Modeling the afferent dynamics of the baroreflex control system
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Abstract

In this study we develop a modeling framework for predicting baroreceptor firing rate as a function
of blood pressure. We test models within this framework both quantitatively and qualitatively using
data from rats. The models contain three parts reflecting the mechanisms engaged to activate barore-
flex regulation including: arterial wall deformation, stimulation of mechanoreceptors located in the BR
nerve-endings, and modulation of the action potential frequency. The three sub-systems are modeled
individually following well-established biological principles. The first sub-model, predicting arterial wall
deformation, uses blood pressure as an input and outputs circumferential strain. The mechanoreceptor
stimulation model, uses circumferential strain as an input, predicting receptor deformation as an out-
put. Finally, the neural model takes receptor deformation as an input predicting the BR firing rate as
an output. Our results show that nonlinear deformation of the arterial wall is essential to account for
increased stiffening with increased pressure. This was observed when testing the models using multiple
experiments with a single set of parameters. We find that to model the response to a square pressure
stimulus, giving rise to post-excitatory depression, it is necessary to include an integrate-and-fire model,
which allows the firing rate to cease when the stimulus falls below a given threshold. We show that
our modeling framework in combination with sensitivity analysis and parameter estimation can be used
to test and compare models. Finally, we demonstrate that our preferred model can exhibit all known
dynamics and that it is advantageous to combine qualitative and quantitative analysis methods.

Author Summary

Many people have experienced lightheadedness when standing up, yet the exact cause of this phenomenon
remains unknown. For some people, lightheadedness occurs because of anomalies in the blood pressure
control (the baroreflex) system, which keeps blood flow and pressure at homeostasis. One way to explore
this system is via mathematical modeling, which can offer valuable insights into the complex dynamic
processes. This study develops a framework for modeling activity of the baroreceptor neurons. The
models consist of three components reflecting three physiological mechanisms relating blood pressure to
the baroreceptor firing rate: modulation of arterial blood pressure causes dilation of the arterial wall,
stimulating mechanoreceptors within the baroreceptor nerve endings, emanating from the aortic arch
and carotid sinus, which in turn modulates the firing rate of the baroreceptor neurons. This signal is
integrated in the brain stem, stimulating baroreflex efferents to counteract the pressure increase. In this
study, we review the main static and dynamic features of the baroreceptor firing activity, and show, using
a combination of modeling techniques and rat aortic baroreceptor data, how to build a computationally
efficient, yet biologically correct model. These models are important components for eventually predicting
efferent responses, such as: heart rate, contractility or stroke volume.

Introduction

The main role of the cardiovascular (CV) system is to provide adequate oxygenation of all tissues, a
function which is achieved by maintaining homeostasis of blood flow and pressure. When a mammal is
subjected to an orthostatic maneuver (e.g., running, jumping, etc.), its blood volume is redistributed,



moving the system state away from homeostasis [1]. To re-establish homeostasis a number of control
mechanisms are activated regulating vascular resistance and compliance, and pumping efficiency and fre-
quency. An important contributor to this control system is the baroreflex, which uses specialized neurons
called baroreceptors (BR) for signaling [2]. The BR neurons emanate in the arterial wall and terminate
in the nucleus solitary tract, where sensory information is integrated. These neurons are continuously
stimulated via activation/inhibition of mechanosensitive receptors responding to changes in arterial wall
stretch imposed by pulsating blood pressure [3]. This stimulus modulates the formation of action po-
tentials propagating along the BR nerves terminating in the NTS, where efferent signals are generated
to regulate heart rate, cardiac contractility, and vascular resistance and compliance. It is known that
the baroreflex system contributes to short-term blood pressure regulation, operating on a time-scale of
seconds to minutes [4]. For example upon head-up tilt, blood is pooled in the lower extremities, increasing
blood pressure in the lower body, while decreasing it in the upper body, causing an imbalance, which
persists until the baroreflex system is activated. Figure 1 shows a schematic representation of the barore-
flex pathways. While the BR pathways are generally well established, analysis of the complete control
system, including afferent and efferent signaling, is hindered by the difficulty of measuring the activity of
each component without disrupting the feedback loop. For example, in-vivo, only macroscopic quantities
can be measured non-invasively including heart rate and blood pressure. From such measurements it is
difficult to examine how the individual components of the system interact and consequently it is difficult
to determine which sub-systems are compromised for subjects experiences baroreflex failure [5] or de-
creased arterial baroreflex sensitivity [6]. These difficulties limits the development of targeted diagnosis
procedures and treatment plans aiming to alleviate symptoms for patients.

Mathematical modeling is an eminent tool for gaining more insight into this complex feedback loop,
offering a stringent and systematic way to identify underlying mechanisms of the system. For example,
the only way to estimate model parameters and thereby predict essential biomarkers, that may not be
directly measurable, is by using models in combination with direct measurements. Modeling also offers
a way to understand complex systems, as it make the inaccessible accessible, a concept denoted the
“mathematical microscope” [7].

This paper will focus solely on the afferent part of the baroreflex system, while future studies will
address efferent signaling and integration of the two parts within a system level model. Since the 1950s
researchers have put forward numerous mathematical models [8-19], which tried to integrate known dy-
namics with hypothesized mechanisms in order to provide more understanding of the system as a whole.
Many insights have been gained, however, most of these models were developed to describe BR response
to a particular stimulus, rather than to a range of stimuli eliciting all known responses. Therefore they
all lead to different hypothesis explaining the system mechanisms. Inspired by shortcomings of previous
studies, we developed a modeling framework containing model components reflecting physiological path-
ways. This framework splits the afferent signaling into three parts predicting vessel wall deformation,
mechanoreceptor stimulation, and the frequency of action potential generation. For each component we
propose multiple models, which we test both qualitatively and quantitatively. This new approach allows
us to understand the contribution of each component model to the overall signal. For example, if the
objective is to build a BR model that can reflect the response to a sinusoidal pressure stimulus observed
experimentally, the modeling framework can be used to identify which combinations of components are
sufficient to describe the experimental outcome, and which component models may be excluded from
possible explanations of observed features. Moreover, we show how our framework may be used to in-
form hypotheses, by suggesting a particular component mechanism responsible for generating a given
pressure-response feature of BR firing.
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Figure 1. Schematic representation of the BR feedback system. Stretch sensitive BR neurons
emanate in the carotid sinuses and the aortic arch. In these arteries, dynamic changes in blood pressure
cause vessel deformation, modulating stretch of mechanoreceptors channels found in the BR nerve
endings. Stimulation of these receptors modulates frequency of action potential formation, a signal
integrated in the NTS. From the NTS, efferent sympathetic and parasympathetic outputs are generated
determining the concentrations of neurotransmitters acetylcholine and noradrenaline, which stimulate
or inhibit heart rate, cardiac contractility, vascular resistance and compliance, the latter via activation
of smooth muscle cells constricting or dilating the radius of arteriolar vessels.

Methods

Experimental data and its features

In this section we describe the main qualitative characteristics of BR firing rate as well as the data used
for quantitative model tests.

Qualitative features of the BR firing rate

Although BR firing patterns depend on the type of BR, e.g., whether they are connected to myelinated or
unmyelinated axons [20], there are a number of features nearly all BR neurons exhibit. We characterize
these according to observations obtained by stimulating isolated rat aortic BR neurons with a range of
pressure stimulus including: sinusoidal, step increases and decreases, and ramp increases and decreases
(Figure 2). The most common features of the BR response to imposed pressure stimuli include: saturation
and threshold (Figure 10), adaptation and overshoot (Figures 7-10), as well as post-excitatory depression
and rectification (Figure 10). Below, we describe each of these firing rate patterns in more detail.

Threshold. Observed in response to a step or ramp increase in pressure (Figure 2b,d). This phe-
nomenon was first described by Bronk and Stella [21,22] in the 1930s. They observed that a small
step increase from a given baseline blood pressure did not trigger BR firing, but when the pressure was



increased above a certain threshold, the BR nerve began to fire continuously. The threshold was later ob-
served to increase with an increased baseline pressure [23-26]. Moreover, Seagard et al. [27] observed that
the type of baroreceptor (myelinated or unmyelinated) strongly affects the threshold pressure. The precise
mechanisms underlying the threshold phenomena remains unknown, but it is thought to be attributed
to the characteristics of ion channels associated with generation of action potentials [28].

