
Increased blood pressure variability upon standing up
improves reproducibility of cerebral autoregulation indices

A Mahdi a, D Nikolic b, AA Birch c, MS Olufsen d, RB Panerai e, DM Simpson b, SJ Payne a

a Institute of Biomedical Engineering, Department of Engineering Science,
University of Oxford, Oxford, UK

b Institute of Sound and Vibration Research,
University of Southampton, Southampton, UK

c Department of Medical Physics and Bioengineering,
Southampton General Hospital, Southampton SO16 6YD, UK

d Department of Mathematics,
North Carolina State University, Raleigh, USA

e Department of Cardiovascular Sciences
and NIHR Cardiovascular Biomedical Research Unit,

University of Leicester, Leicester, UK

Abstract

Background: Dynamic cerebral autoregulation, that is the transient response of
cerebral blood flow to changes in arterial blood pressure, is currently assessed us-
ing a variety of different time series methods and data collection protocols. In the
continuing absence of a gold standard for the study of cerebral autoregulation it is
unclear to what extent does the assessment depend on the choice of a computational
method and protocol. Methods: We use continuous measurements of blood pressure
and cerebral blood flow velocity in the middle cerebral artery from the cohorts of 18
normotensive subjects performing sit-to-stand manoeuvre. We estimate cerebral au-
toregulation using a wide variety of black-box approaches (ARI, Mx, Sx, Dx, FIR and
ARX) and compare them in the context of reproducibility and variability. Results: For
all autoregulation indices, considered here, the ICC was greater during the standing
protocol, however, it was significantly greater (Fisher’s Z-test) for Mx (p < 0.03), Sx
(p < 0.003) and Dx (p < 0.03). Conclusions: In the specific case of the sit-to-stand
manoeuvre, measurements taken immediately after standing up greatly improve the
reproducibility of the autoregulation coefficients. This is generally coupled with an
increase of the within-group spread of the estimates.
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1 Introduction

Cerebral autoregulation (CA) refers to the brain’s control mechanisms responsible for

maintaining cerebral blood flow at an appropriate, approximately constant, level despite

changes in arterial blood pressure (ABP) [1]. Lassen [17] was the first to show this phe-

nomenon, by plotting the so-called autoregulation curve combining the measurements from
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different human studies [8]. Other authors have obtained similar results both in animals

[24, 23, 14, 10] and more recently in humans [50, 7].

The application of Doppler ultrasound in obtaining continuous measurements of cere-

bral blood flow velocity (CBFV) in the middle cerebral artery (MCA) has allowed the

study of cerebral blood flow noninvasively (under the assumption that the vessel diam-

eter remains constant). This has stimulated the development of quantitative methods

for CA assessment. In particular, it has allowed the study of dynamic aspects of CA by

considering the adaptation of CBFV in response to ABP change.

Having fast, reliable and noninvasive autoregulation assessment techniques is of great

importance because of the link between CA impairment and many clinical disorders. For

example, poor CA assessment has been demonstrated in stroke [9], subarachnoid hemor-

rhage [12] and head injury [6]. Other studies have also pointed to a potential link between

impaired autoregulation and syncope or cerebral microvascular disease [31].

Over the years many different mathematical methods have been developed in order

to quantify autoregulation. Common approaches include transfer function analysis (TFA)

[5], autoregulation index (ARI) [52], parametric time series models such as FIR [39] and

ARX [21, 22], the correlation indices Mx, Sx and Dx [43, 45], neural networks [34]; wavelet

synchronization analysis [18, 42] and other modelling techniques [53, 54, 41, 25]. Experi-

mental protocols have been designed that focus on spontaneously occurring variability in

ABP-CBFV signals and those that induce changes in ABP using different manoeuvres.

The latter include lower body negative pressure [3], thigh-cuffs [26], controlled breathing

[37], cyclic leg raising [11], and sit-to-stand [19] maneuvers. One aspect that has been

noted is that increased variability of blood pressure leads to more robust estimates of

autoregulation (see [48, 20]).

