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Abstract. The Moon-Rand systems, developed to model control of

flexible space structures, are systems of differential equations on R3 with

polynomial or rational right hand sides that have an isolated singularity

at the origin at which the linear part has one negative and one pair of

purely imaginary eigenvalues for all choices of the parameters. We give a

complete stability analysis of the flow restricted to a neighborhood of the

origin in any center manifold of the Moon-Rand systems, solve the center

problem on the center manifold, and find sharp bounds on the number

of limit cycles that can be made to bifurcate from the singularity when it

is a focus. We generalize the Moon-Rand systems in a natural way, solve

the center problem in several cases, and provide sufficient conditions for

existence of a center, which we conjecture to be necessary.

1. Introduction

In [12] (see also [10]) Moon and Rand introduced the following system

of differential equations, which we shall call the Moon-Rand system, in the

context of modelling control of flexible structures:

(1.1)

u̇ = v

v̇ = −u− uw

ẇ = −λw + f(u, v)

where

f(u, v) = c20u
2 + c11uv + c02v

2 or f(u, v) =
c11uv

1 + ηu2
.

Here λ, η, c20, c11 and c02 are real numbers, λ > 0, η > 0. They showed

that in the former (polynomial feedback) case the origin is asymptotically
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stable for the flow restricted to the center manifold if

2c20 − 2c02 − λc11 < 0.

This condition was found by approximating the local center manifold W c

of (1.1), transforming the system restricted to W c to a normal form by

means of an unspecified near-identity transformation, and going over to

polar coordinates.

In this paper we give a complete stability analysis of the flow restricted

to a neighborhood of the origin in any center manifold. We allow arbitrary

values of η and negative values of λ, requiring only that λ be nonzero so

that the singularity at the origin be isolated. For the flow on any center

manifold the origin is either a center or a fine focus of order up to three in

the polynomial case and four in the rational case. We derive discriminant

quantities which specify the order and stability of foci. This is done by ap-

proximating any local center manifold W c at the origin and computing the

first few Lyapunov or Poincaré-Lyapunov quantities (see Section 2), which

also permits us to show that a fine focus of order k can be made to bifurcate

k − 1 limit cycles under small perturbation within the family (1.1), and a

center either one or two limit cycles in the polynomial case and one, two, or

three limit cycles in the rational case. This implies existence of open sets

of parameter values for which the system possesses both an asymptotically

stable equilibrium and an asymptotically stable periodic orbit. An inter-

esting byproduct of the analysis is that the sign of the normal contraction

factor λ affects the asymptotic stability of the origin as a fixed point of the

flow restricted to the center manifold.

The approximation process described in the previous paragraph will not

do for the center problem; in general power series expansions for center

manifolds of analytic or even polynomial systems need not converge (see

[1] and [14]). Instead we avoid the center manifold entirely using the ideas

developed in [8] (and reviewed in Section 2): complexify (1.1) and compute

a sufficiently long initial string of an infinite sequence of polynomials g̃k in

the ring C[λ, c20, c11, c02], the focus quantities of family (1.1), whose variety

specifies those systems in (1.1) with a center at the origin on the center

manifold (which is unique in such circumstances). By this means we are

able to solve the center problem for the flow of (1.1) on the center manifold.

We also derive the curious result that (for both polynomial and rational
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feedback) there is a center at the origin in the center manifold only if the

center manifold is an algebraic surface.

In the polynomial case we generalize system (1.1) in a natural way to the

generalized polynomial Moon-Rand system:

(1.2)

u̇ = v

v̇ = −u− uw

ẇ = −λw +
∑
j+k=n

cjku
jvk.

As is typical of three-dimensional systems, even with just a few parameters

computations quickly become intractable, even for special-purpose computer

algebra systems. The parameter λ causes the greatest difficulty. By fixing

its value we are able to solve the center problem for family (1.2) for n = 3,

but only by computing using modular arithmetic, and that in a somewhat

novel way.

In the general case we produce conditions that guarantee existence of

a center on the center manifold of (1.2), which is then algebraic, and offer

evidence in support of a conjecture that these conditions are necessary, which

implies that the center manifold is always algebraic if it contains a center.

Finally, we generalize the result of Moon and Rand to this situation by

deriving a sufficient condition for asymptotic stability of the origin for the

flow restricted to the center manifold.

In the following section we review background facts. Section 3 is devoted

to the polynomial Moon-Rand system and Section 4 to the rational Moon-

Rand system (1.1). Of course the polynomial family is the special case

η = 0 of the rational family, but we have separated out the treatment of

this case for several reasons. The results for the two families are similar

but enough different that a separate statements of the results is much more

readable. We use the two separate theorems to illustrate two approaches

to the proof of the results. The use of the Lyapunov function approach in

proving Theorem 4.1 is computationally efficient, but the polar coordinate

approach in proving Theorem 3.2 makes one observation more transparent,

and facilitates the proof of the cyclicity theorems, Theorems 3.5 and 4.2.

In Section 5 we study the center and stability problems for the generalized

polynomial Moon-Rand system (1.2).
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2. The Focus Quantities and the Center Variety

Consider a three dimensional system that can be placed in the form

(2.1)

u̇ = −v + P (u, v, w) = P̃ (u, v, w)

v̇ = u+Q(u, v, w) = Q̃(u, v, w)

ẇ = −λw +R(u, v, w) = R̃(u, v, w),

where λ is a non-zero real number and P , Q, and R are polynomial functions

without constant or linear terms. We will let X denote the corresponding

vector field

(2.2) X = P̃
∂

∂u
+ Q̃

∂

∂v
+ R̃

∂

∂w

on a neighborhood of the origin.

A proof of the following theorem can be found in [8]. The equivalence of

statements (a) and (b) is called the Lyapunov Center Theorem; it is proved

in many places, including [4].

Theorem 2.1. Fix a system (2.1) in which the functions P , Q, and R are

real analytic on a neighborhood of the origin and let W c be the local center

manifold at the origin. The following statements are equivalent.

(a) The origin is a center for X|W c.

(b) System (2.1) admits a local analytic first integral.

(c) System (2.1) admits a formal first integral.

In fact a real analytic local first integral from statement (b) can always

be chosen to be of the form

Φ(u, v, w) = u2 + v2 + · · ·

in a neighborhood of the origin in R3.

Introducing the complex variable x = u + iv, the first two equations

in (2.1) are equivalent to a single equation ẋ = ix + X(x, x̄, w), where X

is a sum of homogeneous polynomials of degrees between two and N =

max(degP,degQ,degR). Adjoining to this equation its complex conjugate,

replacing x̄ everywhere by y, regarding y as an independent complex vari-

able, and replacing w by z simply as a notational convenience we obtain the
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complexification of family (2.1),

(2.3)

ẋ = ix+
N∑

p+q+r=2

apqrx
pyqzr

ẏ = −iy +

N∑
p+q+r=2

bpqrx
pyqzr

ż = −λz +
N∑

p+q+r=2

cpqrx
pyqzr,

where bqpr = āpqr and the cpqr are such that
∑N

p+q+r=2 cpqrx
px̄qwr is real

for all x ∈ C, for all w ∈ R. Let Z denote the corresponding vector field on

C3. Existence of a first integral Φ(u, v, w) = u2 + v2 + · · · for a system in

family (2.1) is equivalent to existence of a first integral

(2.4) Ψ(x, y, z) = xy +
∑

j+k+`=3

vjk`x
jykz`

for the corresponding system in family (2.3).

