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Abstract

We solve the local and global structural identifiability problems for viscoelastic mechanical models repre-
sented by networks of springs and dashpots. We propose a very simple characterization of both local and
global structural identifiability based on identifiability tables, with the purpose of providing a guideline
for constructing arbitrarily complex, identifiable spring-dashpot networks. We illustrate how to use our
results in a number of examples and point to some applications in cardiovascular modeling.

Introduction

Mathematical modeling is a prominent tool used to better understand complex mechanical or biological
systems [1]. A common problem that arises when developing a model of a biological or mechanical system
is that some of its parameters are unknown. This is especially important when those parameters have
special meaning but cannot be directly measured. Thus a natural question arises: Can all, or at least
some, of the model’s parameters be estimated indirectly and uniquely from observations of the system’s
input and output? This is the question of structural identifiability. Sometimes the uniqueness holds
only within a certain range. In this case, we say that a system is only locally structurally identifiable.
There are numerous reasons why one would be interested in establishing identifiability. The unobservable
biologically meaningful parameters of a model can only be determined (or approximated) if the model is
structurally identifiable. Moreover, optimization schemes cannot be employed reliably since they will find
difficulties when trying to estimate unidentifiable parameters [2]. The concept of structural identifiability
was introduced for the first time in the work of Belman and Åström [3]. Since then, numerous techniques
have been developed to analyze the identifiability of linear and nonlinear systems with and without
controls [2, 4–7]; see also [8] for a review of different approaches.

Viscoelastic mechanical models that utilize springs and dashpots in various configurations have been
widely used in numerous areas of research including material sciences [9], computer graphics [10], and
biomedical engineering to describe mechanical properties of biological systems [11–18]. To achieve a
desirable response, networks with different numbers of springs and dashpots in various configurations
have been constructed. For example, it is well-known that the simplest models of viscoelastic materials
such as Voigt (spring and dashpot in parallel) or Maxwell (spring and dashpot in series) do not offer
satisfactory representation of the nature of real materials [19]. Thus more complicated configurations are
usually constructed and analyzed [17].

In this paper we investigate the identifiability problem of viscoelastic models represented by an arbi-
trarily complex spring-dashpot network. Although there exist numerous methods that can determine the
type of identifiability of a system of ordinary differential equations, generally they are difficult to apply.
Our results will show in a remarkably simple way how to verify whether the studied model is (locally or
globally) structurally identifiable. In case it is unidentifiable, our method provides an explanation why
this is the case and how to reformulate the problem. Moreover, the existing methods usually allow to
establish the identifiability only a posteriori, i.e. after concrete systems have been established. Thus, we
also introduce “identifiability tables”, which allow not only to check but also to construct an arbitrarily
complex identifiable spring-dashpot network.
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Figure 1. Changing blood pressure (P) causes periodic expansion and contraction of the arterial wall.
Spring-dashpot (S-D) networks are often used in order to describe the biomechanical properties of the
arterial tissue as well as the strain sensed by various receptors (e.g. baroreceptors) embedded in the
arterial wall. Typically a spring (representing a receptor’s nerve ending) is combined in series with a
S-D network (representing viscoelastic coupling of the nerves to the wall). Recently, several
cardiovascular approaches have used the framework described above, in particular, choosing one of the
following S-D networks: (A) Burgers model [20]; (B) three element Kelvin-Voigt body [21]; (C)
generalized Kelvin-Voigt model [22].

Application to cardiovascular modeling

A particular motivation for this work comes from cardiovascular modeling [21, 22], although the results
of this paper can be applied to any viscoelastic modeling approach.

Arterial wall. Changing blood pressure causes periodic expansion and contraction of the arterial wall
(see Fig. 1). It is well-known that the stress-strain curves of the artery walls exhibit hysteresis, which
is understood to be a consequence of the fact that the wall is viscoelastic. Another manifestation of the
viscoelasticity of the arterial tissue is the stress relaxation experiments under constant stretch (strain).
Spring-dashpot (S-D) networks are often used in order to describe the biomechanical properties of the
arterial tissue [23–25]. Identifiable networks can be determined using the results of this paper (see
Theorem 2).

Neural activity. It is common to use the spring-dashpot network to describe the neural firing of various
sensors (e.g. muscle spindle, baroreceptors), see [20, 21, 26, 27]. Typically one assumes that the firing
activity is proportional to the strain sensed by a spring connected in series with a spring-dashpot network,
which represents a local integration of the nerve endings to the arterial wall (see Fig. 1). Then the arterial
wall and neural activity models are combined. Although separately each model is structurally identifiable,
there is no guarantee that the resulting viscoelastic structure is identifiable. Thus, using our results given
in Theorem 4, we can establish whether the combined viscoelastic model is identifiable, and if not, what
needs to be modified.
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Figure 2. Simple linear viscoelastic models. (A) Maxwell element, (B) Voigt element, (C) Burgers
model.

Results and Discussion

After reviewing basic concepts of viscoelasticity of systems, we present and discuss our main results
related to local and global structural identifiability of such systems. Finally, we illustrate our results with
a number of examples from the literature.

