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Abstract

This thesis is concerned with the optimal control of linear discrete-time systems with convex
state and input constraints and subject to bounded disturbances. It is shown that the
nonconvex problem of finding a constraint admissible affine state feedback policy over a
finite horizon can be converted to an equivalent convex problem, where the input at each
time is modelled as an affine function of prior disturbances. This implies that a broad class
of constrained finite horizon robust and optimal control problems can be solved efficiently
using convex optimization methods. These policies can be then used in the design of robust
receding horizon control (RHC) laws such that the system constraints are satisfied for all
time and for all allowable disturbance sequences.

By choosing a control policy from this class that minimizes the expected value of a quadratic
function of the states and inputs at each time, it is possible to provide sufficient conditions
under which the policy optimization problem is convex at each time step, and for which such
an RHC control law renders the closed-loop system input-to-state stable. Alternatively,
using a quadratic cost function where the disturbance is negatively weighted as in H∞

control, one can provide conditions under which the finite-horizon min-max control problem
to be solved at each time step can be rendered convex-concave, and provide conditions
guaranteeing that the `2 gain of the resulting closed-loop system is bounded.

When all of the system constraints are linear, the complexity of solving these problems grows
polynomially with the problem size for a wide variety of disturbance classes, making their
solution tractable using standard techniques in convex optimization. In the particular case
that the cost function is a quadratic function of the states and inputs and the disturbance
set is ∞-norm bounded, a sparse problem structure can be recovered via introduction of
state-like variables and decomposition of the problem into a set of coupled finite horizon
control problems. This decomposed problem can then be formulated as a highly structured
quadratic program, solvable by a primal-dual interior-point method for which each iteration
requires a number of operations that increases cubicly with horizon length.

Finally, it is shown how the ideas presented can be extended to the output feedback case. A
similar convex reparameterization is applied to the problem of finding a constraint admissi-
ble affine output feedback policy over a finite horizon, to be used in conjunction with a fixed
linear state observer. A time-invariant control law is developed using these policies that
can be computed by solving a finite-dimensional, tractable optimization problem at each
time step, and that guarantees that the closed-loop system satisfies the system constraints
for all time.
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Notation

Scalar Sets

N the natural numbers

R the real numbers

R+ the nonnegative real numbers

R̄ the extended real numbers: R̄ := R ∪ {−∞,∞}
Z[i,j] the set of integers {i, . . . , j}

Definitions and Inequalities

A := B A is defined by B

A =: B B defines A

A ≤ B element-wise inequality between A and B

A < B strict element-wise inequality between A and B

A ¹ B matrix inequality between symmetric matrices:
B −A is positive semidefinite

A ≺ B strict matrix inequality between symmetric matrices:
B −A is positive definite

A ¹
K

B conic inequality: B −A ∈ K

A ≺
K

B strict conic inequality: B −A ∈ int (K)

Norms

‖·‖ vector norm

‖x‖2 2–norm of the vector x: ‖x‖2 :=
√

x>x

‖x‖p `p norm of the vector x

‖x‖Q weighted 2–norm of the vector x: ‖x‖Q :=
√

x>Qx

ix



Topology and Convex Sets

conv C convex hull of the set C

int C interior of the set C

lin C linear hull of the set C

rint C relative interior of the set C

∂C boundary of the set C

C◦ polar of the set C

K∗ dual cone of the conic set K

σC support function of the set C

γC gauge function of the set C

dom f effective domain of the function f

Vectors and Matrices

1 vector of ones of appropriate dimension:
1 := [1 . . . 1]>

〈x, y〉 inner product of vectors x and y

vec(x, y) vertical concatenation of vectors x and y:
vec(x, y) := [ x

y ]

x ⊥ y vectors x and y are orthogonal: x>y = 0

vec(A) vertical concatenation of columns of the matrix A:
if A = [a1, . . . , an], then vec(A) = vec(a1, . . . , an)

A> transpose of the matrix A

A† pseudo-inverse of matrix A

tr(A) trace of the matrix A

(A)i ith row of the matrix A

(A)(i) ith column of the matrix A

A⊗B Kronecker product of matrices A and B

In identity matrix in R
n×n

N (A) nullspace of A

R(A) range of A

x



Set Operations

A ∪B union of sets A and B

A ∩B intersection of sets A and B

A⊕B Minkowski sum of sets A and B:
A⊕B := {a + b | a ∈ A, b ∈ B }

A ∼ B Pontryagin difference of sets A and B:
A ∼ B := {a | a + b ∈ A, ∀b ∈ B }

A\B Relative complement of sets A and B:
A \B := {a | a ∈ A, a /∈ B }

Other Notation

Bn
p p-norm unit ball in R

n: Bn
p := {x ∈ R

n | ‖x‖np ≤ 1}
E [x] Expected value of random vector x

P [X] Probability of event X

Acronyms

ISS Input-to-State Stable

LMI Linear Matrix Inequality

LTI Linear Time Invariant

LP Linear Program(ming)

LQR Linear Quadratic Regulator

mRPI Minimal Robust Positively Invariant

QMI Quadratic Matrix Inequality

QP Quadratic Program(ming)

RHC Receding Horizon Control

RPI Robust Positively Invariant

SDP Semidefinite Program(ming)

SOCP Second-Order Cone Program(ming)
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Chapter 1. Introduction

This dissertation is concerned with the control of constrained linear systems subject to

bounded disturbances. In particular, we consider the problem of designing a stabilizing

control law for a discrete-time linear dynamical system of the form

x+ = Ax + Bu + Gw, (1.1)

while guaranteeing that the states x and control inputs u remain inside some constraint

set Z, i.e.

(x, u) ∈ Z (1.2)

for all sequences of disturbances w arising from some known set W .

The above problem is motivated by the fact that for many real control applications, optimal

operation nearly always occurs on or close to some constraints [Mac02]. These constraints

typically arise, for example, due to actuator limitations, safe regions of operation or perfor-

mance specifications. For safety-critical applications, it is crucial that some or all of these

constraints are met despite the presence of disturbances or modelling inaccuracies.

For such applications, it is appropriate to treat the control design problem in a worst-

case fashion, i.e. to assume that the uncertainty will be realized in such a way as to force

the system to violate its constraints if it is possible to do so. It is therefore necessary to

consider both constraints and uncertainty explicitly in the control design, in order to create

a robust control law with stability and constraint satisfaction guarantees that is minimally

conservative.

1.1 Background

Taken separately, the issues of robustness and constraint satisfaction for linear systems are

generally well understood. The field of linear robust control, which is mainly motivated

1



1. Introduction

by frequency-domain performance criteria [Zam81] and which does not explicitly consider

time-domain constraints as in the above problem formulation, is considered to be mature

and a number of excellent references are available on the subject [GL95, ZDG96, DP00].

On the other hand, the problem of controlling a constrained linear system without distur-

bances has been the subject of intensive research since the early 1980s. A technique that

has proven particularly suitable for the design of nonlinear controllers for such systems is

predictive control [Mac02, CB04]. Predictive control is not a control method per se, but

rather a family of optimal control techniques where, at each time instant, a finite horizon

constrained optimal control problem is solved using tools from mathematical programming.

The solution to this optimization problem is usually implemented in a receding horizon fash-

ion — at each time instant, a measurement (or estimate) of the system states is obtained,

the associated optimization problem is solved and only the first control input in the opti-

mal policy is implemented. The rather myopic strategy of successively planning sequences

of control moves over a finite horizon can result in instability or constraint violations if

proper care is not taken, but these issues have largely been resolved in the undisturbed

case [MRRS00].

Taken together, the requirements that the control law must satisfy a set of time-domain

state and inputs constraints, and that it must do so robustly with respect to some unknown

external disturbance or modelling error, can cause considerable difficulty. In the case of

linear controller design, there are only a handful of design methods for constrained problems,

even if all the constraint sets are considered to be polytopes or ellipsoids; see, for example,

the literature on set invariance theory [Bla99] or `1 optimal control [DD95, Sha96, FG97,

SB98]. In any case, such design methods are typically computationally intractable or suffer

from excessive conservativeness for all but a very limited set of problems.

If one wishes to apply the general methodology of predictive control to the design of robust

nonlinear control laws for constrained systems, then an initial requirement is to specify

a method for solving finite horizon robust control problems for the system (1.1)–(1.2).

Problems of this type are of long standing interest in the control literature; see, for exam-

ple, [Wit68, BR73] for some seminal work on the subject.

It is generally accepted that if disturbances are to be accounted for in such problems,

then the optimization has to be done over feedback policies, rather than over open-loop

input sequences as in conventional predictive control, otherwise problems of infeasibility

will quickly arise [MRRS00]. In the most general case, one would like to find, over a finite

2



1.2 Affine Feedback Policies

horizon of length N , a feedback policy

π := {µ0(·), . . . , µN−1(·)}

for the discrete-time linear dynamical system

xi+1 = Axi + Bui + Gwi ∀i ∈ Z[0,N−1]

ui = µi(x0, . . . , xi) ∀i ∈ Z[0,N−1]

that guarantees satisfaction of the system constraints for every possible sequence of dis-

turbances, where each of the functions µi(·) is a potentially nonlinear function mapping

the sequence of observed states {x0, . . . , xi} to a control input ui, and the initial state x0

is known. However, optimization over arbitrary nonlinear feedback policies is extremely

difficult in most cases, since there is no known method for even parameterizing the family

of nonlinear functions over which one must search for a solution.

Proposals that take this approach, such as those based on robust dynamic programming

[BR71, BB91, BBM03, DB04, MRVK06], or those based on enumeration of extreme distur-

bance sequences generated from the set W , as in [SM98], are typically limited to situations

where the constraint and disturbance sets are polyhedral, and are generally intractable for

all but the smallest problems. A number of analytical results are also available in the poly-

hedral case, if the cost function is suitably chosen, that show that the solution turns out

to be a time-varying piecewise affine state feedback control policy [MS97, RC03, Bor03,

BBM03, DB04, KM04a].

Unfortunately, the practicality of these results is also limited to small problem sizes, since

the solution complexity grows exponentially with the size of the problem data, in general.

The problem is even more acute in the case of non-polyhedral constraint or disturbance

sets, where the solution to problems of infinite dimension is generally required.