When Ψ has the form (2.4) the coefficient gk1k2k3 of xk1yk2zk3 in ZΨ

can be calculated explicitly (see [8]). Except when (k1, k2, k3) = (K,K, 0)

for K ∈ N, the equation gk1k2k3 = 0 can be solved uniquely for vk1k2k3 in

terms of the known quantities vαβγ . A formal first integral Ψ thus exists if

gkk0 = 0 for all k ∈ N. An obstruction to the existence of the formal series

Ψ occurs when the coefficient gKK0 is nonzero. This coefficient is the Kth

focus quantity.

The focus quantities g110 and g220 are uniquely determined, but the re-

maining ones depend on the choices made for vKK0, K ∈ N, K ≥ 2. Once

such an assignment is made Ψ is determined and satisfies

(2.5) ZΨ(x, y, z) = g110 xy + g220 (xy)2 + g330 (xy)3 + · · · .

Vanishing of all the focus quantities is sufficient for existence of the formal

first integral. It is known ([8]) that it is necessary by proving that if for one

choice of the vKK0 at least one focus quantity is non-zero, then the same

is true for every other choice of the vKK0. To shorten the notation we let

(a, b, c) stand for the coefficient string

(a200, . . . , a00N , b200, . . . , b00N , c200, . . . , c00N ).

Theorem 2.2. Let Ψ be a formal series of the form (2.4) and let g110, g220, . . .

be polynomials in (a, b, c) that satisfy (2.5) with respect to the system (2.3).
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Then system (2.3) with (a, b, c) = (a∗, b∗, c∗) admits a formal first integral

of the form (2.4) if and only if gkk0(a
∗, b∗, c∗) = 0 for all k ∈ N.

The following theorem shows that the conditions for the existence of a

center on the local center manifold of a polynomial vector field in R3 can

always be expressed as zeros of polynomials. For a proof see [8]. Recall that

the set of common zeros of a collection of polynomials that generate an ideal

I is the variety V(I) of I.

Theorem 2.3. Let (2.1) be a family of polynomial differential equations on

R3. For any system in the family let X be the corresponding vector field (2.2)

and let W c be a local center manifold through the origin. Then there exists

a variety VC in the space of admissible coefficients such that the origin is a

center for X|W c if and only if the coefficients of the components of X lie in

VC .

If X =
∑
Pj∂/∂uj is a polynomial vector field of degree m on Rn then

the variety of a polynomial F , the algebraic hypersurface F = 0 in Rn, is

invariant under the flow induced by X if there exists a polynomial K, which

can have degree up to m− 1, such that

(2.6) XF −KF =
∑

Pj
∂F

∂uj
−K F = 0.

(The converse requires that the ground field be C; see [13, §3.6].)

For a system of differential equations on R2 of the form

(2.7) u̇ = −v + P (u, v), v̇ = u+Q(u, v)

where P and Q are sufficiently smooth and vanish together with their

first partial derivatives let R(r) denote the Poincaré first return map on

a sufficiently short segment of the polar axis and D the difference map

D(r) = R(r)− r. There always exists a sufficiently smooth function V from

a neighborhood of the origin into R of the form V (u, v) = (u2 + v2)/2 + · · ·
such XV = L4(u

2 +v2)2 +L6(u
2 +v2)3 + · · · . By the kth Lyapunov quantity

we mean the coefficient ηk in the expansion D(r) = η1r+ η2r
2 + · · · . By the

kth Poincaré-Lyapunov quantity we mean the coefficient L2k.

3. The Polynomial Moon-Rand System

In Theorem 3.2 we present a full characterization of the stability of the

origin of the Moon-Rand system as well as a determination of the center

conditions on the center manifold. We begin with a computation of the
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lowest order terms of any center manifold. The first three were already found

in [12]. The higher order coefficients will be needed only after simplifying

conditions apply, so only the simpler versions are listed. See also Lemma

5.6 below.

Lemma 3.1. Let a center manifold at the origin of the Moon-Rand system

(1.1) with polynomial f be expressed as

w = h(u, v) = p20u
2 + p11uv + p02v

2 + · · · .

Then pjk = 0 if j + k is odd. In general

(3.1)

p20 =
1

λ(λ2 + 4)
(2c02 + 2c20 + λc11 + λ2c20)

p11 =
1

(λ2 + 4)
(2c02 − 2c20 + λc11)

p02 =
1

λ(λ2 + 4)
(2c02 + 2c20 − λc11 + λ2c02).

When c02 = c20 − (λ/2)c11

(3.2)

p13 =
1

2λ(λ2 + 4)(λ2 + 16)
(λc11 − 2c20)(λ(λ2 + 10)c11 − 2(λ2 + 16)c20)

p31 =
1

λ(λ2 + 4)(λ2 + 16)
(λc11 − 2c20)(3λc11 − (λ2 + 16)c20).

When c20 = (λ/4)c11 and c02 = c20 − (λ/2)c11 = −(λ/4)c11

(3.3)

p51 =
λ(2λ4 + 53λ2 + 216)

2(λ2 + 16)2(λ4 + 40λ2 + 144)
c311

p33 = − 3λ(3λ2 + 8)

4(λ2 + 16)(λ4 + 40λ2 + 144)
c311

p15 =
λ(λ4 + 13λ2 + 72)

2(λ2 + 16)2(λ4 + 40λ2 + 144)
c311.

Proof. The coefficients pjk are found by equating coefficients in the expres-

sion that determines the center manifold,

huu̇+ hvv̇ = −λh+ c20u
2 + c11uv + c02v

2.

When this expression is written out with homogeneous terms in h collected

the assertion that pjk = 0 if j + k is odd follows by induction and Lemma

5.5.
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The first three coefficients listed in the present lemma can be found man-

ually, but the computer algebra system Mathematica was used for the re-

maining ones. �

Theorem 3.2. Let X denote the vector field determined on R3 by the Moon-

Rand system (1.1) with polynomial f . Define the discriminant quantities

W1 = 2c20 − 2c02 − λc11
W2 = −λ(2c20 − λc11)(4c20 − λc11)

W3 = −λc202c11

For any center manifold W c of (1.1) at the origin of R3, with regard to

X|W c :

a. if W1 6= 0 then the origin is a first order fine focus whose stability is

determined by sgnW1 (i.e., is asymptotically stable iff W1 < 0);

b. if W1 = 0 but W2 6= 0 then the origin is a second order fine focus whose

stability is determined by sgnW2;

c. if W1 = W2 = 0 but W3 6= 0 then the origin is a third order fine focus

whose stability is determined by sgnW3;

d. if W1 = W2 = W3 = 0 then the origin is a center;

e. the origin is a center iff c02 = 2c20 − λc11 = 0.

Proof. We prove part (e) first. The first four nonzero focus quantities were

computed by means of the method described in Section 2, first complexifying

(1.1) and then computing as described earlier. The first two nonzero focus

quantities, for example, are

g220 =
2c20 − 2c02 − c11λ

4 + λ2
,

g330 =
(c20 + c02)

[
c11λ(12 + λ2)− 2c02(−4 + λ2)− 2c20(12 + λ2)

]
4λ(4 + λ2)2

.

All were computed using Mathematica.

Let g̃kk0 denote the numerator of gkk0 and B5 = 〈g̃220, g̃330, g̃440, g̃550〉.
Using the special-purpose computer algebra system Singular ([7], [9]) to

decompose the radical of B5 into a unique intersection of prime ideals, we

obtain the irreducible decomposition of the variety V(B5) as the union of

three components V(Jj), where the ideals Jj are:

J1 = 〈c02,−λc11 + 2c20 − 2c02〉
J2 = 〈c211 + 16c202, 4λc02− c11, λc11 + 4c02, λ

2 + 1,−λc11 + 2c20−2c02〉
J3 = 〈λ2 + 4,−λc11 + 2c20 − 2c02〉.
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Since system (1.1) is real the components V(J2) and V(J3) are irrelevant;

we get the necessary conditions

c02 = 2c20 − λc11 = 0

for the origin to be a center for X|W c.