The vast majority of studies use only one or a few measures of autoregulation for a

given data collection protocol. In the continuing absence of a gold standard the choice of

a computational method to assess dynamic CA is not obvious. In practice, the choice is

often ad-hoc or based on the authors’ preference in using a specific technique. Despite the

fast growing body of literature on CA it remains unclear what the difference is between

various quantitative methods and their dependence on the data collection protocols.

In Angarita-Jaimes et al. [2] the authors explored a number of different autoregulation

parameters and compared them in normocapnia and hypercapnia (which is known to im-

pair autoregulation) using Monte-Carlo simulations to assess within-subject measurement

errors. Lower between- and within-subject variability of the parameters were considered

as criteria for identifying an improved metric of CA. In another recent study Nikolic et

al. [30] compared the reproducibility of CA measures based on the phase and gain of FIR

and IIR filters of many different orders (0-20) for the baseline and thigh-cuff manoeuvres.

The current paper extends the previous works by considering the short-term repeatabil-

ity of autoregulation measures considering repeatability within the same recording session,

and comparing rest with standing-up, as a maneuver that increases blood pressure vari-
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ations. We use six types of black-box approaches (ARI, Mx, Sx, Dx, FIR and ARX) for

estimating autoregulaton in the context of reproducibility and variability for two differ-

ent protocols: baseline (sitting) and orthostatic stress (sit-to-stand manoeuvre). Although

some authors have studied various aspects of autoregulation during sit-to-stand, the assess-

ment was based primarily on a few specific CA coefficients such as ARI or TFA [55, 19].

As far as we know, this is one of the first studies that compares such a wide range of

different autoregulation coefficients on the same dataset with repeated measurements.

2 Methods

In this section we describe the data collection protocol, data preprocessing and computa-

tional methods for CA assessment.

2.1 Data collection protocol

Data collection. The ABP and CBFV data, used in this study, have been previously

discussed in Lipsitz et al. [19]. ABP was measured noninvasively using a photoplethys-

mographic Finapres monitor (Ohmeda Monitoring Systems, Englewood, CO). In order to

eliminate hydrostatic pressure effects, the subject’s nondominant hand was supported by

a sling at the level of the right atrium. The individuals were asked to breathe at the rate

of 15 breaths per minute to standarise the effects of respiration. Doppler ultrasonogra-

phy was used to measure the changes in CBFV within the MCA. The 2 MHz probe of a

portable Doppler system (MultiDop X4, DWL-Transcranial Doppler Systems Inc., Ster-

ling, VA) was strapped over the temporal bone and locked in position with a Mueller-Moll

probe fixation device. Flow velocity was recorded at a depth of approximately 50-65 mm,

digitized and stored for analysis. After instrumentation, subjects sat in a straight-backed

chair with their legs elevated at 90 degrees in front of them. First subjects rested in the

sitting position for 5 minutes, then stood upright for one minute. The data were recorded

during the final one minute of sitting and first minute of standing and the initiation of

standing was timed from the moment both feet touched the floor. The active stand pro-

tocol was repeated in each subject. For a more detailed description of the data collection

procedure see [19].

Data preprocessing. Artifacts including spikes that commonly occur in CBFV signals

were removed as the first step of data preprocessing using a median filter. The pulsatile

ABP and CBFV were low-pass filtered using a 4th-order Butterworth filter, in both the

forward and reverse directions, with a cutoff frequency of 20 Hz (see [39]). Subsequently,

the beginning and end of each cardiac cycle were marked by the onset of the systole using

the ABP signal. The onsets were detected using a windowed and weighted slope sum

function and adaptive thresholding [59]. The beat-to-beat average of ABP and CBFV

were calculated for each detected cardiac cycle. A first-order polynomial was used to
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interpolate the resulting time series, which was followed by downsampling at 10 Hz to

produce signals with a uniform time base. Preprocessed ABP and CBFV time series

are denoted by P [k] and V [k], respectively, as used in each of the modelling approaches

described below.

