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Abstract 

Cerebral autoregulation is commonly assessed through mathematical models that use non-
invasive measurements of arterial blood pressure and cerebral blood flow velocity. There is no 
agreement in the literature as to what is the minimum length of data needed for the cerebral 
autoregulation coefficients to stabilise. We introduce a simple empirical tool for studying the 
minimum length of time series needed to parameterise three popular cerebral autoregulation 
coefficients ARI, Mx and Phase (in the low frequency range [0.07-0.2] Hz), which can be 
easily applied in a more general context. We use our recently collected data, from which we 
select high quality (absence of non-physiological artefacts), baseline ABP-CBFV time series 
(16-minute each). The data were beat-to-beat averaged and downsampled at 10 Hz. On 
average, ARI exhibits greater variability than Mx and Phase, when calculated for short 
intervals; however, it stabilises fastest. Our results show that values of ARI, Mx and Phase 
calculated on intervals shorter than 3 min (1800 samples), 6 min (3600 samples) and 5 min 
(3000 samples), respectively, may be very sensitive to changes in the length of data interval. 
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1 Introduction 
Cerebral autoregulation (CA) is a term that encompasses many different control mechanisms 
responsible for maintaining cerebral blood flow at an appropriate, approximately constant, level 
despite changes in arterial blood pressure (ABP). Poor CA has been linked with several clinical 
disorders such as stroke [1], subarachnoid haemorrhage [2], head injury [3], syncope and cerebral 
microvascular diseases. Therefore, it is of great interest to have fast, reliable and non-invasive 
autoregulation assessment methods.  
Typically, CA is assessed through different mathematical models [4]–[6] that use non-invasive 
measurements of ABP and cerebral blood flow velocity (CBFV) and produce a metric (e.g. a 
numerical value) from a certain interpretable range. Unfortunately, despite a large body of literature, a 
gold standard approach is not available. A lack of standardized methods is likely to be a significant 
contributor.  
It is surprising that the questions as to what is the least amount of data needed to calibrate models and 
to obtain physiologically significant assessment of CA have been given little attention, with the 
exception of [7]. One possible reason for this gap in the literature is that these types of studies 
typically require long (>10 min) and high quality (lack of non-physiological artefacts) time series 
data. Also, to limit the effects of potential confounders, carefully designed data collection protocols 
are needed, but they are difficult to implement.  
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In the current paper we study the minimum data length needed to parameterise three popular CA 
measures: the autoregulation index (ARI), the correlation coefficient Mx and the phase shift between 
ABP and CBFV calculated at low frequency range. We introduce a simple empirical tool, the 
expanding window sensitivity, designed to monitor the fluctuations of the CA measures as we expand 
the data window. Together with the concept of the corridor of stability, i.e. the size of fluctuations we 
agree to tolerate (previously used in [8]) we can identify the point of stability for each measure under 
consideration (see Section 2.5).  

2 Methods 

2.1 Data collection 
With approval from an NHS ethics committee (14/NI/1146) 10 young volunteers (23.5±3.0 years, 
172.1±12.5 cm, 66.6±19.0 kg, BMI 22.1±4.2, SBP 124.0±15.0 mmHg, DBP 72.0±5.0 mmHg, 
3 female) and with no history of vascular disease were recruited. All volunteers attended for cerebral 
autoregulation studies on 5 separate occasions within a one-week period. Data used for this analysis 
has been selected from one of those 5 visits for each subject. 

Volunteers were asked to lie in the supine position on a comfortable bed, with a head supported on a 
pillow, for the whole duration of data collection. Both middle cerebral artery velocities were 
monitored with transcranial Doppler ultrasound (Dopplerbox, DWL, GmbH, Singen, Germany) and 
ABP was monitored using a Finometer (Finapres Medical Systems, Amsterdam, The Netherlands). 
Three lead ECG was also applied and recorded (ECG100C BIOPAC Systems Inc, Goleta, CA USA). 
The arterial blood pressure (ABP), the left and right cerebral flow velocity (CBFV-L and CBFV-R 
respectively) and ECG signals were simultaneously recorded over approximately 18 minutes of rest. 
The signals were sampled at 125 Hz (with an exception of the ECG signal which was sampled at 
250 Hz) and stored for offline analysis using a data acquisition system (MP150, BIOPAC Systems 
Inc, Goleta, CA USA). Following instrumentation, which would typically take 10 to 15 minutes, 
volunteers were asked to stay quiet and still, without falling asleep, while data were recorded. 
Background noise was kept to a minimum. 