Spring-dashpot networks

The ideal linear elastic material follows Hooke’s law σ = Eε, where E is a Young’s modulus (or a spring
constant), which describes the relationship between the stress σ and the strain ε. Analogously, the
relation σ = ηε̇ describes the viscous material, where ε̇ = dε/dt and η is a viscous constant [28]. In the
basic linear viscoelasticity theory, the elastic and viscous elements are combined. In this work, we shall
be concerned with the problem of identifiability of networks of springs and dashpots that are essentially
one-dimensional. The elements can be combined either in series or in parallel. In order to obtain the
relationship between the total stress (force) σ and the total strain (extension) ε for a given spring-dashpot
network, we use two fundamental rules. For two viscoelastic elements connected in series, the stress is
the same in both elements, but the total strain is the sum of the strains on each element. On the other
hand, for elements connected in parallel, the strain is the same for both elements, but the total stress is
the sum of individual stresses on each element. Now we consider concrete viscoelastic networks, starting
with the simplest configurations.

Example 1 (Maxwell element). The series combination of a spring, denoted by its constant E, and a
dashpot, denoted by its constant η, is known as a Maxwell element (see Fig. 2(A)). Since the elements
are connected in series, the stress σ is the same on both elements and the total strain ε is the sum of
strains εE and εη corresponding to the spring and dashpot, respectively. Now, the relationship between
the total strain and stress for this system is

ε̇ = σ̇/E + σ/η. (1)

Example 2 (Voigt element). Another simple example is the Voigt element (also known as Kelvin or
Kelvin-Voigt) given in Fig. 2(B). Following the steps outlined in the previous example, we obtain the
σ − ε relationship

Eε+ ηε̇ = σ. (2)

Example 3 (Burgers model). In our third example we consider a particularly popular four-element
model, represented by a Maxwell element combined in series with a Voigt element, and known as the
Burgers model ( Fig. 2(C)). Denote by subscript m and v the spring and viscous constants of the Maxwell
and Voigt elements, respectively. Note that the stress σ is the same on all three elements connected in



4

series (Voigt, spring and dashpot). Eliminating the corresponding local strains, we obtain the following
relationship

Emε̈+
EmEv
ηv

ε̇ = σ̈ +
[Em
ηm

+
Em
ηv

+
Ev
ηv

]
σ̇ +

EmEv
ηmηv

σ. (3)

Identifiability characterization

First note (cf. Examples 1, 2, and 3) that for any configuration of springs Ē = (E1, ..., EN ) and dashpots
η̄ = (η1, ..., ηM ), the total strain–stress relationship can always be written as the following (n+1)-th order
linear ordinary differential equation

an+1ε
(n+1) + anε

(n) + · · ·+ a0ε = bnσ
(n) + · · ·+ b0σ, (4)

where the coefficients aj = aj(Ē, η̄) and bk = bk(Ē, η̄) are functions of the spring and dashpot constants.
The precise value of n and the forms of aj(Ē, η̄) and bk = bk(Ē, η̄) will depend on the particular structure
of the spring-dashpot model. Equation 4 is known as the constitutive equation. In the context of spring-
dashpot networks, identifiability concerns whether or not it is possible to recover the unknown parameters
(Ē and η̄) of the system from the governing equation of the model, given only the total stress σ and
strain ε. In order to uniquely fix the coefficients of the constitutive equation (4), we require that (4) be
normalized so that the leading term (in σ or ε, depending on the situation) is monic. Thus, letting the
d non-monic coefficients of (4) be represented by the vector c = (a(Ē, η̄),b(Ē, η̄)), we have the following
formal definition of identifiability.

Definition 1. Let c be a function c : Θ→ Rd, where Θ ⊆ RN+M is the parameter space. The model is
globally identifiable from c if and only if the map c is one-to-one. The model is locally identifiable from
c if and only if the map c is finite-to-one. The model is unidentifiable from c if and only if the map c is
infinite-to-one.

Note that local identifiability is equivalent to saying that around each point in parameter space
there exists a neighborhood on which the function c is one-to-one. For example, for the Burgers model
considered in Example 3, the coefficient function c : R4 → R4 is defined as

c : (Em, Ev, ηm, ηv)→
(
Em,

EmEv
ηv

,
Em
ηm

+
Em
ηv

+
Ev
ηv
,
EmEv
ηmηv

)
.

Technically speaking, in this paper we will consider the slightly weaker notion of generic global identifia-
bility (or generic local identifiability, or generic unidentifiability), where generic means that the property
holds almost everywhere. We will omit the use of the term generic when speaking of identifiability.

Definition 1 implies that if there are more parameters than non-monic coefficients, then the system
must be unidentifiable. Thus, a necessary condition for structural identifiability is that the number of
parameters Ē, η̄ (elements of the network) is less than or equal to the number of non-monic coefficients in
the constitutive equation (4). We will strengthen this to a sufficient condition in the following theorem:

Theorem 2 (Local identifiability). A viscoelastic model represented by a spring-dashpot network is locally
identifiable if and only if the number of non-monic coefficients of the corresponding constitutive equation
(4) equals the total number of its moduli Ej and viscosity parameters ηk.

Note that although the constitutive equation (4) is a linear differential equation, its coefficients con-
sidered as functions of spring and viscous constants are not linear functions of the parameters (see (3)).
Thus, Theorem 2 allows to reduce the difficult problem of checking one-to-one or finite-to-one behavior
of nonlinear functions to simply counting the number of parameters (springs and dashpots) and coeffi-
cients of the constitutive equation and asking whether the two numbers are equal. The positive answer
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Figure 3. (A) Multi-parameter linear viscoelastic model considered by Dietrich et al. [19]. (B) Ten
element viscoelastic model studied in [13], (C) A viscoelastic model of used to describe the baroreceptor
nerve ending coupling to the arterial wall (see [21] and [22,29]).

implies local identifiability, whereas a negative answer implies unidentifiability. Consider, for example,
the Maxwell and Voigt elements, and the Burgers model. We note that the constitutive equations (1),
(2), and (3) for all three models are already in the normalized form. Now, simply by counting the number
of parameters and the non-monic coefficients of the constitutive equations, we see that the two are equal
for each model. Thus, by the above theorem, all three models are locally structurally identifiable.