Data segments for sitting and standing. To study autoregulation during the standing

protocol approximately 55 s data segments have been selected starting from the moment

subjects stood up (see Fig. 1). The characteristic ‘dip’, the overshoot and adaptation of

the ABP-CBFV signals lasted approximately 20-30 seconds, depending on the individual’s

cardiovascular properties. From the available 1 minute recording of the signals during the

sitting protocol we removed the last 5 seconds of data in order to separate the baseline

from the transient part of ABP-CBFV.

2.2 Cerebral autoregulation estimates

ARI. Tiecks et al. [52] proposed by of difference equations for CBFV response to a change

in ABP, from which an autoregulation index (ARI) can be calculated. The method itself

and its variations have been used extensively to provide a quantitative assessment of CA

[38, 32, 2]. The index ranges from 0, representing the absence of autoregulation, to 9,

indicating the best autoregulation. For more details on the computational aspects of ARI,

see Appendix A.1.

FIR and ARX. FIR [47] and ARX models have been applied to CA by several authors

[21, 22, 37, 30]. First, the raw signals are normalized and detrended. Then, they are

fitted using either FIR or ARX (FIR being a special case of ARX) models of different

orders and cerebral autoregulation is estimated by analysing the phase shift and gain of

the corresponding transfer function calculated as the average of the values taken around

[0.07 − 0.20] Hz. For more details on the computational aspects of FIR and ARX, see

Appendix A.2.

Mx, Sx and Dx. The Mx (Sx and Dx) autoregulatory index is a correlation coefficient

between the mean (systolic and diastolic) ABP and mean CBFV over a certain interval.

If a moving window is applied the values are averaged for each investigation and each

patient. Several authors [43, 16] have suggested that the values less than 0.3 indicate an

intact CA, while values above 0.3 indicate failure of autoregulation. For more details on

the computational aspects of Mx, Sx and Dx, see Appendix A.3.

2.3 Statistical analysis

Intra-class correlation. An intra-class correlation coefficient (ICC) is used to assess the

reproducibility of CA measures, that is their temporal stability during repeated measure-
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ments on the same subjects under the same conditions. The ICC is computed as

ICC =
MSB −MSW

MSB + MSW
, (1)

where MSB, MSW are between- and within-subjects mean squares [27]. Formula (1)

quantifies the degree of absolute agreement among measurements; and the values MSB,

MSW can be obtained from the summary tables of one-way ANOVA using each subject

as a single factor. Values of ICC close to 1 indicate high reliability and values close to 0

no reliability. We used Fisher’s Z-test to assess the significance of the difference between

two ICCs (here corresponding to the autoregulation indices estimated from a repeated

measurements during the sitting and standing protocol).

Coefficient of variation. The variability of the CA indices between subjects is assessed

using the coefficient of variation (CoV). It is a relative measure of dispersion computed

as the ratio between standard deviation (SD) and the mean value of the autoregulation

estimates and expressed as a percentage. Here the 36 measurements taken from the 18

subjects (including the repeated measurements) were concatenated to provide a single

value of CoV for both sitting and standing.

3 Results

Data characteristics. Table 1 gives the mean and standard deviation of ABP and CBFV

during sitting and standing. The mean ABP and mean CBFV are lower during the

standing protocol, which is associated with the characteristic drop of blood pressure due

to orthostatic stress. The SD (understood as the mean of the standard deviations within

each subject along time) for ABP is nearly three times greater during standing protocol

and nearly twice as large for CBFV. A large increase is not unexpected, given the transient

effect seen in Fig. 1.