When these conditions hold it is not too difficult to find the algebraic

surface

F (u, v, w) := c20u
2 − λw = 0

as an invariant surface (with cofactor −λ) for the flow associated to system

(1.1). Since it is tangent to the plane w = 0 at the origin it is in fact a

center manifold for this system. Using this explicit expression for a center

manifold W c we find that the dynamics on W c are given by

u̇ = v

v̇ = −u+
c20
λ
u3.

This system is Hamiltonian with the Hamiltonian function

H(u, v) =
1

2
(u2 + v2) +

c20
4λ
u4

so it admits a center at the origin. Thus the condition in part (e) is also

sufficient, and part (e) is established.

Now we turn to parts (a) through (d), in order. The system X|W c is

(3.4)
u̇ = v

v̇ = −u− uh(u, v)

for h(u, v) =
∑
pjku

jvk whose first few coefficients are given in Lemma 3.1.

We find the first few Lyapunov quantities in the usual way. (The approach to

stability using the Poincaré-Lyapunov quantities based on Lyapunov func-

tions, which can be computationally simpler, could have been used. See the

proof of Theorem 4.1.) Using the notation in Section 3.1 of [13], in polar

coordinates system (3.4) is

(3.5)
ṙ = −r cos θ sin θ h(r cos θ, r sin θ) = −

∑
αjr

j

θ̇ = −1− cos2 θ h(r cos θ, r sin θ) = −1−
∑
βjr

j

where

(3.6)
αj(θ) = cos θ sin θ

(∑
k+`=j−1pk` cosk θ sin` θ

)
, j ≥ 3

βj(θ) = cos2 θ
(∑

k+`=jpk` cosk θ sin` θ
)
, j ≥ 2.
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Since pk` = 0 when k + ` is odd, α2n = β2n+1 = 0. Then

(3.7)
dr

dθ
=
∑

Rj(θ)r
j

where

R1 = 0 R2 = 0 R3 = α3

R4 = 0 R5 = α5 − α3β2 R6 = 0

R7 = α7 − α5β2 − α3β4 + α3β
2
2 R8 = 0

R9 = α9 − α7β2 + α5β
2
2 − α3β

3
2 − α5β4 + 2α3β2β4 − α3β6

It is important to note that since θ̇ < 0 near 0 (arising from the noncanonical

location of the minus sign in the linear part of (1.1) that gives rise to the

complex eigenvalues; compare with (2.7)), in passing from (3.5) to (3.7) the

direction of time is essentially reversed: as θ increases from 0 to 2π time t

decreases. Therefore the usual polar coordinate procedure for computing the

Lyapunov quantities gives the negatives of the correct values. The negative

of the first Lyapunov quantity, −η1, is w1(2π)−1 and for j ≥ 2 the negative

of the jth Lyapunov quantity, −ηj , is wj(2π), where the wj are the solutions

of the differential equations that arise from

(3.8)
∑

w′j(θ)r
j
0 =

∑
Rj(θ) (w1(θ) r0 + w2(θ) r

2
0 + · · · )j

with initial values

w1(0) = 1, wj(0) = 0 for j > 1.

In particular,

w′1 = R1w1 = 0, w1(0) = 1

yields w1(θ) ≡ 1, so that η1 = 0, and

w′2 = R2w
2
1 = 0, w2(0) = 0

yields w2(θ) ≡ 0, so that η2 = 0. Then

w′3 = R3 = α3, w3(0) = 0

yields

w3(θ) = 1
4p20 + 1

8p11θ −
1
4p20 cos4 θ + 1

4p02 sin4 θ − 1
32p11 sin 4θ

so that

η3 ∼ −p11 ∼ 2c20 − 2c02 − λc11
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where a ∼ b means that a is a positive constant times b. This establishes

point (a).

From (3.8) w′4 = 0 so w4 ≡ 0, hence η4 ≡ 0. It is apparent that w4 = 0 in

turn implies that w′6 = 0 so w6 ≡ 0, hence η6 ≡ 0 (and w4 = w6 = 0 imply

that w′8 = 0 so w8 ≡ 0, hence η8 ≡ 0).

From (3.8)

w′5 = 3R3w1(w
2
2 + w1w3) + 4R4w

3
1w2 +R5w

5
1 = 3R3w3 +R5.

At this point hand computations are practically infeasible and intermediate

results too long to copy here. Proceeding on the assumption that η3 = 0, so

that p11 = 0, which we implement by the substitution c02 = c20 − (λ/2)c11,

we use the symbolic manipulator Mathematica to compute w5 and obtain

η5 ∼ p31 + p13, which by (3.2) gives

η5 = − (2c20 − λc11)(4c20 − λc11)
2λ(4 + λ2)

which has the sign of W2. Since η4 ≡ 0 (or appealing to the fact that the

first non-zero Lyapunov quantity has odd index) this establishes part (b).

If η5 = 0 because 2c20 − λc11 = 0 then η3 = 0 implies that c02 = 0 as

well, and by part (e) of the theorem the origin is a center. The factor c202
in W3 makes W3 = 0 in this case. We proceed on the assumption that

η5 = 0 but 2c20 − λc11 6= 0. Thus 4c20 − λc11 = 0 and (from η3 = 0)

c02 = c20 − (λ/2)c11 6= 0. From (3.8) and what we already know we have

w′7 = 3R3(w
2
3 + w5) + 4R4w4 + 5R5w3 +R7

which with the initial condition gives

η7 = w7(2π) ∼ −5p15 − 5p51 − 3p33 + p02p31 + 5p20p31 ∼ −λc311.

Since c02 6= 0, η7 is zero iff W3 = −λc202c11 is zero, and has the same sign as

W3 when they are nonzero. Since η6 ≡ 0 this establishes (c). (In fact, in the

case at hand η7 6= 0, for since we have assumed W1 = W2 = 0, c11 = 0 would

ultimately imply that c02 = 0. The reader is reminded that what is shown

in the last display is not η7, but η7 under certain restrictive conditions.)

Recalling the comment above that if η5 vanishes because 2c20 − λc11 = 0

then W3 = 0 is forced, point (d) holds as well. �

Figure 1 shows, for any fixed value of λ, the decomposition of the param-

eter space according to the stability of the origin of the induced system on

any center manifold. Off the plane Π : 2c20−λc11−2c02 = 0 (which is never
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the plane c02 = 0) the origin is a first order fine focus. Within Π but off the

lines

` : Π ∩ {(c20, c11, c02) : 4c20 − λc11 = 0}

µ : Π ∩ {(c20, c11, c02) : 2c20 − λc11 = 0}

(which are always in general position) the origin is a second order fine focus.

Along the line ` but away from its intersection with the line µ the origin is

a third order fine focus. The center variety is the line µ.

Figure 1. Decomposition of the parameter space of system
(1.1) according to stability of the origin.

Remark 3.3. We note the interesting fact that although the parameter

λ appears only in as the rate of linear expansion or contraction normal to

the center eigenspace, when the focus in W c is of order two or greater its

asymptotic stability depends on the sign of λ. Theorem 4.1 shows that the

same fact holds for the case of rational feedback.

Remark 3.4. In the proof of the theorem we saw that if system (1.1) has a

center on a center manifold at the origin then the unique center manifold is

an algebraic surface. We will see the same result for rational feedback, and

suspect that it is the case in general. See Conjecture 5.3 and Proposition

5.4.
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Since the first non-zero Lyapunov quantity is known under every circum-

stance, bifurcation of limit cycles from the origin can also be discussed.