2.2 Data preprocessing 
The raw signals were low-pass filtered using a fourth-order Butterworth filter with a cut-off frequency 
of 20 Hz applied in the forward and backward direction to compensate for phase shifts. Isolated spikes 
in the CBFV signals were removed using the median filter of the 9th order and the most prominent 
remaining ones were removed by linear interpolation. The beat-to-beat average (mean) values of the 
ABP, CBFV-L and CBFV-R were then computed for each cardiac cycle using the R-peaks detected 
from the ECG signal. In order to create a time series with a uniform time base, the mean signals were 
interpolated using a third-order polynomial and resampled at 10 Hz. 

2.3 Cerebral autoregulation indices 
ARI. Tiecks et al. [9] proposed a set of difference equations to predict CBFV as a response to a change 
in ABP, from which an autoregulation index (ARI) is calculated. The method itself and its variations 
have been used extensively to provide a quantitative assessment of CA [38, 32, 2]. The index ranges 
from 0 (the absence of autoregulation) to 9 (the best autoregulation). For more details, related to the 
computational aspects of ARI, see the Appendix. 
Mx. The Mx index was computed here as Pearson’s correlation coefficient between the mean ABP 
and mean CBFV over a certain interval [3]. If a moving window is applied the values were averaged 
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for each window size and each patient. Some authors [10] have suggested that the values less than 0.3 
indicate an intact CA, while values above 0.3 indicate failure of autoregulation.  
Phase. The phase of the transfer function have been widely applied to assess cerebral autoregulation 
[11]-[13].  In this study, it was computed as follows. First, the mean ABP and CBFV signals were 
further downsampled to 1 Hz, normalized by their mean values and detrended representing the signal 
change in %. The ARX model of order (2,3) was estimated in the least-square sense using the 
normalised and detrended mean ABP and CBFV. Autoregulation was assessed by the mean phase (i.e. 
average values of the phase) of the estimated transfer response calculated in the low frequency range 
[0.07-0.2] Hz.  

2.4 Expanding window sensitivity  
We introduce a simple measure designed to quantify how sensitive a CA measure is with respect to 
changes in the length of the time series used for its calculation. This, in turn, will be used to assess 
how much data are needed for a stable parameterisation of a given CA model. 
We denote by 𝑃! and 𝑉! the ABP and CBFV time series defined on some time interval 𝑡 = 𝑡!, 𝑡! . 
With this notation we denote both time series by 𝑑! = 𝑃!! ,𝑉!! , where 𝑡! = 𝑡!, 𝑡! + 𝑗𝛥𝑡 . Note that 

𝑗𝛥𝑡 is the length of the expanding window for each increment 𝑗, where 𝑗 = 1,… ,𝑁, and N is the 
maximum number of intervals 𝛥𝑡 in the recording. Let 𝑐(𝑑!) be a CA measure of interest (e.g. ARI, 
Mx or Phase), calculated using time series 𝑑!. The expanding window sensitivity at 𝑑!  is computed 
(for each subject) as 

   E 𝑑! = |c(𝑑!!!) − c(𝑑!)|     for     𝑗 = 1,… ,𝑁 − 1.                                        1  

We report the mean and standard deviation of expanding window sensitivity, 𝔼 𝑑! ± 𝑆𝐷, calculated 
across all subjects. 

2.5 Corridor and point of stability 
The mean expanding window sensitivity 𝔼 𝑑!  can be interpreted as the average fluctuation of a CA 
measure c(𝑑!) calculated using 𝑑!. We note that the smaller 𝔼 𝑑!  the more stable c(𝑑!). To make the 
discussion of stability more precise, we introduce the concept of the corridor of stability, that is the 
corridor around zero where the deviations of 𝔼 𝑑!  are tolerated, see [8]. The corridor of stability is 
characterized by its width, which depends on a specific problem (e.g. a scale the model operates on). 

Typically, as the sample size increases, the values of 𝔼 𝑑!  get (stochastically) smaller until they 
stabilise. We define the point of stability as the minimal data length (or sample size) such that 𝔼 𝑑!  
stays within the selected corridor of stability.  

2.6 Moving window variability 
Here we introduce a method designed to quantify the variability associated with a CA estimates 
irrespectively of the fixed beginning of the data intervals used for their computation. We consider a 
CA measure c(𝑑!), 𝑑! = 𝑃!! ,𝑉!! , on the moving window 𝑡! = [ 𝑚 − 1 𝑠𝛥𝑡,𝑚𝑠𝛥𝑡], 
𝑚 = 1,… ,𝑁!, where Ns is the total number of non-overlapping windows of size ws in the recording. 
The index 𝑚 represents the position of the window 𝑡! of size 𝑤! = 𝑠𝛥𝑡 that moves along the 
recording. We define moving window variability as standard deviation of the CA measures, c(𝑑!), 
calculated on each moving window: 

M 𝑤! = std c 𝑑! ,… , c 𝑑!! .                                                                   2  
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We report the mean moving window sensitivity 𝕄 𝑤! ± 𝑆𝐷 calculated across all subjects.  