Constructing identifiable models

Now we examine when combining two identifiable models results also in an identifiable model. This will
allow us to construct arbitrarily complex and identifiable spring-dashpot networks.

We start with an observation, which we prove in the following section, related to the possible form of
any differential equation that describes a spring-dashpot network.

Proposition 3. Every spring-dashpot network, given by equation (4), has one of the four possible types

Type A : b0bn 6= 0, an+1 = 0, a0an 6= 0

Type B : b0bn 6= 0, a0 = 0, a1an+1 6= 0

Type C : b0bn 6= 0, a0an+1 6= 0

Type D : b0bn 6= 0, an+1 = a0 = 0, a1an 6= 0.

(5)
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Table 1. Identifiability Tables.

(a) Parallel connection

⊕ A B C D u
A u C u A u
B C u u B u
C u u u C u
D A B C D u
u u u u u u

(b) Series connection

� A B C D u
A u D A u u
B D u B u u
C A B C D u
D u u D u u
u u u u u u

When connecting two identifiable spring-dashpot networks of one of the types A, B, C, D, or an
unidentifiable u either in series or in parallel, the above tables establish the type of the resulting
identifiable system. If the resulting structure is unidentifiable it is indicated by u. For example, a
parallel connection of two networks of types A and D gives rise to an identifiable network of type A (see
(a)), but the series connection results in an unidentifiable structure (see (b)).

Note that according to the above proposition, the spring, dashpot, Voigt, and Maxwell elements are
of Types A, B, C, and D, respectively.

Theorem 4 (Local identifiability). Consider two locally identifiable spring-dashpot systems N1 and N2

of one of the four types A, B, C, D. Then the new model resulting in joining N1 and N2 either in parallel
or in series is of the type indicated by the Identifiability Tables (Table 1). The letter u indicates that the
network is unidentifiable, otherwise it is identifiable of the given type.

There are several ways one could use the above theorem. One way is to establish the local identifiability
of a given spring-dashpot network. Contrary to our similar result given in Theorem 2, this can be done
without actually calculating the constitutive equation. We will show how to apply Theorem 4 to establish
structural identifiability after first introducing some notation. Given any two spring-dashpot models M
and N , we use the following notation (M ∨N) and (M ∧N) to denote respectively the parallel and series
combination of M and N . Let F denote the function that takes a spring and dashpot model M and
outputs its type (A,B,C,D) if it is locally identifiable, and u if it is unidentifiable. To apply F to a
complicated model built up from springs and dashpots using series and parallel connections, we replace
any springs and dashpots with their respective types A and B as well as the operations ∨ and ∧ with ⊕
and �, respectively. Then we apply the operations in the Identifiability Tables (see Table 1).

Example 4 (Local identifiability of the Maxwell element). Note that the Maxwell model shown in Fig.
2(A) can be symbolically written as

M = E ∧ η.

In this formula, we simply replace the spring and the dashpot with A and B, respectively, as well as the
operations ∨ and ∧ with ⊕ and �, respectively, to obtain

F(M) = (A�B) = D.

Thus we conclude that the Maxwell model is locally identifiable and is of type D.

Example 5 (Local identifiability of the Burgers model). Similarly, the Burgers model shown in Fig.
2(C) can be symbolically written as

M = (Ev ∨ ηv) ∧ (Em ∧ ηm).
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To check the local identifiability, we find F(M) and use Table 1 to obtain

F(M) =

C︷ ︸︸ ︷
(A⊕B)�

D︷ ︸︸ ︷
(A�B) = C �D = D.

We conclude that the Burgers model is locally identifiable and of type D.

In the next example we show how we can easily establish local structural identifiability of a more
complicated network.

Example 6 (Dietrich et al. [19]). Consider a viscoelastic material studied in [19] and represented by a
spring-dashpot network shown in Fig. 3(A). It can be symbolically represented by

M =
[
(((((E1 ∨ η1) ∧ E2) ∧ η2) ∨ η3) ∧ E3) ∨ η4

]
∧ E4. (6)

Again, we can verify the local identifiability of the above model using Table 1 and obtain

F(M) =
[
((((

C︷ ︸︸ ︷
(A⊕B)�A)�B)⊕B)�A)⊕B

]
�A

=
[
(((

A︷ ︸︸ ︷
(C �A)�B)⊕B)�A)⊕B

]
�A

=
[
((

D︷ ︸︸ ︷
(A�B)⊕B)�A)⊕B

]
�A = . . . = D

This simple computation confirms that the model is locally structurally identifiable.

Our method can also verify if a network is unidentifiable, providing the reason for the lack of its
identifiability. Consider the following example.

Example 7 (Unidentifiable model). Consider a viscoelastic model used in [13] and shown in Fig. 3(B).
Using the notation previously introduced, it can symbolically be written as

M =
[
(((E1 ∧ η1) ∨ (E2 ∧ η2)) ∧ E3 ∧ η3) ∨ (E4 ∧ η4)

]
∧ E5 ∧ η5.