Uncertainty as to the analyticity of the center manifold prevents us from

being able to assert sharpness of the bounds, hence the cyclicity of the sin-

gularity, in the case of a center. On the other hand, there always exists a

local center manifold of arbitrarily high smoothness ([14]), and the flows on

any two Ck+1 center manifolds are Ck conjugate on a neighborhood of the

origin ([3]) so that all contain the same number of small cycles. Thus the

statements in the following theorem do not depend on the center manifold

selected, if there is more than one. We also remark that, even though cen-

ter manifolds may not be analytic, if there are infinitely many cycles in a

neighborhood of the origin then the origin is a center ([1]).

Theorem 3.5. For family (1.1) with polynomial f restrict attention to the

flow on a center manifold at the origin.

a. A first order fine focus at the origin has cyclicity zero: no limit cycles

bifurcate from it under small perturbation within (1.1).

b. For k = 2 and k = 3, a fine focus of order k at the origin has cyclicity

k − 1: up to k − 1 limit cycles can be made to bifurcate under small

perturbation within the family (1.1).

c. In the case c20 = c11 = c02 = 0 the center on the center manifold w = 0

can be made to bifurcate two limit cycles. Otherwise the center on the

center manifold can be made to bifurcate one limit cycle.

Proof. A first order fine focus at the origin has cyclicity zero because η1 is

always zero.

An upper bound of k on the cyclicity of a kth order fine focus can be

obtained directly from an application of the finitely differentiable version of

the Weierstrass-Malgrange Preparation Theorem ([11]). To obtain a sharp

bound we imitate the argument in the proof of Proposition 6.1.2 of [13] (see

also [2]).

To abbreviate the notation write ξ = (λ, c20, c11, c02) ∈ R4 for the param-

eters. To obtain an upper bound on the number of limit cycles that can

bifurcate from a fine focus of order two or three let us suppose to be specific

that for some ξ∗ the origin is a fine focus of order three and consider the

system restricted to a center manifold that is Cr for r ≥ 8. Fix a neighbor-

hood N of ξ∗ on which η7 = η7(ξ) 6= 0 and an interval I = [0, ε) so that the

difference map D = D(r, ξ) is defined on I × N . Then since as seen in the
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proof of Theorem 3.2 η4 and η6 are identically zero

D(r, ξ) = η3(ξ)r
3 + η5(ξ)r

5 + η7(ξ)r
7 +R(r, ξ)

where R is at least C7 and R(j)(0, ξ) = 0 for 0 ≤ j ≤ 7.

Divide D by r3 (defined at zero by the limit) and differentiate with respect

to r to obtain the function

D1(r, ξ) = 2η5(ξ)r + 4η7(ξ)r
3 +R1(r, ξ)

where R1 is at least C3 and R
(j)
1 (0, ξ) = 0 for 0 ≤ j ≤ 3. Either D and D1

both have infinitely many zeros on (0, ε) or D has at most one more zero on

(0, ε) than D does.

Divide D1 by r (defined at zero by the limit) and differentiate with respect

to r to obtain the function

D2(r, ξ) = 8η7(ξ)r +R2(r, ξ)

where R2 is at least C1 and R
(j)
2 (0, ξ) = 0 for 0 ≤ j ≤ 1. Either D1 and D2

both have infinitely many zeros on (0, ε) or D1 has at most one more zero

on (0, ε) than D2 does.

Divide D2 by r (defined at zero by the limit) to obtain the function

D3(r, ξ) = 8η7(ξ) +R3(r, ξ)

where R3 is continuous and R3(0, ξ) = 0. For ξ in a neighborhood N ′ ⊂ N

of ξ∗ and an ε′ ∈ (0, ε), D3(r, ξ) has no zeros in (0, ε′). Thus D(r, ξ) has at

most two zeros in (0, ε′) for all ξ ∈ N ′.
In the same way a second order fine focus can be made to bifurcate at

most one limit cycle.

The bounds are sharp because, as shown in the proof of Theorem 3.2, the

Lyapunov quantities η3, η5, and η7 can be adjusted independently. To be

specific, suppose the origin is a third order fine focus, so that ηj = 0 for

1 ≤ j ≤ 6 but η7 6= 0. We must have 4c20−λc11 = 0 but 2c20−λc11 6= 0 else

by η3 = 0, c02 = 0 is forced and the singularity is a center. Moving c11 by an

arbitrarily small amount in the correct direction, leaving c20 unchanged, but

maintaining c02 = c20 − λc11/2 makes the sign of η5 change to the opposite

sign of that of η7 but maintains η3 = 0. A zero of the difference map on

a section of the flow near the origin is produced, corresponding to a limit

cycle. Then c20 or c02 can be moved by an arbitrarily small amount to create

a second limit cycle. A single limit cycle can be produced similarly from a

second order fine focus.
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If the origin is a center, then unless c20 = c11 = c02 = 0 there is no

third order fine focus near it and the same technique produces one limit

cycle. When c20 = c11 = c02 = 0 one can first make an arbitrarily small

perturbation to a third order fine focus, and from there produce two limit

cycles.

�

4. The Rational Moon-Rand System

In this section we perform the same analysis for the rational Moon-Rand

system that was done for the polynomial Moon-Rand system in Section 3.

We shall consider the following slight generalization of the rational Moon-

Rand system (1.1):

(4.1)

u̇ = v

v̇ = −u− uw

ẇ = −λw + f(u, v), f(u, v) =
c20u

2 + c11uv + c02v
2

1 + ηu2

where c20, c11, c02, λ, and η are real parameters. Of course for η = 0 this is

just the polynomial system.

Theorem 4.1. Let X denote the vector field determined on R3 by the ratio-

nal Moon-Rand system (4.1). Define the discriminant quantities

W1 = 2c20 − 2c02 − λc11
W2 = −λ(4c20 − λc11)(2c20 − λc11 + 2ηλ)

W3 = −λc11(c11 − 4η)[(λ2 + 10)c11 + 64η + 4λ2η](2c20 − λc11 + 2ηλ)2

W4 = λη2c211(c11 − 4η)2(2c20 − λc11 + 2ηλ)2

For any center manifold W c of (4.1) at the origin of R3, with regard to

X|W c :

a. if W1 6= 0 then the origin is a first order fine focus whose stability is

determined by sgnW1 (i.e., is asymptotically stable iff W1 < 0);

b. if W1 = 0 but W2 6= 0 then the origin is a second order fine focus whose

stability is determined by sgnW2;

c. if W1 = W2 = 0 but W3 6= 0 then the origin is a third order fine focus

whose stability is determined by sgnW3;

d. if W1 = W2 = W3 = 0 but W4 6= 0 then the origin is a fourth order fine

focus whose stability is determined by sgnW4;



16 ADAM MAHDI, VALERY G. ROMANOVSKI, AND DOUGLAS S. SHAFER

e. if W1 = W2 = W3 = W4 = 0 then the origin is a center;

f. the origin is a center iff c02 + λη = 2c20 − λc11 + 2λη = 0 or c20 = c11 =

c02 = 0.

Proof. Addressing point (f) first, by a time rescaling we replace (4.1) with

the polynomial system

(4.2)

u̇ = v(1 + ηu2)

v̇ = (−u− uw)(1 + ηu2)

ẇ = −λw(1 + ηu2) + c20u
2 + c11uv + c02v

2

which has the same oriented trajectories as (4.1). The first four nonzero

focus quantities were computed by means of the method described in Section

2, first complexifying (4.2) and then computing as described earlier. The

first two nonzero focus quantities, for example, are

g220 =
2c20 − 2c02 − λc11

4 + λ2

g330 =
(c20 + c02)

[
c11λ(12 + λ2)− 2c02(−4 + λ2)− 2c20(12 + λ2)− 4λ(4 + λ2)η

]
4λ(4 + λ2)2

Let g̃kk0 denote the numerator of gkk0 and B5 = 〈g̃220, g̃330, g̃440, g̃550〉. Us-

ing the special-purpose computer algebra system Singular to decompose the

radical of B5 into a unique intersection of prime ideals, we obtain the ir-

reducible decomposition of V(B5) as the union of five components V(Jj),

where the ideals Jj are:

J1 = 〈c02 + λη, 2c20 − λc11 − 2c02〉
J2 = 〈λ2 + 4, 2c20 − λc11 − 2c02〉
J3 = 〈9λ2 + 4, . . . , 2c20 − λc11 − 2c02〉
J4 = 〈λ2 + 1, . . . , 2c20 − λc11 − 2c02〉
J5 = 〈c11, c02, 2c20 − λc11 − 2c02〉 .