1.2 Affine Feedback Policies

An obvious sub-optimal strategy is to restrict the class of functions from which the control

policy π might be composed. The most straightforward choice is to restrict the functions

constituting π to those which are affine functions of the sequence of states, i.e. to parame-

3



1. Introduction

terize each control input ui as

ui = gi +
i
∑

j=0

Ki,jxj , (1.3)

where the matrices Ki,j and vectors gi are decision variables. There are two advantages of

such a parameterization. First, the control policy is characterized by a tractable number

of decision variables. Second, the close relationship to linear control laws means that finite

horizon policies of this type, if calculable, fit naturally within the framework generally used

in predictive control to guarantee stability and invariance of the closed-loop system. How-

ever, for a given starting state x the set of constraint admissible parameters {{Ki,j}, {gi}}
is easily shown to be nonconvex in general, making control policies in this form entirely

unsuitable for on-line calculation as part of a receding horizon control strategy.

As a result, most proposals that take this approach [Bem98, CRZ01, KM03, LK99, MSR05]

fix a stabilizing feedback gain K, then parameterize the control sequence as

ui = gi + Kxi

and optimize the design parameters gi. Though tractable, this approach is essentially ad hoc

and is in any case problematic since it is unclear how one should select the gain K to

minimize conservativeness.

An alternative to (1.3) is to define a class of affine disturbance feedback control policies in

the form

ui = vi +
i−1
∑

j=0

Mi,jwj . (1.4)

The parameterization (1.4) was recently proposed as a means for finding solutions to a

general class of robust optimization problems, called affinely adjustable robust counter-

part (AARC) problems [Gus02, BTGGN04]. The same parameterization has also ap-

peared specifically in application to robust model predictive control problems in [L0̈3a,

L0̈3b, vHB02, vH04], and appears to have originally been suggested within the context of

stochastic programs with recourse [GW74].

The advantage of the policy model (1.4) is that, in contrast to (1.3), the set of constraint

admissible parameters {{Mi,j}, {vi}} for control policies in this form is convex when all of

the relevant constraint sets are convex; as a result, one can reasonably expect that policies

in the form (1.4) can be found reliably and efficiently, generally using off-the-shelf software

packages. However, the policy formulation (1.4) does not fit naturally within the predictive

4



1.3 Organization and Highlights

control framework, since it is not obvious how one can employ existing methods for ensuring

stability and invariance properties in combination with policies of this type.

1.3 Organization and Highlights of this Dissertation

The idea underpinning all of the results in this dissertation is that the policy parameteri-

zations (1.3) and (1.4) are equivalent, in a sense to be precisely defined in Chapter 3. As a

result, one can exploit the analytical properties of the state feedback parameterization (1.3),

while simultaneously enjoying all of the computational advantages inherent to the distur-

bance feedback parameterization (1.4). From this central idea, a wealth of results relating

to the stability and efficient computation of receding horizon control laws constructed from

these parameterizations can be derived.

We here outline the contributions of each of the remaining chapters. Where indicated,

some of the material represents an extension of work previously published by the author

in collaboration with one or more co-authors. In all such cases, the present author is the

principle author of these publications.

Background and Policy Parameterizations

Chapter 2: Convexity plays a central role throughout the dissertation. This chapter

brings together some fundamental definitions and results from the theory of convex sets and

functions, convex optimization and variational analysis that are critical to the development

of later chapters.

Chapter 3: In this chapter, definitions and basic results relating to the affine control

policies (1.3) and (1.4) are introduced, forming the foundation for much of the work in

later chapters. The key equivalence result relating the parameterizations (1.3) and (1.4) is

presented, and it is shown that the set of constraint admissible policies in the form (1.4) is

convex when all of the relevant constraint sets are convex, while the set of admissible policies

in the form (1.3) is not — these equivalence and convexity results can be viewed as a special

case of the well-known Youla parameterization in linear system theory [YJB76]. Additional

results relating to the invariance of receding horizon controls are also developed, and these

ideas are central to the subsequent development of stabilizing control laws. Portions of this

chapter have appeared in [GK05c, GKM05, GKM06].
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Stability and Receding Horizon Control

Chapter 4: In this chapter, we consider the problem of finding a finite horizon control

policy in the form (1.3) that minimizes the expected value of a quadratic cost function.

It is shown that, using the equivalent parameterization (1.4), this problem can be posed

as a convex optimization problem. It is then shown how a receding horizon control law

synthesized from policies that are optimal in this sense can guarantee that the resulting

closed-loop system is input-to-state stable, and that the behavior of such a control law

matches that of a classical linear-quadratic or H2 control law when the system is operating

far from its constraints. General results relating to input-to-state stability of constrained

systems with convex Lyapunov functions are also developed in support of the main results.

This chapter is based largely on results appearing in [GK05b, GK06a].

Chapter 5: In this chapter, we employ an alternative quadratic cost function where the

disturbance is negatively weighted as inH∞ control [BB91, GL95], and consider the problem

of finding a control policy that minimizes the maximum value of this function. By imposing

additional convex constraints on the set of policies introduced in Chapter 3, we show that

this min-max optimization problem can be rendered convex-concave, making its solution

amenable in principle to standard techniques in convex optimization. We further show how

one can guarantee that if these policies are used in the synthesis of receding horizon control

laws, then the `2 gain of the resulting closed-loop system is bounded, and the achievable

bound decreases with the length of the planning horizon used by the controller. This chapter

expands on results appearing in [GKA06, GK06b].

Computational Methods

Chapter 6: In the theoretical results of Chapters 4 and 5, receding horizon control laws

are proposed that require the repeated solution of finite horizon control problems that are

solvable in principle using convex optimization techniques. In this chapter we consider the

problem of calculating such optimal policies in practice. It is argued that the problem of

finding such optimal policies is generally only feasible when the state and input constraints

are characterized by linear inequalities, though the disturbance set can be characterized in

a large variety of ways. Of particular interest in engineering applications are polytopic or

norm-bounded disturbance sets, and each of these is considered in turn for the problems

posed in Chapters 3–5. In all of the cases considered, the central result is that a feasible or

optimal affine state feedback policy can be found by solving a single convex optimization

6
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problem, in one of a variety of standard forms, whose size is polynomially bounded in the

size of the problem data.

Chapter 7: In this chapter, the solution to one of the convex optimization problems pre-

sented in Chapter 6 — the problem of finding a policy that minimizes a quadratic function

of the nominal state and input sequences of a system subject to ∞–norm bounded distur-

bances — is considered in significantly greater detail. In its original form, this optimization

problem is a dense convex quadratic program with O(N 2) variables, assuming that the

horizon length N dominates the number of states and control inputs at each stage. Hence

each iteration of an interior-point optimization method would require the solution of a dense

linear system in O(N6) operations.

We show how structure can be exploited to devise a sparse formulation of this problem,

thereby realizing a substantial reduction in computational effort to O(N 3) work per interior-

point iteration. This sparse formulation is the result of a decomposition technique that can

be used to separate the problem into a coupled set of finite horizon control problems.

The reduction of effort is the analogue, for robust control, to the situation in classical

unconstrained optimal control in which Linear Quadratic Regulator (LQR) problems can be

solved in O(N) time, using a Riccati [AM90, Sec. 2.4] or Differential Dynamic Programming

[JM70] technique in which the state feedback equation x+ = Ax + Bu is explicit in every

stage, compared to O(N 3) time for the more compact formulation in which states are

eliminated from the system. More direct motivation for these results comes from [Wri93,

Ste95, RWR98, Bie00, DBS05], which describe efficient implementations of optimization

methods for solving optimal control problems with state and control constraints, though

without disturbances. Much of the work in this chapter is based on [GK05a, GKR07].

Output Feedback Extensions and Conclusion

Chapter 8: All of the results of Chapters 3–7 relate to the application of the policy param-

eterization (1.3) and its associated reparameterization (1.4) to problems where a complete

measurement of the state is available. In this chapter, an analogous reparameterization for

output feedback control is employed in conjunction with a fixed linear state observer and a

corresponding bound on the state estimation error.

The main aim of the chapter is to provide conditions under which receding horizon control

laws synthesized from this parameterization can guarantee constraint satisfaction for all

time. When the state estimation error bound matches the minimal robust positively in-

7
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variant (mRPI) set for the system error dynamics, we show that the control law is actually

time-invariant, but its calculation requires the solution of an infinite-dimensional optimiza-

tion problem when the mRPI set is not finitely determined. By employing an invariant

outer approximation to the mRPI error set [RKKM05], we develop a time-invariant control

law that can be computed by solving a finite-dimensional tractable optimization problem at

each time step. The computational complexity of the proposed control law does not differ

greatly from the state feedback results of previous chapters, so the main technical difficulties

encountered with the output feedback problem considered here relate to the specification of

appropriate conditions on the initial error set and terminal state such that the closed-loop

system is robust positively invariant under a finitely determined time-invariant controller.

This work has also appeared in [GK07, GK06c].

Chapter 9: This chapter summarizes the main contributions of the dissertation and sug-

gests some directions for future research.
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Chapter 2. Background

In this chapter we collect various definitions and useful results relating to convexity and

convex optimization. The selection of results presented is dictated entirely by their use in

subsequent chapters; for a thorough review of convex analysis and optimization, the reader

is referred to the excellent texts [Roc70, RW98, BNO03, BV04], from which many of the

results and definitions are drawn.

2.1 Convex Sets

Definition 2.1 (Convex Set). A set C ⊆ R
n is a convex set if, for every pair of points

x ∈ C and y ∈ C, every point on the line connecting them is also contained in C, i.e.

(1− τ)x + τy ∈ C, for all τ ∈ (0, 1). (2.1)

Convex sets play a central role in almost all of the results to be presented in this dissertation.

Although many of the theoretical results to be presented will be based on abstract convex

sets without any special structure, several specific classes of convex sets will also be used,

particularly when dealing with computational problems.

Example 2.2 (Polyhedra and Polytopes). A set is C ⊆ R
n is a polyhedron if it can

be defined by a set of affine inequalities

C := {x ∈ R
n | Ax ≤ b} (2.2)

for some matrix A ∈ R
t×n and vector b ∈ R

t, where t is the number of inequalities defining

the set. The set C is a polytope if it is a bounded polyhedron. Both polyhedra and polytopes

are convex sets.

9



2. Background

Convex Sets Nonconvex Sets

Figure 2.1: Examples of convex and nonconvex sets

Example 2.3 (Norm Balls). Given any norm ‖·‖ in R
n, the set

B := {x ∈ R
n | ‖x‖ ≤ 1}

is a convex set. The set is called a norm ball for the norm ‖·‖.

We will often use norm balls defined by the p–norms ‖·‖p, and so use the notation

Bn
p := {x ∈ R

n | ‖x‖p ≤ 1}

for these sets. Some examples of convex and nonconvex sets are shown in Figure 2.1.