Now applying Table 1, we obtain

F(M) =
[
((

D︷ ︸︸ ︷
(A�B)⊕

D︷ ︸︸ ︷
(A�B))�

D︷ ︸︸ ︷
(A�B))⊕

D︷ ︸︸ ︷
(A�B)

]
�

D︷ ︸︸ ︷
A�B

=
[
(

D︷ ︸︸ ︷
(D ⊕D)�D)⊕D

]
�D

=
[ u︷ ︸︸ ︷

(D �D)⊕D
]
�D = u.

Whenever Table 1 indicates u (i.e. the corresponding substructure is unidentifiable), this inevitably leads
to the whole model being unidentifiable. Moreover, our method can also explain what is the reason for
the lack of identifiability. In this example the situation is simple: joining in series a Maxwell element
(type D) with a generalized Maxwell model leads to an unidentifiable network.

So far we have considered only local identifiability of mechanical systems. Now we complete the
presentation and discussion of our results by introducing a criterium, which establishes when a given
network is globally structurally identifiable.
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Theorem 5 (Global identifiability). A viscoelastic model represented by a spring-dashpot network is
globally identifiable if and only if it is locally identifiable and the network is constructed by adding either
in parallel or in series exactly one basic element (spring or dashpot) at a time.

Note that the network given in Fig. 3(A) and considered in Example 6 was deemed locally structurally
identifiable. We note that it can be constructed by adding just one element at a time and therefore it is
globally structurally identifiable. Similarly, all the simple models shown in Fig. 2 can also by constructed
adding only one element at a time, and since they are locally identifiable, we conclude that they are also
globally structurally identifiable. Now consider a model which is locally, but not globally, structurally
identifiable.

Example 8 (Local but not global identifiability). Consider a generalized Kelvin-Voigt model shown
Fig. 3(C) and used in [21,29]) in the context of cardiovascular modeling. It can be symbolically represented
by

M = E0 ∧ (E1 ∨ η1) ∧ (E2 ∨ η2) ∧ (E3 ∨ η3).

Thus the local identifiability can be checked by computing

F(M) = A� (A⊕B)� (A⊕B)� (A⊕B) = A� C � C � C = A.

We immediately conclude that the network is locally identifiable. In order to verify whether it is also
globally identifiable, note that this network cannot be constructed by adding only one element at a
time. Thus the system is only locally, but not globally, identifiable. However, in this case the non-global
identifiability arises from merely permuting the parameters among the three Voigt elements.

Analysis

In this section, we prove the main results from the previous section. To do this requires a careful analysis
of the structure of the constitutive equation after combining a pair of systems in series or in parallel.

Let N1 and N2 be spring-dashpot models whose respective constitutive equations are L1ε = L2σ and
L3ε = L4σ, where Li represent linear differential operators. We can write the differential operators (in
general form) as:

L1 = an1
dn1/dtn1 + ...+ am1

dm1/dtm1

L2 = bn2
dn2/dtn2 + ...+ bm2

dm2/dtm2

L3 = cn3
dn3/dtn3 + ...+ cm3

dm3/dtm3

L4 = en4
dn4/dtn4 + ...+ em4

dm4/dtm4

(7)

Remark. Table 2 shows that there are restrictions on the values of the ni and mi, e.g. the differential
order of the lowest order term in σ is always zero and the differential order of the lowest order term in ε
is zero or one, but we leave the operators in general form for simplicity.

We now show the form of the resulting constitutive equation after combining these systems in series
or in parallel, in terms of these differential operators. In what follows, we will treat the differential
operators Li as polynomial functions in the variable d/dt. For example, L1 can be thought of as a
polynomial an1

xn1 + ...+ am1
xm1 .

Series connection

Suppose that M = N1 ∧ N2 is a series connection of models N1 and N2, whose constitutive equations
are L1ε1 = L2σ1 and L3ε2 = L4σ2, respectively. Then the stresses (σ) are the same for the two systems
while the strains (ε) are added. If L1 and L3 are relatively prime, then the constitutive equation of M is:

L1L3ε = (L1L4 + L2L3)σ, ε = ε1 + ε2, σ = σ1 = σ2. (8)



9

Table 2. Possible types of constitutive equations

Type Shape in σ Shape in ε
A [n, 0] [n, 0]
B [n, 0] [n+ 1, 1]
C [n, 0] [n+ 1, 0]
D [n, 0] [n, 1]

The four possible types of constitutive equations, defined by the shapes of the linear operators acting on
σ and ε, written in brackets.

We assume that an1
= cn3

= 1, so that the constitutive equation is monic. If L1 and L3 have a common
factor, then the constitutive equation of M is obtained by dividing (8) by the greatest common divisor
of L1 and L3.

Parallel connection

Suppose that M = N1 ∨N2 is a parallel connection of models N1 and N2, whose constitutive equations
are L1ε1 = L2σ1 and L3ε2 = L4σ2 respectively. Then the strains (ε) are the same for the two systems
while the stresses (σ) are added. If L2 and L4 are relatively prime, then the constitutive equation is:

(L1L4 + L2L3)ε = L2L4σ, ε = ε1 = ε2, σ = σ1 + σ2. (9)

We assume that bm2 = em4 = 1, so that the constitutive equation is monic. If L2 and L4 have a common
factor, then the constitutive equation is obtained by dividing (9) by the greatest common divisor of L2

and L4.