Since system (1.1) is real, we get the necessary condition

c02 + λη = 2c20 − λc11 + 2λη = 0 or c20 = c11 = c02 = 0

for the origin to be a center for X|W c.

When there are no nonlinearities in ẇ there is a linear center on the unique

center manifold the (u, v)-plane. When the conditions c02 = 2c20 − λc11 =

−2λη hold we look for an invariant algebraic surface F (u, v, w) = 0 tangent

to the (u, v)-plane to play the role of the center manifold, in imitation of

the case of polynomial feedback. That is, we look for polynomials F (u, v, w)
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and K(u, v, w) that satisfy (2.6) where X is the polynomial vector field that

corresponds to (4.2) and K is now a polynomial of degree up to three.

Equation (2.6) is a polynomial equation in many variables that we were

able to solve with Singular, but only over the finite field of characteristic

32003 and with the specific choices λ = 1, η = 4, and c11 = 3. This solution

gave us enough of an indication as to what might be true in the general case

that we were able to correctly predict the form of F and K and obtain the

general algebraic invariant surface c11u
2 − 2ηu2 − 2ηv2 − 2w − 2ηu2w = 0.

The flow of (4.2) restricted to this center manifold is

u̇ = (1 + ηu2)v, v̇ = −u− c11
2
u3 + ηuv2.

This system is not Hamiltonian but is invariant under the involution u →
−u, v → v, t → −t, hence is time-reversible, so the origin is a center. This

proves part (f).

To prove the other parts of the theorem, instead of computing the Lya-

punov quantities for X|W c as we did in the proof of Theorem 3.2 we compute

the Poincaré-Lyapunov quantities. These computations are much more ef-

ficient, although the former approach made it immediately apparent that

η2k ≡ 0 for 1 ≤ k ≤ 4, thereby simplifying the proof of Theorem 3.5 some-

what. The computations are even more efficient if we first complexify X|W c,

for then the computation is precisely that of the focus quantities of the two-

dimensional system, which when expressed in the original real parameters

give the Poincaré-Lyapunov quantities (compare (2.5), and recall ([13], Re-

mark 3.4.7) that when a system on C2 is the complexification of a real system

the focus quantities are real).

In actually implementing these ideas we begin with the observation that

by the same reasoning as given in the proof of Lemma 3.1 for the polynomial

Moon-Rand system, for the rational Moon-Rand system it is still true that

pjk = 0 when j + k is odd. We compute the first four focus quantities for

X|W c,

u̇ = v

v̇ = −u− u
∑

2≤j+k≤8
j+k even

pjku
jvk

but without computing the coefficients pjk in the expansion of the center

manifold in terms of the original parameters just yet.
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The first focus quantity g22 is the Poincaré-Lyapunov quantity

L4 = −1

4
p11.

When it is zero the second focus quantity g44 is the Poincaré-Lyapunov

quantity

L6 = −1

8
(p31 + p13).

When the first two focus quantities are zero, implemented by setting p13 =

−p31, the third is the Poincaré-Lyapunov quantity

L8 = − 1

64
(5p51 + 3p33 + 5p15 − p31(5p20 + p02)).

When the first three focus quantities are zero, implemented by setting p33 =

(p31(5p20+p02)−5p51−5p15)/3, the fourth is the Poincaré-Lyapunov quantity

L10 = − 1

128
(7p17+5p15p20+p04p31+7p220p31−p22p31+3p35−7p31p40−7p20p51

− p02(−3p15 − p20p31 + p51) + 3p53 + 7p71).

Using an initial segment of the geometric series to express the nonlin-

earities in the right hand side of the ẇ equation in powers of u and w, we

now express the pjk in terms of λ, η, c20, c11, and c02. By straightforward

computation we obtain

L4 =
2c20 − 2c02 − λc11

4(4 + λ2)
,

which has the sign of W1. Since η2k−1 ∼ L2k, this establishes part (a).

When L4 = 0, implemented by the substitution c02 = c20 − λc11/2, then

L6 = − (4c20 − λc11)(2c20 − λc11 + 2λη)

16λ(4 + λ2)
(when L4 = 0)

which has the sign of W2, so that when W2 6= 0 the origin is a second

order fine focus whose asymptotic stability is indicated by the sign of W2,

establishing part (b). If L6 is zero because the factor 2c20 − λc11 + 2λη

vanishes, then Wj = 0 for 1 ≤ j ≤ 4 and L4 = 0 implies that c02 = −λη so

that by part (f) the origin is a center.

When L4 = L6 = 0 because 4c20 − λc11 = 0 then

L8 = − λc11(c11 − 4η)((λ2 + 10)c11 + 64η + 4λ2η)

512(4 + λ2)(16 + λ2)
(when L4 = L6 = 0)
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which has the sign of W3, and part (c) follows. If L8 is zero because c11(c11−
4η) = 0 then Wj = 0 for 1 ≤ j ≤ 4 and it is easy to check that by part (f)

the origin is a center.

When L4 = L6 = L8 = 0 because (λ2 + 10)c11 + 64η + 4λ2η = 0 then

L10 =
5λη4(13 + λ2)(16 + λ2)

8(10 + λ2)4
(when L4 = L6 = L8 = 0)

which has the sign of W4, and part (d) follows. L8 = 0 if and only if η = 0,

in which case c20 = c11 = c02 = 0 and the origin is a center. Together with

the remarks just above concerning center cases part (e) follows. �

Figure 2. Decomposition of the hyperplane W1 = 0 (or
L4 = 0) in the (c20, c11, c02, η)-parameter space according to
stability of the origin.

Figure 2 shows, for any fixed value of λ, the decomposition of the 3-

dimensional hyperplaneW1 = 0 (or L4 = 0) in the 4-dimensional (c20, c11, c02, η)-

parameter space according to the stability of the origin of the induced system

on any center manifold. Π1 is the 2-dimensional plane in R4 defined by

2c20 − λc11 − 2c02 = 0 (L4 = 0)

4c20 − λc11 = 0 (L6 = 0 because the first factor is zero)
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Π2 is the 2-dimensional plane in R4 defined by

2c20 − λc11 − 2c02 = 0 (L4 = 0)

2c20 − λc11 + 2λη = 0 (L6 = 0 because the second factor is zero)

It is one of the two irreducible components of the center variety in R4 for

family (4.1). The line ` is the line in R4 defined by

2c20 − λc11 − 2c02 = 0 (L4 = 0)

4c20 − λc11 = 0 (L6 = 0 because the first factor is zero)

(λ2 + 10)c11 = −4(16 + λ2) (L8 = 0 because the final factor is zero)

which can be expressed parametrically by

c20 = −16 + λ2

10 + λ2
λη, c11 = −4

16 + λ2

10 + λ2
η, c02 =

16 + λ2

10 + λ2
λη, η ∈ R.

The line µ1 is the line in R4 defined by

2c20 − λc11 − 2c02 = 0 (L4 = 0)

4c20 − λc11− = 0 (L6 = 0 because the first factor is zero)

c11 = 0 (L8 = 0 because c11 = 0)

which can be expressed parametrically by

c20 = 0, c11 = 0, c02 = 0, η ∈ R

hence is in fact the η-axis. It is the other of the two irreducible components

of the center variety in R4 for family (4.1).

