
Proceedings of IEEE CDC 2002

On the Construction of Lyapunov Functions using

the Sum of Squares Decomposition1

Antonis Papachristodoulou2 Stephen Prajna2

Control and Dynamical Systems

California Institute of Technology

Pasadena, CA 91125 – USA

Abstract

A relaxation of Lyapunov’s direct method has been pro-
posed recently that allows for an algorithmic construc-
tion of Lyapunov functions to prove stability of equi-
libria in nonlinear systems, but the search is restricted
to systems with polynomial vector fields. In this paper,
the above technique is extended to include systems with
equality, inequality, and integral constraints. This al-
lows certain non-polynomial nonlinearities in the vector
field to be handled exactly and the constructed Lya-
punov functions to contain non-polynomial terms. It
also allows robustness analysis to be performed. Some
examples are given to illustrate how this is done.

1 Introduction

Stability of dynamical systems plays a very important
role in control system analysis and design. Unlike the
case of linear systems, proving stability of equilibria
of nonlinear systems is more complicated. A sufficient
condition is the existence of a Lyapunov function [1]:
a positive definite function V defined in some region
of the state space containing the equilibrium point
whose derivative along the system trajectories is neg-
ative semi-definite. This is Lyapunov’s direct method,
which even though addresses exactly and in a simple
way the important issue of stability, it does not provide
any coherent methodology for constructing such a func-
tion. Lyapunov’s indirect method that investigates the
local stability of the equilibria, is inconclusive when
the linearized system has imaginary axis eigenvalues.
Other methodologies to determine the stability prop-
erties of the equilibria of nonlinear systems (such as ex-
haustive simulations, Linear Parameter Varying (LPV)
techniques, Integral Quadratic Constraint (IQC) for-
mulations [2] etc) are sometimes quite conservative.

1Work financially supported by AFOSR MURI “Mathemat-
ical Infrastructure for Robust Virtual Engineering” and “Uni-
fied Theory for Complex Biological and Engineering Networks”,
NIH/NIGMS AfCS (Alliance for Cellular Signalling), DARPA
“Enlightened multiscale simulation of biochemical networks”, the
Kitano ERATO Systems Biology Project, and URI “Protecting
Infrastructures from Themselves.”

2The authors contributed equally to this work.

A technique developed recently in [3] for constructing
Lyapunov functions is based on the following compu-
tational relaxation: instead of asking for V to be pos-
itive definite, and for its time derivative negated to
be positive semidefinite, it requires them to be sums
of squares. This relaxation circumvents the NP hard-
ness of proving positivity of a polynomial and uses the
computational tractability of proving the existence of
a sum of squares decomposition, therefore formulating
the Lyapunov function search algorithmically. In this
way polynomial nonlinearities can be handled exactly.

In this paper the class of systems for which construc-
tion is possible will be extended to nonlinear systems
with equality, inequality, and integral constraints. Con-
straints arise naturally in many physical systems: me-
chanical systems with equality constraints, systems
with parametric uncertainty (which can be accommo-
dated by inequality constraints), and systems contain-
ing dynamic uncertainty (which can be modelled by
IQCs). Sufficient conditions for proving stability under
such constraints will be developed in Section 2. In the
same section, the conditions will be computationally
relaxed to the existence of a sum of squares decompo-
sition, to allow for their algorithmic verification.

As a side benefit, we will be able to construct Lyapunov
functions for nonlinear systems with non-polynomial
vector fields, but which can be transformed to equiva-
lent systems with polynomial vector fields under equal-
ity and inequality constraints on the state variables; the
search for a Lyapunov function will be performed in-
directly in terms of these new, non-polynomial terms,
and so the resulting Lyapunov functions will not neces-
sarily be polynomial. Examples of this will be given in
Section 3. The sum of squares programs correspond-
ing to these examples are converted into semidefinite
programs using SOSTOOLS [4], and are solved using
SeDuMi [5], a semidefinite programming solver.