CA indices. The mean and standard deviation (calculated across the 36 measurements

in each protocol) of the autoregulation indices are shown in Table 2. Only the difference

for the mean values of Mx, ARX(2,2)-gain and ARX(1,5)-phase between the sitting and

standing protocol was found to be significant (p < 0.05, Wilcoxon); they are marked in

Table 2 with an asterisk (∗). To apply the Wilcoxon test we used all the 36 indices (repeated

measurements from 18 subjects) calculated separately for the sitting and standing protocol.

Reproducibility. Fig. 3 shows ICC for different autoregulation indices and protocols (sitting

and standing). For a given autoregulation index and protocol, each ICC was computed

using all 36 values (repeated measurements from 18 subjects). For all indices the ICC is

greater during the standing protocol, but it is significantly greater (p < 0.05, Fisher Z-

test) only for the correlation measures: Mx (p < 0.03), Sx (p < 0.003) and Dx (p < 0.03),

which are marked in Fig. 3 with a square. The values of ICC for the gain and phase of
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FIR and ARX of all orders (considered here) remain relatively constant, especially during

sitting.

Variability. Fig. 4 shows the CoV for different autoregulation indices and protocols. As

in the case of ICC, each CoV was computed using all 36 values (repeated measurements

from 18 subjects). The CoV is greater during standing for the correlation indices, i.e. Mx,

Sx, Dx, and the phase of FIR and ARX of all orders; but it is smaller for the ARI and the

gain of FIR and ARX. The values of CoV for the gain and phase of FIR and ARX of all

orders (considered here) remain relatively constant during the sitting protocol. However,

the phase increases with the filter order.

4 Discussion

Main findings. We have performed exploratory work aimed at assessing the reproducibility

and variability of six types of black-box approaches to autoregulation (ARI, Mx, Sx,

Dx, FIR and ARX) during sitting and standing protocols. The results suggest that the

data collected upon standing consistently improve the reproducibility of autoregulation

parameters. The difference is especially pronounced for Mx, Sx and Dx coefficients, where

in this relatively small sample it reaches statistical significance. This is coupled here with

an increase in the dispersion of most of the autoregulation indices (Mx, Dx, Sx, and the

phase of FIR and ARX models).

The choice of indices. The list of linear, black-box methods to CA studied here is not

exhaustive; it does not include, for example, TFA. According to the recent guidelines [5]

the recommended length of ABP-CBFV for TFA should be at least 5 min long, assuming

stationary physiological conditions, which is related with a use of window segments with

a minimum length of 100 s to allow sufficient frequency resolution.

The ARI method followed the original paper by Tiecks et al. [52], however, alternative

implementations have been proposed. In particular Panerai et al. [37] showed that a

combination of time series modelling (ARMA) and the best fit to one of the ARI step-

responses is less susceptible to physiological sources of variability.

The ARX orders were selected based on the previous studies. Liu and Allen [21] and

Liu et al. [22] used ARX(1,5) and Panerai et al. [37] ARX(2,2). An additional motivation

for using ARX(2,2) is that it is a generalization of the difference equations (2), which are

the basis for the ARI (see Appendix A.1).

The choice of data collection protocols. Regardless of the experimental design for data

collection It is reasonable to expect that a stronger excitation will lead to a better SNR,

more accurate system identification and better reproducibility of autoregulation measures

[15, 48, 20]. The results shown in Fig. 3 support that observation. It seems also that not

only the strength but also the type of excitation may affect CA estimates in different ways.

Sorond et al. [49] showed that both sit-to-stand and thigh-cuff methods lead to a large
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between-subject variability of ARI, if compared to the baseline data. Although larger

dispersion was associated with the sit-to-stand manoeuvre, it led to a lower intra-subject

variability.

Van Beek et al. [55] studied the reproducibility of repeated sit-to-stand manoeuvres

in 27 healthy elderly subjects using the gain and phase of the TFA. The sit-to-stand

procedures led to an increased TFA coherence (compared to spontaneous blood pressure

fluctuations), however, it was not coupled with an improved reproducibility (assessed by

ICC). There are obvious similarities between the data collection protocol employed by

van Beek et al. [55] and that of Lipsitz et al. [19] used in the analysis of this paper.