Types of networks

Now we prove Proposition 3, that is, we show that every spring-dashpot network, given by equation (4),
has one of the four possible types displayed in Table 2, which are defined by the shapes of the linear
operators Li acting on σ and ε. We make this notion precise:

Definition 6. The shape of a linear operator Li is a pair of numbers, written [ni,mi], where ni is the
highest differential order and mi is the lowest different order.

We note that a spring is of type A and a dashpot is of type B. A Voigt is formed by a parallel extension
of types A and B, which forms type C, and a Maxwell is formed by a series extension of types A and B,
which forms type D. The properties of these four types are displayed in Table 2. We can now form the 10
possible combinations of pairing two of these types in series and the 10 possible combinations of pairing
two of these types in parallel. In Tables 3 and 4, we show the 20 total possibilities and demonstrate
that each pairing results in a type A, B, C, or D. Since every spring-dashpot network can be written as
a combination, in series or in parallel, of springs and dashpots, then we have shown by induction that
joining any two spring-dashpot networks in series or in parallel results in one of these four types.

Remark. We note that if a type B or D is combined in series with a type B or D, then L1 and L3 have a
common factor (since both lacked a constant term), so the equation L1L3ε = (L1L4 +L2L3)σ is divided
by gcd(L1, L3) = d/dt to arrive at the shapes listed in the table.

In addition to the type of equation that results after combining two equations of types {A,B,C,D},
we have in Tables 3 and 4 the resulting identifiability properties of each equation, which we will obtain
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Table 3. Series connection

Type Shape in σ Shape in ε Non-monic
coefficients

Parameters Identifiable? Type

(A,A) [n1 + n2, 0] [n1 + n2, 0] 2n1 +2n2 +1 2n1 +2n2 +2 Not Id A
(A,B) [n1 + n2 + 1, 0] [n1 + n2 + 1, 1] 2n1 +2n2 +2 2n1 +2n2 +2 Id D
(A,C) [n1 + n2 + 1, 0] [n1 + n2 + 1, 0] 2n1 +2n2 +3 2n1 +2n2 +3 Id A
(A,D) [n1 + n2, 0] [n1 + n2, 1] 2n1 + 2n2 2n1 +2n2 +1 Not Id D
(B,B) [n1 + n2, 0] [n1 + n2 + 1, 1] 2n1 +2n2 +1 2n1 +2n2 +2 Not Id B
(B,C) [n1 + n2 + 1, 0] [n1 + n2 + 2, 1] 2n1 +2n2 +3 2n1 +2n2 +3 Id B
(B,D) [n1 + n2, 0] [n1 + n2, 1] 2n1 + 2n2 2n1 +2n2 +1 Not Id D
(C,C) [n1 + n2 + 1, 0] [n1 + n2 + 2, 0] 2n1 +2n2 +4 2n1 +2n2 +4 Id C
(C,D) [n1 + n2 + 1, 0] [n1 + n2 + 1, 1] 2n1 +2n2 +2 2n1 +2n2 +2 Id D
(D,D) [n1 + n2 − 1, 0] [n1 + n2 − 1, 1] 2n1 +2n2−2 2n1 + 2n2 Not Id D

Two systems of types A, B, C, or D are combined in series, where in the first system n = n1 and in the
second system n = n2.

Table 4. Parallel connection

(type,
type)

Shape in σ Shape in ε Non-monic
coefficients

Parameters Identifiable? Type

(A,A) [n1 + n2, 0] [n1 + n2, 0] 2n1 +2n2 +1 2n1 +2n2 +2 Not Id A
(A,B) [n1 + n2, 0] [n1 + n2 + 1, 0] 2n1 +2n2 +2 2n1 +2n2 +2 Id C
(A,C) [n1 + n2, 0] [n1 + n2 + 1, 0] 2n1 +2n2 +2 2n1 +2n2 +3 Not Id C
(A,D) [n1 + n2, 0] [n1 + n2, 0] 2n1 +2n2 +1 2n1 +2n2 +1 Id A
(B,B) [n1 + n2, 0] [n1 + n2 + 1, 1] 2n1 +2n2 +1 2n1 +2n2 +2 Not Id B
(B,C) [n1 + n2, 0] [n1 + n2 + 1, 0] 2n1 +2n2 +2 2n1 +2n2 +3 Not Id C
(B,D) [n1 + n2, 0] [n1 + n2 + 1, 1] 2n1 +2n2 +1 2n1 +2n2 +1 Id B
(C,C) [n1 + n2, 0] [n1 + n2 + 1, 0] 2n1 +2n2 +2 2n1 +2n2 +4 Not Id C
(C,D) [n1 + n2, 0] [n1 + n2 + 1, 0] 2n1 +2n2 +2 2n1 +2n2 +2 Id C
(D,D) [n1 + n2, 0] [n1 + n2, 1] 2n1 + 2n2 2n1 + 2n2 Id D

Two systems of types A, B, C, or D are combined in parallel, where in the first system n = n1 and in
the second system n = n2.
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in the next section. Note that Definition 1 implies that if there are more parameters than non-monic
coefficients, then the system must be unidentifiable. The tables show that the number of non-monic
coefficients is bounded by the number of parameters, thus a necessary condition for identifiability is that
the number of parameters equals the number of non-monic coefficients in the constitutive equation (4).
In the next section, we show that this is also a sufficient condition.

Local identifiability

Consider a spring-dashpot system M whose final step connection is a series connection of two systems
N1 and N2, i.e. M = N1∧N2. Since the number of non-monic coefficients in any spring-dashpot model is
always less than or equal to the number of parameters in that model, we know that a necessary condition
for this system to be locally identifiable is that N1 and N2 are both locally identifiable.