A particular class of convex set that we will encounter when dealing with certain optimiza-

tion problems is the convex cone:

Definition 2.4 (Convex Cones). A set K ⊆ R
n is a convex cone if it is convex and if,

for every pair of points x ∈ K and y ∈ K and scalars τ1 and τ2,

τ1x + τ2y ∈ C, for all (τ1, τ2) ≥ 0. (2.3)

A set K is called a proper cone if it is a closed convex cone with nonempty interior that

does not contain any line, i.e. the only x ∈ K also satisfying −x ∈ K is the origin.

Example 2.5 (Semidefinite Cone). The set of symmetric positive semidefinite matrices

in R
n×n

{

Q ∈ R
n×n | Q º 0

}

is called the semidefinite cone.

10
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Example 2.6 (Norm Cone). Given any norm ‖·‖ in R
n, the set

{(

x

t

) ∣

∣

∣

∣

∣

‖x‖ ≤ t

}

⊆ R
n+1

is called the norm cone associated with the norm ‖·‖.

Both the semidefinite cone and the norm cones for every norm are proper cones.

2.1.1 Convex Hulls

If a set C is not convex, then it can be ‘convexified’ by taking its convex hull, i.e. the smallest

convex set containing C, denoted conv (C). An alternative (and equivalent) definition of the

convex hull of a set C is the set of all convex combinations of points in C, where a convex

combination of vectors {x1, . . . , xn} is any linear combination
∑n

i=1 λixi with nonnegative

weights λi satisfying
∑n

i=1 λi = 1.

A useful result for relating points in conv(C) to points in C is Carathéodory’s Theorem:

Theorem 2.7 (Carathéodory’s Theorem). If the set C ∈ R
n is nonempty, then every

point x ∈ conv(C) can be written as a convex combination of n + 1 points (not necessarily

different) in C.

2.1.2 Operations on Convex Sets

Of special interest will be those operations that, when applied to a closed and convex set

C, preserve convexity and closedness. We here outline a number of such operations that

are most relevant to subsequent results:

Proposition 2.8 (Set Intersections).

i. The intersection of an arbitrary collection of convex sets is convex.

ii. The intersection of an arbitrary collection of closed sets is closed.

iii. The intersection of a finite collection of polyhedral sets is polyhedral.

11
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Figure 2.2: Loss of closedness under the linear mapping f(x, y) = x.

Proposition 2.9 (Set Addition).

i. C ⊕D is a convex set if C and D are convex.

ii. C ⊕ D is a closed set if C and D are closed and at least one of the sets is nonempty

and bounded.

iii. C ⊕ D is a closed set if C and D are orthogonal, i.e. if c ⊥ d for all c ∈ C and all

d ∈ D.

Proposition 2.10 (Linear Mappings). If L : R
n → R

m is a linear mapping and C ⊆ R
n

is a convex set, then

i. L(C) is a convex set.

ii. If C is also closed, then a sufficient condition for L(C) to be closed is that there does

not exist any nonzero y such that L(y) = 0 and such that x + λy ∈ C for all x ∈ C and

all λ ≥ 0.

iii. If C is polyhedral, then L(C) is polyhedral.

It is important to note that it is possible for a set to lose closedness under a linear mapping

if the conditions of Prop. 2.10(ii) do not hold, though these conditions are not necessary

ones. An example of such a situation is shown in Figure 2.2.

12



2.1 Convex Sets

2.1.3 Polar Sets and Dual Cones

In application to the robust control problems considered in subsequent chapters, a useful

type of convex set is the polar set of a (not necessarily convex) set C:

Definition 2.11 (Polar Sets). Given a set C ⊆ R
n with 0 ∈ C, the polar of C is defined

as:

C◦ := {v | 〈v, x〉 ≤ 1, ∀x ∈ C } .

Proposition 2.12 (Properties of Polar Sets). Given a set C ⊆ R
n containing the ori-

gin, the following properties hold:

i. C◦ is closed and convex with 0 ∈ C◦.

ii. C◦ = (conv C)◦.

iii. If C is closed and convex, then (C◦)◦ = C.

iv. For λ > 0, (λC)◦ = λ−1C◦.

v. If in addition D ⊆ R
n, then (C

⋃

D)◦ = C◦
⋂

D◦.

vi. For the p–norm unit ball Bp,

(Bp)
◦ = Bq, 1 < p <∞, p−1 + q−1 = 1

(B1)
◦ = B∞, (B∞)◦ = B1.

Several sets with their associated polars are shown in Figure 2.3.

If the set K is a convex cone, then K◦ is called the polar cone of K. Of greater use for our

purposes, however, will be the dual cone of K:

Definition 2.13 (Dual Cone). Given a convex cone K ⊆ R
n, the dual cone of K is

defined as:

K∗ := {v | 〈v, x〉 ≥ 0, ∀x ∈ K } .

Note that it is easily shown that if K is a convex cone, then K◦ = −K∗.
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Figure 2.3: Convex Sets and Polar Sets
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2.2 Convex Functions

2.2 Convex Functions

Definition 2.14 (Convex Function). A function f : R
n → R̄ is a convex function rela-

tive to the set C ⊆ R
n if, for every pair of points x ∈ C and y ∈ C, the following inequality

holds:

f ((1− τ)x + τy) ≤ (1− τ)f(x) + τf(y), for all τ ∈ (0, 1). (2.4)

The function f is strictly convex if the inequality (2.4) is strict.

A function f : R
n → R̄ is called concave if −f is convex.

Note that the function f in Def. 2.14 assigns a value on the extended real line R̄ (i.e. the set

R ∪ {−∞,∞}) to every value in R
n. The effective domain of f , denoted dom f , is defined

as

dom f := {x | f(x) <∞} .

The function f is proper if f(x) <∞ for at least one x ∈ R
n (i.e. dom f is nonempty) and

the function never takes the value −∞. Note that if a convex function g : C → R is defined

only on a convex set C, then one can identify it with a convex function f satisfying the

conditions of Def. 2.14 by defining

f(x) :=







g(x) if x ∈ C

∞ if x /∈ C.

Proposition 2.15. A convex function is continuous on the interior of its effective domain.

Note, however, that a convex function is not guaranteed to be continuous at the boundary

of its domain. For example, the convex function in Figure 2.4 is discontinuous at the point

x, though it is upper semicontinuous everywhere.

2.2.1 Operations on Convex Functions

As in the case of convex sets, there are a number of operations which, when applied to

convex functions, preserve convexity and semicontinuity. The most relevant of these to the

work presented here are the following:

Proposition 2.16 (Addition and scaling). Given convex functions fi : R
n → R and

scalars λi ∈ R, the function
∑

i∈I λifi is convex if each λi ≥ 0, and strictly convex if at

least one function fi is strictly convex with λi > 0.

15
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Figure 2.4: A discontinuous convex function.

Proposition 2.17 (Pointwise supremum).

i. The pointwise supremum of an arbitrary collection of convex functions is convex.

ii. The pointwise supremum of an arbitrary collection of lower semicontinuous functions

is lower semicontinuous.

2.2.2 Support and Gauge Functions

Of particular interest in our development of robust control policies will be two convex

functions defined in relation to a convex set C. These are the support function and the

gauge function:

Definition 2.18 (Support and Gauge Functions). Given a convex set C ⊆ R
n, the

support function σC : R
n → R̄ is defined as:

σC(x) := sup
y∈C

(x>y).

If 0 ∈ C, the gauge function γC : R
n → R̄ is defined as:

γC(x) := inf {λ ≥ 0 | x ∈ λC } .

For a closed set C, the support and gauge functions have straightforward geometric inter-

pretations; the set
{

y
∣

∣ x>y = σC(x)
}

defines a plane tangent to C with normal vector x,

while λ = γC(x) is the smallest amount by which C can be scaled while guaranteeing that

x ∈ λC (see Figure 2.5).
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Figure 2.5: Support and Gauge Functions

The support and gauge functions of a set C have several properties that will be useful in

subsequent sections; principal among these properties is their relation to one another with

respect to the polar set C◦:

Proposition 2.19 (Properties of Support and Gauge Functions). If C is a closed

and convex set with 0 ∈ C, the following properties hold:

i. σC(·) ≥ 0.

ii. σC(·) = γC◦(·) and γC(·) = σC◦(·).

iii. If C is also compact and symmetric (i.e. x ∈ C implies (−x) ∈ C), then its gauge

function γC corresponds to a norm. In particular, for the p–norm ball Bp, γBp = ‖·‖p
where 1 ≤ p ≤ ∞.

2.3 Convex Optimization

A convex optimization problem is a minimization problem in the form

min
x

f0(x)

subject to:
fi(x) ≤ 0, ∀i ∈ {1, . . . , p}
gi(x) = 0, ∀i ∈ {1, . . . , q},

(2.5)

17
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where each of the functions fi : R
n → R is a convex function, and each of the functions

gi : R
n → R is affine. The function f0 is referred to as the cost or objective function,

while the remaining functions fi and gi are referred to as the problem constraints. Note

that a variety of problems can be cast in the general framework of (2.5), e.g. the problem of

maximizing a concave function can be recast as a convex optimization problem via a change

of sign.

Occasionally it will be of interest to find a feasible point for the problem (2.5), i.e. one

satisfying the constraints, without regard to optimality. The problem of finding such a

point is easily written in the form (2.5) by defining an optimization problem with zero

objective function:

min
x

0

subject to:
fi(x) ≤ 0, ∀i ∈ {1, . . . , p}
gi(x) = 0, ∀i ∈ {1, . . . , q}.

(2.6)

As a result, we will generally refer to the problem of finding a point that satisfies some set

of convex constraints as a convex optimization problem, with the understanding that such

a problem can be posed in the form (2.6).

In the remainder of this section we outline some of the most important classes of convex

optimization problems.

2.3.1 Linear and Quadratic Programs

A quadratic program or QP is a problem in the form

min
x

c>0x + 1
2x>Qx

subject to:
c>ix ≤ di, ∀i ∈ {1, . . . , p}
a>ix = bi, ∀i ∈ {1, . . . , q}.

(2.7)

The problem (2.7) is a convex optimization problem if the matrix Q º 0, and we will

generally assume that this is the case. If Q = 0, then the objective function in (2.7) is

linear, and the problem is referred to as a linear program or LP.

