some initial values for idiosyncratic endogenous states {h(j), R̄(j)}

2. Solve the financial intermediation problem

(a) Use value function iteration. On each grid point, assume the leverage constraint binds.
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(b) Construct the Lagrange multiplier. If constraint indeed binds, proceed.

(c) If constraint is slack, solve the problem again using a numerical minimization routine.

3. Simulate the problem of the incumbent. Run a simulation of N=1 bankers and T=2,000
periods.

4. Solve the new entry problem, if entry is endogenous. Determine the mass of entrants and
their aggregate demand for capital in each period of the simulation.

5. Compute economywide new guesses for aggregate K′ and P′. Construct a new Rk′. Check
if K′ is sufficiently close to K. If not, return to Step 2. If yes, continue with the program.

6. Calculate the probability of bank default on each grid point using newly computed policy
functions and distributional aggregates. This gives new {h′(j), R̄′(j)}.

7. Solve the household’s problem using time iteration. Get new Λ′.

8. Compare {R̄(j)} with {R̄′(j)}, K with K’, and P with P’. If maximal errors are within the
tolerance level, general equilibrium is solved. If not, update {R̄(j)}, K, and P. Return to Step
2 and continue the iteration.

We require convergence tolerances of 10–6 for general equilibrium deposit rates, 10–5 for the
bankers’ and household’s problems, and 10–3 for aggregate capital and prices.29

1.12.2 Constrained Efficient Equilibrium

In order to solve for constrained efficient (socially optimal) allocations, we must make one
adjustment to the algorithm. The only difference between the decentralized solution and the
social planner is that the latter internalizes the impact of private choices on aggregate returns.
We operationalize this using projection methods. Specifically, we assume that both K and P are
polynomials in n(j), b(j), and the choice of k(j). That is:

K = Uk0 + Uk1n(j) + Uk2b(j) + Uk3k
(
n(j), b(j)

)
P = U

p
0 + U

p
1n(j) + U

p
2b(j) + U

p
3k

(
n(j), b(j)

)
Once the optimal k(j) is found, that gives us p(j) through the credit demand function and d(j)

from the balance sheet constraint. The objective of the projection is then to find the optimal vector
of coefficients {Uk, Up}. We now describe the steps of the algorithm below.

29Importantly, there is no aggregate risk in the model. We therefore do not need to track a dynamic distribution of
bank net worth in the present paper.
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Algorithm - Constrained Efficient Equilibrium

1. Guess some initial values for {Uk, Up}.

2. Guess some initial values for aggregate endogenous states {K, P,Λ}. Compute Rk. Guess
some initial values for idiosyncratic endogenous states {h(j), R̄(j)}. The decentralized equi-
librium solution works as a good first guess

3. Solve the financial intermediation problem under the social planner

(a) Given {Uk, Up}, treat Rk as endogenous to the states and to the candidate choices of
k(j). Use a numerical minimization routine to solve for the optimal k(j) on each grid
point.

(b) On each grid point, first assume the leverage constraint binds.

(c) Construct the Lagrange multiplier. If constraint indeed binds, proceed.

(d) If constraint is slack, solve the problem again using a numerical minimization routine.
Keep treating Rk as endogenous to states and choices.

4. Simulate the problem of the incumbent. Run a simulation of N=1 bankers and T=2,000
periods. Run a linear regression of capital holdings k(j) on a constant, lagged net worth
nt–1(j), lagged bt–1(j), and lagged capital holding kt–1(j). Do the same for p(j). Compute new
guesses for {Uk′, Up′}.

5. Solve the new entry problem, if entry is endogenous. Determine the mass of entrants and
their aggregate demand for capital.

6. Compute economywide new guesses for K′ and P′. Construct a new Rk′. If K’ and P’ are
sufficiently close to K and P, respectively, then continue. If not, return to Step 2.

7. Calculate the probability of bank default on each grid point using the newly computed policy
functions and distributional aggregates. This gives new {h′(j), R̄′(j)}

8. Solve the household’s problem. Get new Λ′.

9. Compare {Uk, Up} with {Uk′, Up′}. And compare {R̄(j)} with {R̄′(j)}. If the maximal errors
across all grid points are within the tolerance level, the constrained efficient equilibrium is
solved. If not, update {Uk, Up} and {R̄(j)}. Return to Step 3 and continue the iteration.

We decentralize constrained efficient equilibria with size-dependent taxes on bank gross returns
g

(
n(j), b(j)

)
. In each iteration, we solve the financial intermediary problem subject to a conjectured
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tax schedule and compute a new guess for R̄(j), and so on until convergence. We do not update the
household’s solution or run simulations in the intermediate step, because the aggregate endogenous
states are fixed at their constrained-efficient levels.

1.13 Data Description

Empirical data used for model validation is obtained from the U.S. Call Reports. Table 1.5
details the definition of every variable used. Our quarterly sample is 2010q1-2019q4. All variables
are truncated at the 1% and 99% levels. Model variables are defined as stated in the Table and
obtained from a stochastic simulation of the stationary industry equilibriumwithN=1 intermediaries
and T=2,000 quarters.

Table 1.5: Description of Financial Variables

Data

Variable Name Description Source

Assets Total assets (RCFD2170) Call reports
Equity Total assets (RCFD2170) - total liabilities (RCFD2948) Call reports
Leverage ratio Assets / equity Call reports
Deposit expenses Interest expense on domestic deposits. Equals total

interest expense on deposits (RIAD4170) - interest ex-
pense on foreign deposits (RIAD4172)

Call reports

Non-interest expenses Total noninterest expenses (RIAD4093) Call reports
Net interest income Net interest income (RIAD4074) Call reports

Model

Variable Name Description

Assets k(j)
Equity n(j)
Leverage Ratio k(j)

n(j)
Deposit expenses R̄(j)d(j)
Non-interest expenses 1

Z1
k(j)Z2

Net interest income RT(j) – R̄(j)

Notes: This table details the construction, definition, and sourcing of all empirical and model variables used for
parameterization and validation.
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Chapter 2

Granular Credit Risk

What is the impact of granular credit risk on banks and on the economy? We provide the first
causal identification of single-name counterparty exposure risk in bank portfolios by applying a
new empirical approach on an administrative matched bank-firm dataset from Norway. Exploiting
the fat tail properties of the loan share distribution we use a Gabaix and Koĳen (2020a,b) granular
instrumental variable strategy to show that idiosyncratic borrower risk survives aggregation in
banks portfolios. We also find that this granular credit risk spills over from affected banks to firms,
decreases investment, and increases the probability of default of non-granular borrowers, thereby
sizably affecting the macroeconomy.

2.1 Introduction

What is the impact of idiosyncratic borrower risk on banks and the economy? It has been
understood for years that if individual loans are small enough relative to the overall size of the
portfolio then credit risk pooling should achieve perfect insurability against idiosyncratic shocks
(Diamond, 1984). But what if some loans are large? What if the distribution of loan sizes is
fat-tailed: can the performance of a single large loan directly affect portfolio-level outcomes and
lending? A rapidly growing literature, originating from the seminal contribution by Gabaix (2011),
has emphasized the micro - or “granular” - origins of macroeconomic outcomes in a variety of
theoretical and applied contexts. According to the granular hypothesis, shocks to large, non-
atomistic agents generate non-diversifiable “grains” of economic and financial activity, which can
directly affect aggregate fluctuations and, via general equilibrium effects, all other agents.

Thisworking paper should not be reported as representing the views ofNorgesBank. The views expressed are those
of the authors and do not necessarily reflect those ofNorgesBank. We thank our discussants José-Luis Peydró andDaniel
Paravisini as well as Christoph Basten, Svetlana Bryzgalova, Andreas Fagereng, Julian di Giovanni, Francisco Gomes,
Refet Gürkaynak, Victoria Ivashina, Joseba Martinez, Atif Mian, Steven Ongena, Elias Papaioannou, Anna Pavlova,
Kasper Roszbach, Stephen Schaefer, Vania Stavrakeva, Kjetil Storesletten, Paolo Surico, Anette Vissing-Jorgensen,
Gianluca Violante and seminar participants at the CEPR/ERC/LBS Conference on Granularity and Applications, AFA
2021, EEA 2020, SNDE 2020, WEAI 2020, LBS, Norges Bank, Nordea Bank, Oslo Macro Group, Statistics Norway
and the University of Zurich for valuable comments and suggestions. We thank Mikkel Riiser for excellent research
assistance. Rey is very grateful to the ERC (Advanced Grant 695722). All errors are our own.
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Curiously, there are few empirical applications of the granular hypothesis to banking. This is
puzzling because in practice the hypothesis maps directly into the “large exposure regulation” of
the Basel Committee on Banking Supervision (BCBS). The BCBS has been regulating bank credit
concentration risk for decades, formally at least since the Basel I Accords. The Core Principles
for Effective Banking Supervision emphasize that local country laws should “set prudent limits
on large exposures to a single borrower” (BIS, 2013). In practice however, the Principles admit
that “material differences in scope of application, the value of large exposure limits, methods for
calculating exposure values, and more lenient treatments for certain types of exposures exist”. As
a result, the document concludes, “although a concentration risk adjustment could be made to
mitigate these risks, these adjustments are neither harmonised across jurisdictions, nor designed to
control traumatic losses from a single counter-party default”.

This paper is the first to provide causal empirical evidence on the importance and implications
of “single-name” credit concentration risk1. We develop a new empirical approach and apply
it to a novel administrative firm-bank matched dataset from Norway2. We merge our loan-level
administrative database with firm and bank balance sheet data. We cover every single bank loan
made to limited liability companies (LLC) in Norway over the 2003-2015 period3. This data-rich
environment enables us to study the transmission mechanism and heterogeneous treatment effects
at many levels of aggregation.

Our empirical strategy consists of five steps. First, we establish that the distribution of loan
shares in our dataset is fat-tailed. Our estimate of the Pareto power implies that 80% of all credit
is concentrated in 20% of the loans. Interestingly, we provide therefore another example of the
famous “80-20” Pareto principle that occurs in a variety of settings in economics as well as more
generally in social and physical sciences (Gabaix, 2009).

Second, we construct a measure of idiosyncratic borrower risk. We use data on firm balance
sheets and income statements to estimate idiosyncratic value-added shocks for the universe of all
LLC firm × years in Norway over 2003-2015. We extract non-systematic variation in firm value-
added by controlling for a variety of balance sheet items like firm size and costs as well as firm,
industry, year, and geographical fixed effects. Our approach follows very closely a large literature
in labor economics and macroeconomics (Guiso et al., 2005; Hsieh and Klenow, 2009; Fagereng
et al., 2018)4.

1We follow the BCBS vocabulary where “single-name”refers to the level of an individual borrower or counterparty.
This is in contrast, for example, to how BCBS defines and treats sectoral or geographical exposures where the unit of
analysis is either a whole industry or region.

2Throughout the paper we focus on corporate clients and loans. Our empirical approach however, is general and
flexible enough to be applied to other borrower types such as households, state institutions, or other intermediaries.

3LLC is by far the most commonly used organizational structure in Norway. For most years, our firm data accounts
for more than 90% of total employment in the private sector.

4We perform a variety of validation and robustness checks to discipline our measure. First, we run a series of factor
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Third, we establish the pass-through from these idiosyncratic firm shocks to loan-level returns.
We investigate how such shocks affect returns on loans within the same bank, industry, county, year,
and loan type. Importantly, our specification controls for any confounding bank-side supply factors,
potentially specific to a given industry, county, or contractual type5. We find that idiosyncratic
firm shocks have a strong effect on loan returns. In our preferred specification with a full set of
controls and fixed effects, a one standard deviation negative firm shock causes annual loan-level
returns to fall by 36 basis points. We explore numerous dimensions of heterogeneity, including
firm characteristics, geographical location, ownership, and sector.

Fourth, we look at the impact of idiosyncratic borrower shocks on banks portfolio-level out-
comes. This is a critical step in our analysis. Once aggregated to the level of a bank, we potentially
lose the positive properties of loan-level analysis: the loan share-weighted firm shock series could
be potentially contaminated by bank × year confounding factors which we no longer have the power
to deal with. For this stage, we adopt the “Granular Instrumental Variable” (GIV) approach, newly
developed in a series of papers by Gabaix and Koĳen (2020a,b). Intuitively, the GIV extracts the
variation in the share-weighted aggregated firm shock series that can be attributed to “granular” bor-
rowers. Specifically, the instrument in its simplest form is the difference between size-weighted and
unweighted aggregated firm shocks. The GIV thus purges away any bank × year factor almost by
construction. Conditional on the distribution of credit shares being fat-tailed, idiosyncratic shocks
to large borrowers allow us to achieve identification. Our various parameteric and non-parameteric
specifications allow for a flexible number of bank factors and, importantly, for loadings on bank
factors to be either homogenous or heterogeneous across firms within any bank’s portfolio.

One important result of our paper is that idiosyncratic firm shocks, instrumented by the GIV,
have a large and significant effect on portfolio-level return on loans (RoA). A one-standard-deviation
granular credit shock causes portfolio RoA to move by 11.6 basis points on average. Given that in
the estimation sample the standard deviation of RoA is 1.35, our estimate can explain 8.6% of the
total dispersion of bank returns. We also find that the relationship is strongly concave, drivenmainly
by negative shocks. In particular, if we condition on positive share-weighted shocks, the estimated
coefficient becomes a noisy zero. In contrast, when conditioning on negative share-weighted shocks,
the estimate jumps to as high as 19.4 basis points, which is 15% of the sample standard deviation of

analysis exercises whereby we explicitly extract parametric and nonparametric common factors. Second, we establish
that shocks are not cross-sectionally correlated or persistent across time. Third, we run several placebo permutation
tests. Fourth, we show that these shocks only have contemporaneous and lead effects on loan and bank outcomes,
i.e. that there are no “pre-trends”. Finally, we validate our measure with a narrative-based approach by matching
realizations in the bottom percentile of the shock distribution to actual news stories from Norwegian media.

5Conceptually, this step can be viewed as a “reverse Khwaja and Mian (2008)” approach. In Khwaja and Mian
(2008), authors trace out the impact of bank supply shocks onto firms that borrow from the same bank. This way, they
are able to control for any confounding firm-side factors. Our strategy is to compare loan outcomes within the same
bank in order to control for supply-side factors. Our approach is very “granular”, since we zoom in on firms within the
same bank, and industry and county.
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RoA - an increase of 74% over the average estimate6. We investigate heterogeneity at the bank level
and find that the pass-through of granular credit shocks is stronger for banks with high portfolio
risk weights, low assets, high loan portfolio concentration, and high profitability. Furthermore,
conditional on the sample of banks with high risk weights, the pass-through is especially strong if
banks are small, profitable, and hold concentrated portfolios. We also find that the number of loans
in credit portfolios does not affect the transmission mechanism, indicating that granular credit risk
is not merely a "small-N" problem.

Fifth, having established that shocks to granular borrowers have a direct effect on portfolio-level
returns, we ask whether banks pass on these shocks to the real economy. In other words, are there
macroeconomic spillovers from granular credit risk? We start by examining credit supply effects,
by comparing bank loan quantity and rate changes in response to granular credit shocks. We restrict
the sample to firms with multiple bank relationships, and ask if banks that experience bad granular
credit outcomes reduce credit supply or increase prices. The within-firm analysis allows us to
control for demand side effects using time-varying firm fixed effects, thus isolating the supply side.
We find strong evidence, both in terms of quantity and price effects, that banks pass on granular
credit shocks to their non-granular clients, i.e. firms with a loan share that is less than a certain
threshold (such as the median) in the pooled distribution of all credit shares7. We show that a
one-standard-deviation bank-level negative granular credit shock reduces loan supply and increases
interest rates by as much as 71.7 and 63.4 basis points, respectively. This identifies a leftward
shift of the credit supply curve: quantities fall while prices rise. There are "granular credit risk
spillovers": firms are affected by granular shocks of others via their bank.

We then ask whether affected non-granular firms experience negative real economic outcomes.
We find that affected non-granular firms cut investment. Moreover, these firms experience elevated
bankruptcy rates for up to 3 years after the initial shock. A one-standard deviation negative granular
credit supply shock increases the likelihood of bankruptcy by roughly 32-60 basis points for all
firms, and 68-101 basis points for non-granular borrowers. Granular credit risk has therefore sizable
implications for the aggregate economy.

An important question is whether banks hedge granular risk with alternative sources of income.

6The concave relationship is reassuring to us for the simple reason that it reflects the basic payoff structure of the
debt contract. While there is no upside for the lender from borrowers experiencing positive value-added shocks, the
downside is capped only by the principal of the loan, not counting default-related costs, be they pecuniary or not. Apart
from the intuitive economic interpretation, we also view our finding of strong asymmetric effects as an important sign
of validation that our measure of idiosyncratic shocks is indeed economically informative.

7The tendency to pass along adverse economic shocks to their clients, especially small firms, is not uncommon for
banks. In their classic paper, Peek and Rosengren (2000) find that the 1990s Japanese banking crisis had a negative
effect on commercial real estate activity in the U.S. through the network of banks exposed to both markets. Lin and
Paravisini (2012) trace out the pass-through of the collapse of WorldCom on firms that shared the same lender. In a
recent paper, Greenwald et al. (2020) show that banks that experience larger credit line drawdowns restrict lending to
firms that borrow through term loans - a negative spillover effect on smaller borrowers.
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For example, in states of the world where credit income is low derivative income could be high. We
collect detailed bank-level data on non-interest income and find that none of the measures we have
correlate with GIV-instrumented firm shocks. We see no correlation between our shock measures
and fees income, equity and bond appreciations, dividend income, or derivatives income. Another
issue is that banks could potentially pre-insure against granular borrower shocks by charging higher
markups for risky clients. But when extracting value-added shocks we control for firm size,
liquidity, credit ratings, leverage and time-invariant factors. From the bank’s perspective, unless
markups are stochastic for some very unique reason, any firm shock comes therefore as a surprise
relative to the firm’s average performance and its creditworthiness, both of which would in turn be
very highly correlated with the loan contract’s price.

Finally, we supplement our empirical analysis by providing a theoretical motivation. We intro-
duce parsimoniously bank credit into the canonical framework of Gabaix (2011). We model firm
borrowing needs as a power function of firm size, which in turn is drawn from a power law density.
Under this assumption, the distribution of bank loans (or, equivalently, firm borrowing) follows the
Singh-Maddala (SM) family of densities (Singh andMaddala, 1976). The SM distribution has been
used extensively to model wealth and income inequality. Our main contribution here is the deriva-
tion of sufficient statistics-based parameter restrictions under which the bank loan distribution also
has a fat tail. If that is the case, then shocks to large borrowers may survive aggregation and impact
bank-level portfolio outcomes. Using our dataset, we provide maximum likelihood estimates of the
sufficient statistics and confirm that all the restrictions are satisfied on average.

Literature Review Our paper relates to several literatures. First, it builds on the rapidly growing
literature on the “granular hypothesis” and its applications. Some of the more salient contributions
across fields range from papers on business cycles (Carvalho and Gabaix, 2013), to trade (Gaubert
and Itskhoki, 2018), international finance (di Giovanni et al., 2018), asset management (Choi et al.,
2017), and banking (Amiti and Weinstein, 2018; Bremus et al., 2018). The latter strand focuses on
how idiosyncratic bank supply shocks can have aggregate real implications whereas we focus on
the transmission of shocks to (large) borrowers onto banks and the real economy. Our contribution
is to show the existence of important granular credit risk spillovers on the economy.

Second, we relate to the literature studying the trade-off between credit concentration and
diversification. On one hand, diversification enhances credit monitoring and information provision
capacity (Diamond, 1984; Boyd and Prescott, 1986). On the other hand, some empirical studies
found a positive correlation between portfolio concentration, returns, and monitoring efficiency
(Acharya et al., 2006). Beck et al. (2017) have shown that bank specialization and concentration
potentially have positive implications for systemic financial stability. Our paper contributes to this
debate in at least two ways. We argue that as long as the distribution of credit shares features a
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fat tail, banks remain exposed to idiosyncratic shocks to their (granular) borrowers. Everything
else equal, this is detrimental for financial stability. Because we find that banks pass on granular
credit shocks to the real economy, credit concentration induces negative economic outcomes on
average, ceteris paribus. But a normative interpretation of our results depends on the precise
theories generating loan concentrations in the first place, an issue we discuss further in Section 2.6.

There is an emerging new literature on credit concentration that, like us, takes advantage of
detailed microeconomic data. In a recent study, Agarwal et al. (2020) find that Mexican banks that
specialized in energy lending around the 2014 collapse of energy prices amplified the sectoral shock
to the rest of the real economy. Paravisini et al. (2020) find that persistent bank market-specific
specialization can explain a significantly larger fraction of within-firm variation in credit than actual
bank supply shocks. Goetz et al. (2016) show that geographic diversification by banks has no impact
on average loan quality and is associated with a reduction of exposure to local idiosyncratic risks.
Finally, Huremovic et al. (2020) and Dewachter et al. (2020) study the role of production networks
in Spain and Belgium, respectively, for the propagation of bank shocks8. Our paper differs from
this literature because we work explicitly with single-name concentration risk, while most of the
literature deals with either sectoral or geographical specialization. In addition, we emphasize both
empirically and theoretically the importance of granularity of the loan share distribution for the
pass-through of idiosyncratic shocks to the aggregate bank portfolio. Thus our paper provides an
empirical basis for the work of Mendicino et al. (2019) who show in a quantitative model that
if banks are not perfectly diversified, the interaction between borrowers’ and banks’ solvency has
important effects on the probability and severity of crises.

The remainder of the paper is structured as follows. Section 2.2 provides a description of our
data. Section 2.3 describes the different stages of our empirical approach. Section 2.4 reports the
main empirical results. Section 2.5 explores heterogeneity at different levels of aggregation and
reports results from various robustness checks. Section 2.6 discusses the assumptions we make in
our empirical approach and the implications of our findings. Section 2.7 lays out our theoretical
motivation. Finally, section 2.8 concludes.

2.2 Data

Our empirical investigation is based on a unique dataset assembled from three major sources:
administrative data from the Norwegian Tax Authority, credit rating agency data from Bisnode and
supervisory data from ORBOF. They were merged using the unique identifiers for banks and firms.
The Norwegian Tax Authority data is a high-quality matched firm-bank administrative register.

8Wedo not have information on production linkages in our data sowe cannot explore this potentially complementary
channel of propagation.
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The unit of observation in this database is an individual loan and the frequency is annual. For every
loan, we observe the firm-bank identifiers as well as the flow of interest paid during the year and
the end-of-year stock of debt. Because the data is collected and maintained by the tax authority as
a basis for corporate taxation, the variables are essentially measurement error-free.9 The data set
covers all limited liability companies for the time period of 2003-2015, which accounts for roughly
90% of private sector employment for most years. We aggregate all loans into a single annual
firm-bank “relationship” unit. The terms loan and relationship are used interchangeably, and refer
to the sum of loans and interests paid across all individual loans between a bank and a firm.

A key measure in our analysis is the return on a loan, or a credit relationship (RoL). This is not
directly observed, and hence we impute it. Specifically, we observe interest collected throughout
year t (Rt) and the end-of-year stock of outstanding debt (Dt). We then define the RoL in year
t as Rt/(0.5Dt–1 + 0.5Dt), which is equivalent to interest received relative to the average of debt
outstanding at the beginning and end of the calendar year.

We merge the loan-level data with detailed information on Norwegian firms and banks. Our
firm data comes from the credit rating agency Bisnode. In addition to information about the firms’
credit rating scores and firm characteristics such as age, location and industry, the data set includes
annual balance sheet and income statement items on all Norwegian firms for 1999-2019. The
bank data is from a supervisory registry (ORBOF) and includes annual balance sheet and income
statement information covering all Norwegian banks over 1987-2019. The data set also provides
us with confidential information on non-interest income, including income from derivatives, equity
and bond investment, dividends, and loan fees.

We perform several cleaning and truncation steps on the raw data. First, we drop observations
that are clearly erroneous, such as cases of liquidity ratios being greater than 1. Second, following
Foster et al. (2008) we truncate the distribution of cost-to-total-cost ratios for each cost type at
the 10% and 90% in each industry and year. Cost types include wage bill, energy, material and
other costs. This is important as firms could dump all their operational costs to a particular fiscal
year in order to receive tax advantages, and what we would thus pick up are in fact endogenous
outcomes rather than unanticipated performance shocks. Third, we truncate the extracted firm
shock distribution at the 1% and 99% levels. All our main results at the loan and bank levels are
quantitatively robust to alternative cleaning rules. Table 2.1 provides summary statistics for some
of the key variables used in our analysis.

9Provision of false tax information carries substantial legal, financial and reputational penalties. Additionally, the
information about outstanding debt and interest paid is reported to the tax authority by the banks, and not the firms
themselves.
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Table 2.1: Descriptive Statistics

Variable Observations Mean Std. Dev Min Max

Loans

Interest Received 333289 196645.31 1620919.78 1.00 2.67e+08
Loan Amount Outstanding 333289 4035259.25 43884811.59 1.00 7.00e+09
Return on Loan 333289 9.01 8.92 0.00 100.00

Firms

Sales (1000 NOK) 277707 26532.69 217768.69 0.00 33761000.00
Total Assets (1000 NOK) 277707 42361.08 1052017.18 2.00 1.20e+08
Wage Costs (1000 NOK) 277707 6827.88 65057.01 1.00 7098000.00
Material Costs (1000 NOK) 277707 11643.95 103640.10 0.00 15313000.00
Equity / Assets Ratio 277707 0.27 0.18 0.00 1.00
Liquidity Ratio 277707 0.16 0.17 0.00 1.00
Employees 277707 15.81 156.66 0.00 20781.00
Firm Age 277707 12.94 11.81 0.00 159.00

Banks

Return on Loans 1380 6.40 1.46 0.06 14.39
Total Assets 1377 21130037.71 1.35e+08 92384.00 1.96e+09
Total Equity 1377 1491611.98 8512785.73 16139.00 1.51e+08
Assets / Equity Ratio 1377 10.90 3.20 1.32 41.48
Cash Balances / Assets 1377 0.03 0.03 0.00 0.33
Number of Loans 1380 220.88 854.18 1.00 8940.00
Loan Herfindahl Index 1380 0.10 0.12 0.00 1.00
Share of 10% Largest Loans 1380 0.54 0.13 0.20 1.00
Share of 5 Largest Loans 1380 0.51 0.20 0.07 1.00
Deposits to Assets Ratio 1377 0.66 0.12 0.01 0.91
Financial Assets Ratio 1321 0.08 0.06 0.00 0.48

Estimated Idiosyncratic Shocks

Firm-level 277707 0.02 0.27 -1.42 1.15
Bank-level (size-weighted) 1380 -0.02 0.11 -0.78 0.69
Granular IV 1380 -0.02 0.09 -0.76 0.46

Notes: This table shows summary statistics of key loan, firm, and bank characteristics. All stock and earnings values
are in thousands of Norwegian Kronas (NOK). 1 US Dollar = 8.30 NOK as of June 4, 2021. Firm shocks in panel 2
are estimated according to specification 2.1. Loan data is from the Norwegian Tax Authority. Firm data is from the
credit rating agency Bisnode. Bank data is from the financial supervisory database ORBOF. Sample includes all bank
loans to limited liability companies in Norway over 2003-2015.
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2.3 Empirical strategy

2.3.1 Granularity of the Distribution of Loan Shares

We begin by establishing that the distribution of loans shares in our dataset is fat-tailed. In
Figure 2.1 we plot the histogram of all loan shares, pooled across all banks and years over 2003-
2015. Eyeballing the distribution is enough to notice its extreme skewness. More formally, we fit
the Pareto I density to the data and estimate a Pareto rate of 1.16. Any estimate below 2 implies
that idiosyncratic shocks to large loans potentially survive risk pooling and cause portfolio-level
disturbances. This follows directly from the proofs in Gabaix (2011). Interestingly, our estimate of
the Pareto power implies that 80% of all credit is concentrated in 20% of the loans. Thus the loan
share distribution provides yet another example of the famous “80-20” Pareto principle that occurs
in a variety of settings in economics as well as in many social and physical sciences applications
(Gabaix, 2009). In section 2.7, we introduce a parsimonious model of bank credit into the canonical
framework of Gabaix (2011). In our model, the fat tail of the firm size distribution feeds directly
into the fat tail of the loan share distribution under certain parameter restrictions. We estimate the
main parameters of the model using our data and confirm that those restrictions are on average
satisfied.
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Figure 2.1: Distribution of Bank Loan Shares
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Notes: This graph presents the distribution of bank loan shares. The left picture plots the full distribution. The right
picture zooms in on the 99th percentile of the shares. The share of each loan is computed as the ratio of a singular
loan’s amount to total corporate loans of a given bank in a given year. The figures plot the pooled shares for all banks
and years. The Pareto rate of the 99th percentile is 1.16.

2.3.2 Estimates of Idiosyncratic Firm Shocks

The next step of our empirical approach consists of extracting idiosyncratic firm shocks, mea-
sured as unexplained idiosyncratic variation in firm value-added. Our approach follows closely a
large number of studies in labor and macro economics that extract idiosyncratic sales or perfor-
mance shocks. (Foster et al., 2008; Hsieh and Klenow, 2009; di Giovanni et al., 2014; Foster et al.,
2017; Fagereng et al., 2018).10 To extract unexplained variation in firm value-added, we regress
the log of firm value-added on a set of time-varying firm-level controls that includes measures
of input usage and firm riskiness. Importantly, since our focus is on idiosyncratic variation, we
remove common (across firms) components by controlling for the interaction of time, industry and
county fixed effects. Finally, across-firm variation attributed to time-invariant firm characteristics
is absorbed by firm fixed effects.

Formally, for a firm j, operating in an industry s from a county z in year t, we estimate the

10Using idiosyncratic shocks as “instruments” for estimating microeconomic or macroeconomic elasticities is
increasingly common in applied microeconomics and finance (see Leary and Roberts (2014), Amiti et al. (2019) and
Gabaix and Koĳen (2020a)).
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following regression:

lnVAj,t = Uj,t,s(j),z(j) + V1 ln Kj,t + V2 lnWj,t + _′Xj,t + nj,t (2.1)

where VA stands for firm value-added11, K represents book capital, W the wage bill, and X are other
controls including leverage, liquidity, credit rating, and a quadratic polynomial in age. The term
U(·) captures a combination of fixed effects at the firm and industry × year × county levels. Here,
K and W are proxies for capital and labor inputs, while X are various measures of firm riskiness.
These factors should capture the banks’ information set well.12 In addition to the specification in
(2.1) we also consider a less conservative specification, which only includes fixed effects but not
any of the other controls, in the spirit of di Giovanni et al. (2014).

The object of interest is the residual from this regression, nj,t, which is the main right-hand side
variable for the rest of the paper. Essentially, what we are trying to capture are unforeseen changes in
firm performance that banks, despite observing multiple layers of data, could not have anticipated.
Examples of such events include a factory collapse, fraud and mismanagement, operational and
logistical accidents, human error, etc. In Section 2.12 of the Online Appendix we provide a
headlines and narrative-based explanation for some of the most negative shock realizations in our
sample.

Figure 2.2 plots the distribution of our baseline shock measure nj,t, pooled across all firms and
years. It is noticeably left-skewed, with a larger mass in the left tail.

11Value added is measured as sales minus material, energy, and other costs.
12A potentially important factor that is missing from this specification is market prices. The share of publicly traded

firms in our data is, however, very small. Moreover, credit rating arguably captures the same information that would
be embedded in the stock price (albeit updated far less regularly).
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Figure 2.2: Distribution of Idiosyncratic Firm Shocks

0
.0

2
.0

4
.0

6
Fr

ac
tio

n

-1.5 -1 -.5 0 .5 1
Firm Shock

Notes: This graph plots the pooled distribution of idiosyncratic firm shocks estimated from equation (2.1).

FactorAnalysis andRobustness Despite controlling for a variety of firm characteristics and fixed
effects, there is still concern that our shocks nj,t may pick up some latent common components. In
Section 2.9.1 of the Online Appendix, we generalize the reduced-form specification in (2.1) and
formally extract parameteric and non-parameteric common factors from the residual nj,t. All our
results and insights at the loan and bank levels will remain unchanged. We also conduct a series
of additional robustness tests in order to establish that our shocks are truly idiosyncratic. First, we
confirm that nj,t are not correlated across firms or time. Second, we run several placebo regressions.
We return to these robustness checks in Section 2.5.

2.3.3 Loan Outcomes

To identify the impact of idiosyncratic firms shocks on loan-level returns, we exploit the
granular nature of our dataset. Individual bank-firm relationships enable us to control for time-
varying bank supply factors, such as risk aversion or monitoring skills, by including bank × year
fixed effects. Bank supply factors could confound our demand-side shocks.13 We also control
for interacted county × year × industry fixed effects. This specification implies that the impact
of shocks is identified by comparing loan-level returns across firms in the same county, industry,

13Coimbra and Rey (2019), among others, show that heterogeneity in risk appetite among financial intermediaries
is a determining factor for financial and business cycles. Our fixed effects specification takes care of this issue.
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year, who are borrowing from the same bank. For some firm-bank relationships in our dataset
we also observe the fraction of total loan volume that comes from credit lines. This allows us to
also consider specifications which include a loan type fixed effect14. Formally, we estimate the
following specification:

Ri,j,t = Ui,t,s(j),z(j),l(i,j) + Vni,j,t + ai,j,t (2.2)

where i is a bank that lends to firm j from county z, industry s, year t via loan type l. Ri,j,t is
the loan-level return and ni,j,t is the estimated idiosyncratic shock of firm j in bank i’s portfolio.
Because the main RHS variable is estimated, our standard errors are corrected for the estimated
regressor bias via bootstrapping. Importantly, our specification features a wide range of fixed
effects captured by the term U(·). Specifically, in our most conservative specification we include
the full interaction of bank × year × firm industry × firm county × loan type fixed effects.