Let L1ε1 = L2σ1 be the constitutive equation for N1 and L3ε2 = L4σ2 be the constitutive equation
for N2. Each of the operators L1, L2, L3, and L4 will have a fixed shaped determined by the structure of
N1 and N2. Assuming that N1 and N2 are locally identifiable, we can choose parameters in each of the
models N1 and N2 so that the coefficients of these constitutive equations are arbitrary numbers. Thus,
deciding identifiability of this system amounts to determining whether the map that takes the pair of
equations (L1ε1 = L2σ1, L3ε2 = L4σ2) to the constitutive equation for the system M , given in (8) is
finite-to-one or not. The same reasoning works mutatis mutandis for parallel connections, where we now
concern ourselves with the map from the pair of equations (L1ε1 = L2σ1, L3ε2 = L4σ2) with generic
coefficients to the constitutive equation for M = N1 ∨N2 given in (9).

Definition 7. The shape factorization problem for a quadruple of shapes

Q = ([n1,m1], [n2,m2], [n3,m3], [n4,m4])

is the following problem: for a generic pair of polynomials (f, g) with f monic such that the shape(f) =
[n1 +n3,m1 +m3] and shape(g) = [max(n1 +n4, n2 +n3),min(m1 +m4,m2 +m3)], do there exist finitely
many quadruples of polynomials (L1, L2, L3, L4) with shape(Li) = [ni,mi], L1 and L3 are monic, and
such that f = L1L3 and g = L1L4 + L2L3? A quadruple of shapes Q is said to be good if the shape
factorization problem for that quadruple has a positive solution.

The language of shape factorization problems and the remarks in the preceding paragraphs allow us
to reduce the local identifiability problem for a spring-dashpot system to determining whether a certain
quadruple is a good quadruple.

Proposition 8. Let M = N1∧N2 be a spring-dashpot model joined in series from N1 and N2, where N1

has constitutive equation L1ε1 = L2σ1 of shapes [n1,m1] and [n2,m2] respectively and N2 has constitutive
equation L3ε2 = L4σ2 of shapes [n3,m3] and [n4,m4] respectively. Then the model M is locally identifiable
if and only if

1. N1 and N2 are locally identifiable, and

2. ([n1,m1], [n2,m2], [n3,m3], [n4,m4]) is a good quadruple.

Similarly, if M = N1∨N2 is a spring-dashpot model joined in parallel from N1 and N2, then M is locally
identifiable if and only if

1. N1 and N2 are locally identifiable, and

2. ([n2,m2], [n1,m1], [n4,m4], [n3,m3]) is a good quadruple.
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So what remains to show is that, for the shapes that arise in spring-dashpot models, whether a
quadruple of shapes is a good quadruple only depends on the types (A,B,C, or D) of the systems being
combined. The proof of this statement will occupy the rest of this section.

Let f and g be two polynomials. Note that for given fixed shapes, [n1,m1] and [n3,m3] there are at
most finitely many factorizations f = L1L3, where L1 has shape [n1,m1] and L3 has shape [n3,m3] and
both are monic. This is because there are at most finitely many ways to factorize a monic polynomial into
monic factors. Once we fix one of these finitely many choices for L1 and L3, the equation g = L1L4+L2L3

is a linear system in the (unknown) coefficients of L2 and L4.
Let Li have shape [ni,mi]. The coefficients of L1L4 can be written in vector form as

[L1L4] =



an1 0 · · · 0
... an1

· · · 0

am1

... · · ·
...

0 am1
· · · 0

... 0 · · · an1

...
... · · ·

...
0 0 · · · am1



en4

...
em4



We will refer to this product as G′[L4], where G′ is a n1 + n4 −m1 −m4 + 1 by n4 −m4 + 1 matrix.
Likewise, the coefficients of L2L3 can be written in vector form as

[L2L3] =



cn3 0 · · · 0
... cn3 · · · 0

cm3

... · · ·
...

0 cm3 · · · 0
... 0 · · · cn3

...
... · · ·

...
0 0 · · · cm3



bn2

...
bm2



We will refer to this product as H ′[L3], where H ′ is a n2 + n3 −m2 −m3 + 1 by n2 −m2 + 1 matrix.
Then we call the matrix factored form of [L1L4 + L2L3] the expression:

G[L2] +H[L4] (10)

where the matrices G and H are the matrices G′ and H ′ padded with rows of zeros so that coeffi-
cients corresponding to monomials of the same degree appear in the same row. This makes (G H) a
max {n1 + n4, n2 + n3} −min {m1 +m4,m2 +m3}+ 1 by n2 −m2 + n4 −m4 + 2 matrix.

We can now state a criteria for determining if the shape factorization problem has finitely many
solutions:

Proposition 9. The quadruple ([n1,m1], [n2,m2], [n3,m3], [n4,m4]) is a good quadruple if and only if
the matrix (G H) is generically invertible.

Proof. We can write the shape factorization problem of type ([n1,m1], [n2,m2], [n3,m3], [n4,m4]) in ma-
trix factored form as G[L2] +H[L4] = [g] (see (10)), so that

(
G H

)(L2

L4

)
= [g]



13

This system has a unique solution if and only if (G H) is generically invertible, i.e. invertible for a generic
choice of parameter values.