The line µ2 = Π1 ∩ Π2 (which corresponds to L8 = 0 because c11 = 4η)

can be expressed parametrically by

c20 = −λη, c11 = 4η, c02 = λη, η ∈ R.

The point O is the origin of R4.

Outside the 3-space pictured the origin is a first order fine focus.

Inside the 3-space pictured but off Π1 ∪ Π2 (which are always in general

position) the origin is a second order fine focus.

In Π1 but off `∪µ1 ∪µ2 (which are always in general position) the origin

is a third order fine focus.

In ` but not at O the origin is a fourth order fine focus.

To repeat, the center variety is Π2 ∪ µ1.
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Theorem 4.2. Restrict attention to the flow of family (4.1) on a center

manifold at the origin.

a. A first order fine focus at the origin has cyclicity zero: no limit cycles

bifurcate from it under small perturbation within (4.1).

b. For 2 ≤ k ≤ 4, a fine focus of order k at the origin has cyclicity k−1: up

to to k− 1 limit cycles can be made to bifurcate under small perturbation

within the family (4.1).

c. Within the family (4.1):

i. A center for which 4c20−λc11 6= 0 can be made to bifurcate one limit

cycle. (This is Π2 \Π1 in Figure 2.)

ii. A center for which c20 = λη, c11 = 4η, and c02 = −λη but η 6= 0 can

be made to bifurcate two limit cycles. (This is µ2 \O in Figure 2.)

iii. A center for which c20 = c11 = c02 = 0 but η 6= 0 can be made to

bifurcate two limit cycles. (This is µ1 \O in Figure 2.)

iv. A center for which c20 = c11 = c02 = η = 0 (the point O in Figure 2)

can be made to bifurcate three limit cycles.

Proof. A computation of the Lyapunov quantities for the rational Moon-

Rand system as was done for the polynomial Moon-Rand system shows that

it is still true that η2, η4, and η8 are identically zero, and that V2k ∼ η2k−1

for 2 ≤ k ≤ 5. Thus the proof follows the same line of reasoning as the

proof of Theorem 3.5, the analogous result in the polynomial feedback case,

taking the same care in the adjustment of the Lyapunov quantities so as to

avoid producing a center. �

Remark 4.3. The possibility of creating several limit cycles from the origin

means that there exist parameter choices for which, if the parameter values

are physically meaningful, the physical system has two asymptotic limits. By

bifurcating two limit cycles from a center or a nearby asymptotically stable

third order fine focus the polynomial Moon-Rand system can be made to

have a coexisting stable equilibrium and stable limit cycle. (Existence of a

single stable cycle (and unstable equilibrium) was already observed in the

original paper [12] of Moon and Rand by a numerical approximation of the

flow.) Although three limit cycles can be made to bifurcate in the rational

feedback case, by the mechanism of the proof of the theorem only one can

be asymptotically stable, since a fourth order fine focus must be unstable

(L10 > 0). After the bifurcation the omega limit sets are a stable equilibrium

and a stable periodic oscillation.



22 ADAM MAHDI, VALERY G. ROMANOVSKI, AND DOUGLAS S. SHAFER

5. The Generalized Polynomial Moon-Rand System

Consider the following generalization of the polynomial Moon-Rand sys-

tem (1.1),

(5.1)

u̇ = v

v̇ = −u− uw

ẇ = −λw + f(u, v), f(u, v) =
∑
j+k=n

cjku
jvk

where λ is a nonzero real number. In this section we derive sufficient con-

ditions for the origin to be a center for the flow restricted to a local center

manifold, and sufficient conditions for the origin to be asymptotically stable.

We start with the center conditions.

5.1. Center conditions. We begin with a simple but important special

case.

Proposition 5.1. For the system

u̇ = v

v̇ = −u− uw

ẇ = −λw + cun +
n

λ
cun−1v,

the local center manifold W c
loc is unique and is algebraic (in fact is given by

the equation w = (c/λ)un), and the origin is a center for X|W c
loc.

Proof. The surface F(u, v, w) = λw− cun = 0 is invariant, since XF = −λF
(i.e., the cofactor is −λ). Since it is tangent to the center eigenspace, it is a

local center manifold. On the local center manifold the system reduces to

u̇ = v

v̇ = −u− c

λ
un+1,

which is Hamiltonian with Hamiltonian function

H(u, v) = 1
2(u2 + v2) +

c

λ(n+ 2)
un+2.

Uniqueness of the center manifold is true because it contains a center ([4],

[14]). �

In the following theorem we characterize the existence of a center on the

local center manifold when f(u, v) is homogeneous cubic in the special case

that λ = 1 (a restriction dictated by computational considerations).



MOON-RAND SYSTEMS 23

Theorem 5.2. System (5.1) with λ = 1 and

f(u, v) = c30u
3 + c21u

2v + c12uv
2 + c03v

3

admits a center on the local center manifold at the origin if and only if

c12 = c03 = 3c30−c21 = 0. When it has a center at the origin the local center

manifold is unique and algebraic, and can be written w = ϕ(u, v) = c30u
3.

Proof. The first four nonzero focus quantities are gjj0 for j = 3, 6, 9, 12. For

example g330 is

g330 =
[
− 294c230 + 35c30c21 + 21c221 − 102c30c12 + 35c21c12 − 4c212 − 45c30c03

+ 88c21c03 + 55c12c03 + 51c203

]
/800.

Because of their size we do not present the others, but they can be easily

computed using the method of Section 2.

A decomposition over a field of characteristic zero of the radical of the

ideal B12 = 〈gjj0 : j = 3, 6, 9, 12〉 into an intersection of prime ideals proved

to be computationally infeasible, even using the computer algebra system

Singular, which is one of the most efficient tools for this kind of computation.

The decomposition is possible over the finite field of characteristic 32003,

and is:

J1 = 〈c03, c12, c30 − 10668c21〉,
J2 = 〈c21 + 3c03, c30 + 10668c12, c

2
12 + 9c203〉.

Since 10668 ≡ 1/3 mod 32003 this is

J̃1 = 〈c03, c12, c30 − (1/3)c21〉,
J̃2 = 〈c21 + 3c03, c30 + (1/3)c12, c

2
12 + 9c203〉.

Although conditions obtained using modular arithmetic do not necessarily

provide accurate necessary conditions, this computation suggests that in

analogy with the quadratic case a center is possible only if c03 = c12 = 0.

With this hint, we can verify the necessity of c03 = 0 as follows. If c03 6= 0

then a linear change of coordinates of the form u = U , v = V , w = γW

exists that preserves the form of (5.1) but with c03 replaced by 1 or −1. A

Gröbner basis of the ideal B12 in the special case that c03 = ±1 is

{9 + c212, 3 + c21, 3c30 + c12}.

Since we are concerned with real parameter values V(B12) = ∅, so there is

no center on the center manifold. In a similar fashion we show that c12 = 0
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is necessary for a center. A Gröbner basis of B12 when c12 = c03 = 0 is

{(3c30 − c21)c321, (3c30 − c21)(14c30 + 3c21)},

yielding the conditions of the theorem.

Sufficiency follows directly from Proposition 5.1 with λ = 1 and n = 3,

as do the remaining assertions of the theorem. �

Conjecture 5.3. System (5.1) with f of the form

f(u, v) = cn0u
n + cn−1,1u

n−1v + · · ·+ c0nv
n.

admits a center on the local center manifold if and only if f(u, v) = cun +
c
λnu

n−1v.

Additional evidence for Conjecture 5.3 is given by the following proposi-

tion.