2 Constrained Dynamical Systems and

Stability

Consider the nonlinear system

ẋ = fx(x, u), (1)
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with the following constraints:

ai1(x, u) ≤ 0, for i1 = 1, ..., N1, (2)

bi2(x, u) = 0, for i2 = 1, ..., N2, (3)
∫ T

0
ci3(x, u)dt ≤ 0, for i3 = 1, ..., N3, and ∀T ≥ 0. (4)

Here x ∈ R
n is the state of the system, and u ∈ R

m

is a collection of auxiliary variables (such as inputs,
non-polynomial functions of states, uncertain parame-
ters (for robustness analysis), etc.). We assume that
the ai1 ’s, bi2 ’s, and ci3 ’s are polynomial functions in
(x, u), and fx(x, u) is a vector of polynomial or ratio-
nal functions in (x, u) with no singularity in D, where
D ⊂ R

m+n is defined as

D = {(x, u) ∈ R
m+n | ai1(x, u) ≤ 0, bi2(x, u) = 0,

for all i1 and i2}.

Without loss of generality, it is assumed that fx(x, u) =
0 for x = 0 and u ∈ D0

u, where

D0
u = {u ∈ R

m|(0, u) ∈ D}.

The following theorem is an extension of Lyapunov’s
stability theorem, and can be used to prove that the
origin is a stable equilibrium of the above system.
It uses a technique reminiscent of the well-known S-
procedure [6] in nonlinear and robust control theory.

Theorem 1 Suppose that for the above system there
exist polynomial functions1 V (x), w(x, u), pi1(x, u),
qi2(x, u), and constants ri3 ≥ 0 such that

• V (x) is positive definite2 in a neighborhood of the
origin.

• w(x, u) > 0 and pi1(x, u) ≥ 0 in D.

Then

−
∂V

∂x
fx(x, u) +

∑

pi1(x, u)ai1(x, u)

+
∑

qi2(x, u)bi2(x, u) +
∑

ri3ci3(x, u) ≥ 0 (5)

or

− w(x, u)
∂V

∂x
fx(x, u) +

∑

pi1(x, u)ai1(x, u)

+
∑

qi2(x, u)bi2(x, u) ≥ 0 (6)

will guarantee that the origin of the state space is a
stable equilibrium of the system.

Proof: If condition (5) is fulfilled, then the inequality
can simply be integrated from time t = 0 to t = T to
obtain

V (0) − V (T ) ≥ −
∑

∫ T

0

{pi1(x, u)ai1(x, u) − ri3ci3(x, u)}dt

≥ 0,

1Although not written explicitly here, we assume that we keep
track of the indices.

2Strictly speaking, it is enough to require V to have a local
minimum at the origin.

where we have used the fact that ai1(x, u), bi2(x, u)
and ci3(x, u) satisfy (2)–(4). On the other hand, if we
have condition (6) fulfilled, then the inequality can be
divided by w(x, u) and integrated from 0 to T to obtain

V (0) − V (T ) ≥ −
∑

∫ T

0

pi1(x, u)

w(x, u)
ai1(x, u)dt ≥ 0.

The rest of the proof is similar to the proof of Lya-
punov’s theorem, which can be found in many standard
textbooks, e.g., [1].

Remark 2 For the case in which fx(x, u) is a ratio-

nal vector field such as n(x,u)
d(x,u) , the multiplier w(x, u)

should be chosen such that w(x, u)∂V
∂x

fx(x, u) is a poly-
nomial. However, w(x, u) cannot be used if we want
to make use of the integral constraints, in which case
we have to use condition (5). In the latter case, we
introduce a set of auxiliary variables v defined to be
equal to the derivative of x, and we rewrite the sys-
tem ẋ = fx(x, u) as a system with a polynomial vector
field and some polynomial equality constraints as fol-
lows: ẋ = v; d(x, u)v = n(x, u).

Remark 3 We will term a Lyapunov function V for
which V is positive definite and −dV

dt
≥ 0 global if no

restrictions on the state-space have been made. Other-
wise, we term it local.