Note that the problem of finding a point x ∈ C, where C is a polyhedral set defined as

in (2.2), is a feasibility problem which can be cast as an LP.
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2.3.2 Second-Order Cone Programs

A second-order cone program or SOCP is a convex optimization problem in the form

min
x

c>0x

subject to:
‖Cix + di‖2 ≤ a>ix + bi, ∀i ∈ {1, . . . , p}

a>ix = bi, ∀i ∈ {1, . . . , q}.
(2.8)

Note that if each of the matrices Ci and vectors di is zero, then (2.8) reduces to a linear

program. More generally, any convex quadratic program can be written as a second-order

cone program using appropriate variable transformations [LVBL98].

2.3.3 Linear Matrix Inequalities and Semidefinite Programs

A linear matrix inequality or LMI is a constraint in the form

F (x) := F0 +

n
∑

i=1

Fixi ¹ 0, (2.9)

where each of the matrices Fi is symmetric and x := (x1, . . . , xn). An LMI constraint in

the form (2.9) is a convex constraint on x, i.e. {x | F (x) ¹ 0} is a closed and convex set.

The same result holds if the LMI constraint in (2.9) is strict, i.e. F (x) ≺ 0, although in this

case the set {x | F (x) ≺ 0} is open.

Note that inequalities involving matrix valued variables can be written in the standard

form (2.9). For example, the problem of finding a solution to the discrete-time Lyapunov

inequality

A>PA− P ≺ 0 (2.10)

can be written in the form (2.9) by defining an appropriate basis set {P1, . . . Pm} for the

symmetric matrix variable P ∈ R
n×n, where m = n(n + 1)/2, and defining F0 = 0 and

Fi := A>PiA − Pi. Matrix inequalities such as (2.10) are therefore generally referred to as

LMIs when it is clear from the context which matrices are intended as variables, with the

understanding that they can be converted to the form (2.9) when necessary.

The following Lemma often proves useful in rewriting some matrix inequalities in LMI form:
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Lemma 2.20 (Schur Complement). If A, B and C are real matrices of compatible di-

mension with

X :=

(

A B

B> C

)

,

then the following results hold:

i. X ≺ 0 if and only if C ≺ 0 and (A−BC−1B>) ≺ 0.

ii. If C ≺ 0, then X ¹ 0 if and only if A−BC−1B>¹ 0.

iii. X ¹ 0 if and only if C ¹ 0, (A−BC†B>) ¹ 0 and B(I − CC†) = 0.

iv. X is invertible if both C and (A−BC−1B>) are invertible.

A semidefinite program or SDP is a problem in the form

min
x

c>x

subject to: F0 +
n
∑

i=1

Fixi ¹ 0.
(2.11)

Note that multiple LMI constraints are easily handled via appropriate redefinition of the ma-

trices Fi. Both QPs and SOCPs can be considered subclasses of semidefinite programming

problems, since both problem types can be written in the general form (2.11). However, it

is generally better to solve a problem as an SOCP or QP if it is possible to do so, since

stronger computational complexity guarantees are generally possible for QPs and SOCPs

than for SDPs [LVBL98], and computational methods and software for these problems are

more mature.

2.3.4 Generalized Inequalities and Conic Programs

Given a proper cone K ⊆ R
n, we can define a generalized inequality as a partial ordering

on R
n using K:

a ¹
K

b ⇔ b− a ∈ K (2.12a)

a ≺
K

b ⇔ b− a ∈ int (K). (2.12b)

Analogous expressions are used to define the inequalities º
K

and Â
K
. Note that the familiar

element-wise inequality ≤ on R
n is equivalent to (2.12) with K equal to the nonnegative
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orthant R
n
+. The usual inequality for matrices A º B is also equivalent to (2.12) with K

equal to the positive semidefinite cone.

The simplest form of convex optimization problem involving generalized inequalities is one

with a single affine inequality:

min
x

c>x

subject to:
Cx ¹

K
d

Ax = b.

(2.13)

A problem in this form is called a cone program. The problem formulations for LPs, SOCPs

and SDPs can all be treated as special cases of cone programs.

2.4 Parametric Minimization

Given a convex function f : R
n × R

m → R̄, we will often want to minimize the function

f(x, u) with respect to the variable u only. Such a problem is referred to as a parametric

minimization problem. This section presents some of the characteristics of the function

minu f(x, u) with respect to x, as well as the properties of the minimizers of this function.

In the control applications to be presented in subsequent chapters, the variable x will

generally represent the state of a dynamic system, and the variables u will represent some

collection of parameters determining a control strategy for the system. Of particular interest

are conditions guaranteeing that the function infu f(x, u) is convex and lower semicontinuous

with respect to x, so that the resulting function can be employed as a Lyapunov function in

establishing results on stability. Additionally, we are interested in conditions ensuring that

the sets argminu f(x, u) are single-valued and continuous with respect to x, so that control

laws defined by these minimizers can be guaranteed to have these properties.

We first require some preliminary definitions and results:

Definition 2.21 (Uniform Level Boundedness [RW98, Defn. 1.16]). A function f :

R
n × R

m → R̄ taking values f(x, u) is said to be level bounded in u locally uniformly in x

if, for each x̄ ∈ R
n and α ∈ R, there exists a set V ⊆ R

n and a bounded set B ⊂ R
n such

that x̄ ∈ int(V ) and

{u | f(x, u) ≤ α} ⊆ B, for all x ∈ V.
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2. Background

The conditions of Def. 2.21 are more general than is strictly necessary for our purposes. We

will therefore employ the following result establishing sufficient conditions for a function to

meet these requirements.

Proposition 2.22. A function f : R
n × R

m → R̄ taking values f(x, u) is level bounded in

u locally uniformly in x if there exists a function g : R
n × R

m → R̄ defined as

g(x, u) := ‖Cx + Du‖c ,

such that g(x, u) ≤ f(x, u) for all x and u, where ‖·‖ is any norm, D is full column rank

and c > 0.

Proof. We first show that g(x, u) is level bounded in u locally uniformly in x. Choose

any x̄ ∈ R
n and α ∈ R, and define V = {x̄ + δx | ‖δx‖ ≤ 1} so that x̄ ∈ int(V ). From

Definition 2.21, it is sufficient to show that

⋃

x∈V

{u | ‖Cx + Du‖c ≤ α} ⊆ B

for some bounded set B. Restricting α and α
1
c to be positive without loss of generality,

⋃

x∈V

{u | ‖Cx + Du‖c ≤ α} =
⋃

x∈V

{

u
∣

∣

∣
‖Cx + Du‖ ≤ α

1
c

}

⊆
⋃

x∈V

{

u
∣

∣

∣ ‖Du‖ ≤ α
1
c + ‖Cx‖

}

⊆
{

u

∣

∣

∣

∣

∣

‖Du‖ ≤ α
1
c + ‖Cx̄‖+ sup

‖δx‖≤1
‖Cδx‖

}

, (2.14)

where the latter two expressions come from straightforward application of the properties of

vector norms. The set in the right hand side of (2.14) is bounded since the matrix D is full

column rank [HJ85, Thm. 5.3.2 & Cor. 5.4.8], establishing the result for g(x, u). The result

follows for f(x, u) since the inequality g(x, u) ≤ f(x, u) guarantees

{u | f(x, u) ≤ α} ⊆ {u | g(x, u) ≤ α}

for all x ∈ V .
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2.4 Parametric Minimization

Proposition 2.23 (Parametric Optimization). Let f : R
n × R

m → R̄ be a convex,

proper and lower semicontinuous function and define

p(x) := inf
u

f(x, u), P (x) := argmin
u

f(x, u).

Properties of p

i. The function p is convex on R
n.

ii. The function p is also lower semicontinuous and proper on R
n if either;

(a) f(x, u) is level bounded in u locally uniformly in x, or

(b) for some x̄ ∈ R
n the set P (x̄) is nonempty and bounded.

Properties of P

If f(x, u) is also level bounded in u locally uniformly in x then;

iii. For each x ∈ dom(p), the set P (x) is nonempty, convex and compact. If x /∈ dom(p),

then P (x) = ∅.

iv. If in addition f(x, u) is strictly convex in u, then P is single valued on dom(P ) and

continuous on int(dom(P )).

Proof. The proposition is a combination of various standard results in convex analysis.

Convexity of f is sufficient to establish convexity of the function p and of the set P (x) for

each x [RW98, Prop. 2.22] in (i) and (iii). The remainder of the results in (iii) rely on f

being lower semicontinuous and proper with f(x, u) level bounded in u locally uniformly in

x [RW98, Prop. 1.17]. The alternative results (iia) and (iib) come from [RW98, Prop. 1.17]

and [RW98, Cor. 3.32] respectively. Part (iv) is from [RW98, Thm. 3.31] and [RW98,

Cor. 7.43].

Some care is required when considering the continuity or convexity of functions that result

from convex parametric minimization – recall that not all convex functions are continuous

(cf. Figure 2.4). When minimizing a convex function over a subset of its variables, it is not

the case that continuity will be preserved, even if the original function is strictly continuous

on its effective domain. The following example illustrates this point:
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2. Background

Example 2.24. Define the set C ⊂ R
2 × R as

C :=
{

(x, z)
∣

∣ 0 ≤ z ≤ 1, (x1 − z)2 + x2
2 ≤ 1

}

and define the function f : C → R as f(x, z) = z. Then

p(x) := min
z

f(x, z)

is lower semicontinuous everywhere on C by virtue of Prop. 2.23, but is discontinuous at

the point x = 0. See Figure 2.6.

Note that the example given in Figure 2.4 is of an upper semicontinuous convex function,

while Example 2.24 yields the lower semicontinuous convex function shown in Figure 2.6. In

agreement with Prop. 2.15, both functions are continuous on the interior of their domains.
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Figure 2.6: Loss of Continuity in Convex Parametric Minimization
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Chapter 3. Affine Feedback Policies and Robust Control

3.1 Problem Definition

Consider the following discrete-time LTI system:

x+ = Ax + Bu + Gw, (3.1)

where x ∈ R
n is the system state at the current time instant, x+ is the state at the next

time instant, u ∈ R
m is the control input and w ∈ R

l is an external disturbance.

The current and future values of the disturbance are unknown and may change unpre-

dictably from one time instant to the next, but are assumed to be contained in a known

set W . The actual values of the state, input and disturbance at time instant k will be

denoted by x(k), u(k) and w(k), respectively.

Where it is clear from the context, x, u and w will be used to denote the current value of the

state, input and disturbance (note that since the system is time-invariant, the current time

can always be taken as zero). For the majority of this dissertation it will be assumed that,

at each sample instant, a measurement of the state x is available, though this assumption

will be relaxed in Chapter 8.

