Paper P4, Structures and Mechanics

Examples Sheet 1P4F - Kinematics

A.M. Korsunsky

Hilary Term 2001

Bibliography

A-Recommended reading

Meriam, J.L and Kraige, L.G. 'Engineering Mechanics' Vol 2, Dynamics.
Fawcett, J.N. and Burdess, J.S. (1988) 'Basic Mechanics with Engineering Applications’
Sections 1.6 and 1.7

B - Other reading

Drabble, G.E. (1990) 'Dynamics' Programmes 2 and 4
Norris, C.H., Wilber, J.B. and Utku, S. (1991) 'Elementary structural analysis' Section 8.6
Grosjean, J. (1991) 'Kinematics and dynamics of mechanisms' Chapters 1 and 2.

Kinematics of a Point

1. A golfer plans to pitch a ball from point A to land on a green at point B as shown in Figure 1. The initial velocity of the ball is V_{0} and is inclined at angle α to the horizontal. Find the appropriate value of V_{0} when $\tan \alpha=0.5$ and $d=3 h / 4$.

Figure 1
2. (a) The retarding acceleration a on a car is given by $a=\beta \nu^{2}-\alpha$ where α and β are constants and v is the speed of the car. Show that the terminal speed v_{t} is:

$$
v_{t}=\sqrt{\frac{\alpha}{\beta}}
$$

(b) Show also that after rolling a distance x from rest the car will have reached a speed v where:

$$
x=-\frac{1}{2 \beta} \ln \left(1-\left(\frac{v}{v_{t}}\right)^{2}\right)
$$

3. In the design of a timing mechanism, the motion of the pin A in the fixed circular slot is controlled by the guide B, which is being elevated by its lead screw with a constant upward velocity $v_{0}=2 \mathrm{~m} / \mathrm{s}$ (Figure 2). Calculate both the normal and tangential components of acceleration of pin A as it passes the position for which $\theta=30^{\circ}$.

Figure 2 (after Meriam \& Kraige 1998)
4. A jet plane flies at an altitude $h=10 \mathrm{~km}$ at a constant speed v directly over a radar, which continues to track its further flight. When the radar is pointing at the angle $\theta=60^{\circ}$ above horizon, θ is decreasing at the rate of $0.02 \mathrm{rad} / \mathrm{s}$. At this instant, determine the magnitude of the velocity v of the plane, and the value of the acceleration term \ddot{r}.

Kinematics of Rigid Bodies and Mechanisms

5. In each of the mechanisms shown in Figure 3, rod AB rotates clockwise at angular velocity ω. Draw the velocity diagrams, and for each case find the velocity of C.

Figure 3
6. The Geneva wheel is a mechanism for producing intermittent rotation (Figure 4). Pin P in the integral unit of wheel A and locking plate B engages the radial slots in wheel C thus turning wheel C one-fourth of a revolution for each revolution of the pin. At the engagement position shown, $\theta=45^{\circ}$. For a constant clockwise angular velocity $\omega_{1}=2 \mathrm{rad} / \mathrm{s}$ of wheel A , determine the corresponding CCW angular velocity of wheel C for $\theta=20^{\circ}$.
(Note: the motion during engagement is governed by the geometry of triangle $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{P}$ with changing θ).

Figure 4 (after Meriam \& Kraige 1998)

Figure 5
7. Figure 5 shows a quick-return mechanism. The arm AB is of length r and rotates at a constant angular velocity ω. The end A is pinned on the same vertical surface as the end C of the rod CD, which is of length $5 r$. The end B slides along the rod CD. The rod DE is also of length $5 r$ and the end E slides in an horizontal slot. At a given instant, the rods AB, CD and ED are at $60^{\circ}, 15^{\circ}$ and 75° respectively to the vertical. From a sketch of the velocity diagram of the mechanism, find the sliding velocity of E , the sliding velocity of B along $C D$, and the angular velocities of $C D$ and $D E$.
8. Figure 6 shows an assembly of a light piston and connecting rod $A B$ attached to a flywheel of moment of inertia $10 \mathrm{kgm}^{2}$ rotating about C with a clockwise angular velocity $60 \mathrm{rad} / \mathrm{s}$. The dimensions AB and BC are 0.6 m and 0.25 m .
(a) Draw the velocity diagram for the instant when $\mathrm{AC}=0.65 \mathrm{~m}$.
(b) Find the velocity of A.
(c) If the area of the piston is $0.007 \mathrm{~m}^{2}$ and the pressure p is $1.2 \mathrm{MN} / \mathrm{m}^{2}$, calculate the acceleration of the flywheel at this instant if the bearings at A and B are frictionless.

Figure 6
9. Figure 7 shows the offset nose wheel of an airliner. A, D and E are pivots fixed to the frame of the aircraft. C is a pivot fixed to the undercarriage leg and F is a pivot fixed to the nose wheel door. For the case where the aircraft frame is stationary, the link AB rotates at $0.25 \mathrm{rad} / \mathrm{s}$ in the direction shown and the nose wheel makes an angle of 30° to the vertical, estimate graphically the velocity of G , the angular velocity of leg DG, and the angular velocity of the door EF . The dimensions are $\mathrm{AB}=432 \mathrm{~mm} ; \mathrm{BC}=229 \mathrm{~mm}$;
$\mathrm{CF}=330 \mathrm{~mm} ; \mathrm{EF}=229 \mathrm{~mm} ; \mathrm{DH}=254 \mathrm{~mm} ; \mathrm{CH}=63.5 \mathrm{~mm}$ (perpendicular to DH);
$\mathrm{DG}=990 \mathrm{~mm}$; A is 584 mm to the left of D and 229 mm above D ; E is 127 mm to the right of D and 63.5 mm below D .

Figure 7 (after Grosjean 1991)

ANSWERS

1. $V_{o}=\sqrt{\frac{g h}{2}}$
2. $\omega_{2}=1.923 \mathrm{rad} / \mathrm{s}$
3. $a_{\mathrm{n}}=21.33 \mathrm{~m} / \mathrm{s}^{2}, \quad a_{\mathrm{t}}=-12.32 \mathrm{~m} / \mathrm{s}^{2}$
4. $0.947 \omega r, \omega r / \sqrt{2}, 0.211 \omega, 0.0566 \omega$.
5. $V=960 \mathrm{~km} / \mathrm{h}, \quad \ddot{r}=4.62 \mathrm{~m} / \mathrm{s}^{2}$
6. (b) $16.25 \mathrm{~m} / \mathrm{s}$; (c) $227.5 \mathrm{rad} / \mathrm{s}^{2}$
7. $\omega L, \omega L, 2 \omega L$
8. $0.48 \mathrm{~m} / \mathrm{s}, 0.49 \mathrm{rad} / \mathrm{s}, 0.53 \mathrm{rad} / \mathrm{s}$