To construct Lyapunov functions for systems with non-
polynomial vector fields, the vector field is rendered
polynomial using auxiliary variables u that encompass
the non-polynomial terms. Let u = g(x), where g(x)
is a vector of non-polynomial functions that appear in
the vector field. Then u will have its own dynamics,

u̇ =
∂g

∂x
ẋ , fu(x, u).

Generally, this transformation will induce some equal-
ity and inequality constraints, as we will see in Sec-
tion 3. To prove stability in this case, we search
for a Lyapunov function Ṽ (x, u), such that V (x) =
Ṽ (x, u)|u=g(x) is positive definite around the origin.
Theorem 1 can be applied directly in this case, by re-
placing all occurrence of ∂V

∂x
fx(x, u) in (5) and (6) by

∂Ṽ
∂x

fx(x, u)+ ∂Ṽ
∂u

fu(x, u). Note that V (x) contains non-
polynomial terms, so this technique can also be used
to construct non-polynomial Lyapunov functions, even
when the original system has a polynomial vector field.

The challenge lies in how the above conditions can be
verified algorithmically. To this end, we take advantage
of the computational tractability of the sum of squares
decomposition in order to avoid the NP hardness of
proving that a polynomial function is positive definite
or positive semi-definite. The condition that p(x) is a

2



sum of squares is more strict, yet more verifiable, than
p(x) ≥ 0.

A multivariate polynomial p(x1, ..., xn) , p(x) is a sum
of squares (SOS, for brevity), if there exist polynomials
f1(x), ..., fm(x) such that

p(x) =

m
∑

i=1

f2
i (x).

This in turn is equivalent to the existence of a positive
semidefinite matrix Q [3], and a properly chosen vector
of monomials Z(x) such that

p(x) = ZT (x)QZ(x). (7)

Notice that p(x) being an SOS implies p(x) ≥ 0. How-
ever, we note that he converse is not true, except for
some special cases. In fact there are famous counterex-
amples to this effect (such as the Motzkin form). For a
more extensive account on SOS polynomials and their
applications, the readers should consult [3] and the ref-
erences therein.

We can search for such a Q by solving a semidefinite
program. This is done using SOSTOOLS, a software
developed for this purpose [4] which uses SeDuMi [5]
as the semidefinite programming solver.

Therefore, by deliberately opting to work with polyno-
mial and rational functions, the positive definite condi-
tions in Theorem 1 can be relaxed to the existence of an
SOS decomposition, and the problem can be cast as an
SOS program [4]. Under this relaxation, the search for
a bounded degree Lyapunov function V (x) and multi-
pliers pi1(x, u), qi1(x, u), and ri3 can be efficiently per-
formed. The SOS program can therefore be formulated
as follows.

Program 4 Suppose that we are given the system (1)–
(4). For a polynomial function W (x) with a predeter-
mined form that is locally positive definite, find bounded
degree polynomials V (x), pi1(x, u)’s, qi2(x, u)’s and
constants ri3 ’s such that

1. V (x)−W (x) is a sum of squares (implying ≥ 0),

2. The left-hand side of inequality (5) or (6) is a
sum of squares,

3. pi1(x, u) are sums of squares,

4. ri3 ≥ 0.

In this SOS program, Condition 2 is a computa-
tional relaxation to inequality (5) or (6) in Theorem 1,
whereas Condition 1 is required to impose strict pos-
itive definiteness on V (x), as required by Theorem 1.
Using W (x) restricts V (x) to be positive definite, or at
least have a local minimum at the origin. W (x) may be

parameterized by some decision variables, on which re-
strictions may be applied to render it positive definite.
When dealing with non-polynomial terms, it may be a
function of both x and u. This will be made clearer in
the examples in Section 3.

If such a V (x) that fulfills the conditions of Program 4
is not found, one of higher order will be sought. Fail-
ure to find a Lyapunov function does not necessarily
mean that the equilibrium is unstable, as all the above
conditions are sufficient.

Using equality and inequality constraints, the class of
systems for which Lyapunov function synthesis is possi-
ble has been extended dramatically: in many cases it is
possible to transform systems that originally contained
radical, trigonometric and other terms to systems with
polynomial vector fields under equality and inequality
constraints. Furthermore, Lyapunov functions that can
be constructed in this way can be extended to include
non-polynomial terms. This will be seen in the next
section.