The system is subject to mixed constraints on the state and input, so that the system must

satisfy

(x, u) ∈ Z, (3.2)

where Z ⊂ R
n×R

m. The constraints defining the set Z may arise from either hard physical

constraints (e.g. actuator or other physical plant limitations) or from other design objectives

based on safety or performance considerations. In either case, a design goal is to guarantee

that the state and input of the closed-loop system remain in Z for all time and for all

disturbance sequences generated from the set W .
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3. Affine Feedback Policies and Robust Control

Since the disturbance does not necessarily decay to zero, it may not be possible to drive the

state of the system to the origin. Instead, the best one can hope for is to drive the state of

the system to a target/terminal constraint set Xf ⊂ R
n. In this chapter, it will be shown

how, in conjunction with appropriately defined finite horizon control policies, the set Xf

can be used as a target set in time-optimal control or as a terminal constraint in a receding

horizon controller with guaranteed invariance properties.

We will make use of the following assumptions about this system throughout:

A3.1 (Standing Assumptions)

i. The pair (A, B) is stabilizable.

ii. The matrix G has full column rank.

iii. The state and input constraint set Z ⊆ R
n × R

m is closed, convex, contains the origin

in its interior and is bounded in the inputs, i.e. there exists a bounded set B such that

Z ⊆ R
n ×B.

iv. The terminal constraint set Xf ⊆ R
n is closed, convex and contains the origin in its

interior.

v. The disturbance set W is compact and contains the origin in its interior.

Note that the assumption that G is full column rank and that the origin is in the interior

of W are not unnecessarily restrictive; in cases where W contains the origin in its relative

interior1 and/or G is not full column rank, one may redefine W and G suitably such that

the stated assumptions hold.

3.1.1 Notation

In the sequel, predictions of the system’s evolution over a finite control/planning horizon

will be used to define a number of suitable control policies. Let the length N of this planning

horizon be a positive integer and define stacked versions of the predicted input, state and

1 The relative interior of a convex set C is the interior of C with respect to the smallest affine subset
containing C. See, for example, [Roc70, Sect. 5].
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3.1 Problem Definition

disturbance vectors u ∈ R
mN , x ∈ R

n(N+1) and w ∈ R
lN , respectively, as

x :=













x0

x1

...

xN













, u :=













u0

u1

...

uN−1













, w :=













w0

w1

...

wN−1













(3.3)

where x0 =: x denotes the current measured value of the state and xi+1 := Axi+Bui+Gwi,

i = 0, . . . , N − 1 denotes the prediction of the state after i time instants.

Let the set W := W N := W × · · · ×W , so that w ∈ W, and define a closed and convex set

Z, appropriately constructed from Z and Xf , such that the constraints to be satisfied are

equivalent to (x,u) ∈ Z, i.e.

Z :=

{

(x,u)

∣

∣

∣

∣

∣

(xi, ui) ∈ Z, ∀i ∈ Z[0,N−1]

xN ∈ Xf

}

. (3.4)

Finally, define the matrices A ∈ R
n(N+1)×n and E ∈ R

n(N+1)×nN as

A :=



















In

A

A2

...

AN



















, E :=



















0 0 · · · 0

In 0 · · · 0

A In · · · 0
...

...
. . .

...

AN−1 AN−2 · · · In



















,

and the matrices B ∈ R
nN×mN , G ∈ R

nN×lN , B ∈ R
n(N+1)×mN and G ∈ R

n(N+1)×lN as

B := IN ⊗B, G := IN ⊗G, B := EB, G := EG,

respectively. Using these definitions in conjunction with the system dynamics (3.1), the

state sequence x can then be written in vectorized form as

x = Ax + EBu + EGw
= Ax + Bu + Gw.
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3. Affine Feedback Policies and Robust Control

3.2 A State Feedback Policy Parameterization

Finding an arbitrary finite horizon control policy that satisfies the constraints Z for all ad-

missible disturbance sequences generated from W is extremely difficult in general. Current

proposals for defining such policies generally require solution via robust dynamic program-

ming [MRVK06] or very large scale optimization problems [SM98]. As a result, we will find

it convenient to restrict the class of control policies considered to those that are affine in

the sequence of states, i.e. those in the form2

ui = gi +
i
∑

j=0

Ki,jxj , ∀i ∈ Z[0,N−1], (3.5)

where each Ki,j ∈ R
m×n and gi ∈ R

m. For notational convenience, we also define the block

lower triangular matrix K ∈ R
mN×n(N+1) and stacked vector g ∈ R

mN as

K :=









K0,0 0 · · · 0
...

. . .
. . .

...

KN−1,0 · · · KN−1,N−1 0









, g :=









g0

...

gN−1,









, (3.6)

so that the input sequence (3.5) can be written in vectorized form as

u = Kx + g. (3.7)

For a given initial state x, we say that the pair (K,g) is admissible if the control policy (3.5)

guarantees that for all allowable disturbance sequences of length N , the constraints Z are

satisfied over the horizon i = 0, . . . , N − 1, and that the state is in the target set Xf at the

end of the horizon. More precisely, the set of admissible (K,g) is defined as

Πsf
N (x) :=











































(K,g)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(K,g) satisfies (3.6), x0 = x

xi+1 = Axi + Bui + Gwi

ui = gi +
∑i

j=0
Ki,jxj

(xi, ui) ∈ Z, xN ∈ Xf

∀i ∈ Z[0,N−1], ∀w ∈ W











































, (3.8)

2 Since the current state x will be assumed known, it is possible to set K0,0 = 0 without loss of generality.
However, presentation of the results in this chapter is somewhat simplified if we do not impose this constraint.
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3.2 A State Feedback Policy Parameterization

or, in more compact form, as

Πsf
N (x) :=



























(K,g)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(K,g) satisfies (3.6)

x = Ax + Bu + Gw

u = Kx + g

(x,u) ∈ Z, ∀w ∈ W



























. (3.9)

The set of initial states x for which an admissible control policy of the form (3.5) exists is

defined as

Xsf
N :=

{

x ∈ R
n
∣

∣

∣
Πsf

N (x) 6= ∅
}

. (3.10)

It is critical to note that it may not be possible to select a single policy pair (K,g) ∈ Πsf
N (x)

such that it is admissible for all x ∈ Xsf
N . Indeed, it is possible to find examples where there

exists a pair (x, x̃) ∈ Xsf
N × Xsf

N such that Πsf
N (x)

⋂

Πsf
N (x̃) = ∅. For problems of non-

trivial size, it is therefore necessary to calculate an admissible pair (K,g) on-line, given a

measurement of the current state x.

Once an admissible control policy is computed for the current state, there are many ways

in which it can be applied to the system; time-varying, time-optimal and receding horizon

implementations are the most common, and are considered in detail in Section 3.6.

It is important to emphasize that, due to the dependence of (3.9) on the current state x,

the implemented control policy will, in general, be a nonlinear function of the state x, even

though it may have been defined in terms of the class of affine state feedback policies of the

form (3.5).

Remark 3.1. Note that the state feedback policy (3.5) subsumes the well-known class of

“pre-stabilizing” control policies [Bem98, LK99, CRZ01], in which the control policy takes

the form ui = ci + Kxi, where K is fixed. In such schemes, the on-line computation is

limited to finding an admissible perturbation sequence {ci}N−1
i=0 . It can also be shown to

subsume ’tube’-based schemes such as [MSR05] based on linear feedback.

3.2.1 Nonconvexity in Affine State Feedback Policies

Finding an admissible policy pair (K,g) ∈ Πsf
N (x), given the current state x, has been

believed to be a very difficult problem. This is due to the nonlinear relationship between x

and u in (3.9), which results in the following property:
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3. Affine Feedback Policies and Robust Control

Proposition 3.2 (Nonconvexity). For a given state x ∈ Xsf
N , the set of admissible affine

state feedback control policies Πsf
N (x) is nonconvex, in general.

The truth of this statement is easily verified by considering the following example:

Example 3.3 (Nonconvexity in affine state feedback policies). Consider the SISO

system x+ = x + u + w with initial state x0 = 0, input constraint |u| ≤ 3, bounded distur-

bances |w| ≤ 1 and a planning horizon of N = 3. Consider a control policy of the form (3.5)

with g = 0 and K2,1 = 0, so that u0 = 0 and

u1 = K1,1w0 (3.11)

u2 = [K2,2(1 + K1,1)] w0 + K2,2w1 (3.12)

In order to satisfy the input constraints for all allowable disturbance sequences, the controls

ui must satisfy

|ui| ≤ 3, i = 1, 2, ∀w ∈ W (3.13)

or, equivalently,

max
w∈W

|ui| ≤ 3, i = 1, 2. (3.14)

Since the constraints on the components of w are independent, the input constraints are

satisfied for all w ∈ W if and only if

|K1,1| ≤ 3 (3.15)

|K2,2(1 + K1,1)|+ |K2,2| ≤ 3. (3.16)

It is straightforward to verify that the set of gains (K1,1, K2,2) which satisfy these constraints

is nonconvex; the pairs (−3, 1) and (−1, 3) are acceptable, while the pair (−2, 2) is not. The

set of admissible values for (K1,1, K2,2), representing the intersection of the set Πsf
N (0) with

the plane g = 0, K1,2 = 0, is shown in Figure 3.1.

It is surprising to note that, though the set Πsf
N (x) may be nonconvex, the set Xsf

N is always

convex. Proof of this is deferred until Section 3.5. Additionally, despite the fact that Πsf
N (x)

may be nonconvex, we will show that one can still find an admissible (K,g) ∈ Πsf
N (x) by

solving an equivalent convex optimization problem.
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Figure 3.1: Nonconvexity of Πsf
N (0) in Example 3.3

3.3 A Disturbance Feedback Policy Parameterization

As a result of nonconvexity in the state feedback formulation of the previous section, we

seek an alternative scheme for which the class of feedback policies is convex. One alternative

to (3.5) is to parameterize the control policy as an affine function of the sequence of past

disturbances, so that

ui = vi +
i−1
∑

j=0

Mi,jGwj , ∀i ∈ Z[0,N−1], (3.17)

where each Mi,j ∈ R
m×n and vi ∈ R

m. It should be noted that, since full state feedback is

assumed, the past disturbance inputs Gwj are easily calculated as the difference between

the predicted and actual states at each step, i.e.

Gwj = xj+1 −Axj −Buj , ∀j ∈ Z[0,N−1]. (3.18)

The above parameterization appears to have originally been suggested some time ago within

the context of stochastic programs with recourse [GW74]. More recently, it has been re-

visited as a means for finding solutions to a class of robust optimization problems, called

affinely adjustable robust counterpart (AARC) problems [BTGGN04, BBN06, Gus02], and

robust model predictive control problems [L0̈3a, vHB02].
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3. Affine Feedback Policies and Robust Control

For notational convenience, define the vector v ∈ R
mN and the strictly block lower trian-

gular matrix M ∈ R
mN×nN such that

M :=













0 · · · · · · 0

M1,0 0 · · · 0
...