In contrast to the conclusions of van Beek et al., our results show that the sit-to-stand

manoeuvre improves the reproducibility across autoregulation coefficients. However, in

the case of van Beek et al. the interval between the test and retest was significantly longer

(3 months). Another difference is that the authors used longer time series data, with

repeated sit-to-stand manoeuvres from elderly subjects; so a direct comparison cannot be

made.

Sources of variability. A number of factors can affect the variability for CA estimates

including the arterial tension of PaCO2, autonomic nervous system activity, body tem-

perature, intracranial pressure and intrathoracic pressure [33]. PaCO2 is the one of the

strongest determinants of CA performance [36]. Aaslid et al. [1] showed that hypercap-

nia leads to a slower response of CBFV to changes in ABP, whilst hypocapnia lead to a

more immediate CBFV response. In [49] the authors showed that the sit-to-stand protocol

produces a small decline in EtCO2, which can potentially alter autoregulation estimates.

Investigators have used many different time intervals between the repeated measure-

ments, ranging from minutes to days or even months [4, 13, 44]. As pointed out in [33],

in the context of spontaneous fluctuations of ABP the expectation that reproducibility

of CA estimates from repeated measures a long time apart would be poorer is not fully

supported by the available studies.

Sympathetic activation. The effect of sympathetic tone on cerebral autoregulation is not

well understood and is still debated [58, 46]. Several authors suggested that under normal

conditions, the sympathetic activity is minimally involved in autoregulation but when ABP

is acutely elevated it might play a protective role by shifting the static autoregulatory curve

to the right [28, 35, 40].

Sorond et al. [49] found no evidence for effects of various intensities of sympathetic

tone due to thigh-cuffs and sit-to-stand methods on the CBFV response. Panerai et al.

[35] previously considered eight common manoeuvres, assumed to exhibit different levels

of sympathetic drive, but have not been able to detect any significant differences in the

CBFV response.

Study limitations. The approximation of cerebral blood flow by the CBFV measured in

the MCA is only valid if the diameter of the MCA is constant. A more likely source
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of uncertainty is related with the use of the Finapress monitor to provide continuous

estimates of ABP. This is partially alleviated by using the beat-to-beat average instead

of raw ABP-CBFV signals. It has also been previously reported [38] that ARI based on

the time series model were comparable with those derived from direct catheter-tip BP

measurements in the ascending aorta.

Although there is no consensus regarding the meaningful length of ABP-CBFV time

series to calculate the correlation coefficients, including Mx, Dx and Sx (and variety of

different intervals have been used, it is believed that only the data collected over a long

period of time is clinically significant [43, 45]).

A limitation is related to the relative nature of ICC as a measure of reliability, which

stems from equation (1). If the differences between subjects are small, the ICC values will

also be small despite relatively good reproducibility. Similarly, if the differences between

subjects are large, so will be the ICC despite relatively poor reproducibility. Thus, when-

ever ICC is used, it is important to keep in mind that its meaning is restricted to specific

populations [51, 56].

We did not present any results related to the goodness of fit of the discussed models as

reported by previous studies [29, 37]. Although this is generally a desirable intermediate

feature, it is not in itself the most important performance measure. The main objective

is to construct a physiologically relevant measure of CA functionality, in particular capa-

ble of distinguishing between the healthy and impaired state [2]. The current work has

contributed to this by pointing out possible limitations of the resting protocol in terms of

repeatability, and the benefits of greater excitation of blood pressure variations.
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A Computational details

A.1 ARI

The method follows Tiecks et al. [52]. The beat-to-beat average of ABP and CBFV have

been obtained as described in Section 2.1, and denoted by P [k] and V [k], respectively.