3 Examples

Three examples will be presented to illustrate how Lya-
punov functions can be constructed using the method
described in the previous section.

3.1 Example 1: A Simple System with a Poly-

nomial Vector Field

As a first example, consider the system

ẋ1 = −x3
1 + 4x3

2 − 6x3x4

ẋ2 = −x1 − x2 + x3
5

ẋ3 = x1x4 − x3 + x4x6

ẋ4 = x1x3 + x3x6 − x3
4

ẋ5 = −2x3
2 − x5 + x6

ẋ6 = −3x3x4 − x3
5 − x6

which has an equilibrium at the origin. As a first at-
tempt, we will try to construct a quadratic Lyapunov
function of the form V =

∑6
i=1

∑6
j=i aijxixj where the

aij ’s are the unknowns. To guarantee positive definite-
ness of V , we impose the condition

(V − W ) is a sum of squares,

where W =
∑6

k=1 ǫkx2
k, with ǫk’s positive decision vari-

ables that satisfy ǫk ≥ 0.1 ∀ k.

A Lyapunov function of this form is not found by SOS-
TOOLS, so we will aim for a 4th order Lyapunov func-
tion; in this case, V will contain all monomials that
have order between 2 and 4, and W =

∑6
k=1 ǫ1kx2

k +
∑6

k=1 ǫ2kx4
k with the ǫ1k’s and ǫ2k’s positive decision

variables that satisfy ǫ1k + ǫ2k ≥ 0.1 ∀ k.
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Figure 1: Stability region for the chemical oscillator prob-
lem, Regions 1 and 2 defined by equations (14)
and (15)

In this case, SOSTOOLS returns

V = 0.7257x2
1+1.3x4

2+2.325x2
3+1.575x2

4+0.65x4
5+1.3x2

6

as a Lyapunov function for this system.

3.2 Example 2: A Chemical Oscillator

Two species models of interacting populations can ex-
hibit limit cycle periodic oscillations [7]. The simplest,
but chemically plausible tri-molecular reaction that ad-
mits periodic solutions is

X
k1

⇋
k
−1

A, B
k2→ Y, 2X + Y

k3→ 3X,

in which species X is in dynamical equilibrium with
species A with a forward rate of reaction k1 and a back-
ward rate of reaction k

−1, and so on. Using the law of
mass action, and non-dimensionalising the equations,
we get

u̇ = a − u + u2v, (8)

v̇ = b − u2v, (9)

where u, v are the non-dimensional concentrations of X
and Y , and a, b are non-negative constant parameters
that depend on the concentrations of A and B. It is
known that for a and b satisfying

(b − a) ≥ (b + a)3,

the system exhibits a stable limit cycle and the equi-
librium point is unstable (see Figure 1).

A Lyapunov function will be constructed for a region
of the rest of the parameter space, to prove robust sta-
bility of the equilibrium.

The equilibrium of the above system is a (ū, v̄) pair
that satisfies

0 = a − ū + ū2v̄, (10)

0 = b − ū2v̄. (11)

We translate the equilibrium to the origin using a state
transformation u → x1, v → x2, x1 = u− ū, x2 = v− v̄,
to get an equivalent system

ẋ1 = a − (x1 + ū) + (x1 + ū)2(x2 + v̄), (12)

ẋ2 = b − (x1 + ū)2(x2 + v̄), (13)

whose equilibrium is at the origin. Now suppose that
the parameters a and b are not exactly known, but
belong to the set {a ≥ a, b ≥ b}. Notice that when the
parameters a and b are changed, the equilibrium (ū, v̄)
also changes, see Equations (10)–(11). So there are four
parameters in the state equations (12)-(13) - namely a,
b, ū, and v̄ - that are coupled via the algebraic equality
constraints (10)-(11). Denote these parameters (which
can be regarded as auxiliary variables) by u1 through
u4, in accordance with the notation in Theorem 1.