3 Results 
Data characteristics. Table 1 gives the mean, standard deviation and coefficient of variability (CoV) 
of the mean ABP, mean CBFV, end-tidal CO2 (etCO2) and heart rate (HR) for the whole dataset. The 
`Mean' and ‘SD’ refer to the mean and standard deviation of the values calculated for each subject 
along time. 
Expanding window sensitivity. Figure 1 (left column) show the trajectories of ARI, Mx and Phase 
calculated for the step increment 𝛥𝑡 = 30s of the ABP-CBFV time series data over the whole 16-
minute interval for all 10 individuals. Here, the beginning of each expanding window is set to 𝑡! = 0.   
Figure 1 (right column) show the mean (red line) and standard deviation (vertical bars) of the 
expanding window sensitivity, 𝔼 𝑑!  ± 𝑆𝐷, calculated across all subjects. The dotted lines (left 
column) indicate the point of stability corresponding to the corridor of stability (grey area, right 
column). We note that the fluctuations of ARI, Mx and Phase reduce as more data are used for model 
calibration. 
Moving window variability. Figure 2 (top five rows) show ARI, Mx and Phase values calculated for 
the indicated window size as it moves along the 16-minute long recording. Figure 2 (bottom row) 
show the moving window variability 𝕄 𝑤!  for the window size 𝑤! = 𝑠𝛥𝑡, where s = 1,…,5 and 
𝛥𝑡 = 30s. The values of 𝕄 𝑤!  decrease as the moving window gets wider. 

4 Discussion 
There is no consensus in the literature regarding what is the appropriate amount of data (typically 
ABP and CBFV) needed to parametrise CA models. A variety of data lengths have been used (see e.g. 
[10], [14], [15], [16]). Long data recordings are typically divided into 1-5 minute intervals, for which 
Mx is computed and results are averaged for the whole measurement period. On the other hand, 
model-based approaches, including ARI, have been calibrated using shorter time series including 
2 min [17], 5 min [18] and 10 min [19] intervals.  
We introduced here two simple methods, the expanding window sensitivity (Section 2.5) and moving 
window variability (Section 2.6), to study the effects of data length on CA indices. They are based on 
the assumption that the underlying overall physiological mechanisms involved in maintaining 
autoregulation are approximately constant in the considered interval.  
The expanding window sensitivity together with the corridor of stability allows us to empirically 
determine (for the given dataset) the interval needed for model calibration. The mean values of the 
expanding window sensitivity decrease (see Figure 1: right column, red line) as indices reach a 
plateau. By setting the corridor of stability around the plateau we identified the point of stability, i.e. 
the minimal data length, for which the mean sensitivity stays within this corridor.  
Our discussion is contingent upon the specific dataset available and the type of preprocessing we have 
used. We note that here the raw signals were beat-to-beat averaged and resampled at 10 Hz, which is a 
common practice in the context of autoregulation. The discussion of other sampling frequencies and 
their effects on the results is beyond the scope of this paper.  
Our results show that the CA indices fluctuate significantly for short intervals (see Figure 1: left 
column), which is reflected by the large values of the expanding window sensitivity (see Figure 1: 
right column). Also, ARI exhibits larger variability than Mx when calculated on shorter intervals but 
unlike Mx, its values stabilise quickly and exhibit smaller fluctuations for longer intervals. Although 
we are unable to make firm recommendation as what is the minimal length of ABP and CBFV time 
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series needed to estimate the indices, based on the results obtained here, we can say that ARI, Mx and 
Phase calculated on intervals shorter than 3, 6 and 5 minutes respectively, may not be reliable as they 
exhibit very large variability.  
The size of fluctuations of the CA indices can be influenced by many factors including physiological 
artefacts (e.g. ectopic beats), non-physiological artefacts (e.g. square wave, saturation, impulse, signal 
loss) [20], [21] and outliers [22]. Although we made an effort to remove all the visible artefacts due to 
measurement error in instrumentation, the unexpected physiological anomalies that do not fit the 
pattern are much harder to account for [23]. The non-linear character of the underlying CA 
phenomena is potentially another important contributor to the high variability of the CA measures.  
Figure 2 gives additional evidence that non-physiological artefacts may bias CA indices for short data 
segments. As we move along the signal, ARI, Mx and Phase vary significantly for smaller windows. 
However, this variability decreases as we consider longer windows, which is a general trend shown in 
Figure 2 (bottom row). 
The study has several limitations. The approximation of cerebral blood flow by CBFV measured in 
the MCA is only valid if the diameter of the MCA is constant. The use of the Finapres monitor to 
provide continuous estimates of ABP is another potential source of error. The question whether the 
dispersion in CA estimates comes from the ‘noise’ or actual physiological variability is a difficult one. 
The common assumption is that the input signal is ‘clean’ and the output has independent added 
stationary (Gaussian) noise. Some recent studies have reported that the prediction of estimation errors 
based on that assumption accounts for much, but not all the intra-subject variability observed (even 
within the same recording) [24]. The actual problem is even more complex because the input signal is 
not clean (recording from Finapres), the linear model as well as model order we use is not perfect and 
noise is most likely not stationary or time-invariant.	 Furthermore, the ARI method followed the 
original paper by Tiecks et al. [9], however, alternative implementations have also been proposed. In 
particular, Panerai et al. [13] showed that a combination of time series modelling (ARMA) and the 
best fit to one of the ARI step responses is less susceptible to physiological sources of variability. 
In conclusion, we introduced simple tools to study the minimal data length needed to stabilise three 
popular CA indices: Mx, ARI and Phase. However, the methods are applicable in the wider context. 
Our hope was to draw the attention of researchers to consider more carefully the effects of the data 
length on model calibration and CA estimates.    
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5 Appendix 