Proposition 5.4. System (5.1) with f(u, v) =
∑

j+k=n cjku
jvk has an al-

gebraic local center manifold W c
loc expressible in the form w = ϕ(u, v) =∑N

j+k=2 djku
jvk if and only if f(u, v) = cun + c

λnu
n−1v. In such a case

ϕ(u, v) = c
λu

n and the singularity at the origin of X|W c
loc is a center.

The following lemma will be needed in the proof and for results in the

next subsection on aymptotic stability of system (5.1).

Lemma 5.5. Let Mn denote the (n+ 1)× (n+ 1) tridiagonal matrix Mn =

[ajk] such that aj,j+1 = j, aj,j = −λ, and aj+1,j = j− (n+ 1) for 1 ≤ j ≤ n,

an+1,n+1 = −λ, and aj,k = 0 for all other pairs (j, k). (M2 and M3 are

displayed in the proof of the proposition.) Then Mn is invertible for all

nonzero real λ.

Proof of the lemma. The determinant of Mn is a polynomial of degree n+ 1

in λ.

We note first that if λ0 is a root of detMn then so is −λ0. For let M−n
denote the matrix obtained from Mn by negating each occurrence of λ. Then

Mn is obtained from M−n by the following sequence of row operations, each

of which either negates the determinant or leaves it unchanged: negate every

row, interchange the first and last rows, the second and next to last rows,

and so on, and interchange pairs of columns similarly. This implies that

detMn is a polynomial in λ2 (if n is odd) or is λ times such a polynomial

(if n is even).
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Secondly, we note that every coefficient in detMn has the same sign. This

is a consequence of the following compound statement that is easily proved

by induction, expanding the relevant determinants along the first row:

Suppose A is an (n+1)× (n+1) tridiagonal matrix such that every element

on the superdiagonal is nonnegative, every element on the main diagonal

is −λ, and every element on the subdiagonal is nonpositive; suppose B is

an (n + 1) × (n + 1) tridiagonal matrix with the same properties, except

that the (1, 1) entry of B is a nonpositive number. Then the sign of every

nonzero coefficient in either of detA and detB, regarded as polynomials in

λ, is positive if n is odd and is negative if n is even.

The two facts together imply that detMn is a polynomial in λ2 (if n is

odd) or is λ times such a polynomial (if n is even), every nonzero coefficient

of which has the same sign. By Descartes’ Rule of Signs it has no real roots

other than possibly zero. �

Proof of the proposition. The local center manifold at the origin can always

be realized as w = ϕ(u, v) on a neighborhood of the origin in the (u, v)-

plane. Inserting the expression ϕ(u, v) =
∑N

j+k=2 djku
jvk into the defining

equation

(5.2) vϕu(u, v)− (u+ uϕ(u, v))ϕv(u, v) = −λϕ(u, v) + f(u, v)

for the local center manifold and collecting terms yields

(5.3)
N∑

j+k=2

[(k + 1)dj−1,k+1 − (j + 1)dj+1,k−1 − λdjk]ujvk

+

(
N∑

j+k=2

djku
jvk

)(
N∑

r+s=2

(s+ 1)dr−1,s+1u
rvs

)
= −

∑
j+k=n

cjku
jvk

where it is understood that dα,β is replaced by zero if α < 0 or if β < 0.

We first show that ϕ contains no terms of order less than n, hence that

N ≥ n. This is automatic if n = 2. If n > 2 the quadratic terms in (5.3)

read −λ 1 0

−2 −λ 2

0 −1 −λ


d20d11

d02

 =

0

0

0


which by Lemma 5.5 implies that djk = 0 for j + k = 2.
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If n > 3 the cubic terms in (5.3) read
−λ 1 0 0

−3 −λ 2 0

0 −2 −λ 3

0 0 −1 −λ



d30

d21

d12

d03

 =


0

0

0

0


which by Lemma 5.5 implies that djk = 0 for j + k = 3.

Successively considering terms of order m, 4 ≤ m ≤ n − 1, in (5.3), the

product on the left hand side of (5.3) does not contribute because by the

previous steps each factor begins with terms of order at least m. Thus the

terms of order m in (5.3) are

Mn(dm0, dm−1,1, . . . , d0m)T = (0, . . . , 0)T

where Mn is the matrix of Lemma 5.5, which implies that the terms of order

m are absent from ϕ.

Now successively examine terms of order 2N , 2N − 1, and so on in (5.3).

The terms of order 2N read( ∑
j+k=N

djku
jvk

)( ∑
r+s=N

(s+ 1)dr−1,s+1u
rvs

)
= 0.

Since the left factor in the product is not zero, the other is, implying that

dN−1,1 = dN−2,2 = · · · = d0,N = 0

and the Nth order terms in ϕ reduce to dN0u
N .

The terms of order 2N − 1 in (5.3) read

(5.4)

( ∑
j+k=N−1

djku
jvk

)( ∑
r+s=N

(s+ 1)dr−1,s+1u
rvs

)

+

( ∑
j+k=N

djku
jvk

)( ∑
r+s=N−1

(s+ 1)dr−1,s+1u
rvs

)
= 0.

But in the previous step it was shown that djk = 0 if j + k = N and j < N

so (5.4) reduces to

dN0u
N

∑
r+s=N−1

(s+ 1)dr−1,s+1u
rvs = 0.

Since dN0 6= 0,

dN−2,1 = dN−3,2 = · · · = d0,N−1 = 0

and the (N − 1)st order terms in ϕ reduce to dN−1,0u
N−1.



MOON-RAND SYSTEMS 27

For sufficiently small γ ∈ N a similar argument applies to terms of order

2N − γ in (5.3), for which the analogue of (5.4) is a (γ + 1)-fold sum

(5.5)

( ∑
j+k=N−γ

djku
jvk

)( ∑
r+s=N

(s+ 1)dr−1,s+1u
rvs

)
+ · · ·

+

( ∑
j+k=N

djku
jvk

)( ∑
r+s=N−γ

(s+ 1)dr−1,s+1u
rvs

)
equal to zero, and shows that the terms of order N − γ in ϕ reduce to

dN−γ,0u
N−γ . The argument is valid for all γ for which (i) 2N − γ ≥ N + 1,

so that the terms of order 2N − γ in the right hand side of (5.3) are zero

(the first term on the left in (5.3) does not contribute, nor does the term on

the right), and (ii) N − γ ≥ n, so that each term in each product in (5.5)

appears initially. The binding condition is that N − γ ≥ n, or γ ≤ N − n.

For γ = N − n we have the conclusion that terms of order n in ϕ reduce to

dn0u
n.

The argument so far shows that ϕ must have the form

ϕ(u, v) = dn0u
n + dn+1,0u

n+1 + · · ·+ dN0u
N .

The local center manifold condition (5.2) then reads

(5.6)∑
j+k=n

cjku
jvk−λ(dn0u

n+· · ·+dN0u
N )−v(ndn0u

n−1+· · ·+NdN0u
N−1) = 0.

The terms of order other than n that contain v must be absent from the

rightmost term, hence dj0 is zero unless j = n, and (5.6) reduces to∑
j+k=n

cjku
jvk − λdn0un − ndn0un−1v = 0,

which holds if and only if

cn0 = λdn0, cn−1,1 = ndn0, cjk = 0 otherwise.

In this case by Proposition 5.1 there is a center on the center manifold,

which is given by w = ϕ(u, v) = dn0u
n. �
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5.2. Asymptotic stability. For the results of this subsection we will treat

a slightly more general family

(5.7)

u̇ = v

v̇ = −u− uw

ẇ = −λw + f(u, v), f(u, v) =
∑
j+k=n

cjku
jvk + · · ·

where f is sufficiently smooth, namely, Cn+1, and λ is a nonzero real number.

We begin with a lemma concerning any center manifold.