2.3.4 Granular Credit Risk: Bank outcomes

After investigating how idiosyncratic firm shocks affect loan returns, we then move up to the
level of a bank portfolio. We aggregate realized idiosyncratic firm shocks to the bank level by
weighing shocks with loan shares and refer to the resulting measure as "granular credit risk".
Intuitively, granular credit risk captures shocks to banks’ clients that eventually do not average out
and instead impact portfolio-level outcomes.

To evaluate the bank-level impact, we proceed by analyzing the following relationship between
bank-level returns on all corporate loans Rb

i,t and firm shocks for bank i at year t:

Rb
i,t = Ui + Ut + Vn̄i,t + ai,t (2.3)

where Ui and Ut denote bank and time fixed effects, n̄i,t = ∑
j∈Ji si,j,tni,j,t are bank-level aggregates

of firm shocks that are weighted by loan shares si,j,t, and ai,t the error term. The portfolio loan
return Rb

i,t is computed as the loan-share weighted average of loan-level returns.
There is one key identification challenge associated with the naive specification above. Our

loan-level analysis exploited within-bank-year variation to control for confounding credit supply
shocks. This is no longer possible when we turn our focus to outcomes at the bank level. Consider
a generic time t relationship between bank outcome yi,t, unobserved bank-side factor [i,t, and
demand-side idiosyncratic firm disturbance ni,j,t:

yi,t = V
∑
j
si,j,tni,j,t + ii[i,t (2.4)

14A firm-bank relationship is classified as a credit line loan in year t if more than 50 percent of total credit in the
relationship comes from credit lines.
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where si,j,t is the normalized exposure of bank i to firm j (∑j si,j,t = 1). Estimation of Equation 2.4
may potentially result in a biased estimate of V if [i,t and ni,j,t are correlated.

In order to alleviate this concern, we adopt a newly proposed "granular instrumental variable"
(Gabaix and Koĳen, 2020a) approach. Specifically, we assume that the demand-side disturbance
ni,j,t can be written as

ni,j,t = Xi[i,t + ui,j,t (2.5)

where Xi is the factor loading.
The granular instrumental variable ("GIV") is defined as the time-varying difference between

exposure-weighted and equally-weighted firm shocks, each aggregated to the bank level. This
way, the bank-time supply-side factor [i,t, which is potentially correlated with firm disturbances, is
purged out. The GIV is formally constructed the following way:

GIVi,t =
∑
j
si,j,tni,j,t –

∑
j

1
Ni

ni,j,t =
∑
j
si,j,tui,j,t –

∑
j

1
Ni

ui,j,t (2.6)

where Ni denotes the number of firm exposures of a given bank i. We now replace the naive
approach in equation (2.3) with the following specification:

Rb
i,t = Ui + Ut + Vûi,t + ait (2.7)

where ûi,t is the fitted value from the “first-stage” regression of the endogenous covariate n̄i,t on
the granular instrument GIVi,t. This way, all variation in n̄i,t is driven by fluctuations originating
from the “granular borrowers”, i.e. those with a large credit share. Naturally, if there are no
granular borrowers, this approach does not work as there is no variation in the instrument. But as
we have seen from Figure 2.1, the distribution of loan shares is very skewed. The main identifying
assumption of this empirical approach is the following condition:

N∑
j
E

[
si,j,tui,j,tai,t

]
= 0 (2.8)

for all i and t.
In words, identification is achieved if firm shocks si,j,tui,j,t are not driven by the error term

in bank-level regressions. This is the "exclusion" assumption. The main concern is that loan
shares could be endogenous, i.e. correlated with firm shocks. This is not a problem for us for
several reasons. First, credit demand in absolute terms correlates with firm size. Given how we
extract idiosyncratic value-added shocks (i.e. controlling for size), our shock series is mechanically
orthogonal to firm size. Similar logic applies to other firm factors such as leverage, liquidity,
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Figure 2.3: First Stage - Firm Shocks and the Granular IV
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Notes: This figure plots the relationship between the endogenous covariate n̄i,t and the instrument, GIVi,t. On the
vertical axis we have the idiosyncratic firm shock which is loan size-weighted and aggregated to the level of a bank.
Idiosyncratic firm shocks are extracted from specification 2.1. The granular instrument (horizontal axis) is constructed
based on equation (2.6). Correlation between the two variables is 0.863.

credit rating or age. Second, as a proxy for contemporaneous loan shares, our loan share measure
is computed using average debt between periods t and t-1. This mitigates any contemporaneity
concerns. Finally, loan shares and firm shocks are reassuringly uncorrelated in our sample15.

To confirm the validity of the instrument, in Figure 2.3 we plot the relationship between the
GIV and the raw endogenous covariate n̄i,t. There is a strong, positive relationship between the two
variables with a Pearson correlation of 0.863.

Factor Analysis and Heterogeneous Loadings In Section 2.9.2 of the Online Appendix we
study an important extension of the baseline approach that relaxes the assumption of homogenous
loadings on bank factors. In other words, we allow Xi,j to be heterogeneous across firms. In
principle, sensitivity to fluctuations of bank x year factors could vary significantly across the firm
distribution. We thus run a series of Principal Component Analyses (PCA) on each bank’s portfolio
separately and extract common components nonparametrically. We will find that all main results
remain quantitatively unchanged.

15The raw correlation between loan shares and firm shocks in our sample is –0.02. The correlation is computed for
each bank, and we report the average across banks.
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2.3.5 Granular Credit Risk Spillovers: Credit Supply and Firms

In order to study the economic consequences of granular credit risk, we investigate the rela-
tionship between bank-level aggregated firm shocks and credit market outcomes. We follow a large
literature in banking relying on the methodology in Khwaja and Mian (2008). Specifically, we
focus on a sub-sample of firms borrowing from multiple banks and compare - for the same firm -
quantity and rate outcomes from banks that experienced good or bad granular credit shocks. We
test whether banks pass on shocks originating from their granular borrowers to the rest of their
credit portfolio (non-granular borrowers). We define non-granular borrowers as firms whose loan
share is below a certain threshold (such as the 50%th or the 25%th percentile) of the loan share
distribution. In response to negative shocks due to granular clients, bank may have to scale back
their relationship with non-granular borrowers, alter the pricing of loans, or both.

We run the following regressions on yearly changes:

Δyi,j,t = Ui + Uj,t,s(j),z(j) + VΔûi,t + ai,j,t (2.9)

where Δûi,t is the fitted value from the “first-stage” regression of the endogenous bank level shock
Δn̄i,t on the granular instrument ΔGIVi,t, Uj,t,s(j),z(j) is a firm x year x industry x county fixed effect
and Ui is a bank fixed effect. Δyi,j,t is either loan volumes or interest flows. The regression is run
either on firms with a loan share below the 50th or 25th percentile of the loan share distribution.

After investigating loan-level responses, we aggregate our data to the firm level and test whether
there are any spillover effects from granular credit shocks to firm balance sheet aggregates such as
investment or cash balances. We also look at the impact of granular credit risk on firm bankruptcies,
contemporaneously or with a lag. We run the following firm-level regressions:

Δyj,t = Us,z,t + VΔûj,t + aj,t (2.10)

with similar notations as above. Δyj,t are now firm-level outcomes such as (changes in) capital,
sales, wage bill, cash as well as probability of bankruptcy (in levels). Essentially, in these spillover
regressions the bank × year series of GIV-instrumented firm shocks is treated as a typical liquidity
shock to the intermediaries’ balance sheet, which is then passed on to the rest of the economy as
a supply-side disturbance. The difference between our paper and the rest of the literature is that
the origin of this bank-side liquidity risk is (uninsurable) idiosyncratic risk from large, granular
borrowers16.

16We test the insurability of granular credit risk in Section 2.4.3.
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Table 2.2: Loan Outcomes

(1) (2) (3) (4) (5)

Dependent Variable: Return on Loan (RoL)

Firm Shock 0.134 0.146 0.334 0.335 0.361
(0.012) (0.013) (0.015) (0.017) (0.019)

Bank x Industry x Year FE No No No Yes No
Bank x Industry x Year x Loan-type x County FE No Yes No No Yes
Additional controls in equation 2.1 No No Yes Yes Yes
Observations 479754 434662 333289 317186 292825
R2 0.000 0.195 0.001 0.114 0.167
E(RoL) 7.988% 7.975% 9.012% 9.029% 9.098%
SD(RoL) 7.993% 7.928% 8.921% 8.928% 8.923%

Notes: This table reports results from the regression of loan-level returns on loans on idiosyncratic firm shocks. The
exact specification is described by equation (2.2). Columns (1)-(2) are based on firm shocks from specifications where
(log) value-added is regressed only on a set of firm and county×industry×year×loan type fixed effects. Columns (3)-(5)
are based on specifications that include additional firm controls: total assets, wages, leverage, liquidity, credit rating,
age, and age squared. Firm shocks are normalized by their standard deviation. For example, 0.334 should be interpreted
as an increase in the return on loans of 33.4 basis points in response to a 1 standard deviation idiosyncratic firm shock.
Loan types include regular and credit-line loans. Counties are 19 administrative areas (fylke) in Norway. Industries
are 99 2-digit sectors. Standard errors (in parentheses) are double clustered at the firm-year level and corrected for
the estimated regressor bias with bootstrapping. The last two rows report the unconditional sample mean and standard
deviation of the dependent variable.

2.4 Main Empirical Results

We investigate how idiosyncratic firm value-added shocks affect loan returns in section 2.4.1.
In section 2.4.2, we aggregate idiosyncratic firm shocks to the bank level and see whether the effect
is still significant despite portfolio-level risk pooling. In section 2.4.3 we ask whether granular
credit risk goes unhedged at the bank level. In section 2.4.4, we investigate potential spillover
effects from granular credit risk onto other firms and their real economic consequences.

2.4.1 Loan Outcomes

Table 2.2 presents the effect of idiosyncratic firm shocks on loan returns obtained from estimat-
ing Equation (2.2). Overall, idiosyncratic firm shocks have a large and significant (at the 1% level)
effect on loan-level returns. In columns (1)-(2) we proxy firm shocks with the residual value-added
variation after controlling for fixed effects only (as in di Giovanni et al. (2014)).17 In columns

17This specification has no additional controls and extracts firm-level value-added variation that is orthogonal to
industry × county × time × loan type and firm fixed effects.
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(3)-(5) the shock is extracted from Equation 2.1 with a full set of firm controls: leverage, liquidity,
size, age, and credit rating. Firm shock measures are standardized. Our preferred specification
is column (5) and the result is the following: a 1-standard-deviation firm shock affects returns by
36.1 basis points. In words, when comparing a bank’s loan return across firms within the same
year, industry, county, and through the same loan facility, a 1 standard deviation reduction in firm
performance reduces loan returns by roughly a third of a percentage point.

Figure 2.5 of the Online Appendix reports loan outcome estimates at different horizons: we
regress loan returns on leads and lags (in years) around the firm shock ("event" at date 0) and
plot the dynamic of the interval estimates over time. First, we observe that there is no effect
for years prior to the shock, which points at the absence of any pre-trends. Second, the impact
of idiosyncratic firm shocks on loan outcomes is felt for a long time: at least for 3 years on
average. We interpret this result through the lenses of relationship-based lending. Termination of
a credit relationship is costly, for either side, because of the presence of asymmetric information in
credit markets. Even if a bad idiosyncratic outcome reveals new information about the borrower’s
“type”, ex-post monitoring of the repeated borrower may still be a more cost-effective alternative
than forming a new relationship (Williamson, 1987). Lenders may understand and internalize the
adverse selection problem in the market for switching borrowers (Sharpe, 1990). Finally, the cost
of asymmetric information may be bigger for smaller firms, which are also potentially more likely
to experience a negative idiosyncratic shock and have more to gain from sticking to the original
lender (Chodorow-Reich, 2014). In equilibrium, the lender agrees that the borrower postpones a
fraction of the loan repayment to the future period.18

2.4.2 Granular Credit Risk: Bank Outcomes

The finding that firm-level idiosyncratic shocks impact loan returns merely reflects the fact that
individual loans are inherently risky investments. There is little margin of adjustment for the bank
to insure against bad loan-level outcomes. The natural next question is whether these idiosyncratic
shocks average out at the level of bank portfolios. In other words, can/do banks take advantage of
risk pooling and diversify idiosyncratic firm risk away? To answer this question we proceed by
estimating the relationship in (2.7). Results are reported in Table 2.3, where we have normalized
the bank shock by its standard deviation.

We report two sets of specifications: with and without the granular instrumental variable
(GIV). In the first two columns (OLS estimates) we find that even at the level of banks’ portfolios,
idiosyncratic credit risk is associated with large and significant effects on bank returns. To address

18Our extensive margin analysis in Section 2.5.1 will reveal that it is indeed the intensive margin, i.e. temporary
non-performance and payment delay, which drives our loan-level results, and not necessarily firm exit.
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Table 2.3: Bank Outcomes

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent Variable: Bank Return on Loans (RoA)

OLS Instrumented with GIV

Pooled Pooled Pooled Positive Negative Pooled Positive Negative

Granular Credit Shock 0.129 0.136 0.116 0.016 0.194 0.117 0.056 0.176
(0.029) (0.027) (0.031) (0.094) (0.074) (0.030) (0.087) (0.072)

First stage F-stat 1429.683 138.772 396.907 1137.722 150.136 263.982
J-statistic 0 0 0 0 0 0

Bank FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Bank Controls No Yes No No No Yes Yes Yes
Observations 1211 1211 1211 508 694 1211 508 694
R2 0.752 0.770 0.599 0.646 0.569 0.627 0.683 0.592
E(RoA) 6.350% 6.350% 6.350% 6.460% 6.289% 6.350% 6.460% 6.289%
Sd(RoA) 1.354 1.354 1.354 1.403 1.295 1.354 1.403 1.295

Notes: This table reports results from regressing bank-level return on loans on bank-level aggregated firm shocks
n̄i,t. Columns (1)-(2) are standard OLS on equation (2.3), while columns (3)-(8) instrument the aggregated shock
by the granular IV as in equation (2.7). The GIV is constructed following equation (2.6). Positive (negative) shock
specifications include only observations in which the bank shock n̄i,t is above (below) zero. Bank controls include
lagged total assets, leverage, liquidity, number of loans, deposit to assets ratio and financial assets to assets ratio. The
last two rows report the unconditional sample mean and standard deviation of the dependent variable. The F-stat is
the Kleibergen-Paap rk Wald F statistic for the test of weak identification. J-stat is the Hansen’s J-statistic for the
instrument overidentification test. Standard errors (in parentheses) are clustered at the bank level and corrected for the
estimated regressor bias with bootstrapping.

potential endogeneity concerns, columns (3)-(8) report results from the IV regression19. Our results
show that a one standard deviation GIV-instrumented firm shock, on average, affects bank loan
portfolio returns by 11-12bps. We have specifications with and without additional bank controls
which include lagged values of book leverage, liquidity, total assets, number of loans, deposit-to-
asset ratio, and financial assets to total asset ratio20. Results are qualitatively and quantitatively
robust to the exclusion of these controls21.

19Formal statistical diagnostic tests show validity for the GIV as a good instrument. The first-stage F-statistic is
above the Stock and Yogo (2005) criterion for 5% maximal relative bias. The Hansen J-statistic cannot reject the null
hypothesis of the instrument being exogenous.

20Theoretically, if the exclusion restriction holds, the GIV approach would not require any further bank-time
controls. The reason is that GIV, by construction, would be purged from any bank-time factors. For robustness, we still
include observable bank controls. Results do not change in any substantial matter, which adds validity to the method.
In addition, in Section 2.9.2 we also control for latent bank-time factors, extracted using PCA. Results do not change.

21Bank-level return on corporate loans is the main dependent variable in this section. We have also experimented
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In Figure 2.7 of the Online Appendix we report bank loan outcomes by horizon. We find that
the impact of GIV-instrumented firm shocks on bank RoA lasts for up to 1 year, i.e. a shock at t
has a significant effect on returns even at t+1. In addition, the effects of lags are not significant
implying the absence of any pre-trends.

A second key set of results is related to the asymmetric effects of granular firm risk. In columns
(4)-(5) and (7)-(8) of Table 2.3 we explore positive- and negative-only firm shocks with and without
bank controls. Specifically, we condition on the endogenous covariate n̄i,t in equation (2.3) being
positive or negative only, and instrument it by the GIV. Only negative shocks have a significant
impact on bank returns. The impact of positive shocks is not statistically significantly different
from zero. A one standard deviation negative granular firm shock lowers bank returns by up to
19.4bps, which is much larger than the average effect and amounts to roughly 15% percent of the
standard deviation of banks’ portfolio returns. Due to the payoff structure of the debt contract this
very concave relationship is not surprising. Because of debt contracts, banks find it difficult to
extract higher dividends from firms that are performing well, while at the same time remaining
exposed to potential downside risk from firms that perform poorly. In case of a negative shock, the
firm’s loan may become nonperforming, the firm may default on the obligation, or exit the industry
altogether22.

Figure 2.4 provides a visual representation of this concave relationship. The figure depicts the
(binned) scatter plot of the impact of GIV-instrumented firm shocks on banks’ returns on loans
(RoA). Blue circles (red squares) represent positive and negative shocks, respectively. We construct
the binned scatter plots by first regressing both bank RoA and the GIV-instrumented firm shocks
on bank and time FE, computing the residuals, and adding back the mean of each variable. We
then construct 50 equally-sized bins of the residual shock variable. Figure 2.4 plots the mean
residual bank RoA within each bin versus the bin’s mean residual shock. Finally, we overlay the
linear fits for the respective specifications. The asymmetry of the result is rather striking: the line
of best fit for positive shocks is flat, while the slope for negative shocks is downward-sloping and
highly significant. The bins are all equally-sized, so each dot represents 10+ underlying bank ×
time observations. Our results are thus not driven by any individual outliers. We interpret the
concave relationship as further validation that our measure of firm shocks is indeed economically
informative.

with loan writedowns and portfolio-level Sharpe ratios. Table 2.19 of the Online Appendix reports the results. We find
some evidence that granular credit risk, when instrumented by the GIV, is weakly positively (negatively) associated
with the Sharpe Ratio (writedowns)

22We explore the extensive margin in detail in Section 2.5.1.
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Figure 2.4: Granular Credit Risk and Bank Outcomes
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Notes: This figure visualises the relationship between residualized bank-level return on loans and residualized in-
strumented bank-level aggregated firm shocks. The red squares (blue circles) are binned scatterplots conditional on
negative (positive) values of the weighted firm shock n̄i,t. The shock variable is normalized by its standard deviation.
We construct the conditional binned scatterplot in three steps, and each step is performed separately on positive and
negative values of n̄i,t. First, we residualize bank-level returns on loans and instrumented firm shocks. Instrumented
shocks represent fitted values from regressing n̄i,t on the GIV. The residualized return and shock values are obtained
from regressing each variable on bank and time fixed effects, computing the residual, and adding back the mean of
each variable. Second, we construct 50 equally-sized bins based on the residualized shock. Third, we plot the mean
residual bank return within each bin versus the bin’s mean residual shock. The red (blue) line represents the linear fit
from regressing bank-level loan return on instrumented shocks, conditional on n̄i,t < 0(> 0).

2.4.3 Hedging

We have so far established that idiosyncratic shocks to individual corporate clients affect bank
portfolio returns. However, it is possible that financial intermediaries hedge granular credit risk
with derivatives and other instruments. As a first pass attempt in answering this question, we collect
bank-level data on income from fees, derivatives, equity and bond holdings, and dividends. We then
correlate changes in returns from these sources with our GIV-instrumented shocks. The conjecture
is that in the same state of the world in which banks are hit with bad idiosyncratic shocks to their
loan books, returns are compensated through alternative departments within the same bank. For
example, banks could command higher fees for late interest payments, hedge negative states with
credit derivatives, short stocks of firms they are also lending to, etc. Table 2.4 reports the results.

As can be seen from the table, the data cannot consistently reject the null hypothesis of little
to no insurance against granular credit risk. None of the measures of non-interest income are
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Table 2.4: Hedging Granular Credit Risk

(1) (2) (3) (4) (5)

Dependent Variable: Δ Income from Fees Derivatives Equity Bonds Dividends

Pooled

Granular Credit Shock 0.219 -0.658 -1.323 0.163 0.173
(0.131) (1.214) (1.477) (0.140) (0.631)

Bank FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Observations 1211 344 1058 1197 1174
R2 0.010 0.049 0.011 0.013 0.046

Negative Shocks Only

Granular Credit Shock 0.330 -0.133 -3.420 0.461 -0.209
(0.236) (2.944) (5.466) (0.470) (0.170)

Bank FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Observations 697 197 606 690 680
R2 0.021 0.037 0.023 0.021 0.164

Notes: This table reports results from regressing bank-level year-on-year growth rate in non-interest income components
on bank-level aggregated firm shocks, instrumented by the granular IV. The top panel presents results for all shocks,
positive or negative. The bottom panel presents results for negative shocks only (n̄i,t < 0). The granular IV is
constructed based on equation (2.6). Standard errors (in parentheses) are clustered at the bank level. Data on all bank
non-interest income is from the financial supervisory database ORBOF.

significantly associated with our shock measure. If anything, some forms of income are in fact
positively correlated with idiosyncratic credit shocks, which questions their usefulness as a hedging
instrument.

A drawback of this analysis is that the various hedging instruments analyzed in Table 2.4 are
only observable at the bank level. A more detailed analysis would construct matched derivatives
holdings at the level of individual credit relationships. This would increase the odds for banks to
hedge firm-specific risk, something that we can not plausibly establish by looking at portfolio-level
data. This would be possible only for a very small subset of large firms that are (a) listed and
(b) have a liquid market for credit derivatives such as credit default swaps (CDS). The mass of
such firms is small and the CDS market is not very liquid in Norway. Regardless, insurability of
granular credit risk is an important question, to which we can give only a partial answer given the
data constraints.23

23Banks could also dilute single-name concentration risk by engaging in syndicated lending. In the case of Norway,
however, syndicated loans constitute a very small fraction of external financing for firms.
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2.4.4 Granular Credit Risk Spillovers: Credit Supply and Firm Outcomes

Previous sections have documented that granular credit risk has quantitatively important effects
on bank portfolio outcomes, and that this risk is unhedged. In this section, we ask whether banks
hedge these shocks “ex-post”, i.e. by passing it on to the rest of their corporate portfolio. We
are interested in seeing whether banks react by reducing loan supply or raising interest rates, in
particular for non-granular firms.

Table 2.5 reports our results on the supply of credit. Our approach follows closely Khwaja and
Mian (2008). In all specifications we impose a stringent configuration of interacted firm × year
× industry × county fixed effects. Our specifications regress year-on-year changes in the granular
credit shock on year-on-year changes in loan-level credit supply. In columns (1)-(2), we look at
the impact of bank-level granular credit shocks - either instrumented or not - on all firms and find
no significant relationship. In columns (3)-(4) we restrict the sample to non-granular firms only.
Non-granular firms are defined as those whose bank loan shares are below the 50th (column (3))
or 25th (column (4)) percentiles of the loan share distribution. For example, the median loan share
is 0.000211 percent across all loans. We do find a statistically significant relationship in this case,
particularly when the threshold for non-granular firms is the 25th percentile. In columns (5)-(6)
we add a bank fixed effect to the baseline specification and results do not change substantially.
Overall, a one-standard deviation decline in the granular credit shock reduces loan supply growth
to non-granular borrowers by up to 71 basis points. This effect is strongly significant. These results
are suggestive of a “pecking order” of credit relationships where banks keep credit relationships
with their main clients unchanged but adjust lending conditions with their non-granular borrowers
in order to compensate for portfolio losses.

In Table 2.6 we repeat the same exercise but with interest flow as the left-hand-side variable.
We find a strong negative relationship between year-on-year changes in granular credit risk and
yearly growth in loan-level interest flows. We interpret these changes in flows as an effect on the
loan interest rate. A one-standard deviation decline in the granular credit shock increases interest
rate growth on loans to non-granular clients by up to 63.4 basis points. Taken together with the
positive association with credit quantities, we have identified granular credit risk as a textbook
supply-side disturbance: a negative granular credit shock results in a leftward shift in the supply
schedule, leading to a reduction in quantities and elevation in credit market prices. In addition, the
pass-through mechanism can also be interpreted as operating through a kind of bank credit supply
network: two firms that may otherwise not be connected can impact each other’s performance
through their association with a common lender24.

24We control for firm county and industry fixed effects as well as the bank fixed effects. We cannot fully rule out,
however, that these firms are not also associated through a production network as we do not have the data on firm
linkages to test that hypothesis. We return to this point in Section 2.6.
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Table 2.5: Spillovers from Granular Credit Shocks: Credit Supply

(1) (2) (3) (4) (5) (6)
Δ Bank Shock 0.023 0.022 0.165 0.625 0.168 0.717

(0.043) (0.043) (0.129) (0.288) (0.136) (0.311)

Year x Industry x County x Firm FE Yes Yes Yes Yes Yes Yes
Bank FE No No No No Yes Yes
Non-Granular Firms (50%) No No Yes No Yes No
Non-Granular Firms (25%) No No No Yes No Yes
Instrumented by GIV No Yes Yes Yes Yes Yes
Observations 15279 15279 3449 348 3413 322
R2 0.484

Notes: This table reports results from regressing year-on-year changes in (log) bank debt at the bank-firm level on
the year-on-year change in bank-level aggregated firm shocks which are either instrumented by the granular IV as in
columns (2)-(6) or not, as in column (1). Specifications are based on equation (2.9). The GIV is constructed based
on equation (2.6). Columns (1)-(2) include all firms. Columns (3)-(6) include only non-granular firms. Non-granular
firms are defined as firms whose bank loan shares are less than the 50th (columns (3)-(4)) or the 25th (columns (5)-(6))
percentiles of the loan share distribution, which is pooled over all banks and years. The full distribution of loan shares
is plotted on Figure 2.1. Standard errors (in parentheses) are double clustered at the bank and firm level.

Next, we ask whether the impact on non-granular firms ultimately leads to significant economic
consequences. We aggregate our data to the firm level and consider several firm outcomes as
dependent variables. Those include growth in sales, the wage bill, capital and the cash position.
In all of the specifications, we include year × industry × credit rating, as well as firm and bank
fixed effects. In addition, we focus on the samples of non-granular firms where non-granular firms
are defined as those whose bank loan shares are below the 50th or 25th percentile of the global
distribution of loan shares. In other words, we trace out the economic consequences of a credit
supply shock on the same non-granular firms that we show were impacted in Tables 2.5 and 2.6.

Results are reported in Table 2.7. The most interesting results are in columns (2)-(3), where
we document that a change in the granular credit shock at the bank level is positively associated
with capital growth at the firm level for non-granular borrowers. This suggests that a one-standard
deviation negative credit supply shock causes a decline in firms’ fixed capital investment growth
by roughly 13-24 basis points. The impact on non-granular firms defined by the median loan
share cut-off is strongly statistically significant. This result has immediate implications for the
real macroeconomy. We also considered outcomes such as sales, the wage bill and the firms cash
position. For these variables our coefficient estimates are imprecise, and in all of these cases we
are unable to reject the null hypothesis.

Even if non-granular firms have relatively low loan shares, they constitute an important fraction
of the economy. Specifically, non-granular firms that are defined by the median loan share cutoff
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Table 2.6: Spillovers from Granular Credit Shocks: Interest Rates

(1) (2) (3) (4) (5) (6)
Δ Bank Shock -0.004 -0.017 -0.361 -0.341 -0.421 -0.634

(0.064) (0.066) (0.189) (0.417) (0.190) (0.448)

Year x Industry x County x Firm FE Yes Yes Yes Yes Yes Yes
Bank FE No No No No Yes Yes
Non-Granular Firms (50%) No No Yes No Yes No
Non-Granular Firms (25%) No No No Yes No Yes
Instrumented by GIV No Yes Yes Yes Yes Yes
Observations 15279 15279 3449 348 3413 322
R2 0.533

Notes: This table reports results from regressing year-on-year changes in (log) interest flows at the bank-firm level on the
year-on-year change in bank-level aggregated firm shocks, which are either instrumented by the granular IV (columns
(2)-(6)) or not (column (1)). Specifications are based on equation (2.9). The granular instrument is constructed based
on equation (2.6). Columns (1)-(2) includes all firms. Columns (3)-(6) include only non-granular firms. Non-granular
firms are defined as firms whose bank loan shares are less than the 50th (columns (3)-(4)) or the 25th (columns (5)-(6))
percentiles of the loan share distribution, which is pooled over all banks and years. The full distribution of loan shares
is plotted on Figure 2.1. Standard errors (in parentheses) are double clustered at the bank and firm level.

account for at least 15% of total aggregate capital in the sample in any given year. Granular
credit shocks therefore affect a sizable fraction of aggregate capital via credit spillovers. It is
also important to emphasize that our estimates constitute a lower bound - we can not rule out
further second- and third-order spillover effects to granular clients as well. Granular credit risk
can therefore potentially affect an even larger fraction of aggregate investment through the broader
credit supply network as well as through general equilibrium effects.

Finally, we investigate whether the reduction in credit not only affects firm balance sheet
outcomes but ultimately firm default. We ask whether a change in the granular credit shock at
the bank level is associated with a higher frequency of bankruptcies at the firm level. Table 2.8
reports the results from our baseline probit regressions. In column (1), we include all firms in
the estimation sample. In column (2), we restrict the sample to non-granular firms only, with the
threshold being the 50th percentile of the loan share distribution. For both specifications we find a
strong negative association. For columns (4)-(6) and (7) we trace out the impact of granular credit
shocks in t-1 and t-3, respectively, on the probability of bankruptcy at t. In columns (3) and (6)
we run the same regressions but restricting the sample to firms with a loan share below the 25th

percentile of the distribution. Finally, in column (8) we regress the probability of a firm filing for
bankruptcy at any point over its existence in our dataset on its average granular credit shock. That
is, we ask if firms that ever default also experience, on average, worse granular credit supply shocks
from their lenders. Overall, across all 8 specifications, we find a very strong negative association
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Table 2.7: Firm Outcomes from Granular Credit Shocks

(1) (2) (3) (4) (5) (6)
Capital Capital Capital Sales Wages Cash

Δ Bank shock 0.040 0.241 0.129 0.001 0.007 0.142
(0.030) (0.095) (0.251) (0.031) (0.040) (0.146)

E(dependent variable) -0.081 -0.095 -0.105 0.026 0.034 0.067
Sd(dependent variable) 0.603 0.640 0.683 0.290 0.344 1.037
Year × Industry × County FE Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Non-Granular Firms (50%) No Yes No Yes Yes Yes
Non-Granular Firms (25%) No No Yes No No No
Instrumented by GIV Yes Yes Yes Yes Yes Yes
Observations 90800 39861 15444 44547 45452 43994

Notes: This table reports results from firm-level regressions where the outcome variable is either firm-level year-on-
year change in log(capital), log(sales), log(wage bill), or log(cash). The control variable is the year-on-year change
in bank-level aggregated firm shocks which are instrumented by the granular IV. Specifications are based on equation
(2.10). The granular instrument is constructed based on equation (2.6). Non-granular firms are defined as firms whose
bank loan shares are less than the 50th or 25th percentile of the loan share distribution. For firms with multiple banking
relationships, we define a firm as non-granular if the largest loan share of that firm across all credit relationships is less
than the 50th or the 25th percentile of the loan share distribution. For these firms, the bank shock is computed as the
average across all lending relationships. The full distribution of loan shares is plotted on Figure 2.1. All specifications
include interacted year x industry x county fixed effects and firm fixed effects. Standard errors (in parentheses) are
clustered at the firm level.

between granular credit risk and firm bankruptcy probability. The impact is quantitatively very
large - a one-standard deviation negative granular credit supply shock increases the likelihood of
bankruptcy by roughly 32-60 basis points for all firms, and 68-106 basis points for non-granular
borrowers. Additionally, we do find that firms that went bankrupt at some point in the sample are
also those that experienced abnormally bad granular credit supply shocks. Our results have direct
implications for the aggregate economy and consumer welfare, considering that firm bankruptcy
proceedings are very costly in practice.