Saturation. Observed in response to a ramped increase of blood pressure (Figure 2d). As the pressure
is increased linearly, the BR firing rate first increases almost linearly (with pressure). Then, at a given
frequency, the firing rate approaches some limiting value (the saturation level) [23] (Figure 10). This
phenomenon was also observed by Bronk and Stella [21,22]. They noted that for normotensive rabbits,
the firing rate saturates around 120-140 Hz. Later, Seagard et al. [27] studied saturation by stimulating
a single carotid BR nerve fiber, extracted from a mongrel dog, with a slow linearly increasing pressure.
This experiment showed firing rate saturation at 46.5+2.5 Hz. These observations led to the separation of
nerves as type I (large myelinated aortic (A) nerve fibers) and type II (smaller aortic (A) and unmyelinated
carotid (C) nerve fibers). They observed type I BR neurons displayed a discontinuous firing pattern,
characterized by a sudden onset of discharge at the average threshold pressure of 73.3 + 5.2 mmHg,
whereas type II neurons displayed a continuous, sigmoidal firing pattern saturating at 19.2 2.1 mmHg.

Adaptation. Observed in response to a step change in pressure (Figure 2b). In response to this
stimulus, the firing rate adapts to a new level depending on the magnitude of the pressure change
(Figures 7-10). This phenomenon was first observed by Landgren [8, p.7], who discovered that 50%
of adaptation occurs within 0.1 (sec) following the the pressure stimulus, 95% is completed after 30
sec, whereas full adaptation requires a very long time, more than 2 minutes. It was later confirmed
by Srinivasen and Nudelman [11] and Brown et al. [29], though from these later studies it is not clear
that adaptation requires three distinct timescales. Moreover, Brown [29] noted that the frequency of the
adapted firing rate is the same whether the baseline pressure level is reached from a higher or a lower
pressure level. Several studies have observed that the level of the steady-discharge is proportional to the
applied pressure [20,30]. No mechanism has been established as the cause of adaptation; however, Franz
et al. [31, p.823] propose viscoelastic relaxation as the source of adaptation in the firing rate.

Overshoot. Observed following either a step [31] or a ramp increase of pressure [10] (Figure 2d). The
firing rate responds by immediately increasing the rate of discharge, followed by a slow adaptation to
a new lower steady state value (Figures 7-10). Brown et al. [30, Figure 5] noted that the relationship
between the size of the overshoot and the level of the pressure stimulus is almost linear. It is the BR
response immediately following the onset of the pressure stimulus that is referred to as overshoot, thus
overshoot is always followed by adaptation (explained above), and therefore mechanisms giving rise to
overshoot are closely related to the ones associated with adaptation.

Post-excitatory depression (PED). Observed following a step-decrease in pressure (Figure 2c). In
response to this stimulus the BR firing ceases for a short period, after which it recovers to a rate cor-
responding to the newly established pressure level (Figure 8). While the term PED was put forward
by Brown et al. [29,32], who studied the phenomena extensively, the phenomenon was first observed by
Bronk and Stella [21] when they noticed that BR firing ceased during diastole. Later, Wan et al. [33]
observed that the length of the pause depends on the depth of the pressure drop. Brown [32, p.504],
suggested that an electrogenic-sodium pump could be the potential mechanism for this phenomena.

Asymmetry (or hysteresis). Observed following a sequential rise and fall of blood pressure (see sinu-
soidal, square, and triangular stimulus shown in Figure 2). This phenomenon was described by Katona
and Barnett [34], but have also been discussed by Coleridge, Angell, Pelletier et al. [23,35-37]. These
studies all explained the phenomenon from observing that the BR firing rate exhibits asymmetrical re-
sponses to rising and falling blood pressure (Figure 10). However, asymmetry can be observed in response
to any stimuli involving a symmetric increase and decrease in pressure. Thus it may also be observed in
PED (Figure 8) and in response to periodic sinusoidal forcing (Figures 6a and 10). In the time-domain,
it may not be easy to see that a sinusoidal stimulation leads to asymmetry, but it can be observed by
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Figure 2. Various types of BR input pressure. To test our models we applied a number of
pressure stimuli: (a) sinusoidal, (b) step increases, (¢) square (step increase followed by a step
decrease), (d) ramp and triangular. All stimuli were used for qualitative model predictions, while
quantitative simulations were only done using stimuli shown in (a-c).

depicting BR firing as a function of pressure, which gives rise to hysteresis loops (Figure 6b). This
phenomenon is closely related to adaptation and overshoot, thus viscoelastic relaxation exhibited by the
arterial wall, could explain its origin.

Description of experimental data

So far we have focused on describing the qualitative features of the BR firing rate. However, if the
objective is to understand how these responses are modulated in disease or between species it may be
important to predict the BR firing rate quantitatively.

Below we describe the main features of data used for quantitative predictions. All quantitative data
were obtained by digitizing results reported by Brown et al. [20] and Saum et al. [32]. From these studies
we extracted data from a total of six experiments, grouped with respect to the applied pressure stimulus:
sinusoidal, step increase with four different amplitudes, and a square pulse. These stimuli are depicted
in Figure 2a-c.

Sinusoidal pressure stimulus. To test the models’ abilities to mimic ¢n vivo dynamics, we used
data reported by Brown et al. [20, Figure 2A]. They stimulated the stretch-sensitive receptors using a
sinusoidal pressure stimulus mimicking the natural blood pressure rhythm and recorded the corresponding
BR firing rate. Several studies [9,17,38-40] have reported similar experiments. This type of data allows
us to evaluate whether the model can predict asymmetry (Figure 6) and rectification (Figure 10). The
study [20] reports firing rate responses recorded from 11 experiments using myelinated aortic BR axons
extracted from Wistar-Lewis strain normotensive rats aged 4-6 months. For each experiment the neuron



was stimulated using sinusoidal pressure wave with a frequency of 20 Hz, an amplitude of 5 mmHg, and
a mean pressure of 127 mmHg. Steadily oscillating pressures were recorded over a period of 5 seconds.
More details about experimental preparation can be found in [30,32]. To obtain a smooth input stimulus,
we fit the data to a sinusoidal function of the form

p(t) = po + 2.5sin(ps — prt), (1)

where po = 127 mmHg. We estimated parameters p; and ps using the initial values p; = 6.45 and
p2 = 46.75. Resulting parameters are given in Table 4.

Multistep pressure stimulus. To predict overshoot followed by adaptation, we digitized BR firing
rate data reported in [20, Figure 5|. This study shows BR discharge in response to four pressure step
increases from a baseline pressure of 115 mmHg. The four step-increase stimuli are: 13 (to 128), 19 (to
134), 22 (to 137), and 28 (to 143) mmHg (Figure 2b). Experiments were done over a period of 12 sec,
allowing the BR firing rate to adapt to a new steady level of discharge. In this study we used data reported
by Brown et al. [20], though several experimental studies have reported similar observations [30,41]. Tt
should be noted, that no graph depicted the pressure stimulus. Brown et al. [20] reported the baseline
pressure as well as the level of the pressure increase, but not the exact time denoting the onset of the
stimulus. We modeled the stimulus using a smooth function of the form

Pup(t™ + 65
p(t) — - P( U )nu,
trw 4 (pup/pdow)(su

: (2)

where pgow, Pup denote the baseline pressure and the increased pressure, respectively; d,, denotes the
onset of the pressure step increase, and k, denotes the steepness of the increase. For the dataset under
consideration the values pgo, = 115, and p,, = {128,134,137,143} were taken from [20], while we
estimated ¢, and k,,. Initial values for these parameters were set to §,, = 1.1 and k, = 10 approximating
the onset described in the experiment [20, Figure 5]. Optimized parameter values along with pge.,, and
Dup are given in Table 4.

Square pressure pulse stimulus. To predict PED, we digitized data reported in Saum et al. [32,
Figure 1], which examined PED and adaptation in slowly adapting aortic BR neurons extracted from
normotensive and spontaneously hypertensive rats. Though this phenomenon has also been reported in
several other studies including [8,31-33,42]. The study by Saum et al. [32] stated that PED could be
elicited either mechanically by employing single or double pressure steps, or electrically by stimulating
myelinated aortic BR axons extracted from normotensive Wistar-Lewis rats aged 4-6 month. The data
used shows a steady state discharge was elicited by stimulating the nerve with a baseline pressure of 140
mmHg. After 4 sec the pressure was increased by 40 mmHg to 180 mmHg for a period of 4 sec, after
which it was reset to the baseline pressure of 140 mmHg. To allow the neuron to fully recover following
the pressure drop, data were recorded over a period of 20 sec (Figure 8). In order to avoid the problem
of non-differentiability we modeled the pressure stimulus using the smooth function

p(t) = pp + pup tanh(k(t — 04))/2 — Paow tanh(k(t — 64))/2, (3)

where tanh is the hyperbolic tangent. For this stimulus we used py = 140, pyp = 40, pgow = 40, K, = 20.
Other parameters were optimized and are reported in Table 6.