. . .
. . .

...

MN−1,0 · · · MN−1,N−2 0













, v :=















v0

...

...

vN−1















, (3.19)

so that the input sequence (3.17) can be written in vectorized form as

u = MGw + v. (3.20)

In a manner similar to (3.8), define the set of admissible (M,v) as

Πdf
N (x) :=











































(M,v)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (3.19), x0 = x

xi+1 = Axi + Bui + Gwi

ui = vi +
∑i−1

j=0
Mi,jGwj

(xi, ui) ∈ Z, xN ∈ Xf

∀i ∈ Z[0,N−1], ∀w ∈ W











































(3.21)

or, in more compact form, as

Πdf
N (x) :=



























(M,v)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (3.19)

x = Ax + Bu + Gw

u = MGw + v

(x,u) ∈ Z, ∀w ∈ W



























. (3.22)

Define the set of initial states x for which an admissible control policy of the form (3.17)

exists as

Xdf
N :=

{

x ∈ R
n
∣

∣

∣
Πdf

N (x) 6= ∅
}

. (3.23)

Note that the state and disturbance feedback parameterizations (3.5) and (3.17) are qual-

itatively similar; in Section 3.5 we will show that they are actually equivalent. However,

the two parameterizations have slightly different interpretations, and we will require both

in order to establish various geometric and system-theoretic properties of receding horizon

control laws based on these policies.
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In the next section, we discuss the main benefit of adopting the parameterization (3.17);

namely, that an admissible affine disturbance feedback policy can be found by solving a

convex and tractable optimization problem.

3.4 Convexity and Closedness

In this section we establish convexity and closedness of the sets Πdf
N (x) and Xdf

N . These prop-

erties will make the disturbance feedback parameterization (3.17) an attractive alternative

to the state feedback parameterization (3.5). Define the set

CN :=
⋂

w∈W



























(x,M,v)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (3.19)

x = Ax + Bu + Gw

u = MGw + v

(x,u) ∈ Z



























. (3.24)

This set is closed and convex since it is the intersection of closed and convex sets. The set Xdf
N

can then be defined as a linear mapping of this set. However, the set CN is not guaranteed

to be compact when G is not full row rank or when the state and input constraints Z are

not bounded in the state dimension, so care must be taken to ensure that closedness is

preserved3 when treating Xdf
N as a linear mapping of CN .

Lemma 3.4. Given a linear mapping L : CN → R
s, if L(x,M,v) 6= 0 for every x 6= 0,

then the set L(CN ) is closed and convex.

Proof. A linear map of a convex set is always convex (Prop. 2.10). To ensure closedness,

define the set M and its orthogonal complement M⊥ as

M := {M | M satisfies (3.19), My = 0, ∀y ⊥ R(G)} (3.25a)

M⊥ := {M | M satisfies (3.19), My = 0, ∀y ∈ R(G)} . (3.25b)

Both of these sets are subspaces, with M∪M⊥ equal to the set of all matrices satisfy-

ing (3.19). Define the set

C̃N := CN ∩ (Rn ×M× R
mN ), (3.26)

3Recall that, in general, a linear mapping of a closed but unbounded set is not guaranteed to be closed.
See Figure 2.2.
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3. Affine Feedback Policies and Robust Control

such that CN and C̃N differ only according to their inclusion of the subspace M⊥. Since

M⊥ is defined such that the nullspace of every element of M⊥ contains the set GW, it

follows that CN in (3.24) can alternatively be written as

CN = C̃N ⊕ ({0} ×M⊥ × {0}). (3.27)

Recalling that the state and input constraints Z are assumed bounded in the inputs and

the disturbance set W is assumed to contain the origin in its interior in A3.1, the setM is

also bounded, since maxw∈W ‖MGw‖ > 0 for any nonzero M ∈M. The set C̃N is therefore

bounded in policies, i.e. there exist bounded sets B1 ⊆ R
mN×nN and B2 ⊆ R

mN such that

C̃N ⊆ (Rn ×B1 ×B2). Then

L(CN ) = L
(

C̃N ⊕ ({0} ×M⊥ × {0})
)

(3.28)

= L
(

C̃N
)

⊕ L

(

{0} ×M⊥ × {0}
)

, (3.29)

where the latter relation follows since linear mappings are distributive with respect to

set addition. The set L(C̃N ) is closed since C̃N is compact in policies (Prop. 2.10(ii)), so

that (3.29) is the sum of closed and orthogonal sets, therefore also closed (Prop. 2.9).

We can now state the main result of this section:

Theorem 3.5 (Convexity). For every state x ∈ Xdf
N , the set of admissible affine distur-

bance feedback policies Πdf
N (x) is closed and convex. Furthermore, the set of states Xdf

N , for

which at least one admissible affine disturbance feedback policy exists, is also closed and

convex.

Proof. The set Πdf
N (x) represents a planar ‘slice’ through CN , and can be written as

Πdf
N (x) :=

⋂

w∈W



























(M,v)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (3.19)

x = Ax + Bu + Gw

u = MGw + v

(x,u) ∈ Z



























.

Like the set CN , the set Πdf
N (x) is closed and convex since it is the intersection of closed

and convex sets. The projection CN 7→ Xdf
N is a linear mapping satisfying the conditions of

Lem. 3.4, so Xdf
N is also closed and convex.
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Remark 3.6. Convexity and closedness of the set CN will be important considerations when

establishing the properties of optimal finite horizon control policies in Chapters 4 and 5.

There we will need to minimize a convex and continuous objective function (x,M,v) 7→
JN (x,M,v) over an effective domain restricted to CN . If CN is closed, then this function

is lower semicontinuous and the results of Section 2.4 will apply.

3.4.1 Handling Nonconvex Disturbance Sets

Recall that in A3.1, the set W was assumed to be convex and compact, with 0 ∈ int W .

We show here that if W (equivalently W) is nonconvex, it can be replaced with its convex

hull without loss of generality.

Proposition 3.7 (Convexification of W). The sets Πdf
N (x) and Xdf

N , defined in (3.21)

and (3.23) respectively, are unchanged if W is replaced with its convex hull.

Proof. For a given state x, define Π̄df
N (x) to be the set of policies guaranteeing constraint

satisfaction for all W ∈ convW, i.e.

Π̄df
N (x) :=

⋂

w∈convW



























(M,v)
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∣
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∣

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (3.19)

x = Ax + Bu + Gw

u = MGw + v

(x,u) ∈ Z



























Since W ⊂ convW, Π̄df
N (x) ⊂ Πdf

N (x) follows trivially. We show here that Π̄df
N (x) ⊃ Πdf

N (x)

as well, so that Π̄df
N (x) = Πdf

N (x).

From Carathéodory’s Theorem (Thm. 2.7), every element w̄ ∈ convW ⊆ R
lN can be

written as a convex combination of (lN + 1) points (not necessarily all different) in W.

Denote these points wi, so that w̄ =
∑(lN+1)

i=1 λiwi, where each λi ≥ 0 and
∑(lN+1)

i=1 λi = 1.

Consider any control policy pair (M,v) ∈ Πdf
N (x), and define (x̄, ū) :=

∑(lN+1)
i=1 λi(xi,ui),

where

xi := Ax + Bv + (BMG + G)wi

ui := MGwi + v.

From the definition of Πdf
N (x), every pair (xi,ui) ∈ Z. Since the set Z is convex and

(x̄, ū) is a convex combination of the points (xi,ui), it follows that (x̄, ū) ∈ Z, so that
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(M,v) is constraint admissible for every w̄ ∈ convW, i.e. (M,v) ∈ Π̄df
N (x), and therefore

Π̄df
N (x) ⊃ Πdf

N (x). This proves the result for the set Πdf
N (x); the result then follows for the

set Xdf
N directly from the definition (3.23).

Note that the above result is not indicative of excessive conservatism of the control policy

parameterization (3.17), since an equivalent result holds for control policies constructed via

robust dynamic programming techniques [BR71].

A consequence of Proposition 3.7 is that a wide variety of disturbance sets W can be handled

easily within the proposed framework, including nonconvex or disjoint sets, so long as W is

compact and 0 ∈ int (conv W ). We will therefore generally assume that W is a convex set

satisfying A3.1, with the understanding that we can replace W with conv W as necessary.

Corollary 3.8 (Polyhedral Sets). If the constraint sets Z and Xf are polyhedral and

the disturbance set W is a polytope, then the sets CN and Xdf
N are polyhedral and Πdf

N (x) is

polyhedral for each x ∈ Xdf
N .

Proof. If the set W (equivalently W) is a polytope, then the set of extreme disturbance se-

quences (i.e. those whose elements take values from the vertices ofW) is finite. Denote each

such extreme sequence wi, where i ∈ Z[1,q] for some finite integer q, so thatW≡conv {wi}qi=1.

The set CN can be written as

CN =
⋂

{wi}
q
i=1























(x,M,v)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (3.19)

x = Ax + Bu + Gwi

u = MGwi + v

(x,u) ∈ Z























, (3.30)

which is the intersection of a finite collection of polyhedral sets, and is thus also polyhedral

(Prop. 2.8). An identical argument establishes that Πdf
N (x) is polyhedral for each x ∈ Xdf

N .

The set Xdf
N is polyhedral since, as in the proof of Thm. 3.5, it can be written as a linear

mapping of CN , and any linear map of a polyhedral set is polyhedral (Prop. 2.10).

The results of this section will be of fundamental importance throughout this dissertation. If

W is convex and compact, then it is conceptually possible to compute a pair (M,v) ∈ Πdf
N (x)

in a computationally tractable way, given the current state x. Methods for calculating

policies in this class for particular characterizations of the sets Z and W will be addressed

in Chapter 6.
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3.5 Equivalence of Affine Policy Parameterizations

An important question is whether the disturbance feedback parameterization (3.17) is more

or less conservative than the state feedback parameterization (3.5). In this section, we show

that they are equivalent.

Theorem 3.9 (Equivalence). The set of admissible states Xdf
N = Xsf

N . Additionally,

given any x ∈ Xsf
N , for any admissible (K,g) an admissible (M,v) can be found which

yields the same state and input sequence for all allowable disturbance sequences, and vice-

versa.