We conclude this section by reiterating our main findings. First, idiosyncratic firm shocks
have a large, long-lasting and significant effect on loan-level returns. Second, these shocks survive
portfolio aggregation and impact bank-level outcomes. Importantly, these shocks originate from
granular, i.e. large, borrowers which is precisely the reason why they do not wash out. Third,
banks do not hedge granular credit risk with income from non-loan businesses such as derivatives
or equity investments. Fourth, there are considerable loan-level spillovers of granular credit shocks
on non-granular borrowers: affected banks reduce loan supply and increase interest rates on their
less important, non-granular clients. Fifth, those affected clients in turn reduce their investment
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Table 2.8: Firm Bankruptcy from Granular Credit Shocks

Probit Model (1) (2) (3) (4) (5) (6) (7) (8)
Probability of bankruptcyt Ever

bankrupt

ΔBankShockt -0.609 -0.680 -1.056
(0.110) (0.196) (0.307)

ΔBankShockt–1 -0.322 -0.965 -0.946
(0.123) (0.203) (0.334)

ΔBankShockt–3 -0.703
(0.239)

ΔBankShockt -1.273
(0.281)

Non-Granular Firms (50%) No Yes No No Yes No Yes Yes
Non-Granular Firms (25%) No No Yes No No Yes No No
Instrumented by GIV Yes Yes Yes Yes Yes Yes Yes Yes
Observations 61819 35965 20161 50897 29451 16302 16648 35965

Notes: This table reports results from firm probit regressions of likelihood of firm bankruptcy on the bank-level
granular credit shock. In columns (1)-(7), the outcome variable is probability of contemporaneous firm bankruptcy.
In column (8), the outcome variable is the probability that a firm ever goes bankrupt. In columns (1)-(3), the control
variable is the contemporaneous mean (change in the) bank-level credit shock which is instrumented by the granular
IV. In columns (4)-(7), the RHS variable is the GIV-instrumented bank-level credit shock lagged by either one or three
years. Columns (1) and (4) are for all firms in sample. Remaining columns restrict the sample to non-granular firms
only. Non-granular firms are defined as firms whose bank loan shares are less than the 50th or the 25th percentiles of
the loan share distribution, which is pooled over all banks and years. For firms with multiple banking relationships,
we define a firm as non-granular if the largest loan share of that firm across all credit relationships is less than the 50th
or the 25th percentile of the loan share distribution. For these firms, the bank shock is computed as the average across
all lending relationships. The full distribution of loan shares is plotted on Figure 2.1. Standard errors in parentheses.
Firm bankruptcy information is from the credit rating agency Bisnode.

in physical capital and are much more likely to file for bankruptcy. Overall, our results show that
idiosyncratic shocks to granular borrowers have important implications for the broader financial
and real economy. In the language of financial regulators, single-name credit concentration risk is
quantitatively important.

2.5 Heterogeneity and Robustness

In this section, we first provide further evidence on the underlying mechanisms behind our
findings. In 2.5.1 we focus on whether certain firms are more likely to transmit idiosyncratic firm
performance shock to their banks and in 2.5.2 whether certain banks are more exposed to granular
credit risk. In 2.5.3 we discuss several important robustness checks.
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2.5.1 Firm Heterogeneity

Loan Outcomes - Balance Sheet Heterogeneity We start by exploring heterogeneous effects
of idiosyncratic firm shocks originating from firms with different characteristics. Specifically, we
augment specification (2.2) by interacting our extracted shocks with lagged firm characteristics.
We are interested in how the transmission mechanism differs for firms with high leverage, low asset
size, low equity, short average debt duration, high bank credit reliance, low credit rating, and young
age. Each characteristic is thus a dummy which equals 1 for firms in that particular category of
interest and 0 otherwise.

Table 2.15 in the Online Appendix presents the results. There is overall rich firm heterogeneity
behind our loan-level outcomes. Relative to the baseline, the pass-through of idiosyncratic firm
shocks is stronger for firms with high leverage, low assets, low equity, short debt duration, high
reliance on bank debt, lower-than-“A” credit ratings, and firms younger than 3 years. All of these
firms, relative to the average firm, are more likely to be more “risky” from the bank’s perspective.
Interestingly, we find that interactions with firm size and debt duration are statistically different
from other characteristics. For macro-prudential purposes, these results offer a new dimension for
regulation of concentration risk: banks which are heavily exposed to, for example, small, risky,
young firms are at much greater risk of suffering from detrimental idiosyncratic credit shocks than
intermediaries that lend to liquid and non-levered corporates.

Loan Outcomes - Extensive Margin Are our loan-level results driven by the intensive or the
extensive margin? We are interested in seeing whether the transmission of idiosyncratic firm shocks
is different among firms that enter/exit the industry or go bankrupt. Our strategy is to construct a
dummy variable for each of the three groups of firms. For entrants, the dummy takes the value of
unity in the year following the entry, while for leavers and bankrupt firms the variable equals unity
in the year prior to the event. We also consider an “ever-bankrupt” dummy which takes the value
of unity for firms that filed for bankruptcy at any point during the 2003-2015 period. The latter
variable captures potentially some unobserved intangible characteristics such as poor management
skills, which are common for unsuccessful firms but cannot credibly be inferred from balance sheet
information.

Table 2.16 in the Online Appendix reports the results. We see that the shock transmission
mechanism is stronger (weaker) among firms which have just entered (about to exit) the industry.
We do not find that the channel is stronger among firms which go bankrupt. Overall, the extensive
margin is active but does not dominate our results. In other words, even conditional on firms being
non-entrants, non-leavers, and not in bankruptcy, negative idiosyncratic shocks can cause lower
bank returns. That implies that our results are driven mostly by the intensive margin.
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Loan Outcomes - Ownership and Industry Heterogeneity Next, we investigate whether our
results are driven by firms with a particular ownership structure or industry affiliation. For example,
is the shock transmission stronger among special financial vehicles or construction firms? In Table
2.17 of theOnlineAppendixwe report firm ownership heterogeneity results, alongwith our baseline
estimates. We see clearly that our results reflect conventional privately owned firms and not state,
community, or special financial vehicles. Privately owned firms dominate our sample by a wide
margin.

Table 2.18 explores heterogeneous effects by firm sector. Our baseline estimates are almost
identical to results from manufacturing firms. Overall, there doesn’t appear to be any abnormality
across different industries; the real estate sector is the only one where pass-through appears to be
significantly smaller.

LoanOutcomes -GeographicalHeterogeneity Are our loan-level results driven by idiosyncratic
shocks to firms located in particular geographical regions of Norway? Figure 2.6 in the Online
Appendix plots a coloured map of Norway, where each of the 19 counties is colored with a different
shade of blue. Darker regions represent a higher local pass-through coefficient of idiosyncratic
firm shocks onto loan-level returns. Recall that our baseline average pass-through estimate at the
loan level is 0.361. Based on the map we document two main results. First, there is interesting
cross-regional heterogeneity in the estimates that is potentially worth exploring in future research.
Second, this heterogeneity is not too drastic: county-wide averages are in the [0.19,0.44] range25.
Finally, we see that our result is not driven solely by Oslo and neighboring counties but is in fact
present throughout the country. We therefore conclude that our results are likely not driven by
some unusual regional clustering of correlated idiosyncratic shocks.

2.5.2 Bank Heterogeneity

In this section, we explore whether various banks are affected differentially by granular credit
shocks aggregated at the portfolio level. We explore several dimensions of bank heterogeneity:
portfolio risk weights, (log of) risk-weighted assets (RWA), regulatory capital ratio, loan portfolio
Herfindahl (HHI), (log of) number of loans, liquidity ratio, and profitability ratio.26 We compute
portfolio risk weights by dividing RWA by book assets. The regulatory capital ratio is defined
as regulatory capital over RWA. Liquidity is defined as the ratio of cash holdings to book assets.

25The exception is the northernmost county, Finnmark, where we find a point estimate of -0.10. However, this
county is also by far the least populated area of Norway.

26We use RWA as a proxy for bank size, broadly defined. We have also experimented with book assets, book
equity, and regulatory capital as alternative size measures. Results do not change. In addition, we also condition on
whether banks are domestically or foreign owned. Baseline results are quantitatively very close to the sub-sample of
privately-owned banks; estimates based on foreign banks are consistently imprecise.
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Profitability is defined as the ratio of profits before taxes to book assets. All characteristics are
lagged. For each characteristic we define a dummy variable based on the median of the respective
lagged distribution. Table 2.20 of the Online Appendix presents the results. Each column reports
coefficients for interactions of GIV-instrumented bank-level firm shocks and dummies for respective
lagged bank characteristics. All specifications include the time and bank fixed effects as well as the
usual set of bank controls.

From the table we observe several notable results. First, the number of loans does not materially
affect the transmission of granular credit shocks, since the pass-through is significant for banks with
a high number of loans (column (5)). This suggests that granular credit risk is not merely a “small
N” problem. Second, the pass-through is stronger for banks with low RWA (column (2)) and high
capital ratios (column (3)). The two effects are interconnected, since in the cross-section larger
banks are more levered and thus have lower capital ratios.27 Third, the pass-through is twice as large
for banks with high loan portfolio concentration (column (4)). This is reassuring, since given the
same volatility of idiosyncratic firm shocks, higher concentration should make banks more exposed
to shocks stemming from the right tail of the loan share distribution. Last but not least, in column
(1) we see that banks with higher risk weights are more exposed to granular credit shocks.28 This
is potentially an important finding because credit concentration risk and the risk-taking channel
may form complementarities that could impact anything from the financial boom-and-bust cycle
to the transmission of monetary policy (Bruno and Shin, 2015).29 In order to inspect and better
understand this mechanism, we now perform an additional exercise below.

We examine the impact of granular credit risk on bank returns, interacting the granular credit
risk shock with both portfolio risk weights and other bank characteristics. Table 2.21 in the Online
Appendix reports the results. Overall, we observe that (with the exception of the left column in
specification (6)) estimates for banks with high risk weights are strikingly always higher than for
banks with low risk weights. This strongly suggests that the credit concentration risk and risk-
taking channels are positively associated. The most notable are results in columns (1), (3), and
(6). These suggest that the pass-through of granular credit shocks, conditional on the sample of
banks with high risk weights, is strongest if banks are small, have concentrated loan portfolios, and
record high profits. The result on profits (column (6)) is particularly intriguing since it is consistent

27The observation that smaller banks are more exposed to granular credit shocks is in line with the existing theories
that emphasize the role of bank size heterogeneity in the transmission of aggregate and idiosyncratic disturbances
(Stavrakeva, 2019; Davila and Walther, 2020; Jamilov, 2021). In particular, smaller banks tend to have a greater
balance sheet sensitivity with respect to exogenous shocks.

28Risk weights are not correlated with any of the proxies of bank size: RWA, capital, book assets, or book equity.
They are also uncorrelated with the bank-level share of corporate credit to total assets.

29It is possible that banks with high risk weights are exposed to firms that are inherently riskier, in the spirit of
(Chang et al., 2021). Our firm balance sheet heterogeneity analysis in Table 2.15 concluded that returns on loans that
are extended to riskier firms are more likely to be affected by idiosyncratic firm shocks.
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with the risk-taking channel: in good states of the world, i.e. when individual firm performance is
high, banks with low risk aversion build riskier, concentrated portfolios and record higher profits.
However, as our paper argues, this comes at the (potentially unhedged) cost of greater exposure to
granular credit risk and eventual portfolio losses during the bad state, i.e. when firm performance
is low. Overall, our results add an interesting new angle of portfolio concentration to the literature
on endogenous financial cycles driven by risk taking of financial intermediaries (Coimbra and Rey,
2019).

2.5.3 Robustness Checks

In this section, we provide several additional robustness checks. We show that our results
are robust to the Great Financial Crisis (GFC). We check that idiosyncratic firm shocks have a
pairwise correlation of approximately zero. Finally, we conduct two placebo tests at various levels
of aggregation to lend further support to our baseline results.

Robustness to GFC In order to investigate whether the relationship between granular credit risk
and loan or bank outcomes is robust to the Great Financial Crisis, we redo our estimation focusing
on years before or after the GFC. Table 2.22 in the Online Appendix reports the results. We
highlight three main observations. First, our results do not vanish for either of the two sub-periods.
Second, this is true for both loan-level and bank-level estimations. Third, estimates are slightly
noisier for the pre-GFC period, although still statistically significant.

Pairwise Correlations Test An important question that must be addressed is potential piece-
wise correlation of our idiosyncratic firm shocks. Systematic residual correlation across firms may
indicate that our shocks are still driven by common factors, which would invalidate our conjecture
that fluctuations are truly idiosyncratic. For example, we could be capturing some unobserved
network effects such as the ones induced by firm trade credit relationships. To test this, we compute
pairwise correlation coefficients across any two pairs of firms in our sample. Figure 2.9 of the
Online Appendix presents the result. In total we have 1,861,485 pairs across a balanced panel
sub-sample of our data. The average pairwise correlation is 0.019 and the standard deviation is
0.342. This implies that the average correlation coefficient can not be statistically distinguished
from zero. This provides reassuring evidence in support of our idiosyncratic firm shocks being truly
idiosyncratic and not being driven by unobserved factors that induce cross-sectional correlation,
such as production networks.

Placebo Regressions To ensure that we do not falsely reject the null hypothesis due to potentially
serially correlated error-terms, we follow Chetty et al. (2009) and implement a nonparametric
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permutation test for whether the true effect of idiosyncratic firm shocks on loan returns is zero.
In order to do so, we randomly reassign the estimated firm-level shocks and redo the analysis at
the loan and bank levels. Placebo Monte-Carlo permutations results are reported in Table 2.23
of the Online Appendix. We find that we can reject the null hypothesis of no association (at the
1% level) under this non-parametric distribution. In words, it’s highly unlikely that our results
are due to random chance. Furthermore, at the level of the bank, we confirm that our finding of
strong asymmetric effects is not coincidental since the permuted positive-only shock estimate has
a p-value of 0.82, while the negative-only shock estimate has a p-value of 0.000.

Further, to illustrate howour idiosyncratic shocks pick up economicallymeaningful information,
we run a series of placebo regressions where firm shocks are randomly drawn from a uniform
distribution instead of being extracted from the economic specification 2.1. The results from using
these drawn shocks at the loan- and bank-level are reported in Table 2.24 of the Online Appendix.
Across all specifications and levels of aggregation we find no association between these random
shocks and loan or bank outcomes.

Fitting a Fixed Effects Model with AR(1) Disturbance We run our firm shocks through an
autoregressive linear model of order 1 in order to establish whether shocks are persistent or not. We
also want to facilitate future structural analysis of models with a financial sector that is subject to
“idiosyncratic granular borrower risk”. Specifically, we fit the full cross-section of firm shocks into
a linear fixed effects model with an AR(1) disturbance term. Results are reported in Table 2.25 of
the Online Appendix. Parameters of the process - autoregressive coefficient and standard deviation
of the error term - are reported for all levels of aggregation. Overall, we find that the idiosyncratic
firm shock is volatile (standard deviation of roughly 0.2) and not persistent at all (auregressive
coefficient of roughly 0.12-0.32). A volatile iid process is likely to approximate granular credit risk
rather well.

2.6 Discussion

In this section, we discuss several issues that are relevant for our empirical analysis. First,
we discuss the literature on firm and bank credit networks and its implications for our results and
methodology. Second, we discuss potential origins of large exposures.

2.6.1 Network Effects

Avibrant new literature emphasizes the role of bank and firm credit networks in the amplification
and propagation of non-systematic shocks. One stream of the literature shows that bank credit
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supply shocks propagate along firm production networks, causing sizable real economic effects
(Huremovic et al., 2020; Dewachter et al., 2020). We relate to this literature in two ways. First,
in our analysis of economic spillovers, we essentially identify a credit supply network: there exists
a pass-through mechanism for idiosyncratic borrower risk between two potentially unrelated firms
that are “connected” via the balance sheet of their common lender. Second, a negative granular
credit shock, passed onto non-granular borrowers via higher rates or lower quantities of credit, is a
leftward shift of the credit supply curve and maps into the bank credit supply shocks in Huremovic
et al. (2020) and Dewachter et al. (2020). We establish the first-degree direct effect of these shocks
on firm performance and bankruptcy rates. However, because we do not observe the Norwegian
input-output or firm trade-credit network, we can not speak of higher-degree effects from these
networks. Thus, our analysis of economic spillovers of granular credit shocks in Section 2.4.4
establishes a lower bound on the total pass-through to the real economy.

Another stream of the literature such as Elliott et al. (2020) has recently shown that when banks
are individually exposed to the same set of firm industries, idiosyncratic industry-specific risk
gets amplified as opposed to getting mitigated by wholesale interbank trading markets. More
broadly, mismeasured idiosyncratic firm disturbances could actually masquerade some unob-
served/unmeasured borrower-side network-level risk. In the first stage of our analysis, it is possible
that our measure of firm value-added shocks is in fact some kind of common local production
network risk. This problem is mitigated considerably by the following three factors. First, when
extracting firm value-added shocks, we impose a stringent combination of industry, location, and
time fixed effects. Any unobserved network factor would have therefore to operate within the same
year, industry, and county. Observations are sufficiently dispersed across geographical regions,
with four out of 19 counties having more than 100,000 loan × year observations and the average
being just over 50,000. In addition, our industry identifiers are very granular with only 3 out of the
99 two-digit industries having more than 100,000 loan × year observations. Second, we plotted
in Figure 2.9 the pairwise cross-sectional correlation of firm shocks and found no indication of
common shocks. Third, the presence of local production network effects would not invalidate our
GIV approach. As long as the sequence of idisoyncratic shocks is unrelated to bank-side factors,
our exogeneity assumption in equation (2.8) holds regardless of whether the firm-level shocks truly
are firm-level or composite outcomes of very local network structures. The question of networks
is therefore a matter of composition, not of identification.

2.6.2 Origins of Large Exposures

Credit concentration is an equilibrium object that is an outcome of more fundamental factors
such as monitoring technology, risk preferences, information structure and expectations. Although
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writing down a micro-founded model of banking concentration is beyond the scope of this paper,
discussing theoretical causes of concentration is useful for at least two reasons. First, the orthog-
onality of loan shares to idiosyncratic firm shocks is a key component of our empirical strategy,
as highlighted in equation (2.8). Second, our paper is related to a large literature on the trade-off
between risk concentration and economic performance and any normative implication would have
to take into account the underlying causes of concentration.

One reason for the large degree of credit concentration observed in our data is home bias.
Juelsrud and Wold (2020) document a substantial degree of within-county bias in the Norwegian
banking system (see Figure 2.8). Using loan-level data, Juelsrud and Wold (2020) show that over
2003-2015 the average proportion of bank credit to firms that are headquartered in the same region
as the lender was 55%. This compares to a random-assignment counterfactual of less than 10%,
implying a home bias of 45%. Home bias is, of course, a perennial stylized fact in international
finance, banking, and macroeconomics (Coeurdacier and Rey, 2013).

In what follows, we highlight three potential causes of portfolio concentration: asymmetric
information, behavioral biases and the distribution of firm sizes. Asymmetric information and
behavioral biases are also potential factors behind home bias in portfolios.

Asymmetric Information. Concentrated lending could be a by-product of persistent credit rela-
tionships. When information acquisition on new clients is costly, lenders may find it optimal to do
business with a recurring set of borrowers, for instance by increasing the number of new commit-
ments per relationship such as offering additional fixed-term loans or extending new credit lines
(Sufi, 2007). Along the intensive margin, an increase in the exposure of an informed lender signals
a higher quality of the underlying borrower, thereby reducing the cost of asymmetric information
(Leland and Pyle, 1977). Van Nieuwerburgh and Veldkamp (2009) show in a rational inattention
framework that investors may choose to learn only about assets for which they had an information
advantage to start with (such as home assets), thus amplifying initial information asymmetries.

Ivashina (2009) proposes and tests a theory where the price of a loan is determined by a
trade-off between diversification and asymmetric information. If a bank raises its exposure to a
single borrower, two effects take place. First, the lender demands a higher premium for being more
exposed to borrower-specific idiosyncratic risk. Second, assuming that expenditures on monitoring
scale with exposure, concentration also reduces information asymmetry between the lender and
the borrower, thus reducing the premium. In equilibrium, the price of the contract depends on the
degree of information asymmetry and the magnitude of idiosyncratic fluctuations.

In our data, we observe a substantial degree of credit concentration. This is true at all levels
of aggregation: single name, geographical, sectoral. In light of Ivashina (2009), this may suggest
that Norwegian lenders attach large benefits to information acquisition. This is intuitive, given
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that the majority of firms in our data are not publically listed and are instead locally-focused small
enterprises. Information collection andmonitoring is therefore costly, and potentially increaseswith
distance. This could explain both the regional home bias and the single name credit concentration
facts. Banks’ portfolio-level (over-)exposure to single borrowers solves the structural asymmetric
information problem, but at the cost of an elevated vulnerability towards idiosyncratic shocks.
Sensitivity to a given distribution of idiosyncratic borrower shocks (the loan share distribution si,j,t)
can be explained by the banks’ decision to invest in localized information acquisition, which is in
turn driven by pre-determined factors such as the returns to information acquisition. This class of
explanations validates our empirical approach.

Behavioral Biases. A second theory that could rationalize credit concentration rests on behavioral
biases and overconfidence30. Huberman (2015) shows that some investors tend to ignore portfolio
theory and invest in familar assets. In recent work, Bordalo et al. (2018) develop a theory of
“diagnostic expectations” and apply it to canonical macroeconomic models of credit cycles. In
their theory, agents persistently overweight future outcomes that have become more likely given
recent data. Investors in this framework wouldmake predictable forecast errors and could be "over-"
or "underconfident" relative to the rational expectations benchmark.

The diagnostics expectations theory could potentially explain why lenders engage in excessive,
unhedged credit concentration. Having established a credit relationship with a client that a bank
trusts, the bank “specializes” in that client conditional on having exuberantly positive expectations
about, for instance, the bank’s own ability to pick superior portfolios and generate above-average
returns based on own skill. Conditional on this expectations formation mechanism, the bank
therefore “rationally” ignores the considerable downside risk of the strategy, i.e. the concentration
risk. Our exogeneity assumption (2.8) is valid under diagnostics expectations at the bank-level. In
that case, overexposure of bank i in firm j at time t is largely independent of the firm’s present
characteristics but is instead a function of i’s subjective beliefs. Thus, behavioural biases of this
kind would also be compatible with our empirical approach.

Distribution of firm sizes. Finally, credit concentration could be a by-product of the underlying
firm size distribution also being fat tailed, which is definitely the case for Norway. Studies by
Carvalho and Gabaix (2013) and Carvalho and Grassi (2019), among others, have shown that
presence of a small number of large firms can explain a substantive percentage of aggregate
macroeconomic fluctuations. Similarly, Gaubert and Itskhoki (2018) show that up to 20% of
international export intensity can be attributed to granular firms. In the case of bank lending, if

30Fuster et al. (2010) review the extensive literature on the departures from rational expectations in finance and
macroeconomics.
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large firms are also large borrowers - a condition which is true in our data - the Pareto rate of the
credit share distribution is driven by the Pareto rate of the firm size density. While this is a very
natural explanation for the observed credit concentration and the one we pursue below in Section
2.7, it is worth nothing that in our data we also observe substantial heterogeneity in portfolio
Herfindahl indices across banks, even among lenders of the same region. Banks do not all hold
the same portfolio. Thus, (local) firm size concentration is not enough to completely explain either
the home bias in bank lending or portfolio concentration. Financial frictions - be it informational,
technological, or behavioral - are important as well.

For the purpose of the empirical analysis, we note that the three classes of models that we
put forward to explain the origin of credit concentration (asymmetric information, behavioural
biases, distribution of firm sizes) are all compatible with our empirical approach and identification
strategy.31

2.7 Theoretical Motivation

Throughout the paper, we have exploited the stylized fact that the distribution of bank credit
exhibits a fat tail. In this section, we provide one simple possible theoretical rationalization for this
observation.32 In the data, the right tail of the loan distribution is populated by a small number of
very large loan contracts (as a share of the bank portfolio). These large loan contracts are almost
always underwritten to big firms, a fact which we verify from our dataset. It is well known that
the size distribution of firms is fat-tailed. If firm credit is a function of firm size, then we can
precisely derive how the granularity of the firm distribution translates into the granularity of credit
and affects portfolio-level outcomes.

A theoretical challenge encountered when formalizing this intuition is the fact that both firm
loan and firm size distributions could potentially have infinite variances. In this particular case,
standard central limit theorems break down. Following Gabaix (2011), we therefore resort to
Lévy’s generalized central limit theorems that can accommodate distributions with fat tails. In
this section, we provide sufficient conditions for distributional parameter values to ensure that -
assuming the firm size distribution has a fat tail - the firm credit distribution also has a fat tail.

A Simple Model of Firm Debt Suppose there are N firms in the economy33. Before production
can begin, firms must obtain funding. By assumption, each firm i is cash-strapped and has to start
the period by borrowing Lit from a bank. The growth rate of firm debt demand evolves according

31Those theories would have, however, different normative implications.
32As noted in section 2.6.2, other frictions would have to be added to fully account for the data.
33Alternatively, suppose there are N borrowers in a given bank’s portfolio and we treat the bank as the “economy”.
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to:
ΔLi,t+1
Lit

= fini,t+1 (2.11)

where fi is the volatility of firm-level debt growth and ni,t+1 are i.i.d. random variables. Economy-
wide total stock of firm debt is:

Dt =
N∑
i
Lit (2.12)

and growth of financial debt in the economy is

ΔDt+1
Dt

=
N∑
i
fi
Lit
Dt

ni,t+1 (2.13)

The variance of growth of total debt is the weighted sum of the variance of the volatility
of idiosyncratic shocks to debt demand, with the shares equaling the squared share of firm i’s
borrowing in the total economy. Assuming fi= f ∀ i, we have:

fD =
[ N∑

i
f

(Lit
Dt

)2] 1
2 (2.14)

It is clear from equation 2.14 that the variance of total debt depends on the distribution of
firm-level debt demand Lit. In our data, we see that firm-level borrowing is strongly positively
correlated with firm size. Let firm size, proxied by either total assets or sales, be yit. Assume
idiosyncratic volatility of firm growth fy is constant and common to all firms. Following Gabaix
(2011), we assume that y1, . . . , yN are drawn from a power law distribution:

P(y > x) = (1 + x)–U (2.15)

with the exponent U ≥ 1. Note that we set the location and scale parameters to zero and unity,
for simplicity. In the literature, this precise specification of a power law corresponds to a Pareto
distribution of Type II.

Now, we assume a specific functional form for the amount of borrowing Lit as a function of
size yit:

Lit = y_iit (2.16)

where _i > 0∀i. We proceed with the assumption that _i = _ is homogenous across all firms.
Drawing from the literature on statistics, economics, and actuarial sciences, we know that once

yi follows a power law, then y_i follows a Champernowne (1952) distribution, also known as the Burr
Type XII, with parameters {g, U} where g = 1/_ (Rodriguez, 1976). In economics, this distribution
is commonly referred to as the Singh-Maddala (SM) density (Singh and Maddala, 1976). It has
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been used widely to model household income and wealth inequality. Formally:

P(L > x) ∼ (1 + xg)–U (2.17)

with g > 0. For the special case of g = 1, firm debt becomes linear in size, the distribution
collapses to a Pareto Type II, and we are back to Gabaix (2011). In general, the rate of decay of
fD, as the sample size grows, will depend on the value of structural parameters. For the special
case of 1 < gU < 2, the SM random variable has an infinite variance and standard limit theorems
break down. There is therefore a direct link between the fat tail of the firm distribution and of the
credit distribution. This result is summarized in our main proposition below:

Proposition 3. Let firm sizes yi . . . yN be drawn from a power law distribution with exponent
U ≥ 1. Suppose each firm has non-rationed access to the credit market, through which on demand
it borrows a fraction y_–1 of its size, with _>0. Firm-level borrowing is thus L = y_, which grows
with a constant idiosyncratic volatility f. L follows the Singh-Maddala distribution with power
and shape parameters {U, g}:

P(L > x) ∼ (1 + xg)–U

with g = 1/_. Then, as N→∞:

• For 1 < Ug <2, by the Lévy’s central limit theorem, the volatility of aggregate debt D is given
by fD ∼ f 1

N1–1/(Ug)
√
[, where [ is a Lévy random variable with exponent Ug2

• For Ug ≥ 2, by the Lindeberg-Lévy classical central limit theorem, the volatility of aggregate
debt D is given by fD ∼ f 1

N1/2
√
[, where [ is a constant

Proof. The strategy of the proof follows closely Appendix 1 and Proposition 2 in Gabaix (2011).
First, we show that L, which follows the Singh-Maddala distribution, satisfies Assumptions 1-2
below:

Assumption 1: liml→∞ P(L1 > x)/P(|L1| > x) = ^ ∈ [0, 1]

Assumption 2: P(|L1| > x) = x–UB(x) with B(x) a slow-moving function.

Assumption 1 is verified trivially because SM is defined on the non-negative real line. As-
sumption 2 holds once we re-write: P(|L1| > x) = x–U( x

1+xg )U. So, B(x) = ( x
1+xg )U. For g = 1, the

function is clearly slow-moving. Generally, for g > 0 we must show that:

lim
x→∞

B(tx)/B(x) =
limB(tx)
limB(x)

= 1 (2.18)
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for any t>0 and for as long as the denominator is 6= 0. limx→∞ B(x) = limx→∞
[ x

1+xg
]U =

limx→∞
[

1
1/x+xg–1

]U
= 1. Similarly for B(tx).

Next, we construct three sequences (an, bn, sn) that constitute the infinite sum across firms. an =

inf (x : P(|L1| > x) ≤ 1/N) ∼
(
N1/U – 1

)1/g
≈ N

1
Ug . bn = nE

(
L11|L|≤an

)
= 0. And sn = ∑N

i Li.
Thus:

lim
N−→∞

(
N

1
Ug

)–1 N∑
i
Li

d−→ [ ∼ Lévy(Ug) (2.19)

In the remainder of the proof, we apply equation (2.19) to the case of constant f, i.e. when firm-
liability volatility is constant over time and not correlated cross-sectionally. When Ug > 2, standard
Lindeberg-Lévy applies. When 1 < Ug < 2, the loan portfolio Herfindahl decays according to:

N1– 1
Ug

(
N

–2
Ug

∑N
i L2

i

)1/2

N–1 ∑N
i Li

d−→ Lévy1/2

E(L)
(2.20)

When 1 < Ug < 2, the denominator (mean of Singh-Maddala) is finite. Since firm-level volatilities
are constant, and Lévy is a stable random variable, the volatility of loan growth will be therefore
decaying at the rate proportional to N1– 1

Ug :

fD ∼
1

N1–1/(Ug)Lévy
1/2f (2.21)

For g = 1 we are in the special case of Singh-Maddala collapsing to the Pareto II distribution and
standard results in Gabaix (2011) are obtained up to the slow-moving function B(.). For g 6= 1 but
g > 0, the sufficient statistic for the comparison of rates of convergence across finite and infinite
variance cases is Ug.

�

Our notationmeans thatfD ∼ f 1
N1–1/(Ug)

√
[ implies convergence in distribution offDN1–1/(Ug)

to f
√
[, where [ is a stable Lévy random variable. What we have shown is that the distribution

of firm debt could have either thin or fat tails. If Ug ≥ 2, fD decays according to 1√
N
. However,

if 1 < Ug < 2, then fD decays at the rate of 1
N1– 1

Ug

, i.e. more slowly. In this case, idiosyncratic
shocks to borrowers could drive the total debt portfolio and, as in our main empirical experiments,
affect aggregate outcomes.
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2.7.1 Model Parameter Estimation

In this section, we test whether the parameter restriction 1 < Ug < 2 can be supported by our
data. First, we fit the Generalized Pareto density into the size distribution of firms. Most studies
in the literature treat sales as the size proxy. We, apart from sales, also consider total equity and
total assets as alternative size proxies that could be relevant for deciding on how much bank credit
to request. This step grants us three estimates of U. Second, we back out firm-specific _i directly
from equation (2.16) and then take the median of the resulting distribution. We conduct this step
for all three definitions of size as well. As a result, we have three estimates for Ug - the sufficient
statistic that determines the speed of decay of fD.

Table 2.26 in the Online Appendix reports the results from maximum likelihood estimation
of U and other parameters. Our estimates confirm that the 1 < Ug < 2 restriction is supported
in the data. We find that U is in the [1.26, 1.49] range and Ug is between 1.38 and 1.64, i.e.
firmly within the (1,2) bounds. Our estimation results suggest that both the firm size and the firm
loan distributions can be reasonably approximated with fat-tailed densities. The aggregate credit
distribution can be affected by firm-level disturbances: credit risk is granular.

2.8 Conclusion

This paper has developed the first, bottom-up causal quantification of single-name credit con-
centration risk. To the best of our knowledge, we are the first to provide evidence on single-name
(individual firm-level) as opposed to sectoral or geographic exposure risk. Empirically, we show
there is a causal link between idiosyncratic firm shocks and returns on bank credit. Unexpected
shocks to firm value-added affect loan-level and bank-level performance. We capture strong asym-
metries associated with the debt contract structure by showing that negative firm shocks lead to
a reduction in bank returns, while positive shocks have zero impact. We explored numerous
dimensions of heterogeneity at all levels of aggregation.

We find strong evidence of a second-level pass-through effect of granular borrower risk onto
other firms. Banks, in response to negative shocks to their granular borrowers, cut credit supply
and increase interest rates on loans to their non-granular borrowers. Affected non-granular firms, in
turn, reduce investment in physical capital. Affected firms are also more likely to file for bankruptcy
following a negative granular shock to their credit provider. These results suggest that single-name
credit concentration risk carries significant implications for the macroeconomy.