The signals are indexed by k and are of length N . Let P̄ and V̄ denote the mean values

of P [k] and V [k] for the entire interval of interest. Initially, the time-varying ABP signal

P [k] is normalized as follows

dP [k] =
P [k]− P̄
P̄ − Pcr

,
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where Pcr = 12 mmHg is the critical closing pressure [52]. The following system of differ-

ence equations is used to compute the intermediate quantities x1[k] and x2[k] as

x1[k] = x1[k − 1] +
dP [k]− x2[k − 1]

fT

x2[k] = x2[k − 1] +
x1[k − 1]− 2Dx2[k − 1]

fT
,

(2)

where f , D and T are the sampling frequency, damping factor and time constant pa-

rameters, respectively. The modelled beat-to-beat average of CBFV, denoted by V̂ [t], is

computed as

V̂ [k] = V̄ (1 + dP [k]−Kx2[k]), (3)

where K is a parameter reflecting autoregulatory gain. In order to start the process at

the dynamics close to the baseline, the initial conditions were selected as

x1(0) = 2DdP [0], x2(0) = dP [0]. (4)

In [52, Table 3] combinations of ten different values of (T,D,K) were used to generate

ten models corresponding to various grades of autoregulation ranging from 0 (absence

of autoregulation) to 9 (strongest autoregulation). Let V̂j [k] denote the response (3)

of the model for the jth (j = 0, . . . , 9) combination of the parameters (T,D,K) given

in Fig. 2. The difference between the predicted and measured CBFV is computed as

dj = ‖(V̂j [k]−V [k])/V̄ ‖, where ‖·‖ is the `2-norm. By fARI(s) we denote the interpolation

by cubic splines of the values dj . Finally, the ARI is determined by calculating the s ∈ [0, 9]

that minimizes fARI(s), that is

ARI = arg min
s∈[0,...9]

fARI(s). (5)

A.2 FIR and ARX

The method follows [21, 22]. The time series P [k] and V [k] are normalized about their

mean values

P[k] =
P [k]− P̄

P̄
, V[k] =

V [k]− V̄
V̄

, (6)

and then linearly detrended. The method relates the input and output by the linear

difference model

V[k] = −
na∑
j=1

ajV[k − j] +

nb∑
j=0

bjP[k − j] + e[k], (7)

where aj and bj are the parameters; na, nb are the model orders; e[k] is the model error.

Note that model (7) has an easy interpretation: the output V[k] is determined as a linear

combination of its na previous values and nb consecutive values of the input P[k]. The

resulting model will be denoted by ARX(na, nb). Note that by definition the FIR(m)
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model will be simply ARX(m, 0).

The estimated model parameters aj , bj define the transfer function

H(z) =
b0 + b1z

−1 . . . bnb
z−nb

a0 + a1z−1 . . . anaz
−na

(8)

associated with the discrete model (7), where due to normalization a0 = 1. The average

phase and gain of ARX is typically reported, that is

ARX gain =
1

M

M∑
k=1

|H(ejωkTs)| ARX phase =
180

Mπ

M∑
k=1

∠[H(ejωkTs)],

where Ts is the sampling frequency; ωk are the M frequencies at which the response is

computed; |z| and ∠(z) denotes the absolute value and the angle of the complex number

z, respectively. Since the power spectra of ABP and CBFV both show a peak in the

low frequency band at approximately 0.1 Hz (see [19]), the average phase and gain are

estimated in the frequency range [0.07− 0.20] Hz [57, 37].