Models

To model the dynamics, which produce the BR firing rate in response to given blood pressure stimuli,
we include three components separating distinct physiological pathways, and for each component we
develop a number of linear and nonlinear models. The three components (Figure 3) include: arterial
wall deformation, mechanoreceptor stimulation, and action potential generation. As a driving force for
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Figure 3. Block diagram used to predict BR firing in response to an applied blood

pressure stimulus. Applied changes in blood pressure induce changes in the arterial wall strain, which
induce changes sensed by stretch sensitive mechanoreceptors found in BR within the arterial wall. This
stimulus modulates frequency of action potential formation, which can be used to predict BR firing rate.

the models we use arterial pressure, which determines arterial wall deformation quantified by the wall
strain. The wall deformation, stimulates the stretch sensitive mechanoreceptors found in the BR nerve
endings within the arterial wall. Thus changes in blood pressure modulate the opening of these channels,
and thereby the current flowing through them, which determine the rate at which action potentials are
formed. The time between subsequent action potentials determines the firing rate, and thus our models
relate the receptor strain to the frequency of action potentials, thereby allowing us to predict the BR
firing rate. For each model component, described below, we review previous modeling methodologies and
use these to inform the design of the new component models, collectively used to describe the firing rate
of afferent BR neurons in response to an applied blood pressure stimulus.

Arterial wall deformation

BR nerves emanate in the wall of the the aortic arch and the carotid sinus and terminate in the NTS [43].
Action potentials transmitted along these nerves are generated by stimulation of mechanoreceptors found
in the wall. These nerves are stimulated by pressure pulses passing through the vessel, and their firing
patterns are modulated in response to changes of the frequency and magnitude of the pressure stimulus.
It is well known [44] that the arterial wall deforms viscoelasticily, though little is known about how this
deformation impacts stimulation of the mechanoreceptors. This section describes models predicting vessel
strain as a function of blood pressure, while the next section describes characterization of mechanoreceptor
stretch, which in turn modulates BR firing rate.

The arterial wall is composed of three layers: tunica intima, the inner most layer; tunica media,
the middle layer, and tunica adventitia, the outer layer [45]. The arterial wall which is 70% water also
consists of muscle fibers, elastin, collagen, and ground substance. Smooth muscle cells are found in the
walls of most blood vessels, particularly in the tunica media layer. As a vessel contracts and expands
under neural control, not only does the vessel’s radius change, so do its elastic properties. The protein
elastin, which is especially abundant in larger blood vessels, such as the aorta, exhibits nonlinear elastic
response to an applied stimulus, which allows the vessel to recover to its relaxed state after an imposed
stimulus. Collagen, another protein is present in all vessels, although the amount of collagen in smaller
vessels is significantly larger than in the aorta [46]. This fibrous structural protein forms tough bundles,
which support the vessel wall and give cells external structure; it has great tensile strength [47,48]. It is
this protein which accounts for viscoelastic creep during arterial wall deformation.

Detailed prediction of arterial wall strain requires complex, anisotropic, viscoelastic models, account-
ing for dynamics associated with each layer of the wall as well as the interaction between the layers [44].
While such models can provide detailed description of wall deformation, they cannot easily be integrated
with a higher-level model predicting BR firing rate. Another class of models are those assuming that
the arterial wall is isotropic. Such models can be represented by a thin shell, and since arteries are
tethered in the longitudinal direction, viscoelastic deformation is dominantly in the circumferential direc-
tion (cf. [49]). Such models predict the cross-sectional strain of the arterial wall in response to induced
changes in applied stress, corresponding to the blood pressure [46]. Again, depending on the fidelity



needed, these ”stress-strain” models can be simplified. The simplest stress-strain models ignore viscous
deformation and treat the wall as purely elastic. Such models may use either a linear or nonlinear relation
between stress and strain. In this study we consider three wall models, of which one is linear and elastic
(W, subscript e for elastic), one is linear and viscoelastic (W,., subscript ve for viscoelastic), and one is
nonlinear and elastic (W, subscript n for nonlinear and e for elastic).

Table 1. Elastic and viscoelastic models of arterial wall strain.

Model| Elastic response s°[| Creep K(+) Type
7o .
W, th 1 elastic
W, Tfop 1— Ajet/h viscoelastic
ve Eh
W Ag(a¥ 4+ p) 1 nonlinear
ne © Apak + A, pk elastic

The unified QLV formulation in (8) encompasses all models studied here. The first column lists the
model, the second the elastic response, the third the creep, and the fourth states if the model is linear
or nonlinear.

Linear elastic wall model (W.). For a thin walled elastic vessel with an isotropic wall, vessel-wall
deformation can be predicted using Laplace’s law relating circumferential strain ogg to blood pressure p

as
pr

Fa
where r denotes the radius of the vessel, h the wall thickness. The circumferential strain egg is defined as
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where r( is the unstressed radius at zero pressure. For a thin-walled elastic vessel, the circumferential

stress and strain can be related by
009 — VOryp — V0O,
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where o,.,., 0,, , v, and FE denote the normal stress in the radial direction, the normal stress in the
longitudinal direction, the Poisson’s ratio, and Young’s modulus. Since we neglect the deformation in
the axial direction we obtain the simplified relationship
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Now substituting previously obtained expressions for egg and ggy we get

r—To _ pr
To _Eh

Equivalently
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The quantity €, is a relative measure of the circumferential wall strain and can be modeled in light of
Hooke’s law as a linear spring.

€w = = kwallpv kwall =



Nonlinear elastic wall model (W,,.). It is well known that the area-pressure response curve is
nonlinear and can be modeled using a sigmoidal function, accounting for saturation of the vessel wall
deformation at both high and low pressures. Following [46, 50] the pressure-area relationship can be

modeled as .

_r
ak 4 pk
where Ay and A,, are the unstressed and maximum cross-sectional area; « is the characteristic pressure
at which the vessel starts to saturate; and k& determines the steepness of rise of the sigmoidal curve,

representing the stiffness in the lumen distention due to changes in pressure. Using (4) as a definition of
wall strain €,,, we obtain

A(p) = (Am - AO) + Ao,

Ao (a + p*)

cw Aok + A,,pk

(5)

Viscoelastic wall models (W,.). While the main contribution to arterial wall deformation is elastic,
as mentioned above, the arterial wall is composed of tissue that has viscoelastic properties. Viscoelastic
models encompass both elastic deformation and viscoelastic creep, and thus can be described using either
linear or nonlinear elastic responses.

Linear viscoelastic response of the arterial wall is typically, although not solely, described using a
number of springs (elastic elements) and dashpots (viscous elements) in various configurations. The so-
called standard linear solid (SLS), is one of the most commonly used examples of such configurations. It
involves a Maxwell element (spring E; and dashpot 7; in series) in parallel with a spring Ey. It is easy
to establish that the total stress-strain relationship given by the following constitutive equation

de 1 do ’171 ( EQ m
. . 1 7) I 6
€Ty = EO( +det> o= T g =g (6)

To apply the SLS model to the arterial wall, we think of € as vessel distention €,, and the stress o as the
blood pressure p. Moreover, assuming the arterial wall is a thin-walled elastic tube we can substitute
Ey = Eh/ry and obtain the following equation

dew
dt

dp 70
€w 1+ Tq = kwall (p + Tba)y kwan = ﬁ
In order to avoid numerical differentiation of the data, following [46] we apply the integrating factor and

transform this equation to

kwa izt kwa a — K =
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QLV framework. Formulated as linear elements in series and parallel, the above model cannot
directly be extended to account for nonlinear elastic response; moreover, it is limited to models described
using a finite number of components. It was noted by Fung [49], that biological tissues are not elastic and
that strain history affects the stress. Moreover, there is a difference in the stress response between loading
and unloading. Generalizing linear viscoelastic theory, Fung [49], introduced the so-called quasi-linear
viscoelastic theory (QLV), which has been used successfully to model stress-strain relationships involving
living tissues [51,52]. The QLV theory is a flexible framework that includes linear viscoelastic theory
and provides a more accurate description of the pressure-strain curve, especially in living tissues. We
proceed with the assumption that the arterial wall can be modeled as homogeneous and isotropic thin
walled cylindrical vessel [53]. Therefore the wall strain as a function of pressure can be determined as

= [ w2, 0
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where K (t) is a creep function, and s¢[p(7)] is the elastic response [46,49]. Finally, it should be noted
that all the linear and nonlinear arterial wall models described above can be expressed within the unified
framework of the QLV theory, see Table 1.