Proof. The set equality is established by showing that both Xsf
N ⊆ Xdf

N and Xdf
N ⊆ Xsf

N .

Xsf
N ⊆ Xdf

N : By definition, for a given x ∈ Xsf
N , there exists a pair (K,g) ∈ Πsf

N (x) that

satisfies the constraints Z for all disturbance sequences w ∈ W. For a given w ∈ W, the

inputs and states of the system can be written as :

u = Kx + g (3.31)

= K(Ax + Bu + EGw) + g (3.32)

The matrix (I − KB) is always non-singular, since KB is strictly lower triangular. The

control sequence can then be rewritten as an affine function of the disturbance sequence w:

u = (I −KB)−1(KAx + g) + (I −KB)−1KEGw, (3.33)

and an admissible (M,v) constructed by choosing

M = (I −KB)−1KE (3.34a)

v = (I −KB)−1(KAx + g). (3.34b)

This choice of (M,v) gives exactly the same input sequence as the pair (K,g), so the state

and input constraints Z are satisfied for all disturbance sequences w ∈ W. The constraint

(3.19) that M be strictly block lower triangular is satisfied because M is chosen in (3.34) as

a product of the block lower triangular matrices (I −KB)−1 and K and the strictly block

lower triangular matrix E. Therefore, (M,v) ∈ Πdf
N (x) and thus x ∈ Xsf

N ⇒ x ∈ Xdf
N .

Xdf
N ⊆ Xsf

N : By definition, for a given x ∈ Xdf
N , there exists a pair (M,v) ∈ Πdf

N (x) that

satisfies the constraints Z for all disturbance sequences w ∈ W. For a given w ∈ W, the
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3. Affine Feedback Policies and Robust Control

inputs and states of the system can be written as :

u = MGw + v (3.35)

x = Ax + B(MGw + v) + Gw (3.36)

Recalling that since full state feedback is assumed, one can recover the uncertain terms Gwi

using the relation

Gwi = xi+1 −Axi −Bui, ∀i ∈ Z[0,N−1], (3.37)

which can be written in matrix form as

Gw =















0 I 0 · · · 0

0 −A I
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 −A I















x−















I

0
...

0















Ax− Bu, (3.38)

or more compactly as

Gw = E†x− IAx− Bu. (3.39)

It is easy to verify that the matrices E† and I> are left inverses of E and A respectively, so

that E†E = I and I>A = I. The input sequence can then be rewritten as

u = M(E†x− IAx− Bu) + v (3.40)

= (I + MB)−1(ME†x−MIAx + v). (3.41)

The matrix (I + MB) is non-singular because the product MB is strictly lower triangular.

An admissible (K,g) can then be constructed by choosing

K = (I + MB)−1ME† (3.42a)

g = (I + MB)−1(v −MIAx). (3.42b)

This choice of (K,g) gives exactly the same input sequence as the pair (M,v), so the

state and input constraints Z are satisfied for all disturbance sequences w ∈ W. The

constraint (3.6) that K be block lower triangular is satisfied because K is chosen in (3.42)

as a product of block lower triangular matrices. Therefore, (K,g) ∈ Πsf
N (x) and thus

x ∈ Xdf
N ⇒ x ∈ Xsf

N .
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Note that the proof of Theorem 3.9 is not predicated on any of the conditions of A3.1.

It is instead a direct consequence of the linearity of the system (3.1) and of the state and

disturbance feedback policies (3.5) and (3.17).

Recalling Theorem 3.5 leads next to the following result, which is surprising in light of the

potential nonconvexity of the set Πsf
N (x):

Corollary 3.10 (Convexity of Xsf
N ). The set of states Xsf

N , for which an admissible

affine state feedback policy of the form (3.5) exists, is a closed and convex set.

Remark 3.11. The results of Theorem 3.9 have appeared independently in [GKM06] and

[BBN06], with the latter appearing in the more general context of output feedback. In Chap-

ter 8, we present a generalization of the results in [BBN06] that incorporates nonzero initial

state estimates and observer dynamics, and provide several geometric and invariance results

paralleling those developed in this chapter.

An important consequence of Theorem 3.9 is that it provides a tractable method for finding

an affine state feedback policy (K,g) ∈ Πsf
N (x), a problem which has generally been con-

sidered intractable due to nonconvexity of the feasible set Πsf
N (x) (cf. Example 3.3). Since

the set Πdf
N (x) is convex, it is possible in principle to find a policy (M,v) ∈ Πdf

N (x) using

convex optimization methods; one can then find a policy (K,g) ∈ Πsf
N (x) via the transfor-

mation (3.42). Methods for calculating such policies for specific classes of disturbances and

constraint sets are discussed in Chapter 6.

Theorem 3.9 will also play a central role in the development of Chapters 4 and 5, where

we consider various system theoretic properties of receding horizon control laws derived

from the parameterizations (3.5) (equivalently, (3.17)). For many of the results, proof will

be significantly more straightforward using one or the other of the two parameterizations;

Theorem 3.5 will allow us to move freely between them, choosing whichever parameteriza-

tion is most natural or convenient in each context.

3.5.1 Relation to Pre-Stabilizing Control Policies

As a direct consequence of the equivalence result in Theorem 3.9, the class of affine feed-

back policies in the form ui = vi +
∑i−1

j=0 Mi,jGwj subsumes the class of policies based on

perturbations to a fixed and pre-stabilizing linear control law in the form ui = ci + Kxi

(cf. Remark 3.1). We therefore conclude that, if the region of attraction for the class of

pre-stabilizing policies with fixed gain K is denoted XK
N , then XK

N ⊆ Xdf
N always.
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3. Affine Feedback Policies and Robust Control

However, we note that calculating a feasible policy pair (M,v) ∈ Πdf
N (x) for a given horizon

length N may require considerable computational effort; the number of decision variables

in the parameter M increase quadratically with the horizon length N , while the number of

decision variables ci in a pre-stabilizing scheme increases only linearly with N . A sensible

strategy might therefore be to employ a pre-stabilizing scheme with a longer horizon, in the

hope that XK
Ñ
⊃ Xdf

N for some Ñ > N , while still requiring less computational effort.

We next show that this is not always possible, and provide an example for which XK
Ñ

is a

strict subset of Xdf
N for some fixed N , regardless of how large we allow Ñ to be:

Example 3.12. Consider the system

x+ = 2x + 2u + w,

subject to the following input and terminal constraints:

u ∈ {u | |u| ≤ 0.7}
Xf = {x | |x| ≤ 0.5}

and subject to bounded disturbances |w| ≤ 0.25. We define a stabilizing controller K = −1.25.

For increasing horizon length N , we consider the size of the set Xdf
N for this system, as well

as the size of the set of feasible initial conditions XK
N when the control policy for the system

is restricted to perturbations to the fixed linear feedback law u = Kx, i.e. those parameter-

ized as ui = ci + Kxi. The sizes of these sets with increasing horizon length are shown in

Figure 3.2, where it is clear that XK
Ñ
⊂ Xdf

4
for every Ñ ∈ N.

Note that in Example 3.12 the terminal set Xf is robust positively invariant for the closed-

loop system x+ = (A + BK)x + w. Terminal conditions of this type will play a central role

in the development of robust receding horizon controls to be introduced in Section 3.6.

3.5.2 Relation to the Youla Parameter

The equivalence result of Thm. 3.9 is closely related to the well-known Youla parameteri-

zation from linear systems theory [YJB76][ZDG96, Ch. 12], where the problem of finding

a stabilizing linear controller for an unconstrained linear system is convexified via a similar

variable transformation. A useful method of comparison is to draw the sequence of inputs

resulting from the application of a given control policy (M,v) in block diagram form as
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Figure 3.2: Sizes of Xdf
N and XK

N with increasing N

in Figure 3.3 – such a figure has a structure usually employed in internal model control

(IMC) formulations for linear systems [GM82][Mac89, Ch.6] with stable plants, with the

feedback parameter M taking the place of the Youla parameter (typically denoted Q). Note

that it is not necessary to generalize this figure to the case of unstable plants, since the

policy (M,v) is only defined over a finite horizon.

It should be emphasized, however, that the feedback scheme shown in Figure 3.3 is strictly

notional – it will generally not be our intent to implement a calculated control policy

(M,v) in this manner. Instead, we will usually calculate and implement policies (M,v)

in a receding horizon fashion, resulting in static and nonlinear feedback control laws. In

this case Figure 3.3 represents an internal model employed by the controller in considering

possible future state trajectories resulting from a candidate control policy (M,v), and does

not represent the actual closed-loop behavior of the system. In the next section, we consider

the geometric and invariance properties of such receding horizon control laws.
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Figure 3.3: Internal Model Control

3.6 Geometric and Invariance Properties

It is well-known that the set of states for which an admissible open-loop input sequence exists

(i.e. one with K = 0 or M = 0) may collapse to the empty set if the horizon is sufficiently

large [SM98, Sect. F]. Furthermore, for time-varying, time-optimal or receding horizon

control implementations of the affine control policies defined in this chapter, it may not be

possible to guarantee constraint satisfaction for all time unless additional assumptions are

made. In this section, we provide conditions under which these problems will not occur. The

stability of receding horizon schemes based on these policies will be addressed in Chapters 4

and 5.

We first introduce the following standard assumption (cf. [MRRS00]):

A3.2 (Invariant Terminal Constraint) A state feedback gain matrix Kf and termi-

nal constraint set Xf have been chosen such that:

i. The matrix A + BKf is Hurwitz.

ii. Xf is contained inside the set of states for which the constraints (x, u) ∈ Z are satisfied

under the control u = Kfx, i.e. Xf ⊆ {x | (x, Kfx) ∈ Z }.

iii. Xf is robust positively invariant for the closed-loop system x+ = (A + BKf )x + Gw,

i.e. (A + BKf )x + Gw ∈ Xf for all x ∈ Xf and all w ∈W .
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Under some additional, mild technical assumptions, one can compute a Kf and a poly-

topic Xf that satisfies A3.2 when Z is a polytope and W is a polytope, an ellipsoid or

the affine map of a p-norm ball. The reader is referred to [Bla99, KG98, LK99] and the

references therein for details.