The first key message of the paper is therefore that idiosyncratic firm shocks do not wash out
and still matter at the level of the bank portfolio. Conventional wisdom that banks are subject
only to aggregate risk due to pooling and the law of large number is not borne out in the data.
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Concentration risk matters quantitatively. Our evidence from non-interest income data further
suggests that banks do not compensate for loan book losses through earnings from alternative
sources such as derivatives or equity holdings. The second key message of the paper is that there
are important granular credit risk spillovers affecting the real economy.

Methodologically, we make progress on identification of firm demand-side shocks at the level
of bank portfolios by employing the “granular instrument variable” approach developed in recent
work by Gabaix and Koĳen (2020a,b). This method takes advantage of the fact that the distribution
of loan shares features a fat tail and allows for a tightly-identified pass-through of granular risk.

Our results have implications for the regulation of large credit exposures. Our pass-through
estimates in Table 2.3 could be used to compute the granular value-at-risk, i.e. the bank capital
that is at risk if a granular borrower suffers a bad negative shock. Our estimate of the loan share
Pareto power of section 2.7 could be used as a tool for understanding when banks are becoming
prone to granular credit risk. A drop in the Pareto power estimate to 2 or below could constitute a
regulatory “red flag”. In practice, the parameter could be computed for each financial institution
in the cross-section. The system wide weighted average Pareto estimate could become a novel
time-series indicator of aggregate concentration whose changes could track fluctuations in system
wide credit concentration risk.
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Appendix

2.9 Factor Analysis

2.9.1 Factor Extraction at the Firm Level

Our baseline firm shock measure is the residual nj,t obtained from estimating equation (2.1) in
main text, repeated here:

lnVAj,t = Uj,t,s(j),z(j) + V1 ln Kj,t + V2 lnWj,t + _′Xj,t + nj,t. (2.22)

The residual nj,t, although orthogonal to a range of time-varying firm characteristics and fixed
effects, may still contain components which are common across firms. To address this concern we
now consider a robustness exercise in which we extract both parametric and non-parametric factors
explicitly. Formally, we assume that the residual can be expressed as:

nj,t = Xxj,t
′[xt + X′j[t + uj,t, (2.23)

for a vector of parametric [xt and non-parametric [t factors. For the parametric factors, the
firm-specific time-varying loading vector Xxj,t is assumed to be a function of observable firm
characteristics. For the non-parametric factors we assume a constant firm-specific loading vector
Xj. The goal is to estimate both common components (Xxj,t

′[xt and X′j[t) and to replace our firm
shock measure nj,t with a more robust alternative uj,t.

We proceed in two steps. First, we extract parametric common components by estimating a
richer version of equation (2.22), in which we interact all time-varying firm-specific regressors
(lnKj,t, lnWj,t,Xj,t) with year dummies. Hence, Xxj,t is given by the vector of explanatory variables
in equation (2.22). Formally, we re-estimate equation (2.22) assuming time-varying coefficients:34

ln VAj,t = Uj,t,s(j),z(j) + V1,t ln Kj,t + V2,t lnWj,t + _′tXj,t + ňj,t. (2.24)

In the second step, we perform Principal Component Analysis (PCA) on the residual ňj,t by
estimating:

ňj,t = X′j[t + uj,t (2.25)

Since our firm panel is unbalanced, we employ an iterative Expectation Maximization (EM)
algorithm as in Gabaix and Koĳen (2020), and estimate principal components recursively. Starting

34Wemake one adjustment relative to the specification in equation (2.22), by replacing the quadratic age specification
with one-year age fixed effects.
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Table 2.9: Loan Outcomes with Firm Factors Extraction

(1) (2) (3)

Dep. Var.: Return on Loan

(1) Firm Shock: ňj,t 0.307 0.307 0.333
(0.016) (0.017) (0.018)

(2) Firm Shock: u1
j,t 0.279 0.279 0.299

(0.016) (0.017) (0.018)
(3) Firm Shock: u2

j,t 0.239 0.237 0.255
(0.016) (0.017) (0.018)

Bank x Industry x Year FE No Yes No
Bank x Industry x Year x Loan-type x County FE No No Yes

Notes: This table reports results from the regression of loan-level returns on loans on three alternative measures of
idiosyncratic firm shocks. Row (1) refers to the shock measure after extracting parametric common components. Row
(2) refers to the shock measure after extracting parametric common components and one latent common component.
Row (3) refers to the shock measure after extracting parametric common components and two latent common com-
ponents. All shocks have been normalized by their standard deviations. Standard errors (in parentheses) are double
clustered at the firm-year level.

with the first factor, the algorithm repeatedly regresses ňj,t on [1
t and then ňj,t on X

1
j until convergence.

For factors f = 2, . . . , fmax, least squares iterations are performed on the remaining residual from
equation (2.25) after extracting f –1 components, denoted uf–1

j,t .35 In our analysis below we consider
fmax = 2 components and denote by u1

j,t and u
2
j,t the residuals obtained after extracting one and two

factors, respectively.36
We then run our loan-level regressions based on equation (2.2) in main text with the three new

estimated firm shock measures: ňj,t, u1
j,t and u2

j,t. In other words, we substitute the baseline shock
variable nj,t with potentially more refined and idiosyncratic versions. In order to obtain bank-level
estimates, we proceed as in the main text. First, we aggregate by computing loan size-weighted
averages of the three new shock measures ¯̌ni,t, ū1

i,t, and ū2
i,t. Second, we construct three new

Granular IVs using equation (2.6). Third, we run our two-stage panel regressions for ¯̌ni,t, ū1
i,t, and

ū2
i,t, instrumenting each with their respective GIVň

i,t, GIV
u1
i,t , and GIV

u2
i,t .

Table 2.9 reports loan outcomes after factor extraction. Columns (1)-(3) are based on the same
set of controls and fixed effects as columns (3)-(5) in Table 2.2. Rows (1)-(3) show results for the
three new shock measures. Recall that baseline estimates from Table 2.2 are in the 0.334-0.361

35Following the suggestion in Stock and Watson (2016), iterations are initiated with factors that are extracted from
the balanced sub-sample of firms.

36The fmax threshold is chosen by performing a standard PCA on a balanced sub-sample of firms, and applying the
ICp2 criterion in Bai and Ng (2002) to determine the number of factors.
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range. We see that after the extraction of parametric and two non-parametric factors, estimates are
still large, statistically significant, and quantitatively very close to our baseline results.

Table 2.10 reports results at the bank level. Columns (1)-(8) are based on the same specifications
and sets of controls and fixed effects as columns (1)-(8) in Table 2.3 from main text. Recall that
baseline estimates from Table 2.3 are roughly 0.117 and 0.180 for the specifications with pooled
and only negative shocks, respectively. We find that our strictest model, which extracts parametric
and two non-parameteric factors, leads to estimates of 0.083 and 0.119 for pooled and only negative
shocks specifications, respectively. All coefficients are very similar to our baseline results and are
statistically significant at least at the 5% level.

We now consider an alternative approach where instead of replacing the baseline shock measure
nj,t itself, we keep nj,t as the shock variable and build the Granular IV based on the three new shocks
GIVň

i,t, GIV
u1
i,t , and GIV

u2
i,t . In other words, we keep the same endogenous regressor but instrument

it with new, more robust instruments. Results are reported in Table 2.11. All estimates are
quantitatively in line with our baseline results. Coefficients from specifications with pooled or
negative only shocks are all statistically significant at least at the 5% level.

2.9.2 Factor Extraction at the Bank Level

By subtracting the unweighted mean from bank-level weighted firm shocks, our Granular IV in
equation (2.6) of the main text removes a common bank factor with loadings Xi that are assumed
to be identical across firms. In this section, we relax the assumption of homogeneous loadings and
consider a generalized GIV by extracting common factors at the bank level. Formally, we now
extract common components for each bank separately. This implies running the EMPCA algorithm
separately on each bank’s sample of borrowers, i.e. for all firms j borrowing from bank i at time t:

ňdi,j,t = X′i,j[i,t + ui,j,t , ∀i (2.26)

where ňdi,j,t denotes the demeaned firm shock ňj,t (the residual net of parametric factors from equation
(2.24)). The demeaning is performed cross-sectionally at the bank level, such that:

ňdi,j,t = ňj,t –
1
Ni,t

∑
j
ňj,t
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Table 2.10: Bank Outcomes with Firm Factors Extraction - New Shocks, New GIV

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent Variable: Bank Return on Loans (RoA)

OLS Instrumented with GIV

Pooled Pooled Pooled Positive Negative Pooled Positive Negative

(1) Granular Credit Shock: ¯̌nj,t 0.118 0.125 0.106 0.015 0.212 0.105 0.027 0.186
(0.027) (0.026) (0.035) (0.081) (0.075) (0.030) (0.071) (0.073)

(2) Granular Credit Shock: ū1
j,t 0.092 0.092 0.079 -0.117 0.160 0.072 -0.087 0.136

(0.025) (0.024) (0.031) (0.078) (0.073) (0.029) (0.075) (0.068)
(3) Granular Credit Shock: ū2

j,t 0.106 0.100 0.090 -0.082 0.136 0.083 -0.067 0.119
(0.027) (0.025) (0.032) (0.072) (0.058) (0.029) (0.072) (0.053)

Bank FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Bank Controls No Yes No No No Yes Yes Yes

Notes: This table reports results from regressing bank-level return on loans on bank-level aggregated firm shocks.
Columns (1)-(2) are standard OLS, while columns (3)-(8) instrument the weighted shock with a granular IV. Row
(1) is based on the shock ňj,t and instrument GIV ň

i,t, which refer to the residual after extracting parametric common

components. Row (2) is based on the shock u1
j,t and instrument GIVu1

i,t , which refer to the residual after extracting
parametric common components and one latent common component. Row (3) is based on the shock u2

j,t and instrument

GIVu2

i,t , which refer to the residual after extracting parametric common components and two latent common components.
Standard errors (in parentheses) are clustered at the bank level.

where Ni,t denotes bank i′s number of corporate borrowers j in year t.37 We extract up to f = 2
factors, following the algorithm outlined in 2.9.1, and keep the residuals ufj,t, with f ∈ {1, 2}.38

Our main exercise is to use the extracted bank factors [1
i,t and [2

i,t as explicit controls in our
bank-level regressions. This approach is similar to the application that is proposed in Gabaix and
Koĳen (2020). Specifically, we run the following specification:

Rb
i,t = Ui + Ut + V1ûi,t + V2[

1
i,t + V3[

2
i,t + ait (2.27)

37Notice that demeaning the firm shock prior to constructing the loan-size weighted shock is identical to constructing
the GIV as the difference between the size-weighted minus unweighted raw firm shocks n . Consequently, if we extract
zero factors in equation (2.26) we get the same bank-level estimates as in row (1) of Table 2.10. Hence ∑

j si,j,tňdi,j,t is
identical to the GIVi,t based on ňj,t.

38Because very few banks in our sample have fully balanced sub-samples (portfolios) with many borrowers, we
now initiate the algorithm with random guesses of realizations for each factor f ([f1, [

f
2, ..., [

f
T) with 100 different seeds

and pick the specification that produces the lowest average sum of squared residuals uf
max

j,t after extracting fmax = 2
components.
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Table 2.11: Bank Outcomes with Firm Factors Extraction - Old Shocks, New GIV

(1) (2) (3) (4) (5) (6)

Dependent Variable: Bank Return on Loans (RoA)

Pooled Positive Negative Pooled Positive Negative

(1) GIVň
i,t 0.110 0.003 0.182 0.111 0.035 0.165

(0.035) (0.078) (0.071) (0.030) (0.070) (0.068)

(2) GIVu1
i,t 0.114 -0.021 0.216 0.112 0.035 0.189

(0.032) (0.092) (0.074) (0.028) (0.095) (0.065)

(3) GIVu2
i,t 0.144 0.039 0.266 0.133 0.061 0.234

(0.038) (0.140) (0.084) (0.032) (0.135) (0.071)

Bank FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Bank Controls No No No Yes Yes Yes
Instrumented with GIV Yes Yes Yes Yes Yes Yes

Notes: This table reports results from regressing bank-level return on loans on bank-level aggregated firm shocks n̄i,t
instrumented by three alternative Granular IVs. In row (1) the GIV is based on ¯̌ni,t, which refers to the shock measure
after extracting parametric common components. In row (2) the GIV is based on ū1

i,t, which refers to the shock measure
after extracting parametric common components and one latent common component. In row (3) the GIV is based
on ū1

i,t, which refers to the shock measure after extracting parametric common components and two latent common
components. Standard errors (in parentheses) are clustered at the bank level.

Results are reported in Table 2.12. In columns (2) and (6)-(8) we have added the two extracted
factors to the list of our usual bank-level controls. Results are essentially unchanged relative to our
baseline estimation. This indicates that endogeneity issues due to unobserved time-varying bank
factors are minor.

As an additional and final robustness check, we focus on the residuals extracted from equation
(2.26). Similarly to our aggregate factor extraction exercise in Section 2.9.1, we run two separate
specifications. First, we substitute the baseline endogenous covariate ¯̌nj,t with the two newmeasures
ū1
i,t and ū2

i,t, which are robust to heterogeneous Xi,j. For these two shock measures, we construct

new Granular IVs the usual way: GIVu1
i,t and GIVu2

i,t . Second, instead of replacing the baseline

shock measure ¯̌nj,t, we retain it as the shock variable but instrument it with the GIVu1
i,t or GIV

u2
i,t .

Results from the two exercises are reported in Tables 2.13 and 2.14. Our main focus is on columns
(6) and (8) in both tables. We see that all results remain qualitatively robust, however the point
estimates drop slightly and the negative-only estimates become noisier.39

39Because the panel is highly unbalanced, the effective time dimension is very small. This means that if use more
than two factors, we may be over-fitting the data. In other words, with more factors we could be falsely re-labeling truly
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Table 2.12: Bank Factors Extraction - Controlling for Factors Directly

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent Variable: Bank Return on Loans (RoA)

OLS Instrumented with GIV

Pooled Pooled Pooled Positive Negative Pooled Positive Negative

Granular Credit Shock: ¯̌nj,t 0.125 0.123 0.105 0.027 0.186 0.104 0.024 0.181
(0.026) (0.025) (0.030) (0.071) (0.073) (0.029) (0.071) (0.073)

Bank FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Bank Controls Yes Yes Yes Yes Yes Yes Yes Yes
[i,t controls No Yes No No No Yes Yes Yes

Notes: This table reports the results from regressing bank-level return on loans on bank-level aggregated firm shocks.
The firm level shock is based on ňj,t. Column (1) and (3)-(5) repeats the estimation with bank controls from Table 2.10.
The other columns adds the first two latent bank-level factors obtained from running PCA separately on each banks’
sample of borrowers using equation (2.26) to the set of bank controls.

idiosyncratic variation as common shocks, which in turn makes estimation less accurate. Gabaix and Koĳen (2020)
discuss a similar issue.
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Table 2.13: Bank Factors Extraction - New Shocks, New GIV

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent Variable: Bank Return on Loans (RoA)

OLS Instrumented with GIV

Pooled Pooled Pooled Positive Negative Pooled Positive Negative

(1) Granular Credit Shock: ū1
i,t 0.050 0.048 0.065 0.092 0.143 0.061 0.110 0.131

(0.025) (0.022) (0.025) (0.067) (0.044) (0.021) (0.051) (0.038)
(2) Granular Credit Shock: ū2

i,t 0.035 0.026 0.056 -0.024 0.123 0.045 -0.025 0.105
(0.022) (0.020) (0.024) (0.060) (0.057) (0.020) (0.053) (0.053)

Bank FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Bank Controls No Yes No No No Yes Yes Yes

Notes: This table reports results from regressing bank-level return on loans on bank-level aggregated firm shocks.
Columns (1)-(2) are standard OLS, while columns (3)-(8) instrument the weighted shock with a granular IV. Rows
(1)-(2) are based on firm shocks u1

i,j,t and u2
i,j,t obtained from running PCA separately on each bank’s sample of

borrowers using equation (2.26). These are the residuals remaining after extracting 1 and 2 common components,
respectively, at the bank level. Standard errors (in parentheses) are clustered at the bank level.

Table 2.14: Bank Factors Extraction - Old Shocks, New GIV

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent Variable: Bank Return on Loans (RoA)

OLS Instrumented with GIV

Pooled Pooled Pooled Positive Negative Pooled Positive Negative

(1) GIVu1
i,t 0.118 0.125 0.100 0.111 0.170 0.094 0.120 0.121

(0.027) (0.026) (0.039) (0.148) (0.100) (0.032) (0.119) (0.088)
(2) GIVu2

i,t 0.118 0.125 0.123 0.168 0.272 0.100 0.122 0.221
(0.027) (0.026) (0.052) (0.156) (0.246) (0.044) (0.127) (0.222)

Bank FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Bank Controls No Yes No No No Yes Yes Yes

Notes: This table reports results from regressing bank-level return on loans on bank-level aggregated firm shocks ¯̌nj,t,
instrumented by two alternative Granular IVs. Rows (1)-(2) are based on firm shocks u1

i,j,t and u2
i,j,t obtained from

running PCA separately on each bank’s sample of borrowers using equation (2.26). These are the residuals remaining
after extracting 1 and 2 common components, respectively, at the bank level. Standard errors (in parentheses) are
clustered at the bank level.
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2.10 Additional Loan-Level Results

Figure 2.5: Loan Outcomes by Horizon
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Notes: This graph plots results in the form of an event study where we regress loan-level returns on leads and lags of
the idiosyncratic firm shock. Coefficients are plotted by horizon (in years) of the dependent variable. Specifications
are based on equation (2.2). Firm shocks are estimated based on specification (2.1). Dashed lines are 95% confidence
bands.
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Figure 2.6: Geographical Origins of Granular Credit Risk

Notes: This picture is a colored map of 19 administrative counties (fylke) of Norway. Each shade of blue represents
the county-specific strength of the pass-through from idiosyncratic firm shocks to return on loans. These correspond
to county-specific slope shifters (slope dummies) introduced into the main loan regression 2.2. Shapefiles are from the
Norwegian Mapping Authority (Kartverket).
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Table 2.15: Loan Outcomes - Firm Balance Sheet Heterogeneity

(1) (2) (3) (4) (5) (6) (7) (8)
Baseline 0.361

(0.018)
Shock x Low Leveraget–1 0.345

(0.020)
Shock x High Leveraget–1 0.450

(0.047)
Shock x High Assetst–1 0.345

(0.018)
Shock x Low Assetst–1 0.976

(0.170)
Shock x High Equityt–1 0.352

(0.020)
Shock x Low Equityt–1 0.410

(0.044)
Shock x Long Debt Durationt–1 0.289

(0.020)
Shock x Short Debt Durationt–1 0.753

(0.046)
Shock x Low Bank Reliancet–1 0.314

(0.022)
Shock x High Bank Reliancet–1 0.497

(0.031)
Shock x High Credit Ratingt–1 0.250

(0.025)
Shock x Low Credit Ratingt–1 0.483

(0.026)
Shock x Old Firmst–1 0.313

(0.020)
Shock x Young Firmst–1 0.576

(0.041)
Bank x Industry x Year x Loan-type x County FE Yes Yes Yes Yes Yes Yes Yes Yes
Additional controls Yes Yes Yes Yes Yes Yes Yes Yes
Observations 292825 292825 292825 292825 292825 292825 292825 292825
R2 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167

Notes: This table reports results from loan-level regressions of loan returns on idiosyncratic firm shocks interacted with various lagged firm
characteristics. Each characteristic is a dummy which takes the value of 1 for firms which are in the highest decile of leverage (defined as
equity over assets), share of bank credit to total credit, and share of short-term debt to total debt; firms in the lowest deciles of total assets and
total equity; firms with an below-A credit rating; and firms younger than 3 years. Baseline is the pooled estimation from Table 2.2. Standard
errors (in parentheses) are double clustered at the firm-year level.
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Table 2.16: Loan Outcomes - Extensive Margin

(1) (2) (3) (4) (5)

Dependent Variable: Return on Loan

Baseline Firm Exit Firm Entry Firm Bankruptcy Ever Bankrupt

Firm Shock 0.361 0.387 0.322 0.365 0.360
(0.018) (0.019) (0.019) (0.018) (0.019)

Exit / Entry / Bankruptcy 0.613 -1.707 0.699 0.572
(0.075) (0.073) (0.161) (0.079)

Interaction -0.259 0.260 -0.133 0.014
(0.067) (0.059) (0.133) (0.068)

Full Fixed Effects Yes Yes Yes Yes Yes
Observations 292825 292825 292825 292825 292825
R2 0.167 0.167 0.169 0.167 0.167

Notes: This table reports estimates from loan-level regressions of loan returns on firm shocks interacted with firm
entry, exit, and bankruptcy dummies. Firm entry (exit) dummies equal 1 for firms which entered (exited) the year
before (following) the firm shock. Firm bankruptcy is a dummy that equals 1 for firms which declare bankruptcy the
year following the firm shock. Ever bankrupt is a dummy that equals 1 for firms which have ever declared bankruptcy
during the 2003-2015 period, and not necessarily directly following the firm shock. All specifications include Bank x
Firm Industry x Year x Loan-type x Firm County interacted fixed effects. Standard errors (in parentheses) are double
clustered at the firm-year level.
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Table 2.17: Loan Outcomes - Firm Ownership Heterogeneity

(1) (2) (3) (4) (5)

Dependent Variable: Loan RoA

All Firms Private Firms State Firms Community Firms Financial Vehicles

Firm Shock 0.335 0.336 0.478 0.089 1.145
(0.016) (0.019) (0.654) (0.120) (0.966)

Bank x Year x County FE Yes Yes Yes Yes Yes
Observations 330490 234074 162 2526 389
R2 0.051 0.053 0.243 0.282 0.214

Notes: This table reports estimates from loan-level regressions of loan returns on firm shocks originating from firms
with different ownership structure. Each column presents results from a specification in which only that particular
ownership type is included. Numbers of observations do not add up because many firms are not assigned ownership
classifications. Standard errors (in parentheses) are double clustered at the firm-year level.
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Table 2.18: Loan Outcomes - Firm Industry Heterogeneity

(1) (2) (3) (3) (4) (5)

Dependent Variable: Return on Loan

All Firms Manufacturing Mining Construction Real Estate Agriculture

Firm Shock 0.335 0.356 0.401 0.414 0.064 0.215
(0.016) (0.050) (0.251) (0.040) (0.034) (0.055)

Bank x Year x County FE Yes Yes Yes Yes Yes Yes
Observations 330490 34232 1097 60169 8531 7773
R2 0.051 0.091 0.364 0.082 0.197 0.201

Notes: This table reports estimates from loan-level regressions of loan returns on firm shocks coming from firms from
different sectors. Each column presents results from a specification in which firms from only that particular sector are
included. Mining includes petroleum industries. Numbers of observations do not add up because many firms are not
assigned industry classifications. Standard errors (in parentheses) are double clustered at the firm-year level.
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2.11 Additional Bank-Level Results

Figure 2.7: Bank Outcomes by Horizon
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Notes: This figure plots results in the form of an event study where we regress bank-level returns on leads and lags of
the bank-level aggregated firm shock n̄i,t instrumented by the granular IV. Specifications are based on equation (2.7).
The GIV is constructed following equation (2.6). The left panel includes all shocks, and the right panel includes
negative shocks only (n̄i,t < 0). Coefficients are plotted by horizon (in years) of the dependent variable. Dashed lines
are 95% confidence bands.
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Table 2.19: Bank Loan Portfolio Writedowns and Sharpe Ratio

(1) (2) (3) (4)
Writedowns Sharpe Ratio

Granular Credit Shock -0.016 -0.015 0.057 0.052
(0.009) (0.011) (0.069) (0.037)

Bank FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Bank Controls Yes Yes Yes Yes
Instrumented by GIV No Yes No Yes
Observations 1184 1184 1206 1206
R2 0.937 0.071 0.654 0.025

Notes: This table reports results from regressing bank-level (log) loan writedowns and the Sharpe ratio on bank-level
aggregated firm shocks n̄i,t. Columns (1) and (3) are OLS on equation (2.3), while in columns (2) and (4) the aggregated
shocks are instrumented by the granular IV as in equation (2.7). The GIV is constructed following equation (2.6).
Bank controls include lagged bank total assets, leverage, liquidity, number of loans, deposit to assets ratio and financial
assets to assets ratio. Standard errors (in parentheses) are clustered at the bank level.
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Table 2.20: Bank Outcomes - Heterogeneity

(1) (2) (3) (4) (5) (6) (7)
Bank Shock x Low Risk Weights 0.104

(0.042)
Bank Shock x High Risk Weights 0.137

(0.040)
Bank Shock x Low RWA 0.173

(0.037)
Bank Shock x High RWA 0.029

(0.036)
Bank Shock x Low Capital Ratio 0.090

(0.040)
Bank Shock x High Capital Ratio 0.134

(0.039)
Bank Shock x Low Loan HHI 0.068

(0.040)
Bank Shock x High Loan HHI 0.138

(0.039)
Bank Shock x Low Number of Loans 0.135

(0.046)
Bank Shock x High Number of Loans 0.090

(0.030)
Bank Shock x Low Liquidity 0.095

(0.045)
Bank Shock x High Liquidity 0.135

(0.038)
Bank Shock x Low Profitability 0.109

(0.045)
Bank Shock x High Profitability 0.126

(0.037)
Bank FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
Observations 1208 1208 1208 1211 1211 1211 1211
R2 0.101 0.106 0.101 0.103 0.102 0.102 0.101

Notes: This table reports results from regressions of bank-level returns on corporate loans on GIV-instrumented
idiosyncratic shocks interacted with lagged bank characteristics. In all columns, characteristics are cut based on the
50th percentile. Risk weights are obtained by dividing risk-weighted assets (RWA) by book assets. The regulatory
capital ratio is defined as regulatory capital over RWA. Loan HHI refers to the within-bank Herfindahl index of loan
concentration. Liquidity is defined as cash holdings over book assets. Profitability is defined as profit before taxes over
book assets. All specifications include the following bank controls: lagged total assets, leverage, liquidity, number of
loans, deposit to assets ratio, and financial assets to total assets ratio. Standard errors (in parentheses) are clustered at
the bank level.
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Table 2.21: Bank Outcomes - Inspecting the Risk-Taking Channel

(1) (2) (3)

Low RWA High RWA Low CapRatio High CapRatio Low HHI High HHI

Bank Shock x Low Risk Weights 0.156 -0.005 0.070 0.119 0.056 0.117
(0.050) (0.058) (0.054) (0.051) (0.067) (0.048)

Bank Shock x High Risk Weights 0.212 0.061 0.108 0.168 0.075 0.187
(0.070) (0.039) (0.058) (0.062) (0.051) (0.063)

Bank FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Observations 1208 1208 1208 1208 1208 1208
R2 0.105 0.105 0.101 0.101 0.103 0.103

(4) (5) (6)

Low NumLoans High NumLoans Low Liquid High Liquid Low Profit High Profit

Bank Shock x Low Risk Weights 0.120 0.079 0.060 0.131 0.114 0.086
(0.063) (0.043) (0.076) (0.048) (0.057) (0.057)

Bank Shock x High Risk Weights 0.162 0.105 0.127 0.149 0.095 0.163
(0.065) (0.045) (0.047) (0.074) (0.049) (0.059)

Bank FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Observations 1208 1208 1208 1208 1208 1208
R2 0.102 0.102 0.101 0.101 0.101 0.101

Notes: This table reports results from regressions of bank-level returns on corporate loans on GIV-instrumented
idiosyncratic shocks, double interacted with bank risk weights and additional characteristics. In all specifications,
characteristics are cut based on the lagged 50th percentile. For example, column (1) presents estimates for banks with
low risk weights and low risk-weighted assets (RWA), low risk weights and high RWA, high risk weights and low
RWA, and high risk weights and high RWA. Similarly for all other columns. Risk weights are obtained by dividing
risk-weighted assets (RWA) by book assets. The regulatory capital ratio (CapRatio) is defined as regulatory capital
over RWA. HHI refers to the within-bank Herfindahl index of loan concentration. NumLoans refers to the (log) number
of loans in the portfolio. Liquid refers to the liquidity ratio, defined as cash holdings over book assets. Profit refers
to the profitability ratio, defined as profit before taxes over book assets. All specifications include the following bank
controls: lagged total assets, leverage, liquidity, number of loans, deposit to assets ratio, and financial assets to total
assets ratio. Standard errors (in parentheses) are clustered at the bank level.
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Figure 2.8: Home Bias in Within-Region Banking

Notes: This figure shows the extent to which there is home-bias in the Norwegian corporate credit market. Source:
Juelsrud and Wold (2020). Specifically, red bars show the observed fraction of loans within a given year in our sample
where the firm and the bank are located in the same county (within-region loans). The blue bars show the counterfactual
share of within-region loans, where we assume random matching between firms and banks. Given random matching,
the probability that a firm i borrows from a bank j operating in that region is the sum of the aggregate/national market
share of bank j.
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2.12 Narratives

In this section we validate our baseline idiosyncratic firm shock nj,t with a narrative-based
approach. It is important to confirm that nj,t truly reflect economically meaningful information
about firm performance. We focus on the bottom 1st percentile of realizations of nj,t in the
final shock distribution used in our analysis and search through the Norwegian news media for
corresponding narratives.40 In a lot of cases, some of which are outlined below, we find that our
idiosyncratic shock matches actual, sizable economic events.

One of the most adverse shocks in our sample was experienced by Hera Vekst - a waste
management company - in 2008. For that year, we estimate an unexpected idiosyncratic shock nj,t
of -1.39, corresponding to approximately an unexpected drop in value added of -139%. This drop
was seemingly generated by the sudden closure of the company’s main facility, enforced by local
authorities. Local authorities enforced the closure due to the company’s repeated violation of air
pollution standards. According to local news reports, the smell from the waste management facility
was "far in excess of what the local population should tolerate" (nrk.no, 2011).

The company Nergard Sild, a mid-sized herring farmer, experienced an idiosyncratic shock
nj,t of -1.2 in 2010 according to our estimates. National news reports attributed this loss to over-
investment in a processing facility for herring (nrk.no, 2012). The investment had been planned
in 2009 "when the quota was 1 million tons." Once the realized quota turned out to be much
smaller than expected (370,000 tons), Nergard Sild closed down the processing facility, leading to
substantial losses.

Staying in the domain of fish farming, another major shock in our sample is for the company
Wilsgard Fiskeoppdrett. Wilsgard Fiskeoppdrett - a fish farming company specializing in salmon
- experienced an idiosyncratic shock of -1.23 in 2015. According to national media, the reason for
this drop was a massive outbreak of salmon lice (iLaks.no, 2015). The outbreak was so severe that
the Norwegian Food Safety Authority threatened the company with a daily fine until the situation
got under control, worrying that the outbreak would spread along the coast.

Subaru Norge AS - the lead importer of Subaru in Norway - had an idiosyncratic shock of -1.21
in 2007 according to our estimates. The drop was generated by a tax hike on gasoline-fueled cars,
which changed the relative price on gasoline-fueled vs. diesel-fueled cars. While the tax was levied
on all gasoline-fueled cars, Subaru was the only major brand without a viable diesel alternative
(DN, 2007). As a consequence, the number of new cars sold for Subaru dropped from 3800 to 344
cars by August the following year.

The horticulture company F.Dalene Gartneri AS had an idiosyncratic shock of -1.17 in 2008.
According to local news media, the manager of the company was engaged in substantial fraud,

40The 1st percentile of the idiosyncratic shock distribution is -.905, while the 5th percentile is -.459.
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which culminated in arson on the main facility to recoup an insurance premium of approximately
5 million USD (pd.no, 2011).

Fraud is the reason for another one of the most negative shocks in our sample. FIBO -
an aluminum producer - experienced an idiosyncratic shock of -1.25 in 2007 according to our
estimates, which ultimately lead to their subsequent bankruptcy in 2009. The bankruptcy trustee
had substantial criticism towards the board of the company, going far in pointing to outright fraud
and stating that the case was so severe that its "report would and should be sent to the Financial
Supervisory Authority for further study" (jarlsbergavis.no, 2011).

Next, consider the case study of the furniture producer Ekornes, which in 2015 had an estimated
idiosyncratic shock of -1.24. The company blamed adverse conditions in the German consumer
market, one of their largest client bases. Looking for the causes, the CEO of Ekornes pinpointed the
uncertain economic environment and the conflict between Russia and Western Europe. "Germans
are careful. They save in bad times. The conflict between Western Europe and Russia has affected
Germans more than in Norway" (e24.no, 2014).

Other notable shocks in our sample include the shipping company Volstad Shipping, which
in 2008 experienced an idiosyncratic shock of -1.28 due to misplaced foreign currency positions
(smp.no, 2012), and the company Bergen Group Intech which in 2010 experienced an idiosyncratic
shock of -1.33 due to under-performance of their investments in Iceland. Those assets were
subsequently sold due to "not being within the core areas of the company" (Finansavisen, 2011).