Mechanoreceptor stimulation

The BR nerves emanating in the adventitial layer of the aortic arch and carotid arteries form a complex
branching network [54]. In rats electron microscopy studies have revealed that BR aortic nerve fibers form
bundles, usually containing one myelinated and five unmyelinated fibers of different sizes [54, p.401].
Each bundle is surrounded by a protective sheath, perineurium. Both unmyelinated and myelinated
fibers are sheathed in Schwann cells and are embedded in collagen, see [54, p.404] and [55,56]. Because
these nerve endings are embedded in the arterial wall, deformations of the arterial wall also deform the
nerve endings. This deformation stimulates stretch sensitive, non-selective cation channels that serve to
transduce the changes in the nerve ending structure into an electrical signal, which is encoded into the
firing pattern of the BR neuron [2].

We propose a model specifying the strain effected specifically at the nerve endings as a result of a
given arterial wall strain. Thus our model seeks to capture the stimulation of the mechanoreceptive
nerve endings by capturing the stretching dynamics of the nerve endings as the arterial wall expands or
contracts in response to changes in pressure. We propose models with the assumption that viscoelastic
properties of BR nerve ending connective tissue are the key factor in the transduction process [57,58].
Following the ideas used in previous BR modeling studies [13,59]; and before in the modeling of the
muscle spindle dynamics [60,61] we describe the coupling of the strain sensed by the mechanoreceptors
to the wall deformation using n Voigt bodies in series with a spring (Figure 4). Following this idea, the
strain sensed by the mechanoreceptors in response to the arterial wall deformation is given by

€ne = €w — €1, (9)

where €, denotes the strain of the wall, and €; denotes the strain of the first Voigt body. Choosing the
parameters a;; and bq,...,b,, determined by the spring, F, and dashpot, 7, constants, the model given
in Figure 4 can be described using the dynamical system

J:aj161+...+ajn€n+bj€w j:1,2,...,n

where €;,(j = 1,...,n) is the relative displacement within each Voigt body. Consequently, our model
assumes a declining afferent sensory activity during constant intensity stimulation, a fundamental prop-
erty of mechanoreceptors that can be described in terms of viscoelastic relaxation processes in the vessel
wall [31,62]. Below we describe, in more detail, the computational aspects of this element of the BR
model, analyzing model components including one, two, and three Voigt bodies. Since the strain is pre-
dicted by Voigt bodies, we have denoted this model component V; where ¢ = 1, 2,3 denotes the number
of Voigt bodies included.

One Voigt body model (V7). We start with the simplest Voigt body model. This consists of one
Voigt body in series with a spring (Figure 4 for n = 1). The governing equation predicting the nerve
ending deformation is given by

d€1

dt
where 81 and o1 depend on the spring constants F,,., F; and viscous element 77; as stated in Table 3. Since
equation (10) is a first-order linear ODE, the total strain sensed by the mechanoreceptor is equivalent to
the strain on the Voigt body, thus this model component only exhibit one time-scale 7,, associated with
the strain €,,. This time-scale is given by

= —(a1 + Br)er + ey, (10)

7'1)1 :a1+61. (11)
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En E,

Figure 4. A schematic illustration of the strain sensed by the mechanoreceptors. The spring
and n Voigt bodies (a parallel spring and dashpot) in series shown here predicts the strain sensed by
the mechanoreceptors relative to the deformation of the arterial wall. The spring E,. represents the
elasticity of the BR nerve endings, whereas the n Voigt bodies reflect the viscoelastic properties of the
surrounding connective tissue. Each element n provides a timescale adaptation of BRs firing rate in
response to a step increase in pressure observed in experiments. This study compares the cases
n=1723.

Two Voigt body model (12). The model with two Voigt bodies and a spring in series (Figure 4
for n = 2) can be described by the following system of differential equations

d€1
P —(a1 +az+ Pr)er + (B1 — B2)ez + (a1 + az2)ew
12
d€2 ( )
T T ea Bae2 + ey,
where oy, s, $1 and fo are defined in Table 3. There are two timescales Ty, and 7'52 associated with
prediction of the nerve ending relaxation, thus one expects the BR firing rate to observe adaptation more
closely. For this model represented by two Voigt bodies (E;,n;), j = 1,2, in series with a spring Ej, those
two time-scales can be computed as follows. The total strain-stress relationship is given by the following
equation

(12611} + (11611} + Qo€ = bQJ// + bldl + bQU, (13)
where the coefficients are
ag = EqE By by = EoEy + EoEy + Er1Es
a1 = Ey(Ein2 + Eam) by = Egnl + Egnz + Eing + Eam
az = Eymine by = min2.

For the step-increase in pressure (and thus wall stain €,,) we obtain €/, = €/ = 0. Therefore the two
timescales 7,7, and 7'52 are given by the roots of the characteristic equation

&v, (2) = [aof + 1Bz + B1 5] + [on + ag + b1 + falz + 2°. (14)

Three Voigt body model (V3). For model with three Voigt bodies in series with a spring (Figure 4
for n = 3) we obtain the following system of three differential equations

% =—(on+as+ag—Pr)er + (B1 — P2)ea + (B2 — Bs)es + (a1 + ao + ag)ey
% = —(a2 + az)er — Parea + (B2 — B3)es + (a2 + a3)eyw (15)
des

prai Ba€z + azey,
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where as in the previous case the coefficients «;, 85, j = 1,2,3 are provided in Table 3. This model
has three time-scales 7, , 7'53 and 77 associated with the nerve-ending relaxation. Again, the total
strain-stress relationship for our model is given by

azeld) + age” + arel, + agew = bso® + byo” + bio’ + boo, (16)
where the coeflicients are given by

ag = EoE1E2 B3 by = EoEhEy + EgE\E3 4+ EgEyEs + Ey EyEs

ay = Eo(EoEsm + E1Esny + E1Eanz) by = EgEom + EoEsn + ExEsny + EoE1ne + EoE3na+
EyEsna + EoE1ns + EoEans + E1Eans

az = Eo (Eznine + Eamnz + E1nans) by = Ezminz + Eominz + Eoninz + Eaninz + Eonzns + E1nz2ns

az = Eommn2ns b3 = m1m2m3.

For the step-increase in pressure (and thus wall stain €,) w obtain €, = €l = ) = 0. Thus the
timescales are the roots of the following characteristic equation

vy () = Ao+ A1z + Aoz + 23, (17)

where
Ag = a1 8283 + a1 83 + azB1 B2 + B15203,
Ay = a1 (B2 + B3) + az(Br + B3) + az(B1 + B2) + B1f2 + B1Ps + B2fs,
Ay = a1+ op +az+ B+ B2 + Bs,

where again «;, 8; (j =1, 3) are given in Table 3.

BR Firing rate

The final model component requires a description of the generation of action potentials in response to
stimulation of the mechanoreceptors. The generation of action potentials is often described using the
Hodgkin-Huxley (HH) model representing the biophysical characteristic of cell membranes, including
a lipid bilayer represented by a capacitance and membrane channel proteins represented as nonlinear
resistors. Action potentials are initiated when the neuron receives sufficient electrical current stimulus, in
case of BRs, this stimulus is typically via pressure dependent stimulation of stretch sensitive ion channels.
These detailed models are fairly complex and contain numerous parameters; moreover, they describe the
dynamics of membrane voltage instead of directly modeling firing rate. In this study, we proceed proposing
two models: a very simple model, that predicts firing rate linearly from the mechanoreceptor stimulation,
and using a leaky integrate-and-fire model. The linear model simply amplifying the strain is denoted by
N, and the integrate-and-fire model denoted by N;p.

Simple amplifier (IN,). For the simplest possible model, we assume that action potential generation,
and thus nerve firing rate, can be predicted by considering a simple linear amplifier described by

f = S1€ne — S2, (18)

where s is the gain, and s, is the shift. The underlying assumption of this model is that the change in
firing is proportional to the mechanical stimulation, €,., of the nerve ending.