Lemma 5.6. Let W c be any Cn+1 center manifold for system (5.7) at the

origin, represented by

w = h(u, v) =
n∑

j+k=2

pjku
jvk + · · · .

Then pjk = 0 for j + k ≤ n− 1 and for r ∈ {n, n+ 1}
pr,0

pr−1,1
...

p0,r

 = M−1r


−cr,0
−cr−1,1

...

−c0,r


where Mr is the matrix of Lemma 5.5.

Proof. The defining equation for the local center manifold is

vhu(u, v)− uhv(u, v) + uh(u, v))hv(u, v) + λh(u, v)− f(u, v) = 0.

When the coefficients of the terms of degree two are equated to zero the

summand uhhv makes no contribution, so we obtain the system of equations

(5.8) Mr


pr,0

pr−1,1
...

p0,r

 =


0

0
...

0


with r = 2. Setting the coefficients of terms of degree three equal to zero,

the summand uhhv now begins with terms of order six, hence makes no

contribution, so we obtain the system of equations (5.8) with r = 3. The

pattern continues through order n− 1. At order n the system of equations
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obtained is

(5.9) Mr


pr,0

pr−1,1
...

p0,r

 =


−cr,0
−cr−1,1

...

−c0,r


with r = n. For order n+ 1 we obtain similarly (5.9) with r = n+ 1. �

Theorem 5.7. Let X be vector field associated to system (5.7). Let W c be

any Cn+1 center manifold at the origin. Define the discriminant quantity

W by:

if n is even:

W = −
[(

1
n+1

)
pn−1,1 +

(
1·3

(n+1)(n−1)

)
pn−3,3 +

(
1·3·5

(n+1)(n−1)(n−3)

)
pn−5,5

+ · · ·+
(
1·3···(n−5)(n−3)
(n+1)(n−1)···7·5

)
p3,n−3 +

(
1·3···(n−3)(n−1)
(n+1)(n−1)···5·3

)
p1,n−1

]
if n is odd:

W = −
[(

1
n+2

)
pn,1 +

(
1·3

(n+2)n

)
pn−2,3 +

(
1·3·5

(n+2)n(n−2)

)
pn−4,5

+ · · ·+
(
1·3···(n−4)(n−2)

(n+2)n···7·5

)
p3,n−2 +

(
1·3···(n−2)n
(n+2)n···5·3

)
p1,n

]
where the pjk are the lowest or next to lowest order terms in the expansion

of W c as given by Lemma 5.6. Then the origin is asymptotically stable for

X|W c if W < 0 and is unstable if W > 0.

Proof. In local coordinates X|W c is expressed as

u̇ = v, v̇ = −u−
∑
j+k=n

pjku
j+1vk + · · · .

The quantityW is the first Lyapunov quantity that can possibly be non-zero.

For simplicity of exposition we will terminate all sums at some indeterminate

but sufficiently large number α. For

V (u, v) = 1
2(u2 + v2) +

α∑
r+s=3

vrsu
rvs
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we write

(5.10)

V̇ (u, v) =

[
α∑

r+s=3

rvrsu
r−1vs+1 −

α∑
r+s=3

svrsu
r+1vs−1

]

+

− α∑
j+k=n

pjku
j+1vk+1 −

(
α∑

r+s=3

svrsu
rvs−1

) α∑
j+k=n

pjku
j+1vk+1


=

α∑
m=3

L(−R)(Vm) + Z

where Vm is the degree-m homogeneous part of V and L(−R) is the linear

operator from the (m+ 1)-dimensional vector space Hm of degree-m homo-

geneous polynomials in u and v into itself defined by L(−R)(p) = vpu− upv.
It is well known that if m is odd then L(−R) is a linear isomorphism, while if

m is even it has a one-dimensional kernel spanned by (u2 +v2)m/2, and that

the kernel is a vector space complement to the range of L(−R) ([6, §8.3]). We

choose the ordered basis {um, um−1v, . . . , uvm−1, vm} for Hm, with respect

to which the matrix representative of L(−R) is the matrix Mm of Lemma 5.5

with λ = 0, which we denote by M0
m. The coordinate vector of an element

ξ of Hm will be denoted [ξ]. In particular for even m we write

K = [(u2+v2)m/2] =
[(
k
0

)
0
(
k
1

)
0 · · · 0

(
k
k−1
)

0
(
k
k

)]T
(k = m/2).

Since Z begins with terms of degree n + 2, for the homogeneous terms

of degree m ∈ {3, 4, . . . , n + 1} zeroing the coefficients gives the system of

linear equations

M0
m


vm0

...

v0m

 = 0.

If m is odd the unique solution is the zero vector. There is no advantage in

not choosing the same solution when m is even. We note for future reference

that since n ≥ 2 it is always the case that v30 = v21 = v12 = v03 = 0. In any

event

V̇ (u, v) = L(−R)(Vm) + Zm+
(m+1)
· · ·

where

(5.11)

Zm = −(pm−2,0u
m−1v+pm−3,1u

m−2v2+· · ·+p1,m−3u2vm−2+p0,m−2uv
m−1).
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Suppose m = n + 2 is even. Then there exists Vm ∈ Hm and a constant

Lm (in fact the Lyapunov constant we seek) such that

(5.12) L(−R)(Vm)− Lm(u2 + v2)m/2 = −Zm,

so that

V̇ (u, v) = Lm(u2 + v2)m/2+
(m+1)
· · · .

Writing the matrix M0
m as columns

[
C1 C2 · · · Cm+1

]
, its column space

is span{C1, · · · , Cm}. Since ker(L(−R)) is a vector space complement to

Image{L(−R)} the matrix
[
C1 · · · Cm K

]
is invertible. Letting cj de-

note the vector whose coordinate vector is Cj and r1, . . . , rm constants such

that r1c1 + · · ·+ rmcm = L(−R)(Vm), by (5.12)

[
C1 · · · Cm K

]


r1
...

rm

−Lm

 = [−Zm].

Thus Lm is the last row of [C1 · · · Cm K]−1 times [Zm].

One can verify by inspection that up to rescaling by a positive constant

the last row of [C1 · · · Cm K]−1 is[
1 0 1

m−1 0 1·3
(m−1)(m−3) 0 · · · 0 1·3···(m−5)(m−3)

(m−1)(m−3)···3 0 1·3···(m−3)(m−1)
(m−1)(m−3)···3·1

]
.

Since by (5.11)

[Zm] =
(

0 −pm−2,0 −pm−3,1 · · · p2,m−4 p1,m−3 p0,m−2 0
)T

the result follows for the case n even.

Suppose m = n + 2 is odd. Then there exists Vm ∈ Hm such that

L(−R)(Vm) = −Zm. For this choice of Vm the lowest order terms in V̇ are

order m+ 1 = n+ 3; by (5.10) they are

L(−R)(Vm+1)− (pn+1,0u
n+2v + pn,1u

n+1v2 + · · ·+ p1,m−2u
2vn−1 + p0,n+1uv

n+2)

− (v21u
2 + 2v12uv + 3v03v

2)×

(pn,0u
n+1 + pn−1,1u

nv + · · ·+ p1,n−1u
2vn−1 + p0,nuv

n).

But as noted above vjk = 0 for j + k = 3 so

V̇ = L(−R)(Vm+1) + Zm+1+
(m+1)
· · ·
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for

Zm+1 = −(pm−1,0u
mv+ pm−2,1u

m−1v2 + · · ·+ p1,m−2u
2vm−1 + p0,m−1uv

m).

The discussion of the previous case applies but with m replaced by m+1. �

Remark 5.8. We note the interesting fact that when the lowest order non-

linearities in the ẇ equation in system (5.7) are of odd order then they do

not play a role in the asymptotic stability of the origin for X|W c.
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