Moreover, there exist inherent constraints on the state
variables, as the concentrations of the reactants has
to be positive. Furthermore, for our purpose, it is
enough to find a Lyapunov function that has non-
positive derivative in a local region around the equi-
librium. In this case, we can impose the inequality
constraints x2

1 ≤ γu2
3, x2

2 ≤ γu2
4 where 0 < γ ≤ 1.

Thus, our system (complete with the equality and in-
equality constraints) is described by

ẋ1 = u1 − (x1 + u3) + (x1 + u3)
2(x2 + u4)

ẋ2 = u2 − (x1 + u3)
2(x2 + u4)

0 ≥ x2
1 − γu2

3

0 ≥ x2
2 − γu2

4

0 ≥ a − u1

0 ≥ b − u2

0 = u1 − u3 + u2
3u4

0 = u2 − u2
3u4.

For this example, two quartic Lyapunov functions,
which prove stability of all the dynamical systems
within the following ranges of a and b and which are
parameterized by u1 and u2 have been constructed.

Region 1: (a, b) = (0.25, 0) (14)

Region 2: (a, b) = (0, 1.05) (15)

The SOS program is the same as Program 4, and the
positive definite function W is similar to the one in
the previous example. Each of the resulting Lyapunov
functions has more than 30 terms in it, and is therefore
not listed here. However, the level curves of these Lya-
punov functions are shown for two different parameter
values in Figures 2 and 3.

3.3 Example 3: A Whirling Pendulum

Consider the whirling pendulum [8] shown in Figure 4.
It is a pendulum of length lp whose suspension end is
attached to a rigid arm of length la, with a mass mb
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Figure 4: The whirling pendulum

attached to its free end. The arm rotates with angular
velocity θ̇a. The pendulum can oscillate with angular
velocity θ̇p in a plane normal to the arm, making an
angle θp with the vertical in the instantaneous plane
of motion. We will ignore frictional effects and assume
that all links are slender so that their moment of inertia
can be neglected.

Using x1 = θp and x2 = θ̇p as state variables, we obtain
the following state equations for the system:

ẋ1 = x2, (16)

ẋ2 = θ̇2
a sin x1 cos x1 −

g

lp
sinx1. (17)

The number and stability properties of equilibria in this
system depend on the value of θ̇a. When the condition

θ̇2
a < g/lp (18)

is satisfied, the only equilibria in the system are (x1, x2)
satisfying sinx1 = 0, x2 = 0. One equilibrium corre-
sponds to x1 = 0, i.e., the pendulum is hanging verti-
cally downward (stable), and the other equilibrium cor-
responds to x1 = π, i.e., the vertically upward position
(unstable). As θ̇2

a is increased beyond g/lp, a supercrit-
ical pitchfork bifurcation of equilibria occurs [9]. The
(x1, x2) = (0, 0) equilibrium becomes unstable, and two
other equilibria appear. These equilibria correspond to
cos x1 = g

lpθ̇2
a

, x2 = 0.

We will now prove the stability of the equilibrium point
at the origin for θ̇a satisfying (18), by constructing a
Lyapunov function. Obviously the energy of this me-
chanical system can be used as a Lyapunov function
but since our purpose is to show that a Lyapunov func-
tion can be found using the SOS decomposition, we will
assume that our knowledge is limited to the state equa-
tions describing the system and that we know nothing
about the underlying energy.

Since the vector field (16)–(17) is not polynomial, a
transformation to a polynomial vector field must be
performed before we are able to construct a Lyapunov
function using the SOS decomposition. For this pur-
pose, introduce u1 = sinx1 and u2 = cos x1 to get:

ẋ1 = x2, (19)

ẋ2 = θ̇2
au1u2 −

g

lp
u1, (20)

u̇1 = x2u2, (21)

u̇2 = −x2u1. (22)

In addition, we have the algebraic constraint

u2
1 + u2

2 − 1 = 0. (23)

The whirling pendulum system will now be described
by Equations (19)–(23). Notice that all the functions
here are polynomial, so that Theorem 1 can be used to
prove stability.