Leaky integrate-and-fire model (Nyg). A more realistic description can be obtained using a leaky
integrate-and-fire model, which considers the BR neuron as a simple electrically excitable membrane
stimulated by a current generated by the mechanoreceptors. We assume that the generated current is
proportional to the strain sensed by the nerve endings €,.. The leaky integrate-and-fire model originally
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Figure 5. Diagram for leaky integrate-and-fire model. The circuit diagram (left) represents the
schematic layout of the integrate-and-fire components. The graph (right) depicts voltage vs time for a
neuron stimulated by a constant current.

proposed by Lapicque [63], but also discussed by [64, 65], describes the excitation of the voltage across
the BR membrane. The membrane voltage is equivalent to the voltage across a capacitor in an RC circuit
(Figure 5) with a stimulus current (given as a function of €,.) and an Ohmic leakage current, generated
by the difference of the membrane potential and the rest potential, 0 mV.
The change in voltage generated by a leaky integrate-and-fire model is predicted as
AV,

mT 3, :Ine — Ylea Vma 1
Cn e (19)

where I, denotes the current stimulus, gjeq is a leakage conductance, and C), denotes the membrane
capacitance. In the equation above, the voltage V,, is relative to the equilibrium potential. To model
the firing rate of the neuron we assume that to form an action potential, the BR neuron has to charge
the membrane voltage above a given voltage threshold, which we denote V. Applying this assumption
to (19), allows prediction of T, i.e., time required for the voltage to increase from equilibrium to the
threshold, for a given stimulus current, I,,.. We can find T integrating (19), i.e.,

Vin

d r d
L — 0
0

Ine - gleakvm B o a

For constant I,. this equation can be solved analytically, yielding
Cm
Jleak

T =

[ln (Ine — gleakv;th) —In (Ine) } )

where, as stated above, T represents the time required to generate an action potential given a constant
current stimulus I,,.. We propose to model I, as a linear function of ¢,

Ine = S1€pe + S2. (21)
Finally, the absolute refractory period t,.¢, i.e., the time following an action potential, during which
a subsequent action potential cannot be generated [66] should be accounted for. This can be done by
letting the rate (frequency) f = (T +t,er)~'. With these simplifying assumptions the BR firing rate can
be predicted as a function of the instantaneous strain of the nerve ending sensed by the BR as

—1
{ Cm [ln (Ine*?lcak‘/th)} + t7‘ef:| Ine > Gieak Vin

Jleak ne

f= (22)

0 otherwise.
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We propose to interpret the BR firing rate as that given by (22) for I,,. at a given instant. The piecewise
definition of the frequency is necessary as (20) does not have a solution when the stimulus current is
less than the leak current at threshold voltage. This is a consistent interpretation of the instantaneous
frequency as we do not expect any firing events to occur for a sub-threshold stimulus (less than the
base current). In general, for a sub-threshold current stimulus the firing f is expected to cease until
I is increased above the threshold level. The parameters Cp,, gicak, tref, and Vy, of this model are
expected to approximately correspond to the electrophysiologically observable characteristics of the BR
neuron, membrane capacitance, leakage conductance, refractory period and threshold, respectively. The
membrane capacitance can be measured using electrophysiological techniques [67]. Leakage conductance
can be approximated as the net inward conductance near equilibrium potential. The true refractory period
and threshold voltage of a neuron are not absolute and are typically somewhat dynamic and thus difficult
to measure. One may roughly estimate these values for BRs from the results of experimental studies of
the membrane excitability of nodose neurons, a neuron family including BRs [67]. The observation of
BR firing rates up to 140 Hz leads to a refectory period of t,.; ~ 7 msec [21,22].

Composite BR models

In the previous sections we developed a framework to model the three main components involved with
prediction of BR firing. To develop a composite model, one component must be chosen from each category.
There are various options one may select from in order to construct a BR model. The choice depends
on a number of factors including the type of species (e.g., rats, dogs, sheep, humans; etc.) and the type
of data (e.g., steady, step-change, dynamic, in-vivo, etc.). We propose a total of six linear and nonlinear
models, summarized in Table 2, which we will carefully analyze and test using aortic baroreceptor rat
data. These models can be formulated as a system of algebraic and differential equations of the form

€w = g1(p, t;0)
L ool cut:0) (23)

f(:v,t;@) = 93(x7t§ 9)7

where p the blood pressure (model input); €, denotes the vessel strain; © = (€1, €a, ..., €,); t time (sec);
f the model parameters; and f the BR firing rate. Models can be separated in two basic types: linear
and nonlinear models. It should be noted that differential equations only enter via the model component
describing mechanoreceptor strain. To ensure that model simulation began from a relaxed state, we
computed the initial conditions by solving go(z, g1(p, t;0),t;8) = 0. To be more precise for the four linear
BR models W. V1 N,, W Vo N,, W.V3N,, and W,.V3N, initial conditions are respectively

x*\c/l = _alkUJpM/(al + 61)

* kpr T
Tyg = 2B + (o1 + 51V [04251 + a1 B2, 04251}

* kpr T
Tyrg = 3B Ba + (2B + (on T B B2V [a351ﬁ2 + af1 B3 + 1203,  BilazPa + asfs), a3,3152]

« _ kuwlpm +7pp)

T
Tk, = [azﬂl + ai1fe, 04251}

Y B+ (an + Br) B2
where py; and pp are the initial values of the pressure stimulus and its derivative, respectively, and 7,
aj, Bj, for j = 1,2, 3 are given in Table 3. For the nonlinear model W;,.V2N, we used the following initial
condition

I T
x;e: - « +« ) « 5 Inzl_ A CYH“F N AO(K—I—AmK .
a251+(a1+51)52{ 261 + a1z 251} of i)/ (Ao )
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Table 2. Summary of the BR models.

Model \ Wall \ Nerve ending \ Neuron \ Parameters

W.ViN, Eq (4) | Eq(10) & (9) | Eq (18) | kwau, a1, B1, 51,52

WE‘/QNG Eq (4) Eq (12) & (9) Eq (18) kwa”,a1,a2,ﬁ1,ﬁ2,81782

W.V3N, Eq (4) | Eq (15) & (9) Eq (18) | kwau, 1,2, 03,81, B2, B3, 51, s2

WyeVaN, | Eq (7) | Eq (15) & (9) | Eq (18) | kwait, Ta, T, a1, @2, B1, B2, 51, 52

WheVoN, Eq (5) | Eq (15) & (9) Eq (18) | Ao, Am,a, k, a1, a0, B1, B2, s1, S2

Wne‘/QNIF Eq (5) Eq (15) & (9) Eq (22) Ao,Am,a,k,al,az,ﬁl,ﬁz,51,52,Cm,grec,vth,tmf

The table defines six BR models that are tested against previously recorded BR data from rats [30].
Each model is denoted by a three-element name referring to a corresponding part of its component
(arterial wall W, mechanoreceptor stimulation V', neuron N). The cross-reference indicates what
equation is included in a given model.

Results

In this section we present results obtained with the models introduced in the Method section and sum-
marized in Table 2. First, we test the models’ abilities to quantitatively predict experimental data with
sinusoidal and step-increase stimuli. Second, we discuss the models’s ability to predict qualitative fea-
tures not encompassed by the quantitative data. Quantitative simulations allows us to highlight the
components necessary predict observed data, whereas qualitative simulations allows us to test the model
further in response to stimuli not detailed by experimental measurements.

Quantitative predictions

Models will be tested quantitatively using three types of pressure stimulus: sinusoidal at a fixed frequency,
a step-increase, and a step-increase followed by a step decrease (Figure 2a-c). We investigated six linear
and nonlinear models summarized in Table 2. For the wall strain three models were investigated, the
simplest assumes the wall strain ¢,, has a spring-like response (denoted W, ). The second model (denoted
Whe) accounts sigmoidally for increased stiffening with increased pressure, and finally we investigate a
viscoelastic model (W,.). The mechanoreceptor strain €., is modeled using one, two, and three Voigt
bodies, respectively, in series with the spring (V1, Vs, V3). Finally, two models were used for prediction
of BR firing rate, a linear model (N,) and an integrate-and-fire model (N;r). As mentioned above,
these models can all be described as a system of algebraic and differential equations. For all models the
model input is pressure p and the model output is BR firing rate f, initial conditions were computed
to ensure that model solutions start at steady state. For quantitative predictions, the objective was to
estimate model parameters minimizing the least squares error between the model and data. Since data
is only available for the BR firing rate and the pressure stimuli, for most models not all parameters
are identifiable. We denote as identifiable parameters, those that are sensitive and not correlated, given
the model output and the associated available data [68]. In this study, identifiability of parameters was
determined using sensitivity based methods [69]. Subsequently, for models completely characterized by
smooth functions, the Levenberg-Marquart method was used to estimate model parameters, while for
models not fulfilling this requirement (the integrate-and-fire models), parameters were estimated using
the Nelder-Mead method. Both used optimization algorithms from Kelley [70].