Our estimated shocks also pick up less dramatic events. For instance, consider the firm GC
Rieber Oils, a firm specializing in producing Omega 3-based products. In 2013, they recorded an
nj,t of -0.24. The incident which caused this, according to local newspapers, was an accidental
spill of between 500 and 800 litres of raw material from the company’s factories into the local
harbor (Naeringsliv, 2013). The spill was eventually managed and dealt with thanks to the local
municipality and fire services. The spill lead to "substantial economic losses" for the company,
according to the CEO (Naeringsliv, 2013).
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2.13 Robustness Tests and Auxiliary Findings

Figure 2.9: Pairwise Cross-Sectional Correlation of Firm Shocks
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Panel B: Summary Statistics

Number of Pairs Mean Std. Dev. Min Max
Firm Shock 1,861,485 0.019 0.342 -0.977 0.985

Notes: These figures report all pairwise cross-sectional correlation coefficients for idiosyncratic firm shocks. The
sample includes a balanced panel of firms over 2003-2015. Panel A presents the histogram, and Panel B reports
summary statistics. Firm shocks are extracted based on specification 2.1.
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Table 2.22: Robustness to the Great Financial Crisis

(1) (2) (3) (4) (5) (6)

Loan-Level Bank-Level

Firm Shock 0.361 0.432 0.322 0.117 0.091 0.108
(0.018) (0.032) (0.022) (0.029) (0.051) (0.037)

All Fixed Effects Yes Yes Yes Yes Yes Yes
Bank Controls Yes Yes Yes
Observations 292825 102879 189946 1211 472 737
R2 0.167 0.158 0.172 0.101 0.066 0.127

Notes: This table reports timing robustness for baseline loan- and bank-level regressions from Tables 2.2 and 2.3,
respectively. Columns (1)-(3) report results of loan and columns (4)-(6) of bank outcomes, respectively. Columns (1)
and (4) are baseline estimates. Columns (2) and (5) include only the pre-2009 period. Columns (3) and (6) include
only the post-2009 period.
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Table 2.23: Placebo Regressions - Permutation Tests

Simulations True Coefficient Event Frequency Event P-value

Loan Outcomes
Permuted Firm Shock 1000 0.361 0 0.000

Bank Outcomes
Permuted Firm Shook, Pooled 1000 0.116 0 0.000
Permuted Firm Shock, Positive Only 1000 0.016 838 0.838
Permuted Firm Shock, Negative Only 1000 0.194 0 0.000

Notes: This table reports results from Monte Carlo permutation regressions where loan or bank return on loans are
regressed on firm shocks that are randomly permuted. The last two rows report results when permuted shocks are
positive or negative only, respectively. Columns report the number of simulations, the true coefficients based on Table
2.2 column (3) and Table 2.3 columns (3)-(5), the number of events where permutations produced estimates that are as
large as the true estimate (in absolute value) by chance, and the associated p-values.
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Table 2.24: Placebo Regressions - Random Shocks

Number of Draws Mean Std. Dev. Min Max

Loan Outcomes
Placebo Firm Shock 1000 0.001 0.007 -0.018 0.021

Bank Outcomes
Placebo Firm Shook, Pooled 1000 0.000 0.005 -0.016 0.018
Placebo Firm Shock, Positive Only 1000 0.001 0.018 -0.053 0.049
Placebo Firm Shock, Negative Only 1000 -0.000 0.014 -0.041 0.046

Notes: This table reports results from a placebo exercise where loan or bank outcomes are regressed on sequences of
randomly generated numbers. In each row, placebo shocks are randomly drawn from the interval of the true shock.
The last two rows report results when shocks are positive or negative only, respectively. Columns report the number
of random draws and summary statistics of the regression coefficients: mean, standard deviation, minimum, and
maximum.
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Table 2.25: Estimating Fixed Effect Linear Models with AR(1) Disturbances

Borrower Level Bank Level Firm Industry Level County Level
Autoregressive Coef. 0.318 0.122 0.241 0.223
Standard Deviation 0.267 0.107 0.254 0.251

Notes: This table reports parameter estimates of a linear unbalanced panel fixed effects model with a disturbance that
follows an autoregressive process of order 1. Estimates for the autoregressive coefficient and the standard deviation
of the error term are reported. Columns report results for various levels of aggregation. Idiosyncratic firm shocks are
extracted based on specification 2.1 and then aggregated to different levels with loan shares as weights.
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Table 2.26: Theoretical Model Parameter Estimates

Firm Size Parameters Loan Distribution Variance

U _ Ug

Sales 1.26 1.005 1.388 Infinite
(0.002) (0.548) (0.413)

Assets 1.321 0.923 1.587 Infinite
(0.001) (0.361) (0.887)

Equity 1.495 1.086 1.641 Infinite
(0.002) (0.467) (1.144)

Notes: This table reports estimates of key parameters of the model described in Section 2.7. U, _ and Ug represent the
Pareto power parameter of the firm size distribution, the firm’s debt demand elasticity, and the sufficient statistic of the
Singh-Maddala distribution, respectively. Standard errors (standard deviations for _ and Ug) are in parentheses.
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Chapter 3

Bewley Banks

This chapter develops a non-linear, quantitative macroeconomic model with heterogeneous
monopolistic financial intermediaries, incomplete markets, default risk, endogenous bank entry,
and aggregate uncertainty. The model generates a bank net worth distribution fluctuation problem
analogous to the canonical Bewley-Huggett-Aiyagari-Imrohoglu environment. Our framework
nests Gertler and Kiyotaki (2010) (GK) and the standard Real Business Cycle model as special
cases. We present four general results. First, relative to the GK benchmark, banks’ balance
sheet-driven recessions can be significantly amplified, depending on the interaction of endogenous
credit margins, the cyclicality of a precautionary lending motive and the (counter-) cyclicality of
intermediaries’ idiosyncratic risk. Second, equilibrium responses to aggregate exogenous shocks
depend explicitly on the conditional distributions of bank net worth and leverage, which are
endogenous time-varying objects. Aggregate shocks to banks’ balance sheets that hit a concentrated
and fragile banking distribution cause significantly larger recessions. A persistent consolidation in
the U.S. banking sector that matches the one observed over 1980-2020 generates a large economic
contraction and an increase in financial instability. Third, we document, and match, novel stylized
facts on both the cross-section of credit margins and the cyclical properties of the first three
moments of the cross-sectional distributions of financial intermediary assets, net worth, leverage,
loan margins, and default risk. We find that shocks to capital quality and to leverage constraint
tightness (“financial shocks”) can match fluctuations in the U.S. financial sector very well. Finally,
we use the model to identify and characterize episodes of systemic banking crises. Such events are
associated with large economic recessions, spikes in bank leverage, and large drops in the number
of intermediaries.

We thank Marco Bellifemine for excellent research assistance. Jamilov thanks the AQR Asset Management
Institute and the Wheeler Institute for Business and Development for financial support.
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3.1 Introduction

The 2007-2008 Global Financial Crisis has transformed the way the profession thinks about the
role of financial intermediaries in the economy. A large, new literature that followed has recognized
the importance of financial frictions in a rich variety of setups that span constraints on risk-taking,
imperfect competition, credit cycles, and moral hazard. However, the vast majority of existing
papers are studies of the first moment rather than of the full distribution of financial intermediaries.
In this paper, we lay out a tractable, quantitative macroeconomic framework with a banking sector
where the time-varying distributions of financial intermediary net worth and leverage are at the
core of the analysis. We supplement our quantitative analysis with novel stylized facts on both the
cross-section and the cyclicality of different moments of the U.S. banking distribution.

Our model builds on the work of Jamilov (2020) and introduces aggregate uncertainty and
heterogeneous banks into an environment with monopolistic competition in financial intermedia-
tion, incomplete markets, default risk, and endogenous bank entry. Bank credit is intermediated
through a time-varying mass of local credit markets. Each market features a unique financial
variety or amenity that is desired by the household. A single bank intermediates all markets and
can charge market-specific rate margins. The elasticity of substitution across credit markets is
constant trough time and states of nature, in a way similar to the goods market structure in Dixit
and Stiglitz (1977) or Melitz (2003). Imperfect competition is the source of an aggregate credit
supply externality, in the spirit of Blanchard and Kiyotaki (1987): the bank does not internalize the
impact of market-specific loan margins on aggregate investment demand.

In addition to monopolistic financial intermediation, we assume that the bank faces local,
partially uninsurable idiosyncratic rate of return risk in the spirit of Benhabib et al. (2018). Id-
iosyncratic risk, jointly with credit market power, creates a banks’ net worth distribution fluctuation
problem analogous to the canonical Bewley-Huggett-Aiyagari-Imrohoglu environment (Bewley,
1977; Huggett, 1990; Aiyagari, 1994; Imrohoglu, 1996). Importantly, our modelling approach
eliminates scale invariance: all dynamic choices in the financial sector depend on bank-specific
characteristics such as the level of net worth.1 The number of local credit markets is determined in
equilibrium through endogenous entry, similarly to the heterogenous non-financial firms model of
Melitz (2003). Equilibrium yields a non-trivial, dynamic distribution of bank assets. The presence
of aggregate risk makes this distribution, in principle an infinitely-dimensional object, a relevant
“state variable”. Aggregate state-dependency on the distribution is thus achieved explicitly, a result
that is not feasible in other environments that feature scale invariance and complete markets. Under

1Eliminating scale invariance is a crucial step that separates our paper from the rest of the literature where a
“representative” intermediary is the commonplace assumption. An important exception is Coimbra and Rey (2019)
who study ex-ante heterogeneous banks. In contrast, our model delivers ex-post heterogeneity in returns and bank size
due to market incompleteness and loan market power.
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perfectly competitive credit markets, and in the absence of idiosyncratic risk, our “Bewley Banks”
setup nests the canonical Real Business Cycle model and the Gertler and Kiyotaki (2010); Gertler
and Karadi (2011); Gertler et al. (2016) macro-banking frameworks as special cases (“GK” models
henceforth).2 Such high tractability allows us to conduct a variety of benchmarking exercises.

A key advantage of our Bewley Banks framework is that we can target cyclical properties of
higher-order moments of any banking characteristic. To that end, we document a comprehensive
set of stylized facts on the distribution of U.S. financial intermediaries, both in the cross-section
and over the business cycle. In particular, we focus on the mean, dispersion, and concentration
of intermediaries’ assets, net worth, leverage ratio, loan margins, and default risk. Nailing down
empirical moments of the bank distribution turns out to be a non-trivial task. There is multi-
modality in the aggregate data and rich heterogeneity across sub-industries of the broader financial
sector. We therefore provide additional sets of industry-specific facts on depository institutions,
brokers and dealers, insurance companies, etc. We also report new stylized facts for other developed
economies including Australia, Canada, France, Germany, and the United Kingdom.

As in the data, our model generates a right-skewed ergodic distribution of banks’ asset and
leverage, and an inverse relationship between credit margins and bank size. The model also
generates business cycle statistics that approximate the cyclical properties of the different moments
of theU.S. banking distribution ratherwell. Relative to theGKbenchmark, and in response to banks’
balance sheet ("capital quality") shocks, our baseline model generates equilibrium dynamics for key
aggregate variables that are considerably dampened. This result is due to two reinforcing channels.
First, a precautionary lending motive, due to market incompleteness, makes each intermediary
accumulatemore equity capital than in theGK counterfactual. Greater assets and net worth, coupled
with lower aggregate leverage in the precautionary stochastic steady state, leave the financial sector
in a less fragile initial condition when aggregate shocks hit. Second, credit market power is an
additional margin of adjustment in response to adverse shocks that allows the bank to boost profits
in high marginal-utility states by raising prices and reducing quantities by less. As a result of both
mechanisms, aggregate contractions get dampened.

In order to counteract the precautionary lending motive, we allow idiosyncratic risk to be
state-dependent and counter-cyclical. We provide first-pass non-parametric evidence in favor of
this channel using the full distribution of U.S. bank returns over the past 20 years. In recessions,
the dispersion (skewness) of both transitory and persistent bank return shocks rises (falls). This
counter-cyclicality of bank returns is particularly striking for the ongoing COVID-19 pandemic.3
Motivated by this empirical finding, we then suppose that in low aggregate states a larger mass

2To enable the cleanest possible comparison, we solve GK with fully non-linear methods as well.
3Among many others, Bloom et al. (2018) document that non-financial microeconomic risk rises in recessions.

Guvenen et al. (2014) provide similar evidence for the case of household income risk.
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of credit markets can experience low idiosyncratic return draws. In this case, the direct impact
of business cycle fluctuations on bank balance sheets dominates the ex-ante precautionary lending
motive. Recessions get amplified considerably, both in terms of real macroeconomic aggregates and
in the financial sector. Notably, the number of active intermediaries falls by an order of magnitude
more than in the acyclical risk counterfactual. Overall, in the Bewley Banks framework crises could
be either amplified or dampened depending on whether idiosyncratic bank risk is counter-cyclical
or not.

Macroeconomic and financial dynamicswith BewleyBanks are driven by the interaction of three
main forces: credit market power, idiosyncratic return risk, and endogenous entry. The tractability
of the model allows us to isolate the differential contribution of each force sequentially. From
this exercise we gain three main insights. First, shutting down credit market power considerably
amplifies the aggregate sensitivity to exogenous shocks. Second, without idiosyncratic return risk
the economy is less risky and less responsive to aggregate shocks. Third, eliminating endogenous
entry dampens the responsiveness by a negligible amount. In the baseline model with acyclical
idiosyncratic risk, the large dampening role of credit market power dominates the amplifying effect
of market incompleteness. The extensive margin is muted and does little to affect the responses of
either output or consumption.

An important result of the paper pertains to the general aggregate state dependency on the
dynamic distributions of bank net worth and leverage. In the model, equilibrium responses of ag-
gregate output and consumption to exogenous aggregate shocks depend explicitly on the conditions
in the banking cross section. A negative bank capital quality shock that hits the economy in a state
with a more concentrated and fragile distribution of net worth and leverage generates a significantly
larger cumulative loss in output, consumption, bank assets, and considerably greater levels of bank
leverage and loan margins.

Recent papers by Jamilov (2020) and Corbae and D’Erasmo (2020) document a multifold
increase in both the degree of dispersion and concentration in the U.S. banking sector over the
1980-2020 period, coupled with a steady decline in the absolute number of depository institutions.
We explore the role of second moment shocks as a source of business cycle fluctuations. We find
that positive transitory shocks to the dispersion of bank assets, the magnitude of which matches
the data, have large negative effects both on the real economy and the financial sector. Specifically,
aggregate output, consumption, bank assets and net worth each fall by substantial amounts whereas
bank leverage, credit margins, and default risk all rise considerably. We implement this particular
exercise by allowing the agents in the model to explicitly track and forecast higher-order moments
of the distribution of bank net worth. This computational approach follows the original idea in the
seminal works byKrusell and Smith (1996, 1998). That is, we keep track of the first twomoments of
the banking distribution as an approximation for what is otherwise an infinitely-dimensional object.

144



In general, we find that persistent shocks to higher-order moments of the banking distribution have
a significant and lasting effect. The key for this result is that our model generates concentrated,
right-skewed distributions of bank assets and leverage.

Another avenue that we explore in the paper is the identification and characterization of systemic
banking crises using event studymethods. We apply tools from the open-economymacroeconomics
literature that looks at financial crises in emerging economies (Mendoza, 2010). We simulate a
long time-series from our model and define an economic crisis as an episode with unusually low
measured TFP. We then collect all instances of such events and compute period-specific averages
of key macro-financial aggregates. We find that economic crises occur in conjunction with banking
crises. In relative terms, banking crises in the Bewley economy lead to more dampened aggregate
contractions than in the GK counterfactual with perfect competition and no idiosyncratic risk.
Crises in the Bewley economy are also less financially unstable - i.e., bank leverage increases
by less. This is a variant of the financial competition-stability trade-off (Hellman et al., 2000).
Imperfect credit-market competition acts as a buffer against shocks to financial stability but at the
price of high loan margins and a greater steady-state loss in consumer welfare.

Crises in the Bewley Banks economy with counter-cyclical idiosyncratic risk, however, are
significantly amplified. These episodes correspond to greater contractions in output, consumption,
bank assets and net worth. Furthermore, the number of active intermediaries falls by an order of
magnitude more than in the baseline model with acyclical idiosyncratic risk. In terms of financial
stability, the financial sector is more fragile than in the baseline: aggregate leverage and default
risk both increase by a greater amount. Interestingly, crises in the Bewley Banks economy with
counter-cyclical risk are characterized by a persistent decline of credit margins in the build-up
periods. Meanwhile, crises in the baseline case with acyclical idiosyncratic risk are associated with
a rise of credit margins in the the same build-up phase. This is an interesting testable implication
of our model. Generally speaking, this result suggests that competition and market power in the
financial sector could be leveraged for the ex-post measurement of financial conditions as well as
forward-looking diagnostics and forecasts of distress and crises.

Up to this point, the sole source of aggregate uncertainty in all quantitative experiments has
been a so-called capital quality shock. In the final exercise, we take business cycle moments in the
data as given and run a horse race across six different types of aggregate shocks with the purpose of
matching as many unconditional correlations as possible. We consider aggregate shocks to Hicks-
neutral total factor productivity, quality of aggregate capital, intermediary dividend payouts, credit
markups, leverage constraint tightness, and degree of market incompleteness. For each shock type,
we solve our model under the assumption that it is the only source of aggregate uncertainty in the
environment. We find that shocks to capital quality and to leverage constraint tightness (“financial
shocks”) can match fluctuations in the U.S. financial sector very well.
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Solving our model numerically is potentially a challenging task for at least four reasons. First,
without scale invariance the distribution of financial intermediary assets, an infinitely-dimensional
object, is now a “state variable” that needs to be kept track of. We solve this issue with a variant
of the Krusell and Smith (1998) algorithm, where we assume that the bank forms linear forecasts
for a limited set of moments of the cross-sectional distribution. Along these lines, the bank must
also rationally forecast future aggregate prices (loan rates) which are set at the level of a local
credit market. The two forecasts taken together allow the bank to pin down the projected return
on aggregate capital. Second, the market for deposit holdings must clear at each point of the
aggregate state space. Third, dynamics of the cross-sectional bank distribution must be consistent
with the dynamic problem of the incumbents and new entrants. Finally, the intermediary faces an
occasionally binding constraint on leverage. Importantly, this constraint may bind on any part of the
idiosyncratic or aggregate state space. In Section 3.3.13 we describe our computational algorithm
in detail.

Related Literature. This paper builds on the recent work by Jamilov (2020) and Corbae
and D’Erasmo (2019, 2020) who explore aggregate implications of the rise of U.S banking con-
centration. De Loecker et al. (2020) and Diez et al. (2018) document a large, 50%+ increase in
markups (margins) in the U.S. financial industry over 1980-2016. The apparent consolidation of
market power in the financial sector calls into question the assumption of perfect competition that is
made in most existing quantitative macro-banking models. Gerali et al. (2010) and Cuciniello and
Signoretti (2015), among others, studied the role of imperfect competition in general equilibrium
macroeconomic models. Our paper is different in our assumption of persistent ex-post heterogene-
ity, which allows us to achieve a smooth equilibrium ergodic distribution of bank leverage. Our
financial intermediaries are also exposed to insolvency-driven default risk, which is priced into a
distribution of deposit rates.

Among studies that explore banking industry dynamics in general equilibrium, Corbae and
D’Erasmo (2019) is the paper that is closest to ours but uses a different approach.4 Authors focus
on dynamic capital requirements in a quantitative model of oligopolistic financial competition
with dynamic interactions between one large bank with market power and many small perfectly-
competitive institutions. We differ from Corbae and D’Erasmo (2019) in at least three main
respects. First, our approach to modelling imperfect banking competition follows a large literature
that works with CES aggregation (Dixit and Stiglitz, 1977; Melitz, 2003). This approach is highly
tractable and “portable” - our monopolistically competitive banking bloc can be readily enhanced to

4Banking industry dynamics have been explored in several other recent papers including Capelle (2019), Rios Rull
et al. (2018), Nguyen (2015), Christiano and Ikeda (2013), Davydiuk (2020), Martinez-Miera and Repullo (2010). This
broad literature builds on the first generation of mostly partial-equilibriummodels on the financial competition-stability
trade-off (Allen and Gale, 1998; Hellman et al., 2000; Allen and Gale, 2004).
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allow for nominal rigidities or open-economy features5. Second, in our model local credit market-
specific actions are not internalized in the aggregate. In the oligopolistic banking setup of Corbae
and D’Erasmo (2019), actions of the “lead bank" and “fringe banks” are fully internalized. Our
modelling approach yields a powerful aggregate credit supply externality, which acts as an additional
channel of amplification on firm investment demand. Jamilov (2020) shows that internalization of
the credit supply externality moves steady-state aggregates such as welfare, output, and bank credit
by double-digit percentage points. Finally, our model nests explicitly the canonical Real Business
Cycle model and the GK models as special cases, which adds to its tractability. Reverting to GK
entails simply a re-calibration of three structural parameters.

We also build on the important work by Coimbra and Rey (2019) who study the impact of
ex-ante financial heterogeneity on systemic macroeconomic risk and financial stability. Their
model features both intensive and extensive margins, similarly to ours. Our approach differs from
theirs in several substantive ways. First, we achieve persistent “ex-post” financial heterogeneity
due to incomplete markets and exposure to idiosyncratic risk, while Coimbra and Rey (2019)
assume ex-ante heterogeneity in Value-at-Risk constraints. Second, in our setup, trading markets
are incomplete and the banking distribution is a time-varying, endogenous state variable which
must be kept track of. Our model also, importantly, allows for credit market power and a mismatch
between the cost of funds and the price of bank credit. Finally, the number of active intermediaries
in our model is a time-varying object that moves with the business cycle.6

Our assumption of idiosyncratic rate of return risk in banking is not ad-hoc or far-stretched.
Several recent studies document that intermediaries are not perfectly insured against non-systematic
shocks at various layers of aggregation. Galaasen et al. (2020) show that financial intermediaries
in Norway are exposed to idiosyncratic borrower-level risk at multiple layers of aggregation. In
particular, they show that bank portfolios are highly regionally concentrated due to regional “home
bias” in lending and that local market-specific risk is hard to hedge. Their finding maps closely
to our modelling approach where idiosyncratic risk is tied to the spatial distribution of locally
differentiated credit markets. Paravisini et al. (2020) find that persistent specialization of banks
by export market leaves them vulnerable to idiosyncratic shocks originating with foreign partner-
countries. Agarwal et al. (2020) find that banks which over-exposed to the Mexican energy sector
were much more likely to suffer from the industry-specific negative shock of 2014. Although
rigorously micro-founding idiosyncratic risk is beyond the scope of our quantitative framework,
our parsimonious modelling approach can capture and operationalise the general idea reasonably
well.

5We extend our framework to include nominal rigidities and a role for monetary policy in Jamilov and Monacelli
(2020).

6Other papers such as Korinek and Nowak (2016), Boissay et al. (2016), Goldstein et al. (2020), Begenau and
Landvoigt (2018) also work with equilibrium models of ex-ante heterogeneity in the financial sector.
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The rest of the paper is structured as follows. Section 3.2 reports stylized facts on the banking
distribution in the cross-section and over the business cycle. In Section 3.3, we lay out our
model. Section 3.4 describes our calibration strategy, shows the model policy functions and
ergodic distributions, and demonstrates the responsiveness to aggregate fluctuations. Section 3.5
inspects the model mechanism by isolating each key moving part. Section 3.6 presents our main
quantitative results and experiments. Section 3.7 explores different types of exogenous aggregate
shocks. Finally, Section 3.8 concludes.

3.2 Stylized Facts on the Distribution of Financial Intermedi-
aries

In this section we document key stylized facts on the banking industry in the cross-section and
over the business cycle. In Section 3.2.2 we report facts on the cross-sectional distribution. In
Section 3.2.3 we look at the behavior of the banking distribution over the business cycle. In Section
3.2.4 we study cyclicality of idiosyncratic bank return shocks. We focus on the whole financial
sector in main text and discuss sub-industry heterogeneity in Appendix 3.9.2. We also report,
subject to data availability, relevant statistics for non-U.S. countries in Appendix 3.9.3. Our data
Appendix 3.9.1 provides further details on raw data and our data cleaning approaches. Alternative
robustness checks are documented in Appendix 3.9.4.

3.2.1 Data Description

Variable Definition
For every financial characteristic that we describe below, we are interested in computing the

first three moments of the time-varying cross section. We begin with the first moment which we
proxy with the (unweighted) mean `t of a generic panel xjt with Nt being the size of the population:

`t(x) =
Nt∑
j

1
Nt

xjt

For the second moment, we compute the time-varying standard deviation ft:

ft(x) =

√√√√∑Nt
j

(
xjt – `t(x)

)2

Nt

For the third moment, depending on the characteristic, we compute either the Herfindahl index
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or the statistical skewness. We use the HHI primarily for bank assets and net worth, and skewness
for the leverage ratio. The Herfindahl Ht of xjt is defined using the usual formula, where sjt is the
share of bank j in market x in time t:

Ht(x) =
Nt∑
j
sjt(x)2

Finally, for statistical skewness St we use the Pearson’s standardized third moment:

St(x) =
1
Nt

∑Nt
j

(
xjt – `t(x)

)3

[
1

Nt–1
∑Nt
j

(
xjt – `t(x)

)2] 3
2

Bank balance sheets
Our main source of bank balance sheet information is the Compustat database. We start by

extracting financial intermediary assets and net worth for the financial sector in the U.S. Our
definition of (book) leverage is the ratio of bank assets to net worth. The aggregate distribution of
intermediary leverage is multi-modal, because different sub-industries of the broader sector have
heterogeneous business models. We therefore also report statistics for six sub-sectors: depository
credit institutions, non-depository credit institutions, brokers and dealers, insurance companies,
real estate companies and brokers, and holding companies and investors. We define these sectors
based on the SIC classification. We also work with Compustat Global, which has information for
non-U.S. institutions. Existing data for non-U.S. developed economies is, however, limited. Our
main aggregate time-series for assets, net worth, and leverage runs from 1985q1 until 2020q1. We
explore samples with alternative starting dates in Appendix 3.9.4.

Loan margins
We construct our own, bottom-up measure of credit margins. To that end, we employ the

Compustat Banks dataset. Our baseline definition of a credit margin is the bank-level ratio of Total
Interest and Related Income over Total Interest and Related Expenses. Our approach is similar to
Corbae and D’Erasmo (2019), who measure credit margins by the ratio of returns over the marginal
cost of funds. Our main loan margin series runs from 1993q1 until 2020q1, and refers to depository
institutions. For each quarter, as with the balance sheet data, we compute the mean, standard
deviation, and skewness based on the raw bank-level panel data.

Bank default risk
We proxy bank-level default risk with data on Credit Default Swaps (CDS) provided by Markit.

Our baseline measure is the 5-year CDS spread, which is the most liquid. Raw data is available
at daily frequency, and we aggregate it to the bank-quarter level. We were only able to compute
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Figure 3.1: Banking Distributions in the Data
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Notes: Histograms of bank leverage and (log) total assets in the US data. Leverage is defined as book assets over book
equity. Source: Compustat.

CDS spreads for the financial sector as a whole; industry-level information is not available. Our
measures are available for both U.S. and non-U.S. based institutions. The final dataset runs over
2002q1-2020q1. For each quarter, we calculate the mean, standard deviation, and skewness of the
distribution of CDS spreads.

Each variable, unless explicitly noted otherwise, is logged and linearly detrended. Our main
proxy of the "business cycle" is real U.S. Gross Domestic Product (GDP), which is detrended and
seasonally adjusted. The same filtering is performed on the model-simulated time-series as well,
so the model and the data are directly comparable.

3.2.2 Banking in the Cross Section

We begin by first documenting facts on the banking distribution by analyzing the cross-section.
In Figure 3.1 we plot the unconditional histograms of bank leverage (defined as the ratio of book
assets over book equity) and the log of assets. We observe that both distributions are highly right-
skewed. The vast majority of intermediaries have a leverage ratio somewhere in the 5-15 region.
However, there is a small mass of highly risky banks. An important feature of our structural model
will be the ability to generate such a skewed distribution thanks to the combination of a persistent
idiosyncratic return process and market incompleteness.
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Figure 3.2: Bank Size, Leverage and Interest Margins
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Notes: Binned scatterplots of (log) assets against bank leverage and interest margins. Leverage is defined as book
assets over book equity. Interest margins are defined as the ratio of total interest income to total interest and related
expenses. Vertical dashed lines represent discontinuity at the median of log assets. Red lines of fit are separate lines
of linear fit for values above and below the discontinuity. See main text for further details. Source: Compustat.

In Figure 3.2 we plot binned scatterplots of bank size against book leverage and our measure
of the interest margin. We define bank size as total book assets, which is also in line with a similar
empirical exercise done in Coimbra and Rey (2019). We construct these plots in three steps. First,
we residualize both y-axis and x-axis variables from the time fixed effect in order to absorb any
common time-varying factors. Second, we construct 100 equally-sized bins of log assets. Each
bin has at least 300 observations. For each bin we compute unweighted averages of log assets,
book leverage, and the interest margin. Finally, we fit the data points separately for “small” and
“large” intermediaries, which we separate based on the median of the distribution of assets. This
discontinuity on the graph is captured by a dashed vertical line.

From Figure 3.2 we document two empirical regularities. First, the conditional correlation
of book leverage and bank size is positive. Larger banks are also more levered, in line with the
findings in Coimbra and Rey (2019). Second, the conditional correlation of bank size and interest
rate margins is negative. It is statistically significant at the 5% level. Larger intermediaries have
lower interest rate margins, on average. The relationship is particularly strong for banks in the top
half of the size distribution.
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3.2.3 Banking over the Business Cycle

Next we present a series of facts documenting the cyclical properties of the first three moments
of the banking distribution.

Figure 3.3 plots the time-series of the first three moments of financial intermediary assets, net
worth (equity), leverage, margins, and default risk (CDS spreads). The underlying sample is for
the U.S. only. In panel (a) we report the mean, standard deviation, and HHI of total intermediary
assets. We see clearly from the picture that average assets are pro-cyclical, which is consistent with
observations in Nuno and Thomas (2016). The second moment is also (highly) pro-cyclical. The
third moment, however, is counter-cyclical. In panel (b) we plot the time-series for bank equity.
Cyclical properties of the first three moments of bank equity are the same: positive, positive, and
negative.

In panel (c) we report statistics on the bank leverage ratio (defined as book assets over book
equity). The first moment is highly pro-cyclical, consistent with the evidence in Adrian and Shin
(2010, 2011). It is important to note, however, that there is substantial variation in risk-taking
management across different types of financial intermediaries, a point we will return to again in
Appendix 3.9.2. We find that the second moment of leverage is slightly pro-cyclical and the third
moment (skewness) is strongly counter-cyclical. Overall, for the total financial sector the mean and
dispersion of bank assets, net worth, and leverage are pro-cyclical while concentration is highly
counter-cyclical. Counter-cyclicality of the third moment appears to be a robust feature of the data.

In panel (d) we plot the first three-moments of the distribution of loan margins. We find that
average margins are strongly counter-cyclical, and so is the dispersion of margins. Concentration,
however, is very pro-cyclical. Consistently with our results, Corbae and D’Erasmo (2019) also
document that average credit margins are counter-cyclical but they do not explore higher-order
moments like us. Finally, in panel (e) we document properties of CDS spreads. The first two
moments of the distribution are counter-cyclical, a fact that is largely consistent with canonical
theory. The third moment is slightly pro-cyclical but this result is sensitive to sample selection.
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Figure 3.3: Cyclical Components of the Distribution of U.S. Financial Intermediaries
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Notes: Every variable has been logged (except the skewness of leverage) and linearly detrended. Shaded areas represent
US recessions based on the NBER classification. Bank balance sheet data is fromCompustat. CDS data is fromMarkit.
See Appendix 3.9.1 for variable definitions and further details.

Table 3.1 displays a summary of our banking business cycle facts. Hence we see that intermedi-
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Table 3.1: Business Cycle Statistics - Aggregate U.S. Data

Mean of Dispersion of Concentration of

Correlation
Assets - GDP 0.498 0.642 -0.568
Net Worth - GDP 0.211 0.544 -0.472
Leverage - GDP 0.701 0.043 -0.641
Margins - GDP -0.563 -0.370 0.725
CDS Spreads - GDP -0.325 -0.309 0.033

Standard Deviation (%)
Assets 13.383 19.371 18.281
Net Worth 11.268 18.076 16.640
Leverage 6.036 6.855 20.157
Margins 31.046 42.404 56.595
CDS Spreads 57.751 58.496 32.021

Notes: Dispersion is measured as time-varying standard deviation. Concentration is measured with skewness. For
every variable except CDS spreads the sample is 1985q1:2020q1. For CDS spreads the sample is 2002q1:2020q1.
Every variable has been logged (except the skewness of leverage) and linearly detrended. Bank balance sheet data is
from Compustat. CDS data is from Markit. See Appendix 3.9.1 for variable definitions and further details.

ary balance sheet quantities have a pro-cyclical mean and dispersion, and a strongly counter-cyclical
HHI. Book leverage is pro-cyclical in the first two moments, and counter-cyclical in the third mo-
ment. Themean and standard deviation of creditmargins andCDS spreads are both counter-cyclical,
while skewness is pro-cyclical. In the lower panel of Table 3.1 we report standard deviations of
time-series fluctuations of our main variables. The results can be summarized into two key facts.
First, the volatility of balance sheet quantities - assets, net worth, leverage - is far smaller than the
volatility of either credit margins or default risk. Second, higher-order moments appear to be more
volatile than the mean. In particular, measures of concentration are especially volatile.