Example 10. Suppose that our quadruple ([n1,m1], [n2,m2], [n3,m3], [n4,m4]) is ([2, 0], [2, 0], [3, 0], [3, 1])
which is a special case of joining models of types A and D in parallel. The resulting matrix (G H) is
the matrix 

a2 0 0 c3 0 0
a1 a2 0 c2 c3 0
a0 a1 a2 c1 c2 c3
0 a0 a1 c0 c1 c2
0 0 a0 0 c0 c1
0 0 0 0 0 c0

 .

We now determine when this matrix (G H) is generically invertible, i.e. square and full rank. The
Sylvester matrix associated to two polynomials p(z) = p0 + p1z + p2z

2 + ... + pmz
m and q(z) = q0 +

q1z+ q2z
2 + ...+ qnz

n is the n+m by n+m matrix that has the coefficients of p(z) repeated n times as
columns and the coefficients of q(z) repeated m times as columns in the following way:

pm 0 · · · 0 qn 0 · · · 0
... pm · · · 0

... qn · · · 0

p0
... · · ·

... q0
... · · ·

...
0 p0 · · · 0 0 q0 · · · 0
... 0 · · · pm

... 0 · · · qn
...

... · · ·
...

...
... · · ·

...
0 0 · · · p0 0 0 · · · q0


︸ ︷︷ ︸

n

︸ ︷︷ ︸
m

The determinant of the Sylvester matrix of the two polynomials p and q is the resultant, which is zero
if and only if the two polynomials have a common root. In particular, for generic polynomials p and q,
the Sylvester matrix is invertible [30, Chapter 3].

We will use the Sylvester matrix in the following way. We will show that there are submatrices of
(G H) that correspond to the Sylvester matrix associated to L1 and L3.

Proposition 11. If the matrix (G H) is square, then it is generically invertible.

Proof. We claim that the columns of (G H) can be ordered so that the resulting matrix has the shapeS′ 0 0
X S Y
0 0 S′′

 (11)

where S is the Sylvester matrix associated to the nonzero coefficients of L1 and L3. Note that this means
that we might shift the coefficients down if necessary so there are no extraneous zero terms of low degree
(i.e. if the shape is [ni,mi] with mi 6= 0). The matrix S′ is a square lower triangular matrix with nonzero
entries on the diagonal, and S′′ is a square upper triangular matrix with nonzero entries on the diagonal.
This will prove that (G H) is invertible, since its determinant will be the product of the determinants
of S, S′ and S′′, all of which are nonzero. To prove that claim requires a careful case analysis.
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The number of columns of (G H) is n4 −m4 + n2 −m2 + 2 and the number of rows is max(n1 +
n4, n2 +n3)−min(m1 +m4,m2 +m3) + 1. Without loss of generality, we can assume that the maximum
is attained by n1 + n4. We need to distinguish between the two cases where the minimum is attained by
m1 +m4 and by m2 +m3.

Case 1: min
[
m1 + m4,m2 + m3

]
= m1 + m4. Since (G H) is a square matrix, this implies that

n1 −m1 = n2 −m2 + 1. In this case we group the columns of (G H) in the following order.

1. The first n1 + n4 − n2 − n3 columns of G

2. Then the next n3 −m3 columns of G

3. Then all n2 −m2 + 1(= n1 −m1) columns of H

4. Then the remaining m2 +m3 −m1 −m4 columns of G.

This choice has the property that the middle two blocks of columns together have the desired form, since
we have chosen to start including columns from G and H precisely when they both have nonzero entries
in the same rows, and stopping the formation of these when they stop having nonzero entries in the same
rows, which has the correct form. Note we have used all columns of G since

n1 +n4−n2−n3 +n3−m3 +m2 +m3−m1−m4 = (n1−m1) + (n4−m4)− (n2−m2) = (n4−m4 + 1).

Case 2: min
[
m1 + m4,m2 + m3

]
= m2 + m3. Note that since (G H) is square, this implies that

n1 −m3 = n2 −m4 + 1. In this case, we do not need to reorder the columns to obtain the desired form.
We mention how to block the columns to obtain the desired form.

1. The first n1 + n4 − n2 − n3 columns of G

2. Then the next n3 −m3 columns of G

3. Then the first n1 −m1 columns of H

4. Then the remaining m1 +m4 −m2 −m3 columns of H.

Note that we have the desired number of columns from the second and third blocks, and we have chosen
them so that that those columns have nonzero entries at exactly the same rows. Furthermore, we have
used all columns of G since

n1 + n4 − n2 − n3 + n3 −m3 = n1 + n4 − n2 −m3 = n4 −m4 + 1

and all columns of H since

n1 −m1 +m1 +m4 −m2 −m3 = n1 +m4 −m2 −m3 = n2 −m2 + 1.

In Example 10, the 5 × 5 matrix in the upper lefthand corner is the Sylvester matrix, the matrix S′

is the empty matrix, and the matrix S′′ is the 1× 1 matrix in the lower righthand corner.

Proof of Theorem 2. We will show that if the number of parameters equals the number of non-monic
coefficients, then the matrix (G H) is square. By Propositions 9 and 11, this will imply that the model
is locally identifiable.