Below we first describe the methodology used for sensitivity analysis and parameter identification and
subsequently we discuss results obtained using nonlinear optimization, the latter is separated according
to the input stimulus.
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Sensitivity analysis: For any smooth model of the form (23), the sensitivities [71-73] can be
computed as
of

=00,

Following Pope et al. [74], we use a finite difference approximation to compute Sy

Sk

T
k
Sk:f(t,9+he;z) f(t,9)7 ek:lo,,.oio...ol ,

where e, is the unit vector in the k** component direction and h is a small number. The BR firing rate
f is obtained computationally, with an integration tolerance of ¥ = 10~% imposed on solution of the
differential equations, thus h is bounded by ,/X. To satisfy this requirement we let 1 = 0.01.
Sensitivities are ranked by averaging time-varying functions using the two-norm. For each model, this
ranking was used to separate parameters into two groups: one group consisted of parameters to which
the model output was sensitive, and the other group consisted of parameters to which the model output
was insensitive. Estimating only sensitive parameters gives rise to more reliable parameter estimates [75].
Not all sensitive parameters are practically identifiable [68,69]. To identify parameter correlations, we
used subset selection method [74,76,77]. We also used a method based on covariance analysis to identify
pairs of correlated parameters [69]. For each pair of correlated parameters the least sensitive parameter
was kept fixed at its nominal value while the other was included in the subset. Parameter correlations
were predicted from
OZ,]

Cij = —F———,
EERVACRICN

where o is the variance of the assumed noise in the data, C' is the covariance matrix, and is ¢;; the
correlation coefficient. Parameters for which |c; ;| > + are labeled as correlated. For the models studied in
this work we let v = 0.8. Once a set of uncorrelated sensitive parameters were identified, we used either the
Levenberg-Marquart or the Nelder-Mead method to estimate the subset of practically identifiable model
parameters [70]. The Levenberg-Marquart method was used for models that can be described using
smooth functions, while the Nelder-Mead method was used for models including the leaky integrate-and-
fire component. Since this model contains a discontinuity in prediction of the firing rate f, thus the
gradient based Levenberg-Marquart method is not applicable.

C=o(STs) 1,

Sinusoidal stimulus: Now we present results obtained using sinusoidal forcing allowing us investigate
asymmetry of the model response. Results (Figure 6) show BR firing rate as a function of time and BR
firing rate as a function of stimulus. For both graphs model results are marked with red lines and data
with black. The associated pressure stimulus is depicted in Figure 2a. For this stimulus we analyzed five
models. We first describe results obtained with the three linear models, analyzing the impact of including
one, two, or three Voigt bodies, second we discuss results obtained with the nonlinear models analyzing
the impact of including more advanced models predicting the wall strain. For this stimulus we did not
analyze the integrate-and-fire model, since we did not anticipate any added effect of this model because
of the input rage of the pressure stimulus.

The three linear models predicts wall strain using a linear elastic function of pressure, combined with
one, two, and three Voigt bodies, for prediction of mechanoreceptor stimulation, and a linear model
for prediction of the BR firing rate. The three models have 5, 7, and 9 parameters, respectively, as
well as two additional parameters p; and pe associated with the sinusoidal stimulus. In [20, p.695]
the authors indicated that phase measurements are less accurate than amplitude measurements due to
the inaccuracies associated with assigning interspike intervals to bins. This statement made us add the
parameters p; and po to the parameter set. Sensitivity analysis together with subset selection method
identified four uncorrelated parameters including s1, s2,p1, and ps, which were estimated for all three
models.
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Figure 6. The optimized response of linear BR models, and the corresponding hysteresis
loop. We present the fits for three linear BR models W V1 N,, W.VoN, and W.V5N, (denoted in the
legend as V1, V2, and V3, respectively), listed in Table 2. The optimized parameter values, the R? and
the RMSE errors are reported in Table 4.
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Figure 7. The optimized response of linear BR models. We show the ability of three linear
models W, Vi N,, W. Vo N, and W,V3N, (denoted in the legend as V1, V2, and V3, respectively) to
reproduce four types of increases in pressure published by Brown [20] (denoted as BR). The parameters
of each model have been optimized for each data set individually and are listed in Table 4 together with
the R? and the RMSE errors.
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The nominal values for the model parameters (listed in Table 4) were computed as follows. The
parameter kyqy = ro/FEh, where E is Young’s modulus, & is a wall thickness, and r¢ is a zero pressure
radius (described in the Methods section). In [78, Table 1] Bezie et al. compute Young’s modulus in the
aorta obtaining F = 820 £ 70 for 11 spontaneously hypertensive rats (SHR); and E = 1280 4 140 for 19
normotensive Wistar rats; here the mean is given + standard error of the mean (REM). As expected, for
the two strains the difference in E was significant; SHR had a higher modulus, representing stiffer vessels,
than the normotensive rats. Using this data we computed the average value £ = 1050, obtained at mean
pressure stimulus of 132 mmHg, and standard deviation (SD) of 19.2, which was computed by converting
REM to SD (SD = REM/+/n, n is a population size) and then taking the average of the two populations,
assuming they are normally distributed. In [79, Figure 1] Feng et al. provide detailed measurements of
the external diameter D and thickness h for the rat aortic arch, measured in adult male Sprague-Dawley
rats. They found that in the region with aortic BR endings the average values of D = 2.27 £+ 0.17 and
h = 0.17 £ 0.02. Using these values we compute k,q; = 0.0063. No direct experiments exist allowing
estimation of nominal values for the elastic 1, Fo, F3 and viscous constants 71, 72,73 associated with
prediction of mechanoreceptor strain. These parameters appear only in the dynamic part of the model
and determine the adaptation time-scales. To ensure that the three models are distinct, it is essential
that parameters representing time-scales are separated, otherwise the models would essentially reduce
to one. This knowledge, along with values chosen in the study by Bugenhagen et al. [59] motivated
our choice for nominal parameter values. To avoid the problem of structural nonidentifiability [68] we
rescaled the parameters as follows o; = Ey/n; and ; = E;/n; for j =1,2,3. The full list of the model
parameters together with their initial conditions, units and literature reference is provided in Table 3.
As for the stimulus, the average pressure (127 mmHg) and the amplitude (5 mmHg) was provided
in [20]. To compute the frequency p; and the shift py of the pressure, we digitized the stimulus provided
in [20, Figure 2A], and then fitted to a sinusoidal function p(t) = —2.5sin(—p1t + p2) + 127, obtaining
p1 = 6.45 and ps = 46.75. As noted in Figure 6, results of parameter estimation with each of the three
models were indistinguishable, though estimated parameter values varied significantly, the latter is due to
added complexity associated with adding more Voigt bodies. The fact that graphs were almost identical
was also reflected by the least squares cost RMSE (and the coefficient of determination R?) for models
WeViN,, W VoN, and W.V3N, we obtained 2.522 (0.949), 2.507 (0.950), and 2.495 (0.951), respectively,
see Table 4.

Next, we investigated the impact of including a more complex wall mode. Two additional models were
analyzed predicting wall strain as a nonlinear function of pressure and accounting for viscous damping
allowing wall deformation to be nonlinear W, and viscoelastic W,. Keeping the number of Voigt bodies
and the BR firing rate model constant resulted in a comparison with three models including W,.VoN,,
WyeVaN, and W, Vo N, described using 7, 8, 9 parameters plus the two parameters associated with the
stimulus. We examined the ability of each of these models to fit the sinusoidal stimulus. Sensitivity
analysis and subset selection allowed us to estimate 4-6 parameters. All models allowed us to estimate
$1, 82, p1, and ps. In addition, for the nonlinear elastic model A,, was added to the subset and for the
viscoelastic model 7, and 7, was added to the subset. Given that the more complex nonlinear models
allows estimation of more parameters, one should anticipate better results. But due to the limited
dynamics embedded within the pressure stimulus, adding more complex wall models did not improve
results as reflected by the least squares cost RMSE (and the coefficient of determination R?), which for
WeVaNg, Wy VaN, and W,.VaN, gave 2.507 (0.950), 2.517 (0.950), and 2.458 (0.952), respectively; see
Table 5.

Step-increase stimulus: This section presents results with the same five models used for predictions
with the sinusoidal pressure stimulus. As with the sinusoidal stimulus we do not test the integrate-and-
fire model, due to the nature of the input stimulus. Again, we first discuss results obtained with the
three linear models W Vi N,, W, Vo N, and W_.V3N, followed by results obtained using the more complex
nonlinear and viscoelastic wall models.



19

(a) Fit using WeVaNg model (b) Fit using WeV3Nrp model

—model —model
o data o data

MSO@&H}@%O@SO d@eo@&&ﬂp@ 9
o
0 i i i
0 5 10 15 15 20
time (sec) time (sec)

Figure 8. The optimized response of (a) W.V2N,, and (b) and W_.V3N;r to a PED profile of
BR firing rate. The parameters of each model have been optimized for each data set individually and
are given in Table 4 together with the R? and the RMSE errors.