5.1 An implementation details of ARI 
The implementation of ARI used here follows Tiecks et al. [9]. We denote the beat-to-beat average of 
ABP and CBFV by 𝑃[𝑘]  and 𝑉[𝑘], respectively; the mean values of 𝑃[𝑘]  and 𝑉[𝑘] by 𝑃 and 𝑉. The 
input 𝑃[𝑘] is normalized  

𝑑𝑃 𝑘 =
𝑃 𝑘 − 𝑃
𝑃 −  𝑃!"

                                                                 A. 1  

where 𝑃!" = 12 mmHg is the critical closing pressure [52]. We estimate 𝑉[𝑘] using the following 
difference model  

  
𝑥! 𝑘 = 𝑥! 𝑘 − 1 +

𝑑𝑃 𝑘 − 𝑥! 𝑘 − 1
𝑓𝑇

             𝑥! 𝑘 = 𝑥! 𝑘 − 1 +
𝑥! 𝑘 − 1 − 2𝐷𝑥! 𝑘 − 1

𝑓𝑇

                               A. 2  

𝑉 𝑘 = 𝑉 1 + 𝑑𝑃 𝑘 − 𝐾𝑥! 𝑘           
where 𝑓, 𝐷, 𝑇 and 𝐾 are the sampling frequency, damping factor and time constant parameters, 
respectively. The combinations of ten different values of (T,D,K) (see [9]) are used to generate ten 
models 𝑉![𝑘], corresponding to different grades of autoregulation (j = 0,…,9). The difference between 
the predicted and measured CBFV is computed as 𝑑! =  || 𝑉![𝑘] − 𝑉[𝑘])/𝑉|| , where || ⋅ || is the ℓ!-
norm. By 𝑓!"#(𝑠) we denote the interpolation by cubic splines of the values 𝑑!. Finally, the ARI is 
determined by calculating the 𝑠 that minimizes 𝑓!"#(𝑠), that is: 

𝐴𝑅𝐼 = argmin 𝑓!"# 𝑠 , 𝑠 ∈ 0,… ,9 .                                               A. 3   
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6 Plots and Tables 
 

 ABP CBFV-L etCO2 HR 

 [mmHg] [cm/s] [mmHg] [beats/min] 

Mean 74.74 72.79 36.56 69.38 

SD 7.91 6.99 3.84 9.18 

CoV 0.11 0.10 0.10 0.13 

Table 1. Data characteristics. The mean, standard deviation (SD) and the coefficient of variation 
(CoV) for the signals considered in this study.  

 

 
Figure 1 Expanding window sensitivity. Left: The trajectories of ARI (top row), Mx (middle row) and 
Phase (bottom row) calculated for the 30-second increments of the expanding window. Right: The 
mean expanding window sensitivity for ARI (top row), Mx (middle row) and Phase (bottom row). The 
graphs show the mean (red line) and standard deviation (vertical bars) of the expanding window 
sensitivity, 𝔼 𝑤!  ± 𝑆𝐷, calculated across all subjects. The vertical dotted lines in the left column 
show the point of stability corresponding to the selected corridor of stability (grey area in the right 
column), see Section 2.5. 
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Figure 2: Moving window variability. Top five rows show (blue line) an example of ARI (left 
column), Mx (middle column) and Phase (right column) computed for the moving windows of size 
30, 60, 90, 120 and 150s for one subject.  Bottom row (red line) show the mean of standard 
deviations of CA measures computed along the recording (as shown above) for each window size 
averaged over all subjects. 
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