LetM = N1∧N2 be a spring-dashpot model joined in series fromN1 andN2, whereN1 has constitutive
equation L1ε1 = L2σ1 of shapes [n1,m1] and [n2,m2] respectively and N2 has constitutive equation
L3ε2 = L4σ2 of shapes [n3,m3] and [n4,m4] respectively. By induction, we can assume that the number
of parameters equals the number of non-monic coefficients for the systems models N1 and N2, i.e. there
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are n1 −m1 + n2 −m2 + 1 parameters in the first and n3 −m3 + n4 −m4 + 1 in the second. Assume the
number of parameters equals the number of non-monic coefficients in this full system, i.e.

n1 −m1 + n2 −m2 + n3 −m3 + n4 −m4 + 2 =

max {n1 + n4, n2 + n3} −min {m1 +m4,m2 +m3}+ 1 + n1 −m1 + n3 −m3.

Subtracting n1 −m1 + n3 −m3 from both sides, we get that

n2 −m2 + n4 −m4 + 2 = max {n1 + n4, n2 + n3} −min {m1 +m4,m2 +m3}+ 1.

From the definition of (G H), this means the number of rows equals the number of columns, so that
(G H) is square.

The argument for the parallel extension is identical and is omitted.

Proof of Theorem 4. Theorem 2 shows that the model is locally identifiable if and only if the number
of parameters equals the number of non-monic coefficients. Thus the identifiability properties of the 20
cases in Tables 3 and 4 are determined by checking the if the numbers in the columns corresponding to
the number of parameters and the number of non-monic coefficients are equal.

Global identifiability

We now determine necessary and sufficient conditions for global identifiability.

Proposition 12. Let M = N1 ∧N2 be a spring-dashpot model joined in series from N1 and N2, where
N1 has constitutive equation L1ε1 = L2σ1 of shapes [n1,m1] and [n2,m2] respectively and N2 has consti-
tutive equation L3ε2 = L4σ2 of shapes [n3,m3] and [n4,m4] respectively. Then the model M is globally
identifiable if and only if

1. N1 and N2 are globally identifiable,

2. The shape factorization problem for the quadruple ([n1,m1], [n2,m2], [n3,m3], [n4,m4]) generically
has a unique solution.

Similarly, if M = N1∨N2 is a spring-dashpot model joined in parallel from N1 and N2, then M is globally
identifiable if and only if

1. N1 and N2 are globally identifiable, and

2. The shape factorization problem for the quadruple ([n2,m2], [n1,m1], [n4,m4], [n3,m3]) generically
has a unique solution.

Proof. We handle the case of series extensions, parallel extensions being identical. Let M = N1 ∧ N2.
Clearly, N1 and N2 must be globally identifiable otherwise we could give two sets of parameters yielding
the same constitutive equation for N1, which could then be combined with parameters for N2 to get two
sets of parameters for M yielding the same constitutive equation.

Now if the shape factorization problem has a unique solution, there is a unique way to take the
constitutive equation for M and solve for the constitutive equations for N1 and N2, since N1 and N2

are globally identifiable, there is a unique way to solve for parameters of those models giving a unique
solution for parameters for M . Conversely, if there were multiple solutions to the shape factorization
problem, then by global identifiability of N1 and N2, we could solve all the way back to get multiples
parameter choices for the same parameter choice for M .
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Note that in our analysis of the shape factorization problem in the previous section, we saw that once
L1 and L3 are chosen among all their finitely many values, when the model is locally identifiable there is
a unique way to then construct L2 and L4. Hence, the shape factorization problem has a unique solution
when there is a unique way to factor f = L1L3. This happens if and only if either n1 = m1 or n3 = m3,
otherwise, generically, we can exchange roots of L1 and L3 giving multiple solutions.

Corollary 13. Suppose that M = N1 ∧N2 is globally identifiable. Then either N1 or N2 must have been
one of a spring, a dashpot, or a Maxwell model. Suppose that M = N1 ∨N2 is globally identifiable. Then
either N1 or N2 must have been one of a spring, a dashpot, or a Voigt model.

Proof. The four models given by the spring, dashpot, Voigt, and Maxwell are the only four locally
identifiable models that have the property that at least one of the differential operators in its constitutive
equation has exactly one term. This can be seen by analyzing the four types (A,B,C,D) and looking at
all possibilities that arise on combining two equations. Once both operators do not have a single term,
no model combined from such a model can have an operator with a single term.

The three choices for the series connection (spring, a dashpot, or a Maxwell model) are the three of
four models that put a differential operator with a single term in the correct place so there could be a
unique solution to the shape factorization probelm. Similarly for the parallel connection.

Proof of Theorem 5. Clearly a globally identifiable model is locally identifiable. By Corollary 13, we must
be able to construct such a globally identifiable model by adding at each step either a spring, dashpot,
Maxwell or Voigt at each step, but when adding a Maxwell it must be used in series and when using
a Voigt it must have been added in parallel. However, adding a Maxwell in series can be achieved by
adding a spring and then a dashpot both in series. Similarly, adding a Voigt in parallel can be achieved
by adding a spring and then a dashpot both in parallel. Hence, we can work only adding springs or
dashpots at each step.

Acknowledgments

Adam Mahdi was partially supported by the VPR project under NIH-NIGMS grant #1P50GM094503-
01A0 sub-award to NCSU. Nicolette Meshkat was partially supported by the David and Lucille Packard
Foundation. Seth Sullivant was partially supported by the David and Lucille Packard Foundation and
the US National Science Foundation (DMS 0954865).

References

[1] Ottesen JT (2011) The mathematical microscope making the inaccessible accessible. BetaSys -
Systems Biology 2: 97–118.

[2] Chis OT, Banga JR, Balsa-Canto E (2011) Structural identifiability of systems biology models: A
critical comparison of methods. PLoS ONE 6: 1–16.
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