Studies were done to capture the effect of overshoot and adaptation in response to four input stimuli
varying in the magnitude of the pressure step. All stimuli start at the same baseline pressure, and the
step-increase was imposed at the same time tg. As before the three models have 5, 7, and 9 parameters,
respectively, but functions predicting the “smooth” step pressure increase only involve one additional
parameter J,,, representing the onset of the step-increase. This parameter was not provided in [20]. Subset
selection together with efforts to make model comparison possible resulted in 0sep = {1, 1, 51, 52,04}
As reported in [20, Figure 5] the baseline pressure associated with the step-increase stimulus was set to 115
mmHg, and the step-increases (from the baseline) to 128, 134, 137, 143 mmHg, respectively. Figure 7(a-d)
shows the ability of the three linear BR models to reflect observed overshoot and adaptation. Each panel
shows the optimized firing rate. The least squares cost RMSE (and the coefficient of determination R?)
of model W,V1 N, for the optimized values of its parameters with respect to the four step-increases 128,
134, 137, and 143 mmHg were: 1.860 (0.899), 2.677 (0.919), 2.420 (0.969), and 1.832 (0.983). Marginal
improvements were obtained with W,VaN,, which gave: 1.800 (0.905), 2.702 ( 0.917), 2.390 ( 0.970), and
1.823 (0.983), and finally, for W, V3N, the values were: 1.764 (0.909), 2.700 (0.918), 2.390 (0.970), and
1.809 (0.983), see Table 4. Similar to the sigmoidal stimulus, no improvements (results not shown) were
obtained with the more advanced nonlinear and viscoelsatic wall models.

Square stimulus: The square stimulus is characterized by a constant pressure input followed by
a step-increase after which the pressure is decreased to its baseline value. This type of stimulus pri-
marily tested the models’ ability to reflect PED followed by recovery, although other features including
adaptation and overshoot are also shown. Similar to previous studies we first investigated the simpler
linear models including one, two and three Voigt bodies. For the square input stimulus, in Figure 8a,
we plot BR firing rate data extracted from Saum et al. [32] (circles) and the corresponding optimized
fit using W.VaN, (solid line), changing the number of Voigt bodies did not improve model predictions.
This model has 7 parameters and additional two §, and &4 related with the input stimulus (3). Subset
selection together with our effort to make model comparisons possible made us estimate the parameters
Osquare = {51, 52, 0u,04}. The least squares cost RMSE (and the coefficient R?) with optimized parame-
ters was 7.384 (0.862 for R?), see Table 6. While the model, as anticipated, was able to predict overshoot
and adaptation, this model was not able to capture PED accurately.

We hypothesize that the inability to predict PED is due to the simple linear firing rate model, which
does not allow the BR firing rate to cease for sub-threshold stimuli. Thus, we first investigated the
impact of exchanging the linear BR firing rate model with the integrate-and-fire model. Including the
integrate-and-fire model clearly improved results (not shown) though with the linear wall model it was
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Figure 9. Simultaneous response with a linear and a nonlinear BR model. (a) Predictions
obtained estimating one parameter set for all four pressure step-increases using the linear model with
two Voigt bodies W Vo N,. Note, that the overshoot is diminished for responses to smaller
step-increases in pressure, and that the baseline firing rate is not predicted accurately. (b) Predictions
obtained with the nonlinear model W,,.Vo N, accounting for nonlinear stiffening with increased pressure
allowed us to accurately predict all four responses using one set of parameter values.

difficult to accurately predict response both during adaptation and recovery. Subsequently, we analyzed
the impact of exchanging the linear wall model with the nonlinear wall model, keeping the integrate-
and-fire model. Results with this model (W, .VoN;r) is shown in Figure 8b. This figure shows the
recorded BR firing rate (circles) and the model fit (solid line) in response to the square pulse stimulus.
Model parameters estimated include Ao, 51,52, Jicak, Vinstref, Pu,Pd- Optimized parameter values are
given in Table 6 together with the R? and RMSE errors. Finally, we investigated the impact of adding a
viscoelastic wall model, which did not provide any additional improvements.

Simultaneous fits: Figure 7 showed that linear models can exhibit overshoot, adaptation, and can
predict the firing rate data for all four step-increases, though as reported in Table 4, each step-increase
resulted in significantly different parameter estimates. However, data are extracted from experiments
done within the same fiber, thus we expected only small variation in parameter values. We performed
additional optimizations to investigate if the observed differences in the parameter estimates, were simply
a result of performing optimizations for one stimulus at the time. To remedy this problem, we estimated
one set of parameters for all four step-increases. Results of this simulation are shown in Figure 9a
(computed with the model W.V5N,). This simulation confirms that the simple linear model cannot
estimate one set of parameters that allows simultaneous prediction of the response to all four pressure
stimuli. Similar results were obtained with the other models. In particular, it should be noted that the
overshoot is diminished for the smaller step-increases, and that the model was unable to capture the
correct baseline firing rate. In contrast, when including a nonlinear elastic wall W, Vo N, we were able
to estimate one set of parameters that allowed us to simultaneous fit the response to all four pressure
stimuli. This model accurately reproduced the baseline firing rate as well as the overshoot and adaptation
observed in response to the step-increase (Figure 9b). We hypothesize that this difference is due to larger
range of pressure within the applied stimuli, where the known nonlinear behavior of the arterial wall
deformation plays an important role. It is known that arteries appear stiffer at higher pressures than at
lower pressure. Thus the nonlinear wall model significantly improves predictions.
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Figure 10. Qualitative responses. We present a qualitative response of the two Voigt body BR
model W,,.VoN;p to various pressure stimuli including sinusoidal (a), ramp up (b), step-increase (c),
and trianglular (d) showing the models ability to reflect rectification (a), saturation (b), two time-scale
adaptation (c¢), and asymmetry (d).

Qualitative predictions

In the previous section we showed the ability of our proposed linear and nonlinear BR models to predict
the firing rate data measured from rats. It is well known (see section Methods) that the BR firing rate
can exhibit a number of qualitative characteristics including saturation, threshold, adaptation, overshoot,
PED and rectification. The quantitative data used to test the model in the previous section showed
adaptation, overshoot, and PED, in response to a sinusoidal (with fixed amplitude) and step changes
(increase/decrease) in blood pressure. However, these stimuli did not test saturation, threshold, or
rectification. Although the models predicted adaptation, no clear conclusion could be drawn to determine
how many Voigt elements (time-scales) were needed to predict known BR firing rate observations.

In this section we show our preferred model W, Vo N;r with estimated parameters, including non-
linear deformation of the elastic wall, two Voigt bodies for predicting nerve ending stimulation, and a
leaky integrate-and-fire model for predicting firing rate, exhibits the features not already predicted quan-
titatively. This was done using ramp and sinusoidal (with varied amplitude and frequency) pressure
stimuli.
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Rectification: Figure 10a presents the model’s response to a sinusoidal wave pressure stimulus with
various amplitude. This simulation is motivated by the observation of Brown et al. [20, Figure 6] that a
2.5 increase in amplitude of the sinusoidal stimulus resulted in an increased amplitude of the firing rate,
with a lower mean firing rate. Moreover, it was noted that for large amplitude stimulation the firing rate
ceases during the trough of the pressure wave. These two observations are referred to as rectification. One
could question if the simpler linear model is able to predict this phenomena. The linear wall model would
certainly be able to reproduce the increased amplitude for a single stimulus, but again, if multiple stimuli
were tested, correct prediction requires the nonlinear wall model. Moreover, the ability of the firing rate
to cease requires the threshold built into the integrate-and-fire model. With the simple linear neuron
model, the firing rate would become negative, which does not represent what happens physiologically.

Threshold and saturation: Two other prominent firing characteristics are threshold and saturation.
In [27, Figure 5] Seagard et al. noted that BRs with a higher threshold pressure were less sensitive, had
lower discharge rates, and had higher values for saturation. Receptors with higher discharge rates were
also more sensitive and were found to have afferent fibers with greater conduction velocities, shown to the
right of each curve. In Figure 10b we show that our model W,,.VoN;p is able to reproduce qualitatively
similar saturation features.

Adaptation: Even though our quantitative models were able to predict adaptation, it was noted
that results with one, two, or three Voigt bodies were similar, in other words, the models could not
clearly distinguish if the adaptation process included one or three time-scales. Yet, several authors
(e.g., [11,12,29,80]) have hypothesized that adaptation occurs with more then one time constant. It is
also known that the muscle spindle can produce a response of this kind to a clipped-off ramp stretch [81].
Figure 10(c) shows that the studied model W, Vo N1z admits the fast adaptation and the slow adaptation
in agreement with experiments. We also plot an exponential fit and show that a similar adaptation is not
possible by only one exponential function. This qualitative feature made us include two Voigt bodies in
our preferred model, a conclusion that could not have been made strictly from quantitative simulations
presented in the previous section.

Asymmetry: In Figure 10(d) we show that our preferred model W,,.VoNyp clearly predicts asymme-
try when exposed to a ramp-up followed by a ramp-down pressure stimulus, which agrees with experiments
(see e.g., [23]).