3.2.4 Cyclicality of Bank Returns

We conclude this section by analyzing micro-banking uncertainty over the business cycle. To
measure uncertainty, we compare the full distribution of bank returns in expansions and recessions.
We define returns at the level of a bank as returns on assets (RoA). RoA is our favorite measure
because it takes into account the amount of debt or risk involved in creating those returns. Our
RoA index is defined as the ratio of net income to total assets.7

We focus not only on the RoA in levels but also in terms of growth over short and long horizons.

7Replacing net incomewith total interest income doesn’t change the results as the two series are strongly correlated.
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Figure 3.4: Cyclicality of Bank Returns
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Notes: Densities of bank returns on assets (RoA), defined as net income scaled by total assets. Transitory and
persistent return shocks are defined as yt – yt–1 and yt – yt–4, respectively, where yt is bank-level (log) RoA. Recessions
follow NBER definitions and include the 2001-2002 crisis, the Great Recession, and the COVID-19 Pandemic which
corresponds to the first two quarters of 2020. Expansions are quarters which are not included into the recession sample.
The sample is 2000:q1-2020:q2 and includes only US commercial banks. Source: Compustat.

To that end, we look at one- and four-quarter RoA growth rates (specifically, log(RoA)t–log(RoA)t–j
for j = 1, 4). The two definitions roughly correspond to transitory and persistent shocks to bank
returns and follow the non-parametric approach of Guvenen et al. (2014). Our sample construction
follows closely Section 3.2.3 with the exception of us focusing now on the 2000:q1-2020:q2 period.
Our sample captures three recessions, as defined by the National Bureau of Economic Research
(NBER) classification: the 2001-2002 crisis, the Great Recession, and the COVID-19 pandemic
which corresponds to the first two quarters of 2020.

The first set of results is depicted in Figure 3.4 and summarized in Table 3.2. Three observations
are worthy of note. First, the mean of each of the three measures of bank returns falls in recessions.
Second, in recessions the standard deviation rises for both transitory and persistent shocks. Third,
the skewness becomes more negative in recessions, i.e., the distribution is more left-skewed during
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Table 3.2: Bank Return Risk - Summary Statistics

Expansion Recession

Transitory Persistent Level Transitory Persistent Level

Mean -0.0035 -0.0079 3.4062 -0.0108 -0.0425 3.2396
St Deviation 0.0738 0.1149 1.14 0.0994 0.1595 0.9502
Skewness -0.4272 -0.1232 5.5641 -0.8572 -0.6295 4.1143

Notes: Summary statistics for the densities from Figure 3.4.

bad times. The latter two observations - counter-cyclicality of dispersion and pro-cyclicality of
skewness - suggest thatmicro-banking uncertainty increases during recessions. This result is related
to the established findings that microeconomic uncertainty (as approximated by various measures
of income risk) is counter-cyclical for the case of both households (Guvenen et al., 2014) and
firms (Bloom et al., 2018). Our contribution in this section is to provide first-pass non-parametric
evidence for a similar channel, yet applied to financial intermediaries.

Counter-cyclical bank return risk can be further, and rather strikingly, illustrated for the ongoing
COVID-19 pandemic. In Figure 3.5 we plot cross-sectional distributions of bank return shocks for
the first two quarters of 2020. Relative to the distributions in expansions and even during the Great
Recession, the left tail is currently very much stretched out as banks are more likely to experience
large negative shocks to portfolio returns. As can be seen from the Figure, the pandemic is likely to
have highly persistent effects as the dispersion of persistent returns shocks is especially large from
a historical perspective. The considerable growth (decline) in dispersion (skewness) is driven by a
severe underlying deterioration of firms’ balance sheets and valuations which, in turn, are passed
through to banks’ balance sheets via bankruptcies or non-performing assets.
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Figure 3.5: Bank Returns during the Great Recession and COVID-19 Pandemic
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includes only US commercial banks. Source: Compustat.

3.3 Model

In this section we lay out our quantitative model with a dynamic, endogenous distribution of
bank characteristics.

3.3.1 Overview

Time is discrete and infinite. The economy is populated by four agents: a representative
household, a capital goods producer, a final goods producer, and a financial intermediary. The
economy is subject to aggregate uncertainty in the form of shocks to the quality of aggregate capital.
This shock proxies exogenous perturbations to the balance sheet of financial intermediaries. The
role of the bank is to intermediate funds between a unit mass of identical households and productive
capital. The bank is owned by the household and ultimately redistributes back all its accumulated
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wealth (net worth) via dividends. Dividends are paid out only upon exit. Every period, the bank
finances its operations via accumulated net worth or through a nationwide retail market, where it
obtains deposits from households. There are no wholesale funding markets available.

Bank credit is intermediated on a time-varying mass Jt of local credit markets. This mass is
determined endogenously through entry and exit. A single financial intermediary intermediates
funds across all of these markets. Credit markets are differentiated by unique local features such
as amenities or variety in financial services. The elasticity of substitution between local credit
markets, \ > 1, is constant across time and aggregate states of nature. Imperfect substitutability
across credit markets allows the intermediary to charge localized marked-up margins over the cost
of funds.

The portfolio return of the banker consists of a systematic component and a persistent, idiosyn-
cratic, uninsurable returns process. Idiosyncratic risk is market-specific and cannot be hedged
because trading markets are incomplete. A long enough sequence of negative idiosyncratic return
shocks can drive the bank into insolvency. There is no deposit insurance. Bank default risk gets
competitively priced into the interest rates on deposits by the homogeneous, risk-averse household.

Entry into creditmarkets is endogenous. There is a large number of potential entrants - financiers
- who become financial varieties conditional on entry. Entering financiers pay a fixed startup cost
and obtain a one-time idiosyncratic return draw. Having observed the draw, financiers can either
decide to operate or to immediately exit. The mass of entering financiers grows until bank profits
(in expectation) remain above the startup costs. Involuntary exit occurs at rate 0 < f < 1.

Importantly, our model breaks down scale invariance, thereby generating a dynamic, endoge-
nous cross-section of intermediary assets. The distribution of bank assets (loan portfolio), an
infinitely dimensional object, is a new state variable in the model. We describe how we deal with
the curse of dimensionality in Section 3.3.13. The equilibrium is also associated with the dynamic
endogenous distributions of bank net worth, leverage, default risk, margins, and deposit rates.

3.3.2 Aggregate Technology

There is a continuum of perfectly competitive firms that produce the final good using an identical
constant returns to scale Cobb-Douglas production function with capital and labor as inputs. Labor
is supplied inelastically, for tractability. Output Yt is the following function of aggregate capital Kt
and labor Lt:

Yt = AKU
t L

1–U
t (3.1)

with 0 < U < 1.
In the baseline model, the only source of aggregate uncertainty is a shock to the quality of

capital kt (Merton, 1973; Gertler and Kiyotaki, 2010; Gertler and Karadi, 2011). This shock
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captures fluctuations in the value of capital - its sudden obsolescence or valuation. We will explore
alternative forms of aggregate uncertainty in the latter sections. We assume that kt follows an
AR(1) process.

kt+1 = (1 – dk) + dkkt + n
k

t+1 (3.2)

Capital accumulates over time according to the law of motion:

Kt+1 = kt+1
(
It + (1 – X)Kt

)
where It is aggregate investment of non-financial firms and 0 < X < 1 is the constant depre-

ciation rate. Wages are competitive and follow directly from the production function and firms’
optimization. Return on aggregate capital Rk

t is:

Rk
t+1 = kt+1

(
AUKU–1

t+1 + (1 – X)Pt+1
Pt

)
(3.3)

which comprises profits and capital gains. The latter depend on the dynamics of the aggregate
price of capital, Pt, which is determined in equilibrium by financial intermediary activities.

3.3.3 Local Credit Markets

There exists a time-varying mass Jt of local credit markets. The elasticity of substitution across
markets is \ > 1. Credit markets are differentiated by unique features that (local) borrowers derive
utility from. Differentiated capital goods are assembled by a representative capital producing firm
with a Dixit-Stiglitz aggregation technology from the mass Jt of available financial varieties kt(j)
where j ∈ [0, Jt].

Kt =

[∫ Jt

0
kt(j)

\–1
\ dj

] \
\–1

(3.4)

Financial variety-specific demand functions are obtained from the following maximization
problem:

max
kt(j)

[
Kt –

∫ Jt

0
pt(j)kt(j)dj

]
(3.5)

subject to technology (3.4). This yields the demand function for banks’ lending activities:

kt(j) =
(pt(j)
Pt

)–\
Kt (3.6)

where pt(j) is the price of capital in the local credit market (j) and Pt is the aggregate price of
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capital consistent with the competitive capital producing firm earning zero profits:

Pt B

[∫ Jt

0
pt(j)

1–\dj

] 1
1–\

(3.7)

3.3.4 Financial Intermediary

The monopolistic credit demand system (3.4)-(3.7) is taken as given by the intermediary. The
intermediary starts each period with an initial stock of net worth n ∈ N ⊂ R+ and must choose
the stock of assets k(j), deposits d(j), and price of varieties p(j) while satisfying the balance sheet
constraint:

dt(j) + nt(j) = pt(j)kt(j)
V (3.8)

where V > 1 is a parameter that governs local decreasing returns to scale. The bank can borrow
deposits d(j) from the household, subject to the market-specific interest rate R̄t(j). The incumbent
banker earns a portfolio return RT(j) that consists of the return on aggregate capital Rk - common
across local markets - and an idiosyncratic component b(j) which is specific to each local credit
market:

RT
t (j) = ^bt(j) + (1 – ^)Rk

t (3.9)

Where 0 < ^ < 1 is a parameter that governs the ability to hedge local market-specific return
risk. For tractability, assume that b ∈ Ξ follows an AR(1) process:

bt(j) = (1 – db)`b + dbbt–1(j) + fbnt(j) (3.10)

Let the finite state Markov representation of (3.10) be Gbt+1,bt . The law of motion of bank net
worth is therefore:

nt+1(j) = RT
t+1(j)pt(j)kt(j) – R̄t(j)dt(j) (3.11)

Following Gertler and Karadi (2011) and Gertler and Kiyotaki (2010), the bank-household
relationship is subject to a moral hazard friction. The bank has an exogenous incentive to divert
bank assets. It has the capacity to divert no more than a fraction _ of the total value of local
assets p(j)k(j). If considering to divert, the banker always manages to escape but the bank enters
bankruptcy the following period. In equilibrium, it must be that the bank stays indifferent between
operating honestly and diverting. This yields the following incentive constraint that puts a limit on
bank leverage:

_ pt(j)kt(j) ≤ Vt(j) (3.12)

where Vt(j) is the franchise value of the intermediary, whose recursion is defined below.
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The market-specific probability of default is h(j). Default risk is due to fundamental insolvency,
i.e., when bank net worth at normal market prices is non-positive:

ht(j) = Pr
(
nt+1(j)(nt(j), bt(j)) ≤ 0

)
(3.13)

Conditional on insolvency, the household recovers only an endogenous fraction of promised
payments xt(j), to be defined later. This risk is priced by the household through equilibrium deposit
rates. Remaining assets get transferred to the capital producing firm who produces Kt as normal.

The distribution of financial varieties (“banks”, for short) is summarized by the probability
measure ` defined on the Borel algebra B that is generated by open subsets of the product space
B = N×Ξ, corresponding to the distribution of incumbent banks with net worth n and idiosyncratic
return realization b. The aggregate state of the economy is (k, `,M) with Mt the total mass of new
entrants in period t. The law of motion for the distribution is:

`t+1 = Γ(kt, `t,Mt+1) (3.14)

We define Γ below. The evolution of the distribution thus depends on bank entry and exit as
well as on the decisions of the incumbent banks-varieties.

3.3.5 Credit Margins and Markups

Private bank-level margins j(j) are defined as the ratio of capital relative prices p(j) to the cost
of funds R̄(j):

j(j) =
p(j)
R̄(j)

(3.15)

This is also precisely the definition of margins from our empirical analysis. Given the aggregate
state vector S that we define below, the aggregate margin X(S) is defined as the ratio of the aggregate
price of capital to the average interest rate on deposits:

X(S) =
P(S)
R̄(S)

(3.16)

In ourmodel, X(S) is a dynamic, endogenous object. That is, each j(j) is determined conditional
on the forward-looking expectations about the evolution of idiosyncratic return risk, the tightness
of the leverage constraint, and the dynamic distribution of assets. The aggregate margin, in turn, is
a time-varying average of the cross-section. Because of non-linearities and aggregate uncertainty,
this average does not correspond necessarily to the margin of the average intermediary.

Although in order to compute margins in the full model we need to resort to numerical methods,
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we can derive several analytical results to show how credit margins are determined in a simpler
version of the model. First, assume that we solve a static problem instead of the dynamic one. That
is, ignore aggregate uncertainty. Second, treat v(j), R̄(j), and RT(j) as given. Third, assume the
occasionally binding leverage constraint is always slack. We can solve for the bank-level rate-setting
rule:

Proposition 4 (Bank Price-Setting Rule). The price-setting rule p(j)
P(S) on each local credit market j

is:

p(j)
P(S)

=


V\ – 1
\ – 1

R̄(j)(
1 – h(j)

)
RT(j)

K(S)V–1


1
\(V–1)

(3.17)

and the marginal cost is:

MC(j) B
V\ – 1
\

p(j)
R̄(j)(

1 – h(j)
)
RT(j)

[(
p(j)
P(S)

)–\
K(S)

] V–1

(3.18)

Proof: Appendix 3.10
The proposition clarifies an important distinction between creditmargins andmarkups. A credit

margin, j(j), is a measurable ratio of the credit rate p(j) over the deposit rate R̄(j). In our model,
j(j) is endogenous, heterogeneous across local credit markets, and aggregate state-dependent. The
markup, however, given the CES assumption, is constant across all dimensions and depends only
on the structural parameter \.

In addition, the proposition clarifies the determinants of bank j’s endogenous marginal cost.
First, it is a function of the relative cost of funds R̄(j)

RT(j)
. This is due to the fact that the marginal

revenue, unlike standard models of monopolistic competition in product markets, depends not only
on revenues p(j)k(j) but also on the return to investment RT(j). Second, there is a scale effect factor
in K(S)V–1. Finally, the marginal cost is negatively related to the probability of default a(j).

3.3.6 The Incumbent Banker Problem

We now detail the dynamic problem of the incumbent intermediary. We follow recursive
notation from now on: the solution does not depend on the specific local credit market j but only on
the relevant state variables. Define s = {n, b} and S = {k, `,M} as the bankers’ idiosyncratic and
aggregate state vectors, respectively. Conditional on the state vector {s, S}, each banker maximizes
its franchise value which is defined as the discounted stream of future flows of net worth. The bank
discounts the future by adopting and augmenting the household’s stochastic discount factor Λ(S),
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which is determined in equilibrium together with household optimization. Each banker takes as
given the aggregate uncertainty process {k}, aggregate quantities {K(S),N(S)}, aggregate prices
{P(S),Rk(S)}, variety-specific deposit rates R̄(s, S), and the law of motion of the distribution Γ.
The generic incumbent banker therefore solves:

V(s, S) = max
{k,p,d}

{
ES′|S

[
Λ(S′)

(
(1 – f)n′ + fV(s′, S′)

)]}
(3.19)

s.t. conditions 3.1-3.4 and 3.6-3.14

We can simplify the problem substantially by rewriting it as a one-argument problem. Each
bank now chooses the leverage ratio q = pk

n to:

max
q

[
`aq + aa

]
(3.20)

subject to the same constraints as before, where `a = (1 – h)Λ̃(S′)
[
RT(s′, S′) – kV–1R̄(s, S)

]
is

the excess return on risky investments, and aa = (1–h)Λ̃(S′)R̄(s, S) is the cost of liabilities. In both
instances, Λ̃(S′) = Λ(S′)

(
1 – f + fV(S′)

)
is the augmented stochastic discount factor. Note how

the financial intermediary stochastic discount factor depends on the household’s discount factor
(because all bank equity ultimately belongs to the consumer) and on the exogenous exit rate f.

The leverage ratio, when internalizing the credit demand system, can be written:

q =
pk
n

=
( k
K(S)

)– 1
\ P(S)k

n
(3.21)

From equation 3.21 we see how leverage depends on relative prices p(j), which in turn are set
conditional on the elasticity of substitution \. Varying the degree of banking competition feeds
directly to the bank’s preference for risk-taking.

For illustration, we now contrast our q with the standard definitions of market leverage from
GKmodels. To get to the GK version precisely, we need to set \ →∞ and V = 1, as well as fb = 0.
Bank heterogeneity then collapses to the case of a representative, homogeneous intermediary. In
that case, bank leverage becomes qGK = P(S)k

n , which can be seen cleanly from Equation 3.21.
Because all relative prices collapse to unity, the market power channel is shut off.

Additionally, it can be seen from the expression for `a above how the value function depends
on bank characteristics when V > 1. Notice how `a depends explicitly on the choice of k. With
decreasing returns, the bank internalizes the impact of balance sheet choices on excess returns
which in turn feed into the value of the franchise. With constant returns, bank-level characteristics
do not matter and the state vector includes only aggregate variables. We discuss the role of bank
size heterogeneity more formally in the next section.

163



3.3.7 Bank Size Heterogeneity and Scale Variance

An important departure of our framework from Gertler and Kiyotaki (2010) and Gertler and
Karadi (2011) is that the value function of the incumbent is not linear in bank-level net worth. That
is, the solution is not invariant to the scale of the intermediary. The role of bank size heterogeneity
can be best visualized from the following proposition, where we re-introduce the (j) notation for
additional emphasis on heterogeneity:

Proposition 5. The solution to the incumbent banker’s problem for each j, conditional on V > 1,
the aggregate state vector S, initial net worth n(j) and idiosyncratic state b(j) is

V
(
n(j), b(j); S

)
= Z

(
n(j), b(j); S

)
n(j)

where the marginal value of net worth is:

Z

(
n(j), b(j); S

)
=

(
1 – h(j)

)
E

(
Λ(S′)

[
1 – f + fZ

(
n′(j), b′(j); S′

)]
k(j)V–1R̄(j)

)
1 – i

(
n(j), b(j); S

) (3.22)

and the multiplier on the moral hazard leverage constraint is

i

(
n(j), b(j); S

)
= max

1 –

(
1 – h(j)

)
E

(
Λ(S′)

[
1 – f + fZ

(
n′(j), b′(j); S

)]
k(j)V–1R̄(j)

)
n(j)

_k(j)1– 1
\

(
K(S)

) 1
\ P(S)

, 0


(3.23)

Proof: Appendix 3.10
Proposition 5 shows that bank-level characteristics matter for aggregation. In particular, the

distributions of both bank net worth and idiosyncratic return shocks b(j) are state variables. The
former is due to V > 1 and \ > 1, whereas the latter is due to the persistence of the shock process
and the incomplete markets assumption.

3.3.8 Cyclical Entry and Exit

There is a large number of new, potential financial varieties which are managed by financiers.
Before entry, the financier pays a fixed equity issuance cost e in units of aggregate capital. After
paying the sunk cost, the financier receives an idiosyncratic return profitability draw b0 ∈ Ξ from
the ergodic distribution G0(b) that governs b. The new entrant is also bestowed with a starting level
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of net worth n0(S) = ]Nt where 0 < ] < 1. This assumption is motivated by pro-cyclical bank entry
in the data. Immediately afterwards, the entrant decides whether to operate or to exit. Conditional
on staying, the financier becomes a new financial variety and adds to Jt. Conditional on its startup
state vector {n0(S), b0}, the entrant operates if its expected discounted franchise value exceeds e.
The value function for the entering financial variety is therefore:

Ve(n0, b0;S) ≡ max [EV(s;S) – e, 0] (3.24)

In equilibrium, either Ve is equal to 0, the number of entrants is 0, or both. The incumbents
are subject to two sources of exit risk: the involuntary exogenous exit rate f and the endogenous
probability of default a(j) which is specific to every local market. If a financial variety exits, its
market niche would never be taken over by any of the incumbents. Importantly, the extensivemargin
dynamic depends explicitly on the state of the business cycle. The two main factors that impact
financiers’ entry decisions are bank franchise values V(S) and startup equity injections n0(S). Both
are procyclical since aggregate demand for credit (and the stock of capital) are positively related to
k. That immediately implies that equilibrium entry is also procyclical, in line with the data.

3.3.9 Dynamics of the Cross-Sectional Distribution of Banks

Define ce as a mass of financial varieties that exits either due to endogenous default or because
of the exogenous exit shock. The cross-sectional distribution evolves according to:

`′(n, bi) = (1 – c
′e)

∫
{(n,bi)|K(n,bi;S)∈B}

Gji`(dn, dbi) + M′
∫
{(n0,bi)|K(n,bi;S)∈B}

G0(bi),∀bi ∈ Ξ

(3.25)
Recall that G0(.) is the CDF of b for new entrants and Gx′x is the Markov chain for b of the

incumbent.

3.3.10 Households

For simplicity, assume inelastic labor supply normalized to 1. The representative household
chooses the supply of deposits to each financial variety, bt(j), and consumption Ct, subject to the
budget constraint:

max
Ct,bt(j)

[
Et
∞∑
t=1

Vthu (Ct)

]
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subject to

Ct +
∫ Jt

0
bt(j)dj ≤ Wt +

∫ Jt

0
R̄t(j)bt–1(j)dj +

∫ Jt

0
ct(j)dj

where Wt is the equilibrium wage and c are profits (net of any transfers) from bank ownership
redistributed back to the household lump sum. The first order condition for deposits yields the
following equation:

R̄t(j) =
1 – ht(j)xt(j)E

(
RT
t+1(j)Λt+1

)(
1 – ht(j)

)
E (Λt+1)

(3.26)

where Λt+1 = Vh
u′(ct+1)
u′(ct) is the stochastic discount factor. Deposits are risky because there is no

deposit insurance. The consumer prices bank default risk into the distribution of variety-specific
deposit rates, which depend on the deposit recovery rate xt(j):

xt(j) = min
[

qt(j)
qt(j)kt(j)V–1 – 1

, 1
]

with qt(j) being the market leverage ratio, defined as before.

3.3.11 Recursive Industry Equilibrium

Credit market clearing requires:

K(`, S) =
∫
B

(
k(s;S)

)
`(dn, db) + M(S)

∫
B

(
k(n0, b0;S)

)
dG(b0) + M(S)e (3.27)

where the first term on the right hand side is total demand by incumbents, the second term
is total demand by entrants, and the final term is the entry cost paid by the entrants. Similarly,
equilibrium in the market for bank deposits requires:∫ J

0
b(j)dj =

∫
B

(
d(s;S)

)
`(dn, db) (3.28)

Goods market clearing requires production goods to be used either for household consumption
or firm investment. The latter includes investment demand that is intermediated both by the
incumbent and the new entrants.

Y(S) = C(S) + I(S)

A recursive industry equilibrium is defined as a set of functions that include the value function
of the banker V(s;S), optimal policies for bank capital investment k(s;S) and deposit demand
d(s;S), household consumption c(b–1;S) and deposit supply b(b–1(j);S), the mass of new bank
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entrants M(S), competitive wage W(S) and capital Rk(S) pricing functions, the aggregate price
index of financial varieties P(S), a marginal utility process Λ(S), and the menu of market-clearing
deposit rates R̄(s;S) such that:

1. The household’s choices {C(S), b(j)} are optimal conditional on {W(S), R̄(s;S)}.

2. The banker’s choices {k(s;S), p(s;S), d(s;S)} are optimal conditional on {k,Λ(S),K(S), P(S), R̄(s;S), `(S)}

3. The returns on factors of production are: Rk(S′) = k′
(
UAK(S′)U–1+(1–X)P(S′)

P(S)

)
, W(S) =

(1 – U)K(S)U.

4. {K(S),D(S),N(S)} are consistent with the cross-sectional distribution and the monopolistic
credit demand system in (3.4)-(3.7).

5. The free-entry condition (3.24) is satisfied and is consistent with individual choices.

6. The credit market clears as in (3.27). The deposit market clears for each variety j as in (3.28).

7. The cross-sectional distribution evolves according to (3.25) and is consistent with bank-level
demand functions.

3.3.12 Symmetric, Non-Stochastic Steady State

To shed more light on the equilibrium properties of the model, it is useful to inspect features of
the symmetric, non-stochastic steady state. In doing so, and following the result in Proposition 4,
we pin down the aggregate interest rate on deposits. It is determined in a static equilibrium where
aggregate price levels and interest rates are obtained simultaneously for a given level of aggregate
demand for credit. To that goal, we require additional assumptions, for tractability. First, we set b(j)
to the ergodic mean for all j. Second, we consider symmetric equilibria only, i.e., when p(j) = P∀j.
By extension, this implies homogeneous probabilities of default h(j) and deposit interest rates. Note
that this corresponds to analyzing a representative (average) banker from the distribution, rather
than shutting down the default risk or idiosyncratic returns channels completely. The aggregate
cost of funds is determined in the following proposition.

Proposition 6 (Aggregate Rate Rule). The aggregate rate-setting rule in the banking sector is

R̄ =
[ V\ – 1
\ – 1

KV–1

RT(1 – a)

]–1
(3.29)

Proof. Follows immediately from Proposition 4 after assuming symmetry in the price-setting rule,
i.e. in equation 3.17 set p(j) = P∀j and R(j) = R∀j.

�
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The aggregate rate-setting schedule is a downward-sloped demand curve for bank lending. Note
that the slope of the line is independent of the elasticity of substitution, which acts as a horizontal
curve shifter. In the limiting case of \ approaching infinity, the special case of perfect competition
in the credit market is achieved. A symmetric equilibrium is defined by the intersection with the
upward-sloping funding cost rule, equation 3.26 from the household’s problem. It is straightforward
to see that the rate is increasing in K because (a) R̄(j) is decreasing in the deposit recovery rate x(j)
and (b) x(j) is decreasing in the leverage ratio q(j) and k(j). Everything else equal, as debt-financed
capital grows, the recovery rate falls and the deposit rate goes up. In the symmetric equilibrium,
the average rate R̄ is increasing in the aggregate stock of capital K.

A static, symmetric equilibrium generally exists when V > 1. We can visualize the equilibrium
graphically, for some given values of a and RT > 0 as well as V > 1 and \ > 1. Figure 3.6 portrays
graphically symmetric equilibria under the alternative scenarios of perfect (PC) and monopolistic
(MC) competition in lending. Monopolistic competition is our baseline case when \ > 1 but is
finite. Perfect competition is the theoretical limit of \ → ∞. The downward-sloping curve is
the aggregate rate-setting rule (Equation 3.29). On the horizontal axis we have quantities - the
aggregate demand for credit K. On the vertical axis are aggregate interest rates.

As \ falls, greater credit market power shifts the pricing rule leftward with no immediate
effects on the funding schedule. The wedge between the MC and PC curves grows and the social
deadweight loss from credit markups increases. This yields a decline in both aggregate demand and
the cost of bank funds. Credit market power leads to an aggregate under-lending externality. In the
monopolistic competition (MC) equilibrium, aggregate demand is strictly lower than in the perfect
competition (PC) counterfactual.8 Our result parallels the canonical under-utilization of labor
resources in Blanchard and Kiyotaki (1987). Note that the only resource used in the production
of financial varieties is capital k(j), thus the under-utilization of risky capital in equilibrium. In
a more sophisticated setup, if the banker also employed labor in order to supply each additional
unit of k(j), labor would be also underutilized in equilibrium. Assuming no market power on the
liability side of the balance sheet, the credit supply externality would only strengthen in this case.

3.3.13 Numerical Algorithm

There are several considerable computational challenges in solving our model. First, the
financial sector needs to construct forecasts for the return to aggregate capital Rk′, which depends
on the forecasts for K′ and P′. Both aggregates, in turn, potentially depend on the whole distribution

8This result stems from our assumption that all non-financial firms depend on bank funding. In practice, the
relevance of the externality scales with the share of bank-dependent firms in the distribution. Clearly, if firms can
finance investment with retained earnings or equity issuance, the credit supply externality would have little to no bite.
This observation is true not only for our environment but also for the general class of GK models.
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Figure 3.6: Monopolistic Banking Equilibrium - Visualization

Notes: This figure visualizes the static, symmetric equilibrium with monopolistic competition in bank lending. The
downward-sloping curve is the aggregate pricing rule from Equation 3.29. The upward-sloping line is the deposit
supply schedule from the household’s problem. The graph highlights equilibria under monopolistic (MC) and perfect
competition (PC) in the bank credit market. The MC case reflects the baseline scenario of a finite \ > 1. The PC
equilibrium is approximated by \ →∞. On the horizontal axis is aggregate demand for credit K. On the vertical axis
is the aggregate rate R̄.

of bank assets k(j) - an infinitely dimensional object. We solve this problem with a variant of the
stochastic simulation and partial aggregation method of Maliar et al. (2010). This method builds
on the general algorithm for solving models with heterogeneous agents and aggregate uncertainty
that was originally proposed in Krusell and Smith (1998). In the algorithm, linear forecasts are cast
on a number of moments of the banking distribution. Specifically, we assume a linear projection of
K′ and P′ on m moments of the k(j) distribution. In the baseline case, we will track only the mean.
In Section 3.6.4 we will also track the second moment. Second, the deposit market must clear at all
points of the state space. Third, the bank adopts and augments the households’ stochastic discount
factor Λ(S), which is an endogenous state variable that must be kept track of. Fourth, the dynamic
distribution of bank net worth must be consistent with both endogenous entry and exit. Finally,
the bank faces an occasionally binding leverage constraint which could bind on any part of the
idiosyncratic or aggregate state space. Below we describe all steps of our algorithm in more detail.

0. Solve a simpler version of the model without aggregate uncertainty. Use the solution as an
initial condition for the full model with aggregate risk. Construct grids for aggregate capital
and the aggregate shock. For individual bank net worth and household wealth, we use an
unequally spaced grid with more points on lower values of n(j) and b–1.
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1. Solve the problem of the representative household given equilibrium wages and deposit rates.
We use the endogenous gridpoints method for speed (Carroll, 2006). Construct Λ(S).

2. Solve the financial intermediation problem in three steps

(a) Conjecture a starting law of motion for aggregate capital log(K′) = [k
(
log(mk)

)
and

the projection for prices log(P′) = [p
(
log(mk)

)
. Construct Rk′.

(b) Given [k, [p, Λ and initial guesses for V(j), a(j), and R̄(j) solve the bankers’ problem
using value function iteration. To handle the occasionally binding leverage constraint,
first guess that the constraint is binding on a point in the grid space. Compute the
implied Lagrange multiplier. If the constraint is slack, re-solve the problem using
global maximization routines while ignoring the constraint.

(c) Compute the implied policy function for deposit demand. Update the interest rates on
deposits, compare with the initial guess, and iterate upon convergence is achieved on
each point of the state space.

3. Using the newly computed policy functions, run a large simulation of N varieties over T
quarters where incumbents are subject to both idiosyncratic and aggregate shocks. Compute
the implied time-varying distribution of bank net worth n(j), the supply of investment into
firm claims k(j), and the prices of claims p(j).

4. Solve the optimal entry problem in 3.24 and determine the time-varying mass of entrants M
for each quarter of T.

5. Construct the sequence of the aggregate demand for capital K that tracks demand of the
incumbent and of the new entrants. Run linear regressions K′ = [̂k(mk) and P′ = [̂p(mk).
Compare regression coefficients with the original [k and [p. If convergence is not achieved,
return to step 2(a) and continue until convergence of the inner loop.

6. When the inner loop converges, construct updated versions of competitive wages and deposit
rates using optimal a(j) and q(j). Return to step 1, re-solve the household problem and
construct a new Λ(S). Continue with the inner loop. Keep iterating the program until
convergence of the outer loop is achieved. Accuracy of the algorithm is discussed inAppendix
3.11.

3.4 Quantifying the Model

We begin a quantitative illustration of the model by first reporting the details of our calibration.
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3.4.1 Calibration

Table 3.3 displays the parameter values chosen for the model calibration. The unit of time in
the model is a quarter. We start by describing standard macro parameters. The share of aggregate
capital in production is set to U = 0.36. The discount rate Vh =0.996 targets the steady-state annual
risk-free rate of 1.56%. Aggregate capital Kt depreciates at the quarterly rate X = 0.025. We
assume log-utility in consumption (fh = 1).

For parameters in the banking block, the dividend payout ratio is set to f = 0.9. This number is
broadly consistent with the exit rate of financial intermediaries in the U.S. According to the Federal
Deposit Insurance Corporation, there were about 11000 commercial banks in the U.S. at the start
of 1980. This number has fallen below 5000 by 2020. This implies an approximate annual exit
rate of 3% and a life expectancy of a banker of about 8.25 years. In the model, that number is 10
conditional on zero default risk. The fraction of bank assets that are divertible by the manager is
_ = 0.12. This number targets a steady state bank leverage ratio of 8. Endowment of new entrants
and the fixed cost of entry are calibrated in order to keep the net entry rate relatively stable over the
cycle at around 5%.