A.3 Mx, Sx and Dx

As before, let P [k] and V [k] denote the beat-to-beat average of ABP and CBFV, re-

spectively, of length N ∈ N, as described in Section 2.1. The Mx index is computed as

Pearson’s correlation coefficient

Mx =

∑N
k=1(P [k]− P̄ )(V [k]− V̄ )√∑N

k=1(P [k]− P̄ )
√∑N

k=1(V [k]− V̄ )
, (9)

where P̄ and V̄ are the mean of the time series P [k] and V [k], respectively taken over

the interval under consideration. Similarly, the Sx and Dx indices are computed using

(9) with the beat-to-beat average P [k] and mean P̄ of ABP replaced with beat-to-beat

average of systolic and diastolic pressure.
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B Tables and Graphs

Sitting Standing
Quantity Units Mean SD Mean SD

ABP mmHg 88.43 2.875 85.44 8.374
CBFV cm/s 42.74 2.268 40.35 4.129

Table 1: The main characteristics of the beat-to-beat average ABP and CBFV. The
‘Mean’ is the calculated as the mean across all subjects for sitting (baseline) and standing
(transient) data segments; and ‘SD’ is the mean of the standard deviations within each
subject along time.
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Figure 1: An example of repeated measurement of ABP and CBFV from one normotensive
individual during sit-to-stand exercise. The vertical line indicates the initiation of standing
when both feet touched the floor. The beat-to-beat average of ABP and CBFV are shown
with thick black lines. The gray dotted line shows 5 seconds of time series excluded from
the analysis.
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Sitting Standing
Method Mean SD Mean SD

ARI 4.97 2.71 5.68 2.12
Mx 0.44∗ 0.27 0.30∗ 0.38
Sx 0.28 0.30 0.30 0.38
Dx 0.38 0.31 0.31 0.39
FIR(1) [1.56, 47.3] [0.89, 21.6] [1.46, 46.1] [0.55, 25.6]
FIR(2) [1.82, 41.3] [0.98, 17.3] [1.60, 33.8] [0.62, 26.1]
FIR(3) [1.86, 38.3] [1.02, 19.3] [1.58, 31.9] [0.59, 27.5]
FIR(4) [1.81, 37.7] [0.88, 22.1] [1.59, 26.8] [0.56, 32.3]
FIR(5) [1.77, 38.4] [0.80, 23.4] [1.60, 25.9] [0.63, 32.1]
ARX(2,2) [1.74∗, 37.6] [0.62, 19.7] [1.49∗, 30.0] [0.51, 21.9]
ARX(1,5) [1.60, 40.7∗] [0.54, 21.7] [1.59, 30.3∗] [0.47, 25.5]

Table 2: CA measures. Group mean and SD calculated from 18 normotensive sub-
jects for the sitting and standing protocol. The values given in brackets for FIR(nb)
and ARX(na, nb) correspond to the mean and SD of the gain [%/%] and phase [◦] esti-
mated in the low frequency range.) The significant difference (p < 0.05, Wilcoxon) of the
autoregulation indices between sitting and standing is denoted with an asterisk (∗).

Time [s]
-5 0 5 10 15

C
B

F
V

 [c
m

/s
]

88

90

92

94

96

98

100

102

104

A R I 0

A R I 7

A R I 3

A R I 2

A R I 1

A R I 6

A R I 4

A R I 5

A R I 8

A R I 9

Step response template of the ARI method

Figure 2: The ten levels of ARI based on the ABP-CBFV response of the Aaslid-Tiecks
model with the corresponding values of parameters (T,D,K) provided in the table.
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Figure 3: The ICC values for different CA indices during sitting (dashed blue) and standing
(solid yellow) protocol. The indices with the significant (p < 0.05) population value of
ICC different than zero are marked with squares; and indices with a significant difference
between sitting and standing are denoted by black circles. FIR(n) g and FIR(n) p denotes
the gain and phase, respectively, of the FIR model of the order n. Similar notation is used
for the indices derived from the ARX model.
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Figure 4: Within-group variability (CoV) of CA measures during sitting (blue) and stand-
ing (yellow) protocols. FIR(n) g and FIR(n) p denotes the gain and phase, respectively,
of the FIR model of the order n. Similar notation is used for the indices derived from the
ARX model.
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