Discussion

The objective of this study was to develop a mathematical framework for constructing computationally
efficient and accurate BR models, which in contrast to the existent models, are able to reflect all known
qualitative BR firing features as well as fit quantitative data. Our overall aim was not to focus on a
concrete experimental species but rather to formulate a family of BR models, which could potentially be
included in a more comprehensive model of CV system. Quantitative predictions were done comparing
our models to experimental measurements by Brown et al. [20] and Saum et al. [32]; while qualitative
predictions were performed to show that our preferred generic model W, . VoN;p is able to predict all
known firing rate responses. All models used blood pressure as an input and computed the BR firing
rate as an output. Although our procedure was designed to be generically applicable to various species
and multiple types of baroreceptors, we tested our models using only quantitative data from experiments
preformed using aortic baroreceptors from rats.

We believe that this is the first work that offers a systematic approach to building and evaluating
BR models with the objective to provide the simplest possible family of generic models. Our modeling
framework first analyzed the known physiology and common features of the firing rate observed in the BR
of various species. Second we generated sub-models predicting each stage of the physiological response:
arterial wall deformation, stimulation of mechanosensitive channels found in the BR nerve endings, and
generation of action potentials. Finally we modeled the BR system by combining the sub-models in
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various configurations (summarized in Table 2). Each of these configurations was tested in order to see
what were the contributions of each component to the transduction of the BR signal. This process allowed
identification of the importance of nonlinear effects of two critical sub-systems in the BR response, the
arterial wall and the neuron itself. This framework advanced the state of BR modeling by first evaluating
models comparatively with respect to the same data and features, second by generating a model which
fits all known characteristics of BR firing qualitatively, and third by developing a model which is capable
of fitting multiple data sets of BR firing rates quantitatively.

A particular insight was revealed by consideration of BR models with various descriptions of the arte-
rial wall. Applying our framework demonstrated the insufficiency of linear wall models’ representations
of the response of a single BR neuron to multiple step-pressure inputs (see Figure 9a). A nonlinear
elastic wall model was required to implement a model capable of accurately fitting the BR response to
multiple pressure levels with one set of parameter values (see Figure 9b). The choice of this model is
further motivated by the well known fact that arteries exhibit nonlinear deformation with saturation
at both high and low pressures [23,27]. Additionally by applying our framework and considering the
effects of including the viscoelastic wall model, we found that the additional complexity did not con-
tribute to better definition of BR dynamics, despite previous studies having shown wall deformation does
have viscous components [49,82]. This is likely due to our modeling choice for nerve ending stimulation.
This portion was modeled using two Voigt bodies in series to allow prediction of adaptation at multiple
time-scales. Data is not available to separate the viscoelastic part of the wall-deformation with the vis-
coelastic deformation associated with stimulation of the mechanosensitive channels, thus indirectly our
model exhibits both features. One explanation would consider the first Voigt body to be associated with
wall deformation while the second is associated with nerve ending deformation. Moreover, it should be
emphasized qualitative simulations were needed to show that the two Voigt bodies allow multiple time-
scales, a feature that we were not able to extract from simulations alone. These considerations, and our
studies, affirm the importance of viscoelastic effects; however, in terms of simplicity it is advantageous to
isolate the viscoelastic components within the model, and further we note linear viscoelastic effects are
sufficient to capture the dynamics of BR firing when coupled with a nonlinear elastic total deformation
of the arterial wall.

To our knowledge, this study provides the first direct measure of the importance of incorporating
various time-scales in BR models. It is believed that various time-scales in the adaptation process are
due to the viscoelastic coupling of the nerve ending to the arterial wall. We chose to emphasize this
in our modeling process by considering different numbers of Voigt bodies in series with a spring. In
Table 4 we show the results of testing three models W . Vi N,, W Vo N,, and W.V3 N, differing only with
respect to their nerve ending models Vi, Vo, and V3, respectively. Our findings indicate that no more
then two timescales in the adaptation process are needed in order to achieve a very precise fit to the
data. This conclusion is closely related to the fact that we tested our models using rat data with fairly
limited pressure-stimulus response as only this type of experiments are currently available. To test this
component more carefully, it is essential to analyze data recorded over longer time- scales.

Another insight afforded by this investigation highlights the importance of nonlinearities in the neural
response to mechanoreceptor strain. As hypothesized previously [29], our study affirms the nonlinear-
ities of action potential generation, even for the leaky integrate-and-fire model N;p are sufficient to
produce the hysteretic phenomena of PED. In contrast the simple linear model N, of firing in response
to mechanoreceptor strain does not allow for the asymmetric responses seen in PED as well as in the
response to sinusoidal stimulus with high amplitude. The nonlinear-elastic wall in combination with two
Voigt bodies modeling mechanoreceptor stimulation responds in an equal but opposite manner to rising
and falling pressure, thus the change in firing rate with the linear model is symmetric to step-increase
and step-decrease, which is not reflective of the data. We affirm the hypothesis that the neuron itself is
responsible for generating PED, as this feature was robustly represented by the leaky integrate-and-fire
model regardless of the mathematical description for arterial wall strain. This would provide a good ex-
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planation for the observation of PED in multiple species, many of which have a high degree of variability
in the viscoelasticity in their respective arterial walls.

The results and insights generated through application of our proposed modeling framework are not
limited to those presented in this study. In addition it provides a means to identify which features and
what level of detail of the underlying physiological systems are of greatest significance in generating
BR dynamics. This ability is useful in developing experiments which may be able to isolate physiology
responsible for a given phenomenon, such as the responsibility of the neuron in generating PED. Further
this approach provides evaluative power to make design decisions when developing a model for a specific
data interpretation or simulation task. An example of this follows from our insights into the role of the
arterial wall in BR signal transduction. Although the arterial wall may best be modeled using viscoelastic
theory, our framework allows a modeling decision to be made in favor of simplicity if only the output
dynamics are of interested.

Our results further suggest a methodology for integrating a model generated in this manner into
a model of larger scope. Suppose a mathematical representation of an overall baroreflex system (see
Figure 1) is desired to reflect only normal physiological conditions, then it may be sufficient to use only
simplified description of the BR signal. For example a simple linear firing rate model may be adequate
for simulations, which do not cross the firing rate threshold. However, to reflect heart rate at various
abnormal physiological conditions a more complex model combining nonlinear deformation with the leaky
integrate-and-fire model may be necessary. Additionally, application of our modeling approach to a larger
CV model might reveal features of the BR sub-system with importance in maintaining homeostasis. We
hypothesize that overshoot, adaptation and recovery, features of the BR firing in response the extremes of
pressure waves, are critical for regulation of blood pressure during stressful situations, such as a head-up-
tilt experiment.
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Table 3. The state variables and parameters of the BR models.

Variable Definition Units
P aortic blood pressure mmHg
€w aortic wall strain unitless
€1 nerve ending coupling strain 1 unitless
€2 nerve ending coupling strain 2 unitless
€3 nerve ending coupling strain 3 unitless
€ne nerve ending strain unitless
f firing rate Hz
Parameter \ Definition Value \ Units \ Reference
o zero pressure radius 1.13 mm [79]
h wall thickness 0.17 mm [79]
E elastic modulus 1050 mmHg/mm [78]
Kwall aortic distensibility ro/(Eh) unitless [26]
Ta viscous relaxation constant 0.03 s [46]
Th viscous relaxation constant 0.01 5 [46]
Ap unstressed aortic area 3.1414 mm? [46]
A maximal aortic area 15.708 mm? [46]
a saturation pressure 145 mmHg [46]
k steepness const 5 unitless [46]
Ey elastic nerve const 1 mmHg/mm [59]
Ey elastic nerve const 1 mmHg/mm [59]
E, elastic nerve const mmHg/mm [59]
Es elastic nerve const 10 mmHg/mm 59
7 viscous nerve coupling const 2 mmHg/mm 59
N2 viscous nerve coupling const 2.5 mmHg/mm 59
73 viscous nerve coupling const 1 mmHg/mm 59
o nerve ending const Eo/m unitless 83
Q9 nerve ending const Ey/n2 unitless 83
ag nerve ending const Eo/n3 unitless [83]
b1 nerve ending relaxation rate Ey/m s—1 [83]
Bo nerve ending relaxation rate Es/n2 571 [83]
B3 nerve ending relaxation rate Es/ns s71 [83]
S1 firing constant 480 571
59 firing constant 100 s 1
51 firing constant 7.2386 pA
S firing constant 1559.7 PA
Jleak membrane conductance 0.04 wS [67]
Cnm membrane capacitance 37.5 pF [67]
Vin voltage threshold 12.5 mV [67]
tref refractory period 0.01 s [66,67]

29

The models considered in this work and defined in Table 2 contain between three and six state variables
listed here. Additionally, the parameters for the whole family of BR models together with their nominal
values, units and literature references are provided.
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