Themonopolistic banking block requires calibration of twomain parameters. First, the elasticity
of substitution \ = 2 implies an average stationary credit margin of 1.48 over the cost of funds, which
is broadly in line with the existing evidence on loan margins in the financial sector (De Loecker
et al., 2020; Diez et al., 2018). Jamilov (2020) estimates the average nationwide elasticity of
substitution across U.S. commercial banks to be roughly 1.2, and we pursue a more conservative
calibration approach. The returns to scale parameter of V = 1.01 suggests minor dis-economies of
scale and almost-constant returns. The calibrated value is consistent with empirical evidence on
some dis-economies of scale in European banking (Anolli et al., 2015).

Calibration of the idiosyncratic return process follows closely the recent work by Galaasen
et al. (2020). Galaasen et al. (2020) estimate the pass-through of idiosyncratic firm shocks on
bank-level returns using matched bank-firm data from Norway. They estimate the shock process
and find annual persistence and standard deviation parameters of db = 0.11 fb = 0.25. That is,
the idiosyncratic rate of return shock in banking is (a) volatile and (b) not very persistent. These
values are in line with our chosen quarterly parameters in the Table. The fraction of financial wealth
exposed to idiosyncratic risk ^ = 0.5 is in line but slightly on the upper side of the pre-financial crisis
share of the shadow banking business in overall U.S. banking (Gorton and Metrick, 2010). For the
aggregate shock process, we pick fk and dk such that output volatility in the model corresponds
roughly to that of the pre-Crisis period. Both idiosyncratic and aggregate processes, in order to
keep the state space manageable, are discretized with the Tauchen (1986) method.
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Table 3.3: Model Parameters

Parameter Description Value

Standard Macro

U Share of capital in production 0.36
Vh Discount factor 0.996
fh Household risk aversion 1
X Capital depreciation rate 0.025

Banking

f Dividend payout ratio 0.9
_ Share of divertible assets 0.12
] Entry starting endowment 30% of Nt
e Entry fixed cost 0.11

Monopolistic Competition

\ Credit demand elasticity 2
V Local returns to scale 1.01

Idiosyncratic and Aggregate Risk

^ Fraction of returns exposed to idiosyncratic risk 0.5
db Serial correlation of idiosyncratic risk 0.5
fb SD of idiosyncratic risk 0.1
dk Serial correlation of aggregate risk 0.914
fk SD of aggregate risk 0.015

Notes: Parameters that are exogenously fixed in the model calibration.

3.4.2 Model Policy Functions

Figures 3.7 and 3.8 plot two-dimensional policy functions for key financial-sector quantities,
prices, and measures of risk. The two dimensions are the idiosyncratic states: initial net worth
(size) nt(j) and returns bt(j). Figure 3.7 reports quantities. (Book) leverage is defined as total assets
over total net worth. Overall, banks with larger nt(j) and bt(j) tend to choose greater quantities
of future net worth nt+1(j) and assets kt+1(j). Such banks are also more (book) levered, which is
consistent with the empirical facts from Coimbra and Rey (2019) and Gopinath et al. (2017) on
both financial and non-financial firms. This is also in line with our empirical analysis from Section
3.2.2. Finally, larger and more profitable banks have a greater franchise value Vt+1(j).

Figure 3.8 reports policy functions of prices and measures of risk. Generally, credit margins,
j(j), decline with bank size and profitability in the cross-section. This feature of the model is a
consequence of us working with CES aggregation. Noticeably, it is consistent with the empirical
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Figure 3.7: Model Policy Functions - Quantities
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Notes: Optimal choices represented as two-dimensional surfaces. The two dimensions are idiosyncratic state variables
in the banking sector: initial net worth n(j) and idiosyncratic return b(j). Leverage is in book values.

evidence in Section 3.2.2 documenting that banks with higher net worth charge lower margins.
Larger, more profitable banks also earn more in total revenues pt(j)kt(j). Small institutions face
elevated risks of insolvency at(j), which is priced in the interest rate on deposits R̄(j).

3.4.3 Ergodic Cross-Sectional Distributions

Figures 3.9 and 3.10 present two-dimensional histograms for bank book leverage, default risk,
relative prices, and deposit rates. These cross-sectional distributions are ergodic, i.e., obtained from
the recursive general equilibrium with aggregate uncertainty. One of the two axes represents net
worth (size) n(j). The other axis is the plot-specific variable of interest. The distribution of leverage
is centered around 8, our steady state target. It is right-skewed, i.e., there is a small number of banks
with high leverage ratios. This is consistent with the cross-sectional facts reported in Section 3.2.2
above. Leverage also grows with initial net worth, which was also visible from the model policy
functions. The distribution of margins j(j) is centered around 1.5, consistent with our target. Credit
margins decline with the size of the intermediary, as mentioned before. Finally, the distribution of
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Figure 3.8: Model Policy Functions - Prices
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Notes: Optimal choices represented as two-dimensional surfaces. The two dimensions are idiosyncratic state variables
in the banking sector: initial net worth n(j) and idiosyncratic return b(j). Deposit rates are in percent, annualized.
Default risk is in percent, annualized.

default (insolvency) risk is concentrated in the left tail of the bank net worth distribution. Small
institutions face a probability of insolvency that is as high as 1% on a yearly basis. This distribution
is priced into the cross-section of deposit rates R̄(j): smaller, riskier institutions must compensate
the risk-averse household for “investing” into a risky bank. In equilibrium, the premium is reflected
in higher interest rates on deposits.

3.4.4 Credit Cycle Statistics

Table 3.4 reports unconditional standard deviations and correlations with output from ourmodel
economy. We focus on the financial cycle and the first three moments of the distributions of bank
assets, net worth, credit margins, default risk, and book leverage. In order to obtain these moments,
we simulate the model for 10,000 quarters. We see that model-based standard deviations are
smaller than in the data. This is due to the fact that our statistics are based on a model with a
single aggregate shock k. We correctly match the regularity that higher-order moments of the
distributions (especially concentration) are typically more volatile than the mean.
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Figure 3.9: Ergodic Distributions - Risk-Taking
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Notes: ergodic cross-sectional distributions obtained from the recursive competitive equilibrium. Default risk is in
percent, annualized. Leverage is in book values. Figures plot the pdf normalization.

The table also reports model-implied credit cycle correlations. In terms of correlations, our
model can match the data well. We match the pro-cyclicality of the first two moments of financial
assets and net worth. We also obtain - correctly - negative correlations for the concentration of both
assets and net worth. In the model credit margins are counter-cyclical, which is in line with the data.
The model predicts pro-cyclical second and third moments of the margins distribution, while in the
data those moments are negative and positive, respectively. All three moments of the distribution of
default risk have correct cyclical properties. Book leverage in the model is pro-cyclical in all three
moments. In the data, concentration of leverage is counter-cyclical. Finally, both the total number
of incumbent intermediaries and the mass of new entrants is correctly pro-cyclical in the model.
Overall, the model is able to replicate 15 out of the 17 free, untargeted correlations, including the
entry rate and the number of active intermediaries, which are both pro-cyclical as also reported in
Corbae and D’Erasmo (2019).
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Figure 3.10: Ergodic Distributions - Prices
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Notes: ergodic cross-sectional distributions obtained from the recursive competitive equilibrium. Deposit rates are in
percent, annualized. Figures plot the pdf normalization.

3.4.5 Financial Recessions

Next we characterize equilibrium dynamics in the model. We study the model behavior in re-
sponse to a (one standard deviation) negative k (capital quality) shock. This shock is representative
of a worsening of banks’ balance sheets. Our numerical approach consists of two general steps.
First, we run a “benchmark” simulation of our model economy for 10,000 periods. Second, in
some quarter T*, the economy is hit with a counterfactually low realization of the aggregate capital
quality shock kT∗. It is then allowed to revert back to the benchmark path with its normal autocor-
relation coefficient while being subjected to normal shocks as in the benchmark. The differential
between the benchmark and the counterfactual simulations identifies the impact of the aggregate
shock on each variable relative to its stochastic steady state value.

Figure 3.11 displays the responses of key macroeconomic aggregates. The crisis episode is
associated with a contraction in output, consumption, and aggregate capital. The risk premium,
defined in the model as RT(S) – R̄, spikes upwards due to the deterioration of conditions in the
financial sector: the value of productive capital, and by extension, bank assets has declined. This
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Table 3.4: Credit Cycle Statistics - Data and Model

Data Model

Variable Standard
Deviation

Correlation
with Yt

Standard
Deviation

Correlation
with Yt

Assets Mean 13.383 0.498 2.316 0.798
Assets Dispersion 19.371 0.642 4.276 0.541
Assets HHI 18.281 -0.568 13.897 -0.103

Net Worth Mean 11.268 0.211 1.920 0.842
Net Worth Dispersion 18.076 0.544 3.837 0.683
Net Worth Concentration 16.64 -0.472 8.553 -0.238

Margins Mean 31.046 -0.563 0.765 -0.305
Margins Dispersion 42.404 -0.370 1.829 0.437
Margins Concentration 56.595 0.725 10.996 0.476

Default Mean 57.751 -0.325 6.887 -0.740
Default Dispersion 58.498 -0.309 6.040 -0.493
Default Concentration 32.021 0.033 21.058 0.278

Book Leverage Mean 6.036 0.701 0.679 0.197
Book Leverage Dispersion 6.855 0.043 1.817 0.097
Book Leverage Concentration 20.157 -0.641 16.937 0.043

Bank Entry Mass 0.700 0.195 0.810
Number of Banks 0.102 0.811

Notes: Table reports standard deviations and correlations with output of key financial aggregates. Columns (2-3) report
moments in the data. Columns (4-5) report moments from the model. To obtain model-based moments we solve and
simulate the model for 10,000 periods. All simulations are conditional on capital quality shocks only.

effect gets amplified through the tightening of bank leverage constraints and a further fall in asset
values. The impact on the real economy runs directly through firms’ reliance on bank financing
and the collapse of non-financial investment. There is no aggregate uncertainty in total factor
productivity (TFP) in the model, and so the actual At is unaffected. Measured TFP (Ãt), however,
defined as the simple Solow residual of the production function, declines in line with the rest of the
real aggregates.9

Figure 3.12 presents the response of the financial sector. For each financial characteristic, we

9Formally, we define Ãt as the difference between the time-series of output and capital. However, Yt is the actual,
realized series while capital is from the stochastic steady state: Ãt=Yt – Kss

t . That is, in response to unexpected kt
shocks, the econometrician can always measure and observe that Yt is falling but cannot correctly attribute it to the
"true" capital stock that is subject to financial frictions and imperfect competition. With measured capital not showing
any response to the shocks, the econometrician attributes the unexplained component of the drop in Yt to the measure
of our ignorance.
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Figure 3.11: Financial Recession - Macro Outcomes
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Notes: Response to a one standard deviation negative kt shock. The benchmark economy is in the stochastic steady
state. All figures plot percentage point differences. See main text for details.

plot responses of the mean, dispersion, and concentration of the corresponding cross-sectional
distribution. First, the mean and dispersion of bank assets and net worth fall, while concentration
levels of both rise. The negative aggregate shock shifts the distribution of bank size leftward.
Concentration rises due to the uneven distributional effects in the financial sector. For one, bank
exit due to default accelerates and bank size gets clustered around zero due to limited liability. On
the other hand, institutions with ex-ante high net worth and returns are affected marginally less and
become larger in relative terms than prior to the shock. Effectively, a form of reallocation of credit
provision takes place that favors banks with ex-ante strong balance sheets and high profitability.
Additionally, because startup equity of new entrants is tied up to the average level of net worth, all
entrants begin with a lower level of net worth, which further boosts the size concentration.

Mean leverage (in book values) falls, and so do its dispersion and skewness. In the model book
leverage is positively correlated with net worth. As the distribution of net worth shifts to the left,
smaller intermediaries become less risky in terms of book leverage. New entrants begin with lower
levels of initial equity and, conditional on operation, immediately choose very low levels of book
leverage. This gets reflected in a reduced skewness of leverage.
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Figure 3.12: Financial Recession - Banking Outcomes
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Notes: Response to a one standard deviation negative kt shock. The benchmark economy is in the stochastic steady
state. All figures plot percentage point differences. See main text for details.

Furthermore, average credit margins rise, while their dispersion and skewness both fall. As
seen from our model policy functions, credit margins decline with bank net worth. As the average
intermediary becomes smaller, the average loan margin increases. However, the presence of a small
fraction of very large intermediaries is reflected in the decline of the skewness of margins, in line
with the data showing that the concentration of credit margins is pro-cyclical. A similar response
pattern is observed for default risk: smaller institutions are considerably more likely to be driven to
insolvency due to negative realizations of idiosyncratic return shocks. Large intermediaries with a
sufficient buffer stock of net worth are immune to this risk, which makes the default risk distribution
left-skewed.

Finally, the total number of banks (financial varieties) falls. This is the result of two drivers
of the extensive margin. First, bank entry stalls because the cutoff level of initial profitability has
increased. This is due to the fact that startup equity injections, which are tied to aggregate net
worth, are now lower. Second, the bank exit rate, driven by endogenous default, rises. As a result,
the number of active incumbent intermediaries shrinks.

Overall, and conditional on capital quality shocks only, the model is capable of reproducing the
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cyclical properties of all higher-order moments except for two (skewness of leverage and dispersion
of margins).

3.5 Inspecting the Model Mechanisms

In this section we build on the "financial recession" experiment of the previous section and
isolate the contributing roles of the three key model mechanisms: (i) bank market power, (ii)
idiosyncratic risk, and (iii) endogenous entry.

3.5.1 Shutting Down Bank Market Power

In order to analyze the impact of bank market power on business cycle fluctuations, we shut
down the credit margins channel. Specifically, we set \ to a very large number. This turns off the
bank’s ability to charge market-specific loan margins over the cost of funds. However, because the
idiosyncratic risk channel and scale-dependency are still active, the distribution of banks still plays
a role. Numerically, we run the same exercise as with the baseline crisis experiment but separately
for the two economies.

Figure 3.13 plots the response functions to a negative capital quality shock. We observe that
the presence of credit market power dampens the responsiveness of both output and consumption.
In cumulative terms (not shown in the figure), in response to the same shock, the economy with
no credit market power suffers a 10% greater decline in output by the 40th period. This result
arises from the fact that variable loan margins are an additional margin of adjustment for banks to
“insure” against adverse shocks ex post. In response to negative aggregate shocks, credit margins
rise as the distribution of net worth shifts leftward. The aggregate price of capital increases, which
acts as an endogenous stabilization mechanism. The market value of bank assets falls by less, and
the real economy goes through a more benign contraction.

Note that in the economy with no credit market power, bank book leverage falls on impact albeit
recovering and growing over time. Leverage falls initially because book assets fall by more than
net worth when credit market power is low. Default risk is also considerably higher in the perfect
competition economy. This result resembles the often discussed competition-stability trade-off,
but applied to the case of business cycle analysis. Finally, the number of banks declines by more in
the baseline Bewley economy. This observation comes as a result of the impact of market power
on franchise values. The average bank franchise value is lower when the margins are high. This
implies that the participation threshold is higher in the baseline economy with monopolistic banks
than in the one with perfectly competitive banks, especially in crisis episodes.
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Figure 3.13: The Role of Credit Market Power
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Notes: Response to a one standard deviation negative kt shock. The “Bewley Banks” economy is the baseline. Dashed
blue lines represent the economy where \ is set to 1010. All figures plot percentage point differences.

3.5.2 Shutting Down Idiosyncratic Risk

Next we proceed by shutting down the idiosyncratic risk channel. Specifically, we set fb equal
to 0. This has two immediate effects in our economy. First, the economy essentially reduces to the
case of a representative financial variety as there is no ex-post heterogeneity in returns. Second,
the extensive margin is shut down as well, as a result. Note that in this no-risk economy the bank
can still charge credit margins that are market-specific. The details of the numerical experiment
are the same as before.

Figure 3.14 plots the responses for the two economies, with and without idiosyncratic risk.
Idiosyncratic risk acts as a source of amplification in the financial sector with limited effects on
output and consumption. This is in contrast to the strong dampening impact of credit market
power. The cumulative effect on consumption is around 5-10% greater (in absolute and cumulative
terms) in the Bewley economy relative to the no-risk counterfactual. In the Bewley economy, when
markets are incomplete, bank assets and net worth decline by more in reaction to aggregate shocks.
This effect arises due to ex-post heterogeneity in returns and net worth that the idiosyncratic risk
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Figure 3.14: The Role of Idiosyncratic Risk
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Notes: Response to a one standard deviation negative kt shock. The “Bewley Banks” economy is our baseline. Dashed
blue lines represent the economy where fb is set to 0. All figures plot percentage point differences.

and decreasing returns channels grant us: the distribution of banks in the stochastic steady state
features a positive mass of fragile intermediaries - those with low initial net worth and a history of
low b(j). In crises episodes, fragile intermediaries experience heavier balance sheet losses, which
is the intensive margin effect. In addition, the fraction of those fragile intermediaries goes up, i.e.
the extensive margin adjustment reinforces the original shock. As a result, both aggregate net worth
and capital decline by far more and take longer to replenish.

Note that in the no-risk economy, book leverage falls on impact albeit by a small amount. This
is due to the fact that book leverage and net worth are positively correlated and there is no bank net
worth heterogeneity in the no-risk case. By similar logic, credit margins fall in the no-risk economy
but rise in the Bewley economy. As the distribution of bank net worth shifts to the left, and because
private credit margins decline in size, the average margin increases. In the no-risk economy, the
margin of the representative banker declines due to the first-order effect of the aggregate shock.
Finally, there is no default risk in the no-risk economy by construction.
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Figure 3.15: The Role of Endogenous Entry
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Notes: Response to a one standard deviation negative kt shock. The “Bewley Banks” economy is our baseline. Dashed
blue lines represent the economy with exogenous bank entry.

3.5.3 Shutting Down Endogenous Bank Entry

Finally we explore the implications of shutting down the bank entry channel. In the baseline
economy, recall that financiers must solve the dynamic problem in (3.24) when deciding whether
to enter and to operate. We replace this condition with the assumption that the number of banks
remains invariant over the business cycle. In other words, the exact mass of varieties that exits due
to the f shock or endogenous default gets replaced regardless of the state of the business cycle
such that Jt is time-invariant. In the Bewley economy, the quantity of capital that new entrants
intermediate upon entry is endogenous: it depends on the cutoff level of the idiosyncratic return
process, which determines the entry decision of the marginal financier, as well as the startup equity
injection. In the no-entry economy, we assume that the mass of entrants intermediates 30% of the
aggregate capital stock, which is roughly the ratio that arises endogenously in the Bewley economy.
Because entry is now exogenous, the cost of entry becomes a redundant parameter. As a result,
this exercise isolates the contribution of the mass of new entrants, and not the capital that they
intermediate. Details of the exact numerical experiment are the same as before.
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Figure 3.15 plots the responses for the two economies. Endogenous bank entry acts as a minor
source of amplification: aggregate consumption falls by about 10-15% more (in cumulative terms)
in the Bewley economy than in the no-entry version. With exogenous entry, output and themeasured
TFP fall by slightly less. In the financial sector, exogenous entry is associated with a dampened
effect on bank assets, leverage, and margins, primarily due to changes on impact. In the no-entry
economy, the volume of capital contributed by new entrants is time-invariant, while it fluctuates
together with the mass of new entrants in the Bewley economy. Following an adverse aggregate
shock, there is immediately less entry and, by extension, lower capital in the Bewley economy.
Over time, the effect vanishes slowly because the banking sector manages to re-grow back the stock
of net worth.

The differential effect on capital explains the noticeable differences in the responses of leverage,
credit margins, and default risk. With exogenous entry, leverage spikes up on impact because assets
initially increase slightly and then fall by less than bank net worth. Credit margins first fall
considerably and then rise, with a cumulative growth of about 25% less than in the baseline.
This takes place because private margins pt(j)

R̄(j) are decreasing in aggregate demand for capital Kt.
Collectively, this pushes up the average relative price Pt when capital falls by more. Similar logic
applies to the response of default risk: at(j) increases with kt and declines with Kt. As initial
aggregate capital changes by less in the no-entry economy, so does default risk.

3.6 Main Results and Experiments

In this section we report our main quantitative results. First, we show how our model tractably
nests the canonical GK and RBC environments. Recessions in our environment can be either
dampened or amplified, depending on the cyclicality of idiosyncratic risk. Second, we demonstrate
a specific feature of our environment, i.e., the aggregate state-dependency on the endogenous,
dynamic distribution of bank net worth. Third, we use our model to simulate a persistent rise
in banking concentration that has been documented for the US. We conclude by identifying and
characterizing banking crises episodes in our model economy using an event study approach.

3.6.1 Nesting GK and RBC Models

We now show how our framework nests the RBC and GK models. The GK environment can
be achieved in several simple steps. First, we eliminate credit market power by setting \ to a
very large number. The distribution of relative bank-level prices p(j) collapses to unity. Second,
we set V = 1 which brings back scale invariance. Finally, we set fb = 0 which shuts down the
idiosyncratic risk channel. The resulting financial intermediary sector collapses one-to-one to the
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Figure 3.16: Financial Recession - Bewley Banks, GK Banks, and RBC
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Notes: Response to a one-standard deviation negative shock to kt. The red straight, blue dashed, and black diamond
lines represent, respectively, the baseline model, the GK counterfactual with no idiosyncratic risk and no monopolistic
competition in banking, and the RBC counterfactual with no leverage constraints in addition to all the assumptions
from GK. All figures plot percentage point differences.

representative bank in GK. To go from GK to RBC, we set the leverage constraint parameter _ to a
very low number. That is, financial frictions are absent and the leverage constraint is always slack
at all points of the idiosyncratic and aggregate state spaces.10 We then compare the response to
a one-standard-deviation aggregate k shock in the Bewley Banks framework to the GK and RBC
models.

Figure 3.16 presents the results. Several observations are worthy of note. First, the GK economy
goes through the most contractionary recession due to the financial accelerator embedded into the
banking sector. Second, notice that the change in bank leverage is almost an order of magnitude
greater in the GK case. Moreover, qualitatively the change is in the opposite direction - leverage falls
on impact and then grows over time in the same way as in the full-competition scenario displayed
in Figure 3.13. In contrast, market leverage (not shown) increases in both economies but again
by almost an order of magnitude more in GK. Last but not least, macroeconomic responses in the

10Technically, our “RBC” economy is the true RBCmodel up to the augmented stochastic discount factor Λ̄. Recall
that the representative investor in our economy is the financial intermediary and not the household.
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Bewley economy are dampened relative to GK. This result emerges for the following two reasons.
Recall that credit market power acts as a significant dampener of exogenous aggregate shocks, a
fact that we established in Section 3.5.1. The dampening nature of market power dominates the
idiosyncratic risk channel, which amplifies the no-risk counterfactual.

But even in the limiting case with idiosyncratic risk but nomarket power there is still dampening
relative to GK. This occurs because private capital and net worth are both increasing in fb due to
the precautionary lending motive. The only way for the intermediary to hedge idiosyncratic risk
is to lend (“save”) more. The net effect on market leverage, a sufficient statistic for probability of
default, is negative. As a result, an economy with more exogenous environmental risk features less
endogenous riskiness due to lower leverage ratios and more equity. The inverse relation between
risk and leverage is consistent with the conventional wisdom that has been stressed by a number of
other papers (Fostel and Geanakoplos, 2008; Gertler et al., 2012). Lower leverage in the stochastic
steady state leaves the economy in a less fragile initial condition.

3.6.2 Counter-cyclical Return Risk and Endogenous Amplification

One way to counteract the power of the precautionary lending motive and to enhance amplifi-
cation is to introduce counter-cyclical rate of return risk. As we have shown in Section 3.2.4, there
is empirical support for this channel.11 We now allow idiosyncratic risk to be state-dependent.
Specifically, we assume that `b(S) - the unconditional mean of idiosyncratic rate of return risk in
Equation 3.10 - is now state-dependent and deterministic: it falls by 1 percentage point in the low
aggregate state. As a result, when the aggregate state of nature is low, the bank faces a higher prob-
ability of experiencing a bad idiosyncratic return draw. This puts additional downward pressure on
bank balance sheets precisely when the marginal value of net worth is the highest, thus increasing
the unconditional risk premium.12

The results of this experiment are portrayed in Figure 3.17. Notice that, on impact, the recession
is milder than in the GK benchmark. In fact, it’s quantitatively similar to our baseline. However,
once in the negative aggregate state, the counter-cyclical idiosyncratic risk channel kicks in. A
higher fraction of local credit markets starts to draw low b(j). This pushes the distribution of bank
assets and net worth leftwards. Over time, the original aggregate shock gets amplified considerably.
The measured TFP, output, and consumption all fall by more than 30% relative to GK in cumulative
terms by quarter 20.

The amplification effect in the financial sector is considerable. First, the quantitative effect on

11Bloom et al. (2018) have shown that microeconomic volatility for non-financial firms rises sharply in recessions.
Among many others, Challe and Ragot (2015) and Sterk and Ravn (2020) develop quantitative frameworks with
counter-cyclical income and unemployment risk.

12Making fb counter-cyclical would further strengthen the outcome. However, as also noted in Bloom et al. (2018),
we would still require a negative shock to the mean in addition to the second-moment disturbance.
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Figure 3.17: Bewley Banks with Counter-cyclical Return Risk fb
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Notes: Response to a one standard deviation negative kt shock. The “Bewley Banks” economy is our baseline. Dashed
blue lines represent the economy where `b (S)=1 when k is high and `b (S)=0.99 when k is low. All figures plot
percentage point differences.

the number of active intermediaries is an order of magnitude greater than in the baseline Bewley
Banks economy. This result follows immediately from the greater relative fall in both assets and
net worth. Second, credit margins now fall both on impact and along the transition back to the
original stochastic steady state. This occurs because private margins p(j)

R̄(j) are decreasing in `b(S).
As a result of the combined effects from book assets and equity, bank leverage also rises on impact
considerably.

Overall, we find that in the Bewley Banks framework, recessions could either be dampened
or amplified relative to a perfectly competitive benchmark with no idiosyncratic risk. The key
determinant is whether the precautionary lending motive can dominate the direct effect of business
cycles on financial balance sheets. If the idiosyncratic return risk is counter-cyclical, the business
cycle impact on balance sheets is too powerful for the intermediary to insure against ex-ante or
ex-post. However, if idiosyncratic risk is not state-dependent, the precautionary lending motive
guarantees that recessions are dampened relative to GK as the bank accumulates enough equity
capital to withstand aggregate uncertainty.
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3.6.3 Fragile Bank Distributions and the Business Cycle

We now highlight a genuine feature of the Bewley Banks environment: namely that aggregate
responses to exogenous shocks depend explicitly on the dynamic, endogenous distribution of bank
net worth. Our exercise consists of the following steps. First, we solve our model with aggregate
uncertainty. For simplicity, the only exogenous aggregate disturbance is the capital quality shock
kt. Second, we simulate the model for T=10,000 periods four times. The first simulation is our
“benchmark” case - the stochastic steady state. In the second simulation, the model economy
is hit with a counterfactually low kt after T* periods. The negative shock is allowed to revert
back to the benchmark series with its normal autocorrelation coefficient while being subjected to
normal shocks as in the benchmark. The difference between the second and the first simulation is
our response function to the negative kt shock. This is also our baseline recession experiment in
Section 3.4.5.

In the third simulation, after T*-1 periods we allow for a transitory exogenous change in the
conditional distribution of net worth n′(j). We assume that the economy temporarily moves to
a “fragile” distributional state in which average net worth falls while dispersion and skewness
increase.13 We construct a new conditional distribution that is determined by a counterfactual
policy function n̂′(s; S) equal to future net worth conditional on the lowest value of the initial net
worth state. This shift is best visualized in the left panel of Figure 3.18. The blue surface is the
equilibrium two-dimensional policy function which we reported in Figure 3.7. The red surface
is the policy function consistent with the fragile state. The right panel of Figure 3.18 plots the
conditional cross-sectional distributions of net worth from the equilibrium and the fragile states.
We assume that this transitory shift lasts for 8 quarters. That is, for 8 quarters the model is
being simulated with the counterfactual policy function that generates the fragile distribution. The
duration of the shock is consistent with the average duration of banking crises in the data (e.g.,
Laeven and Valencia (2012)) but is otherwise not materially important. After 8 quarters we revert
back to the policy function consistent with the stochastic steady state.

Finally, in the fourth simulation we have the exact same distributional shock as in simulation
3. In addition, in period T* the economy is now hit with the same negative exogenous kt shock as
in simulation 2. The difference between the fourth and the third simulations is the model response
conditional on the initial banking distribution being fragile. Finally, we compare the percentage
differential between simulations 1 and 2 with the percentage differential between simulations 3
and 4. This identifies exactly the aggregate state-dependency of the economy with respect to
fluctuations in the bank net worth distribution.

Figure 3.19 reports the results of this exercise. We plot cumulative impulse response functions

13In Section 3.6.4 we explore this point from a different angle: by studying model responses to direct, exogenous
shocks to higher-order moments which in turn feed into the decline of the first moment endogenously.
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Figure 3.18: The Fragile Steady State
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Notes: the left panel shows the baseline and the perturbed two-dimensional policy functions for net worth growth
n̂′(s; S). The right panel plots histograms of the cross-sectional distributions of net worth under the two alternative
policy functions. The mean and skewness of the distribution in the stochastic steady state are 1.5151 and 1.4496,
respectively. In the fragile steady state, the mean and skewness are 1.0878 and 2.2315, respectively.

for visibility. The dashed blue line is the model response to a negative capital quality shock. The
red straight line is the model response to the same shock but conditional on the fragile initial bank
distribution. We see from the figure that even a short, transitory negative change in the distribution
of bank net worth has a permanent and considerable effect on the macroeconomy. First, the
cumulative response of aggregate production is lower by 15% in the case of the fragile distribution.
The response of aggregate consumption is lower by roughly 10%. Second, the distributional change
has a relative contractionary effect on the size of the financial sector. The negative response of
bank assets and net worth is greater in absolute terms by a factor of 2.

Third, the financial sector is more risky as the market leverage ratio increases by more than a
factor of roughly 2.5. The probability of bank default is higher by a similar order of magnitude.
Fourth, the fragile distribution contributes to higher loan margins in the recession. Average margins
increase by 10 percentage points more than in the baseline economy. Finally, the number of banks
is twice as low, as potential entrants refrain from entry while internalizing low startup equity
injections. All of these results arise from the fact that the initial level of equity capital is low - since
bank net worth is the key state variable in the model, all endogenous responses such as margins
and leverage react accordingly.

Overall, the above exercise highlights the powerful amplification mechanism that is behind the
dynamic cross-section of bank net worth. When the initial distribution of net worth is fragile,
aggregate responsiveness to negative exogenous shocks is considerably stronger.
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Figure 3.19: Aggregate State Dependency on the Distribution of Bank Net Worth
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Notes: Impulse responses to a one-standard deviation negative kt shock with and without a prior transitory negative
shock to the conditional cross-sectional distribution of bank net worth n(j). The distributional shock lasts for 8 quarters
and is depicted in Figure 3.18. The kt shock reverts back to the stochastic steady state with the normal autocorrelation
of 0.914. See main text for more details. All figures plot percentage point differences. All response functions are
cumulative.

3.6.4 The Rise of Banking Concentration and Dispersion

Recent papers by Jamilov (2020) and Corbae and D’Erasmo (2019) have documented a con-
siderable rise in concentration in the U.S. banking sector. There is a large literature in corporate
finance and banking that links the rise of banking concentration to a plausibly exogenous sequence
of state and federal legislations that relaxed restrictions on bank entry and geographical expansion
over 1960s-1980s. (Jayaratne and Strahan, 1996; Kroszner and Strahan, 2014). Figure 3.20 plots
the time-series of commercial bank assets concentration (measured by the HHI) and dispersion.
The two measures are highly correlated and have risen by a factor of 4 and 10, respectively, since
the 1980s.

In our quantitative exercise below, we explore exogenous, transitory but persistent, shocks to
the higher-order moments of the bank credit distribution as a source of business cycle fluctuations.
We operationalise this idea in the following way. Recall that according to our numerical algorithm,
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Figure 3.20: The Rise of Banking Concentration and Dispersion
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Notes: Time-varying dispersion and Herfindahl index of the cross-section of financial intermediary assets. Data is
from Compustat. Sample includes US commercial banks only.

we track mk moments of the k(j) distribution. In the baseline scenario, we only keep track of the
mean. In this section, we also track the time-varying dispersion of assets, fk

t . In our numerical
experiment, as we show below, concentration will rise endogenously on impact in response to the
exogenous dispersion shock.

Computationally, tracking the second moment makes fk
t a relevant state variable. Exogenous

shocks to fk
t will have a direct first-degree effect on the optimal responses of all agents. If accuracy

of the baseline solution could be improved with the introduction of the second moment, then the
mean of k(j) is not a sufficient statistic for the characterization of the dynamic cross-section. This
line of reasoning is conceptually very similar to the original ideas in Krusell and Smith (1998) who
found that the first moment of the distribution of household wealth was generally sufficient for the
description of macroeconomic aggregates.