We will perform the analysis with the parameters of the
system set at some fixed values. Assume that all the
parameters except g are equal to 1, and g itself is equal
to 10, for which condition (18) is satisfied. For a me-
chanical system like this, we expect that some trigono-
metric terms will be needed in the Lyapunov function.
Thus we will try to find a Lyapunov function of the
following form:

V = a1x
2
2 + a2u

2
1 + a3u

2
2 + a4u2 + a5, (24)

= a1x
2
2 + a2 sin2 x1 + a3 cos2 x1 + a4 cos x1 + a5

where the ai’s are the unknown coefficients. These co-
efficients must satisfy

a3 + a4 + a5 = 0, (25)
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for V to be equal to zero at (x1, x2) = (0, 0). To guar-
antee that V is positive definite, we search for V s that
satisfy

V − ǫ1(1 − u2) − ǫ2x
2
2 ≥ 0, (26)

where ǫ1 and ǫ2 are positive constants (we set ǫ1 ≥ 0.1,
ǫ2 ≥ 0.1). Positive definiteness holds as

ǫ1(1 − u2) + ǫ2x
2
2 = ǫ1(1 − cos x1) + ǫ2x

2
2

is a positive definite function in the (x1, x2)–space (as-
suming all x1 that differ by 2π are in the same equiva-
lence class).

An example of Lyapunov function for this whirling pen-
dulum system is given by

V = 0.33445x2
2+1.4615u2

1+1.7959u2
2−6.689u2+4.8931.

In fact, we can take things a bit further, and assume
that the parameters of the system are fixed at the same
values as before except for θ̇a, which is assumed to
be unknown, aiming to construct a Lyapunov function
that is parameterized by θ̇a. It is expected that the
function will be a Lyapunov function when θ̇a satisfies
condition (18), and not otherwise. Such a candidate
Lyapunov function has been found:

V = 7.3601+0.33033x
2

2−6.6066u2 +7.0698θ̇
2

a +0.3304u
2

2θ̇
2

a

In this case, we cannot impose a condition like (25) to
make V = 0 at (x1, x2) = (0, 0), because the value of V
at that point also depends on θ̇a. Nevertheless, notice
that (x1, x2) = (0, 0) will always be a stationary point
of V .

By construction, the derivative of this function along
the trajectories of the system is nonpositive, but its
shape near the origin of the state space depends on the
value of θ̇a. The origin will be a minimum of V (at
least locally) when the Hessian of V evaluated at the
origin,




∂2V

∂x2

1

∂2V
∂x1x2

∂2V
∂x1x2

∂2V

∂x2

2





x1=0,x2=0

=

[

6.6066 − 0.6608θ̇2

a 0
0 0.33033

]

,

is positive definite, i.e., when θ̇2
a < 9.9979 ≈ 10. If

this condition holds, then V will qualify as a Lyapunov
function for the system. Notice that the condition we
obtain here agrees exactly with condition (18): When
θ̇2

a ≥ 10, the equilibrium point undergoes a pitchfork
bifurcation and becomes unstable; at the same point,
the origin changes from being a minimum of V to a
saddle point for it, and hence V stops being a Lyapunov
function.

4 Conclusions

Constructing Lyapunov functions has always been a
challenging task and an important problem in dynam-
ical systems and control theory. An algorithmic ap-
proach was developed recently to construct Lyapunov

functions for dynamical systems with polynomial vec-
tor fields. This was based on a relaxation of the con-
dition that a function is positive semidefinite to the
condition that it is a sum of squares.

The class of dynamical systems for which Lyapunov
functions can be synthesized with the above method
has been extended in this paper to accommodate sys-
tems with equality, inequality and integral constraints.
In doing so, certain nonpolynomial nonlinearities can
be handled, as shown in the examples in Section 3,
and Lyapunov functions that are nonpolynomial in the
state variables can be constructed.

Future research directions in this area include charac-
terizing the terms that are needed in the Lyapunov
function, and choosing the shaping function W . Such
a characterization is crucial, as in most cases the size
of the resulting semidefinite program can be reduced
drastically by using a proper choice of W and search-
ing for Lyapunov functions containing only a minimal
set of terms that are really needed.
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