Our numerical exercise consists of three general steps. First, we solve the model where we allow
the law of motion of the distribution Γ to have fk

t as an additional argument. Second, we simulate
the model for 10,000 periods twice. In the first simulation, the economy remains in the stochastic
steady state. In the second simulation, the economy is hit with a positive, persistent shock to fk

t in
period T*. We assume that fk

t rises by a factor of 8, which is in line with empirical evidence in
Figure 3.21. Finally, a cumulative impulse response graph plots the percentage differential of the
two series. If the second moment is redundant, the response functions should be flat.
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Figure 3.21: Response to an Exogenous Second-Moment Shock
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Notes: Response to an 8-fold positive shock to the time-varying dispersion of the cross-sectional distribution of bank
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The equilibrium of the model in which fk
t is a state variable is characterized by the following

log-linear solution for Γ:

log(K′) = 0.4465 + 0.8160 log(K) – 0.0010 log
(
f(K)

)
; k low

log(K′) = 0.3769 + 0.8526 log(K) – 0.0060 log
(
f(K)

)
; k high

For projections of K′. For projections of P′ we have:

log(P′) = 1.3871 – 0.4406 log(K) + 0.0562 log
(
f(K)

)
; k low

log(P′) = 1.4764 – 0.4907 log(K) + 0.0748 log
(
f(K)

)
; k high

From the solution above we immediately notice that shocks to fk
t are contractionary - they

cause quantities to fall and credit margins to rise.
Figure 3.21 plots the impulse response functions. We show strong evidence that persistent

shocks to higher-order moments of the banking distribution have a large impact on business cycle
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fluctuations. First, positive dispersion shocks cause considerable economic recessions: severe
cumulative declines in aggregate output, consumption, and the measured TFP. Second, the financial
sector goes through a financial crisis as bank assets, net worth, and the number of active institutions
all go down significantly. Third, the financial industry accumulates more leverage when dispersion
is high, i.e., the economy remains riskier for longer. Fourth, loan margins increase by a factor of
10 in cumulative terms. Overall, we can conclude that the rise of U.S. banking dispersion and
concentration over 1980-2020 may have contributed to a more sluggish growth with fewer, smaller
and riskier financial intermediaries that charge higher loan margins and default more often.

3.6.5 Banking and Economic Crises

In this section we use our model to identify and characterize systemic banking and economic
crises. We employ an event study approach. Our methods follow the open-economy macroeco-
nomics literature (Mendoza, 2010). First, we solve themodel and simulate it for 10,000 periods with
kt as the only exogenous aggregate disturbance. Second, we define economic crises as episodes
(quarters) with low measured TFP, Ãt. Specifically, Ãt must be in the lower 20% of the whole sim-
ulation. This approach enables a fair comparison across different classes of models because Ãt can
be readily constructed in both GK and Bewley Banks frameworks. If the bank default risk channel
is active, our definition parsimoniously captures episodes of joint financial and economic distress
because default risk in our framework is countercyclical.14 Third, we store every crisis episode
and look at the 20-quarter window before and after the event. For each quarter in the window,
we calculate the unweighted average of key macroeconomic and financial aggregates. Finally, we
perform the same exercise for the GK economy and for the Bewley economy with counter-cyclical
idiosyncratic risk.

Figure 3.22 reports the results. In every picture, the red straight line corresponds to the Bewley
economy, the blue dashed line corresponds to GK, and black diamond markers to the Bewley
economy with counter-cyclical idiosyncratic risk. Note that the decline in Ãt across the three
economies is equalized by construction. We first observe that the two baseline economies - Bewley
and GK - go through the same crisis in very different ways. At the peak of the crisis, the Bewley
Banks economy features a smaller contraction in output, consumption, bank assets, bank net worth.
The decline in the number of active intermediaries is also relatively muted. In the Bewley economy,
crises are also characterized by a slight build-up of loanmargins in the pre-event phase. Meanwhile,
at the peak of the crisis the Bewley economy displays a higher default risk but a lower bank leverage
ratio. This is a variant of the canonical financial competition-stability trade-off. This observation

14The literature on banking crises has documented the substantial negative impact of bank defaults on the real
economy and consumer welfare, which in our exercise is captured in a general way with low measured TFP (Laeven
and Valencia, 2012).
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Figure 3.22: Banking and Economic Crises - Event Study Approach
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is also consistent with our impulse-response experiment in Figure 3.16.
Now, consider the behavior of the Bewley economy with counter-cyclical idiosyncratic return

risk. Economic crises are associated with considerably more severe contractions in output and
consumption. The deterioration in the financial sector activity is far more severe relative to the GK
counterfactual. Bank assets and net worth fall by 5-10 percentage points more. Furthermore, bank
default risk is significantly amplified. That is, economic recessions in the Bewley economy with
counter-cyclical risk are far more likely to occur jointly with systemic banking crises and episodes
of financial instability and fragility. Finally, the number of active intermediaries falls by an order
of magnitude more than in the baseline Bewley economy.

It is important to highlight that our crisis episodes are still characterized by declines in aggregate
risk, in all three economies. That is, our result points to the amplification of contractionary shocks,
rather than on the endogenous build-up of risk during booms. A key reason for this distinction is the
structure of our model that yields counter-cyclicalmarket leverage due to the assumed specification
of the equity-based leverage constraint.
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3.7 Alternative Aggregate Shocks

So far the sole source of aggregate uncertainty in our baseline economy has been a capital
quality shock kt. In this section we investigate the extent to which alternative aggregate shocks
can match the business cycle statistics reported in Table 3.1. We explore six potential “candidate”
shocks. Shock by shock, we re-solve our model under the assumption that it is the only source
of aggregate uncertainty in the environment. We then simulate the model economy for 10,000
quarters and report time-series correlations between Yt and our variables and moments of interest.

The six shocks that we consider are the following. First, the baseline shock to the quality
of aggregate capital kt. Following Merton (1973), this shock captures fluctuations in the value
of capital - its sudden obsolescence or valuation. Second, we consider a shock to Hicks-neutral
total-factor productivity At (Kydland and Prescott, 1982). This is a standard exogenous stochastic
component in the Real Business Cycle literature. Third, a shock to the banks’ dividend payout
ratio ft. This shock essentially captures changes in consumer “preferences” as was originally
proposed in Krusell and Smith (1998). Our approach is more parsimonious because we do not
consider shocks to V, as the authors did, for simplicity: ft only has a direct effect on the augmented
SDF of the intermediary and an indirect effect on household behavior through general equilibrium
channels.

The fourth shock we consider is a disturbance in the leverage constraint parameter _t. In the
literature, this is sometimes labeled as a “financial shock” as in Jermann and Quadrini (2013) and
Khan and Thomas (2013). The shock captures sudden changes in the ability of banks to borrow and
build up leverage. The fifth shockwe consider is the “credit markup shock” \t in the spirit of Clarida
et al. (2002) or Ball et al. (2005). This shock can capture sudden changes in the degree of financial
market competition and concentration. Finally, a shock to the degree of insurability of idiosyncratic
shocks ^t. This shock best resembles the “incompleteness shock” of Davila and Philippon (2019)
and captures sudden disruptions in financial market trading, for example a liquidity dry-out.

Table 3.5 presents correlations with output of the first three moments of model-implied time-
varying distributions of bank assets kt(j), net worth nt(j), leverage qt(j), loan margins jt(j), and
insolvency risk at(j). We also include the mass of entering varieties Mt and the total number of
banks Jt.

Consider the performance of the baseline (capital quality) kt shock. As discussed before,
this shock nails down all but two moments: dispersion of margins and concentration of leverage.
Shocks to TFP do rather poorly. Specifically, they predict counter-cyclical book leverage mean and
dispersion. They also miss the cyclicality of credit margins. Shocks to the elasticity of substitution
\t (“credit markup shocks”) and the dividend payout ft generate similar responses: both cannot
match the counter-cyclicality of the concentration of assets. In addition, shocks to \t incorrectly
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Table 3.5: Business Cycle Statistics - Alternative Shocks

Correlation with GDP of Data Capital
Quality
(kt)

TFP
(At)

Leverage
Constraint
(_t)

Credit
Margins
(\t)

Dividend
Payout
(ft)

Market Incom-
pleteness (^t)

Assets Mean 0.498 0.798 1.000 1.000 1.000 1.000 1.000
Assets Dispersion 0.642 0.541 0.974 0.944 0.604 0.661 0.476
Assets Concentration -0.568 -0.103 -0.040 -0.191 0.104 0.132 0.101

Net Worth Mean 0.211 0.842 0.958 0.547 0.943 0.727 0.931
Net Worth Dispersion 0.544 0.683 0.907 0.536 0.701 0.620 0.449
Net Worth Concentration -0.472 -0.238 -0.874 -0.470 0.028 0.011 0.009

Margins Mean -0.563 -0.305 0.035 -0.291 -0.813 -0.809 -0.347
Margins Dispersion -0.370 0.437 0.565 -0.100 -0.019 0.185 0.010
Margins Concentration 0.725 0.476 0.735 0.614 0.023 0.002 0.065

Default Mean -0.325 -0.740 -0.592 -0.029 -0.060 0.165 -0.036
Default Dispersion -0.309 -0.493 -0.031 -0.003 -0.059 0.133 -0.036
Default Concentration 0.033 0.278 0.336 0.377 0.012 -0.039 0.027

Book Leverage Mean 0.701 0.197 -0.357 0.277 0.804 0.621 0.612
Book Leverage Dispersion 0.043 0.097 -0.347 0.142 0.223 0.424 0.209
Book Leverage Concentration -0.641 0.043 0.639 0.340 0.095 0.219 0.121

Bank Entry Mass 0.700 0.810 0.717 0.119 0.841 0.665 0.858
Number of Banks 0.811 0.726 0.108 0.839 0.669 0.840

Notes: Data- and model-implied correlations with output Yt. Each column reports correlations based on an economy with a single
source of aggregate uncertainty reported in row 1. In each case, the model is solved and simulated for 10,000 quarters. Correlation
between bank entry and output is taken from Corbae and D’Erasmo (2019). See main text for more details.

predict that the concentration of margins is virtually acyclical. Market incompleteness shocks ^t
fail to generate counter-cyclical concentration of assets and net worth as well as counter-cyclical
dispersion of loan margins. The most interesting candidate is the financial shock _t. It can match all
but one moment - counter-cyclicality of the skewness of leverage, which is in fact the only moment
that none of the candidates can replicate. A positive shock to _t generates a recession by tightening
the limit on bank leverage, which in turn reduces the supply of credit to the economy. _t shocks
are designed to somehow represent fluctuations in the health of the financial sector. They capture
exogenous variations in the degree of moral hazard between the lender and the borrower. Overall
the dynamic cross-section of financial intermediaries can be best approximated by shocks to the
financial system, proxied in our case by shocks either to banks’ capital quality or their leverage
constraints.
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3.8 Conclusion

We have developed a new tractable, dynamic stochastic general equilibrium framework with
monopolistic competition and uninsurable idiosyncratic return risk in the financial sector. Our
setup builds on the canonical macro-bankingmodels of Gertler and Kiyotaki (2010) and Gertler and
Karadi (2011) and nests them as special cases. The simultaneous assumptions of local decreasing
returns to scale and idiosyncratic return risk break scale invariance. Because the marginal value
of net worth and optimal leverage ratios are now both size-dependent, a time-varying distribution
of bank characteristics emerges. With aggregate uncertainty, the distribution of bank net worth
becomes a time-varying endogenous state variable.

Our framework rests upon four quantitative forces. First, the cyclicality of the idiosyncratic
risk process determines whether aggregate contractions in the model economy are dampened or
amplified. In the baseline scenario with acyclical risk, the precautionary lending motive dominates
the first-degree impact from business cycles and dampens the effects of negative aggregate shocks.
However, if idiosyncratic risk is counter-cyclical, the direct effect of business cycle fluctuations
on bank balance sheets dominates. As a result, economic recessions get substantially amplified.
Second, the model features an explicit aggregate state dependency on the dynamic cross-section of
bank assets. Varying the initial state of the distribution - either by targeting the conditional distri-
bution of net worth or through direct exogenous shocks to higher-order moments - has implications
on business cycle fluctuations and the aggregate sensitivity to exogenous shocks.

Third, individual banks do not internalize the impact of private loan margin-setting choices
on aggregate demand. This is the canonical aggregate demand externality of Blanchard and
Kiyotaki (1987) applied to the case of financial intermediaries. Finally, the model generates
endogenously the financial competition-stability trade-off. In the Bewley banks framework with
acyclical idiosyncratic risk, it is generally the case that severe economic recessions are accompanied
by relatively mild financial crises. When idiosyncratic risk is counter-cyclical, economic recessions
occur jointly with significant deterioration in the financial sector and elevated financial fragility
levels.

Our Bewley Banks framework is tractable and portable. It is possible to introduce nominal
rigidities into our model, study unconventional credit policies such as bank-level equity injections,
or to relax the closed economy assumption.15 The tractability of our approach rests on the long and
vast literature on monopolistic competition with CES aggregators a la Dixit and Stiglitz (1977).
Extensions of the model to generate heterogeneous, variable equilibrium markups would achieve
a three-dimensional idiosyncratic state which would include bank net worth, returns, and market

15In Jamilov and Monacelli (2020) we study the monetary policy transmission mechanism in a Bewley Banks
environment with nominal rigidites.
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power. This feature would yield a positive correlation between bank size and loan margins,
potentially an interesting and powerful additional channel of transmission. We leave all these
interesting and important avenues for future research to explore.
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Appendix

3.9 Empirical Appendix

3.9.1 Data Description

We acquire financial intermediary balance sheet data for the U.S. (total assets and net worth)
from Compustat North America – Fundamentals Quarterly. We include all institutions belonging
to SIC sectors "Finance, Insurance and Real Estate" (all codes beginning with 6). We use the
variable "ATQ – Total Assets Quarterly" for total assets, "CEQQ – Common Equity Quarterly"
for net worth and we compute leverage at the institution-quarter level as the ratio of total assets
over net worth. For robustness, we also consider an additional measure of net worth, "SEQQ –
Stockholders Equity Quarterly" and results are not affected in a material way. Using the data on
assets and equity, we construct the book leverage ratio as the ratio of bank assets over equity. Our
baseline sample for total assets, net worth and leverage is over 1985Q1-2020Q1. We experiment
with alternative sample durations in Section 3.9.4.

In order to construct bank-level measures of the loan margin, we extract data on interest and
non-interest revenues and expenses. We use the Compustat Banks – Fundamentals Quarterly
database due to better coverage of income-statement data. As a result, our measure of loan margins
is computed only for institutions belonging to the 2-digits SIC sector 60 (Depository institutions).

All throughout, our sample includes companies with headquarters located in the US.We exclude
companies that report earnings in any other currency except the USD. All variables are deflated
using the U.S. GDP implicit price deflator published in the OECDMain Economic Indicators.16 We
clean the sample from observations that are either erroneous or are extremely outliers. Specifically,
we drop observations with book leverage above 100 or smaller than 1 as well as all cases of negative
net worth (equity). For our main analysis we focus only on institutions appearing in the dataset for
at least 80 quarters. We present robustness checks for different sample definitions in Section 3.9.4.

We construct four proxies for loan margins. Our main measure of margins is computed as
the ratio of Total Interest and Related Income (IDITQ) over Total Interest and Related Expenses
(XINTQ). For robustness, we also compute the ratio between Net Interest Income (NIINTQ) and
Total Interest and Related Expenses. Because of data availability, both of these measures are only
available for 1993Q1-2020Q1. In addition, we construct the two following proxies: Net Current
Operating Earnings (NCOEQ) divided by Total Interest and Related Expenses and Interest and
Fees on Loans (IDILBCQ) over Total Interest and Related Expenses. These measures are available
for the full sample 1985Q1-2020Q1. All four definitions yield quantitatively very similar business

16We download this measure from the St Louis Federal Reserve, series USAGDPDEFQISMEI.
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cycle correlations and volatilities. We prefer the first measure because it is the most complete and
captures all relevant factors related to either income or expenses.

In order to construct a bank-level measure of bank default risk, we use the Markit database on
Credit Default Swaps (CDS). Our baseline measure is the 5-year CDS spread because it is the most
liquid among all the maturities. If we consider 6-months, 1-year or 10-year CDS spreads, results
do not change. Our sample refers to CDS contracts that are issued and traded in US Dollars. We
restrict reference entities to the "Financial" sector in the US. Our sample runs from 2002Q1 until
2020Q1. For each institution in the sample, we construct quarterly aggregates from daily CDS
data.

Before executing ourmain empirical exercises, we truncate the sample at the 1 and 99 percentiles
for leverage, margins and default risk. We do not perform any truncation for total assets and net
worth. Generally, truncation of balance sheet items does not affect the results. Truncation of
leverage, margins, and CDS spreads helps tighten up correlations of higher-order moments which
are usually affected by extreme outliers.

Throughout the paper, we work with the first three moments of the time-varying distributions of
intermediary assets, net worth, leverage, loan margins, and CDS spreads. Unless stated otherwise
in the text, we always proxy the first moment with the unconditional mean and the second moment
with the standard deviation. Our proxy for concentration depends on the variable at hand. For
assets and equity we calculate the Herfindahl index (HHI) and for leverage, loan margins, and CDS
spreads we compute statistical skewness.17 Unless stated otherwise, we also always log-linearly
detrend all those moments before computing any statistic. To compute business cycle correlations,
we log-linearly detrend the quarterly real GDP of the U.S. which we obtain directly from the St.
Louis Federal Reserve Board.

As for countries other than the U.S., we acquire financial intermediary balance sheet data from
Compustat North America – Fundamentals Quarterly for Canada and from Compustat Global –
Fundamentals Quarterly for all the others. We use the same procedures followed for U.S. data
with two exceptions. First, we use "SEQQ – Stockholders Equity Quarterly" as our main proxy of
net worth, since this is the only variable widely available for all institutions. As a result, we also
compute leverage based on this variable. Second, to avoid dealing with an unbalanced number of
observations across quarters, we drop from our sample all those institutions that never report for
two consecutive quarters. That is, as long as a company has reported for two consecutive quarters
at least once, we keep this company in our sample.

Because of data availability, our samples span different time periods according to the reference
country. In particular, data for Australia cover 1997Q1-2019Q4, for Canada 1991Q1-2020Q1, for

17We compute HHI for variable x according to the usual formula: HHIt(x) = ∑
i
(
xit
xt

)2
.
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France 2001Q4-2019Q4, for Germany 2005Q4-2019Q4 and for U.K. 1996Q4-2020Q1.
For CDS we follow again the same steps illustrated for U.S. data. We do not report CDS

correlations for Australia, since Markit does not cover Australian companies. Our data cover the
same time period as for the U.S., that is 2002Q1-2020Q1, with the exception of Canada, for which
the sample starts in 2002Q3.

For these countries, we do not construct a measure of margins, because of insufficient coverage
of income-statement data.

3.9.2 Heterogeneity by Intermediary Sub-Sector

As mentioned in the main text, there is multi-modality in the distribution of financial intermedi-
aries. It is important to complement our analysis of the aggregate financial sector with industry-level
decomposition. We therefore now perform the same statistical exercise but for each of the six ma-
jor sub-industries of the broader financial sector: depository credit institutions, non-depository
credit institutions, broker-dealers, insurance companies, real estate companies, and holdings and
investors. As before, we focus on the U.S. only. Due to data limitations, we cannot construct
measures of credit margins or default risk for individual industries. Table 3.6 reports the results.
Immediately, we notice that there is considerable heterogeneity across sectors. We can summarize
all of the notable observations in three general points. First, and perhaps most interestingly, for
some sectors like depository institutions and real estate agents the mean of assets and net worth
is counter-cyclical. Second, although leverage of the aggregate sector is pro-cyclical, it is in
fact counter-cyclical for the depository institutions and non-depository credit-granting institutions.
This result is consistent with the empirical evidence and mechanisms discussed in He et al. (2016).
Third, as is the case with the aggregate sector, concentration of balance sheet characteristics is
almost always counter-cyclical.

We now briefly elaborate more on the role of industry heterogeneity and how it relates to our
structural model. Our model features a single aggregated financial sector. On the other hand,
empirically, it may be more fruitful to look at the data sector-by-sector. In order to facilitate a
fair comparison, we will target the aggregate financial sector as our benchmark for data-model
correspondence. However, we acknowledge that business cycle fluctuations could differ notice-
ably across sub-sectors along the within-sector intensive margin and the extensive margin, i.e.,
fluctuations in the size of each subsector across time.18

18Our model could be readily extended to include multiple sectors. For example, a fraction of productive capital
could be intermediated by intermediaries that face a value-at-risk constraint, i.e., “broker-dealers”. The remaining
capital would be managed by investors that face an equity-based constraint on risk-taking. In equilibrium, the two
sectors would deliver pro-cyclical and counter-cyclical market leverage, respectively. The extensive margin, which
could be endogenized, would be crucial in this setup. However, coupled with credit market power and idiosyncratic
rate of return risk, this extension is currently computationally infeasible and is beyond the scope of this paper. It is,
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Table 3.6: Business Cycle Correlations - U.S. Data by Sub-Sector

Mean of Dispersion of Concentration of Mean of Dispersion of Concentration of

Depository Institutions (SIC 60) Insurance (SIC 63 and 64)

Assets - GDP -0.521 -0.093 -0.513 0.826 0.762 -0.300
Net Worth - GDP -0.454 0.361 -0.219 0.497 0.689 -0.210
Leverage - GDP -0.164 -0.186 -0.121 0.593 0.346 -0.159

Non-Depository Institutions (SIC 61) Real Estate (SIC 65)

Assets - GDP 0.816 0.826 -0.522 -0.435 -0.429 -0.554
Net Worth - GDP 0.663 0.686 -0.441 -0.521 -0.572 -0.740
Leverage - GDP -0.209 -0.048 0.090 0.251 0.133 0.007

Brokers and Dealers (SIC 62) Holdings and Investors (SIC 67)

Assets - GDP 0.896 0.882 -0.685 0.738 -0.010 -0.836
Net Worth - GDP 0.525 0.454 -0.758 0.608 0.320 -0.703
Leverage - GDP 0.364 0.705 0.403 0.424 0.223 0.165

Notes: For every variable except CDS spreads the sample is 1985q1:2020q1. Every variable has been logged (except the skewness
of leverage) and linearly detrended. Bank balance sheet data is from Compustat North America. Industry classification follows the
first two digits of the Standard Industrial Classification of economic activities (SIC).

3.9.3 Data on Other Countries

Subject to data availability, we also report business cycle correlations of higher-order moments
in other countries. We managed to build reasonably long panels for Australia, Canada, France,
Germany, and the United Kingdom. Details on sample construction are in the Appendix. To the
best of our knowledge, this is the first attempt to establish robust facts of this type for a set of
non-US developed economies. Results are reported in Table 3.7. We can summarize these statistics
in three broad points. First, it’s most clear that CDS spreads have counter-cyclical first and second
(except for Canada) moments, and pro-cyclical skewness. Second, leverage is counter-cyclical for
all countries except Australia. There is no systematic commonality for the higher-order moments
of leverage. Third, the country that appears to be closest to the U.S. in terms of these business
cycle patterns is Australia. Overall, there is substantial degree of heterogeneity across countries for

however, a very fruitful topic for future research.
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almost every characteristic.19

Table 3.7: Business Cycle Correlations - Aggregate Data for Different Countries

Mean of Dispersion of Concentration of Mean of Dispersion of Concentration of

Australia Germany

Assets - GDP 0.207 -0.008 -0.614 -0.142 -0.039 0.012
Net Worth - GDP 0.400 0.170 -0.574 -0.044 0.032 -0.087
Leverage - GDP 0.261 0.106 -0.123 -0.189 -0.151 -0.014
CDS Spreads -0.329 -0.063 0.112

Canada United Kingdom

Assets - GDP -0.832 -0.655 -0.109 0.042 0.234 -0.369
Net Worth - GDP -0.772 -0.751 -0.686 -0.161 0.014 -0.779
Leverage - GDP -0.805 -0.531 0.790 -0.085 0.124 0.528
CDS Spreads -0.197 0.026 0.063 -0.527 -0.158 0.455

France

Assets - GDP 0.170 0.226 0.053
Net Worth - GDP 0.156 0.167 -0.302
Leverage - GDP -0.122 0.067 0.300
CDS Spreads -0.355 -0.322 0.282

Notes: Every variable has been logged linearly detrended. Bank balance sheet data is from Compustat. CDS data is fromMarkit. The
sample forAustralia is 1997q1:2019q4, for Canada is 1991q1:2020q1, for France is 2001q4:2019q4, forGermany is is 2005q4:2020q1,
and for the UK is 1996q4:2020q1. See the Appendix for variable definitions and further details.

3.9.4 Robustness

For robustness, we report in Tables 3.8, 3.9, 3.10 and 3.11 below the correlations using different
sample definitions. Tables 3.8 and 3.9 show correlations both over the whole sample and by sub-
industries when we include all institutions appearing at least 50 quarters (instead of 80, as in the
main results) and leave the starting date unchanged to 1985Q1.

Similarly, Tables 3.10 and 3.11 report correlations for the sample starting in 1980Q1 and

19Similar to our analysis of cross-industry heterogeneity, a multi-country extension of our framework is possible.
The mass of differentiated local credit markets could be re-routed to represent a continuum of countries with ex-ante
heterogeneity in size or magnitude of local idiosyncratic riskiness. A single financial intermediary would thus charge
country-specific margins over country-specific costs of funds. This extension is on the agenda for future research.
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including all institutions appearing at least 80 quarters.

Table 3.8: Correlations with GDP - US Data, Less Balanced Panel

Mean of St Deviation of Concentration of

Assets - GDP 0.221 0.631 -0.329
Net Worth - GDP -0.252 0.511 -0.256
Leverage - GDP 0.670 -0.148 -0.741
Margins - GDP -0.571 -0.345 0.751
Default Risk - GDP -0.325 -0.309 0.033

Notes: Aggregate business cycle correlations based on the panel of financial intermediaries that contains only insti-
tutions with at least 50 (nonconsecutive) quarters of data over the 1985q1-2020q1 sample. Balance sheet data comes
from Compustat. Default risk (CDS) data is from Markit.

Table 3.9: Business Cycle Correlations - U.S. Data by Sub-Sector, Less Balanced Panel

Mean of Dispersion of Concentration of Mean of Dispersion of Concentration of

Depository Institutions (SIC 60) Insurance (SIC 63 and 64)

Assets - GDP -0.762 -0.342 -0.299 0.665 0.745 -0.138
Net Worth - GDP -0.764 0.131 -0.091 0.194 0.659 -0.063
Leverage - GDP -0.266 -0.117 -0.378 0.055 -0.139 -0.154

Non-Depository Institutions (SIC 61) Real Estate (SIC 65)

Assets - GDP 0.803 0.817 -0.294 -0.446 -0.385 -0.408
Net Worth - GDP 0.635 0.670 -0.223 -0.437 -0.346 -0.379
Leverage - GDP 0.007 0.093 -0.053 0.267 0.157 0.006

Brokers and Dealers (SIC 62) Holdings and Investors (SIC 67)

Assets - GDP 0.923 0.907 -0.683 0.791 0.228 -0.771
Net Worth - GDP 0.644 0.527 -0.726 0.501 0.286 -0.649
Leverage - GDP -0.034 0.564 0.362 0.512 0.229 -0.052

Notes: Industry-level business cycle correlations based on the panel of financial intermediaries that contains only institutions with at
least 50 (nonconsecutive) quarters of data over the 1985q1-2020q1 sample. Balance sheet data comes from Compustat.
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Table 3.10: Correlations with GDP - US Data, starting 1980

Mean of St Deviation of Concentration of

Assets - GDP 0.313 0.383 -0.634
Net Worth - GDP -0.139 0.203 -0.590
Leverage - GDP 0.254 0.077 -0.313
margins - GDP -0.485 -0.311 0.624
Default Risk - GDP -0.281 -0.269 0.016

Notes: Aggregate business cycle correlations based on the sample of financial intermediaries that starts from 1980q1.
Balance sheet data comes from Compustat. Default risk (CDS) data is from Markit.

Table 3.11: Business Cycle Correlations - U.S. Data by Sub-Sector, starting 1980

Mean of Dispersion of Concentration of Mean of Dispersion of Concentration of

Depository Institutions (SIC 60) Insurance (SIC 63 and 64)

Assets - GDP -0.521 -0.270 -0.606 0.261 0.560 -0.445
Net Worth - GDP -0.442 0.068 -0.475 -0.155 0.462 -0.412
Leverage - GDP -0.269 -0.114 -0.103 0.438 0.489 0.242

Non-Depository Institutions (SIC 61) Real Estate (SIC 65)

Assets - GDP 0.580 0.663 -0.544 -0.231 -0.154 -0.332
Net Worth - GDP 0.336 0.448 -0.514 -0.494 -0.440 -0.652
Leverage - GDP -0.005 0.032 -0.166 0.326 0.253 0.281

Brokers and Dealers (SIC 62) Holdings and Investors (SIC 67)

Assets - GDP 0.871 0.871 -0.743 0.444 0.102 -0.736
Net Worth - GDP -0.008 0.080 -0.777 -0.027 -0.180 -0.772
Leverage - GDP -0.005 0.032 -0.166 0.570 0.508 0.389

Notes: Industry-level business cycle correlations based on the sample of financial intermediaries that starts from 1980q1. Balance
sheet data comes from Compustat.

3.10 Model Appendix: Proofs

Proof of Proposition 4
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The bank solves for each j:

max
k(j)

(
1 – h(j)

)
RT(j)p(j)k(j) – R̄(j)

(
p(j)k(j)V – n(j)

)
s.t. k(j) =

(p(j)
P

)–\
K(S)

The first order condition is

(
1 – h(j)

)
RT(j)p(j) +

(
1 – h(j)

)
RT(j)

mp(j)
mk(j)

k(j) – R̄(j)
(
p(j)Vk(j)V–1 + k(j)V

mp(j)
mk(j)

)
= 0

The elasticity of substitution, ignoring the influence of local credit market-level rates on the
aggregate index P(S), is

mk(j)
mp(j)

p(j)
k(j)

= –\

The price-setting rule given marginal costs is

p(j) =
\

\ – 1
MC(j)

where \
\–1 is the constant markup over the (endogenous) marginal cost MC(j), given by:

MC(j) B
V\ – 1
\

p(j)
R̄(j)(

1 – h(j)
)
RT(j)

[(
p(j)
P(S)

)–\
K(S)

] V–1

Proof of Proposition 5
Guess that the solution to the dynamic problem 3.20 is a value function V(n(j), b(j);S) =

Z(n(j), b(j);S)n(j). Define the default risk-adjusted stochastic discount factor Λ̃(s;S) =
[(

1 –

h(j)
)
Λ(S)

(
1 – f + fZ(n′(j), b′(j);S′)

)]
. The solution to the program is a system of equations:

E
[
Λ̃(s’;S′)

(
RT′(j) – R̄(j)k(j)V–1

)]
= _i(n(j), b(j);S)

i(n(j), b(j);S)
[
Z(n(j), b(j);S) – _q(j)

]
= 0

Substituting the optimality conditions together with the guess into the objective function gives

Z(n(j), b(j);S) = i(n(j), b(j);S)Z(n(j), b(j);S) + E
(
Λ̃(s’;S′)

)
R̄(j)k(j)V–1

Solving for Z(n(j), b(j);S) yields
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Z(n(j), b(j);S) =
E
(
Λ̃(s′;S′)

)
k(j)V–1R̄(j)

1 – i(n(j), b(j);S)
And the Lagrange multiplier on the leverage constraint is

i(n(j), b(j);S) = max

1 –
E
(
Λ̃(s′;S′)

)
k(j)V–1R̄(j)

_q(j)
, 0


The result follows from (a) the fact that market leverage is q(j) = k(j)1– 1

\

(
K(S)

) 1
\ P(S)n(j)–1

(b) and the previously defined augmented stochastic discount factor Λ̃(s;S). The guess is verified
if i(n(j), b(j);S) < 1. Size-dependency is guaranteed by V > 1 so that each bank with different n(j)
and b(j) chooses a different leverage ratio q(j).

3.11 Model Appendix: Accuracy

In this section we discuss the accuracy of our main numerical algorithm. Our convergence
tolerance levels for the household and banking problems are 10e–8 and 10e–5, respectively. De-
posit market clearing is achieved under the tolerance level of 10e–5 for the deposit rate on each
idiosynractic grid point. Finally, tolerance level for the Krusell-Smith recursion is 10e–3 for both
capital and prices. We perform two exercises. First, we report the R-squared from the Γ projections
for K′ and P′. With a log-linear form, equilibrium of the model with aggregate uncertainty in kt is
characterized by the following equations for good and bad times:

log(K′) = 0.3380 + 0.8588 log(K); R2 = 0.9746; k low

log(K′) = 0.3668 + 0.8671 log(K); R2 = 0.9737; k high

For projections of K′ and

log(P′) = 1.3871 – 0.4788 log(K); R2 = 0.9909; k low

log(P′) = 1.5854 – 0.4946 log(K); R2 = 0.9923; k high

For projections of P′.
We also compute the accuracy measure of Den Haan (2010) for the stationary law of motion for

aggregate capital and prices. Using the equilibrium law of motion Γ above, without updating this
forecast function, we simulate the full-time series of capital and prices using the kt as the source
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of stochastic exogenous fluctuations. We compare this simulation with the stochastic simulation
time-series where aggregate capital and prices are built from the time-varying distribution. The
average percentage error is 1.68% for capital and 0.98% for prices. These numbers are in line with
existing studies that are similar to our model’s degree of non-linearity and complexity (Khan and
Thomas, 2008; Nakamura and Steinsson, 2010; Corbae and D’Erasmo, 2019).
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