3.6.1 Monotonicity of X
sf
N and X

df
N

We are now in a position to give a sufficient condition under which one can guarantee that

Xsf
N (equivalently, Xdf

N ) is nonempty and that the sets Xsf
N are non-decreasing (with respect

to set inclusion) with horizon length N :

Proposition 3.13 (Nesting of Xsf
N ). If A3.2 holds, then the following set inclusion holds:

Xf ⊆ Xsf
1 ⊆ · · · ⊆ Xsf

N−1 ⊆ Xsf
N ⊆ Xsf

N+1 ⊆ · · · (3.43)

Proof. The proof is by induction. Let x ∈ Xsf
N and (K,g) ∈ Πsf

N (x). One can construct a

pair (K̄, ḡ) ∈ Xsf
N+1, where

K̄ :=

[

K 0 0

0 Kf 0

]

ḡ :=

[

g

0

]

,

such that the final stage input will be uN = KfxN . From the definition of Πsf
N (x), it follows

that xN ∈ Xf . If A3.2 holds, then (xN , KfxN ) ∈ Z and xN+1 = AxN + BuN + GwN ∈ Xf

for all wN ∈W . It then follows from the definition of Πsf
N+1(x) that (K̄, ḡ) ∈ Πsf

N+1(x), hence

x∈Xsf
N+1. The proof is completed by verifying, in a similar manner, that Xf ⊆Xsf

1 ⊆Xsf
2.

Remark 3.14. For many examples, some of the inclusions in (3.43) are strict, rather than

satisfied with equality. Note also that if Xsf
N = Xsf

N+1 for some N , then Xsf
i = Xsf

N for all

i > N .

Recalling Theorem 3.9, the next result follows immediately:

Corollary 3.15 (Nesting of Xdf
N ). If A3.2 holds, then the following set inclusion holds:

Xf ⊆ Xdf
1 ⊆ · · · ⊆ Xdf

N−1 ⊆ Xdf
N ⊆ Xdf

N+1 ⊆ · · · (3.44)

Remark 3.16. Corollary 3.15 should be compared with the equivalent result in [KM04b,

Thm. 2]. The proof given here is more transparent, due to the application of Theorem 3.9

and Proposition 3.13.

43



3. Affine Feedback Policies and Robust Control

3.6.2 Time-varying Control Laws

We first consider what happens if one were to implement an admissible affine disturbance

feedback policy in a time-varying fashion. Given any (M,v) ∈ Πdf
N (x(0)), consider the

following feedback policy which is time-varying over the prediction horizon, and static and

linear thereafter:

u(k) =







vk +
∑k−1

j=0 Mk,jGw(j) if k ∈ Z[0,N−1]

Kfx(k) if k ∈ Z[N,∞).
(3.45)

Recall that the realized disturbance inputs Gw(j) can be recovered using the relation (3.18).

Theorem 3.9 implies that we could also have defined an equivalent, time-varying affine state

feedback policy (K,g) ∈ Πsf
N , but we will generally choose to work with disturbance feedback

policies due to the convenience of computation resulting from Theorem 3.5. The next result

follows immediately:

Proposition 3.17 (Time-varying control). Let A3.2 hold, the initial state x(0) ∈ Xdf
N

and (M,v) ∈ Πdf
N (x(0)). For all allowable infinite disturbance sequences, the state of sys-

tem (3.1), in closed-loop with the feedback policy (3.45), enters Xf in N steps or less and

remains in Xf for all k ∈ Z[N,∞). Furthermore, the constraints (x(i), u(i)) ∈ Z are satisfied

for all time and for all allowable infinite disturbance sequences.

3.6.3 Minimum-time Control Laws

We next derive some results for robust minimum-time control laws. Given a maximum

horizon length Nmax and the set N := {1, . . . , Nmax}, let

N∗(x) := min
N

{

N ∈ N
∣

∣

∣
Πsf

N (x) 6= ∅
}

(3.46)

be the minimum horizon length for which an admissible state feedback policy of the form (3.5)

exists.

Consider the set-valued map κN : Xsf
N → 2R

m
(where 2R

m
is the set of all subsets of

R
m), which is defined by considering only the first portion of an admissible state feedback

parameter (K,g), i.e.

κN (x) :=
{

u
∣

∣

∣
∃(K,g) ∈ Πsf

N (x) s.t. u = g0 + K0,0x
}

. (3.47)
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In order to define a minimum-time control law, we consider also the set-valued map κ :

X → 2R
m

, defined as

κ(x) :=







κN∗(x)(x) if x /∈ Xf

Kfx if x ∈ Xf

, (3.48)

where κN∗(x)(x) is defined as in (3.47) with N = N ∗(x), and

X := Xf ∪
(

∪
N∈N

Xsf
N

)

.

Let the robust time-optimal control law µ : X → R
m be any selection from κ(·), i.e.

µ(x) ∈ κ(x), for all x ∈ X . Note that κ(·) is defined everywhere on X and that the state

of the closed-loop system x+ = Ax + Bµ(x) + Gw will enter Xf in less than Nmax steps

if this is possible, even if A3.2 does not hold. Furthermore, if x ∈ Xsf
N \ Xsf

N−1, then

Ax + Bµ(x) + Gw ∈ Xsf
N−1 for all w ∈W .

Proof of the following result is straightforward and closely parallels that of Proposition 3.13.

Proposition 3.18 (Minimum-time control). If A3.2 holds, then X = Xsf
Nmax

and X is

robust positively invariant for the closed-loop system x+ = Ax+Bµ(x)+Gw, i.e. if x ∈ X ,

then x+ ∈ X for all w ∈ W . The state of the closed-loop system enters Xf in Nmax steps

or less and, once inside, remains inside for all time and all allowable infinite disturbance

sequences. Furthermore, the constraints (x(i), u(i)) ∈ Z are satisfied for all time and for

all allowable infinite disturbance sequences if the initial state x(0) ∈ X .

Proof. The proof is straightforward, by showing that if some (K,g) is admissible at the

current time instant, then a truncated version (K̂, ĝ) is admissible at the next time instant.

More precisely, given an initial state x ∈ X and feasible control policy (K,g) ∈ Πsf
N∗(x)(x),

one can guarantee that if x+ = Ax + B(g0 + K0,0(x)) + Gw, then (K̂, ĝ) ∈ Πsf
(N∗(x)−1)(x

+)

for all w ∈W , where K̂ :=
[

0 Im(N−1)

]

K

[

0

InN

]

and ĝ :=
[

0 Im(N−1)

]

g.

Remark 3.19. Note that the control law defined above is not optimal in the sense of [BR71,

GS71, Bla92, MS97] since Xsf
N is not, in general, equal to the set of states for which

an arbitrary, nonlinear, time-varying state feedback control policy exists such that for all

allowable disturbance sequences of length N , the state and input constraints Z are satisfied

and the state arrives in Xf in exactly N steps.

Due to the nonconvexity of Πsf
N (x), computing an admissible (K,g) in (3.47) at each time
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instant is seemingly problematic. However, by a straightforward application of Theorem 3.9,

it follows that

κN (x) =
{

u
∣

∣

∣
∃(M,v) ∈ Πdf

N (x) s.t. u = v0

}

, (3.49)

where v0 is the first component of the stacked vector v. Hence, computation of an admissible

control law in κN (x) is possible using convex optimization methods, since the set Πdf
N (x)

is guaranteed to be convex from Theorem 3.5. Techniques for computing an admissible

(M,v) ∈ Πdf
N (x) for particular classes of disturbance set W and constraint sets Z will be

discussed in Chapter 6.

3.6.4 Receding Horizon Control Laws

Finally, we consider what happens when the disturbance feedback parameterization (3.17)

is used to design a receding horizon control (RHC) law. In RHC, an admissible feedback

policy is computed at each time instant, but only the first component of the policy is applied.

An important issue in RHC is whether one can ensure feasibility and constraint satisfaction

for all time, despite the fact that a finite horizon is being used and only the first part of the

policy is implemented at each sample instant [MRRS00].

Recalling the definition of the set-valued map κN : Xsf
N → 2R

m
in (3.47) (equivalently,

(3.49)), we define an admissible RHC law µN : Xsf
N → R

m as any selection from κN (·), i.e.

µN (·) has to satisfy

µN (x) ∈ κN (x), ∀x ∈ Xsf
N . (3.50)

The resulting closed-loop system is then given by

x+ = Ax + BµN (x) + Gw. (3.51)

Note that if the selection criteria in (3.50) is time-invariant, then the RHC law µN (·)
is also time-invariant and is, in general, a nonlinear function of the current state. The

following result then follows using standard methods in receding horizon control [MRRS00],

by employing the state feedback parameterization (3.5):

Proposition 3.20 (RHC). If A3.2 holds, then the set Xsf
N is robust positively invariant

for the closed-loop system (3.51), i.e. if x ∈ Xsf
N , then Ax + BµN (x) + Gw ∈ Xsf

N for all

w ∈ W . Furthermore, the constraints (x(i), u(i)) ∈ Z are satisfied for all time and for all

allowable infinite disturbance sequences if the initial state x(0) ∈ X sf
N .
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Proof. For any given state x ∈ Xsf
N there exists a state feedback policy pair (K,g) ∈ Πsf

N (x)

by definition. Using arguments which closely parallel those in the proof of Proposition 3.13,

one can show that if u ∈ κN (x) and w ∈ W , then there exists a “shifted” policy pair

(K̃, g̃) ∈ Πsf
N (Ax + Bu + Gw), hence Ax + Bu + Gw ∈ Xsf

N .

Remark 3.21. The receding horizon control law µN (·) should be contrasted with the control

law (3.45). Whereas (3.45) is a time-varying feedback policy that is dependent on present

and past values of the system state, the RHC law µN (·) is time-invariant, being defined as

a function only of the current state, whenever the selection criteria is time-invariant. Note

also that, unlike the time-optimal control policy discussed in Section 3.6.3, the RHC law

µN (·) does not guarantee that the system will reach the target set Xf in a finite amount of

time.

3.7 Conclusions

The state feedback RHC law µN (·) will be the central focus of much of the remainder

of this dissertation. We have thus far only provided conditions under which µN (·) will

guarantee constraint satisfaction for all time, where µN (x) was defined in (3.50) as any

feasible selection from κN (x). We have not yet specified criteria by which an optimal

control law might be selected.

We address this problem in Chapters 4 and 5, where we present two different cost functions

allowing us to discriminate between policies in the set Πdf
N (x). Using an expected value

cost (Chapter 4), or a min-max cost as in H∞ control (Chapter 5), we will show that the

resulting closed-loop system is input-to-state or `2 stable, respectively. In Chapters 6 and 7,

we address the practical issue of calculating an optimal policy (M,v) ∈ Πdf
N (x) with respect

to these two cost functions for various classes of disturbance set W when the constraint sets

Z and Xf are defined by linear inequalities.
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Chapter 4. Expected Value Costs (H2 Control)

4.1 Introduction

In this chapter, we once again consider the discrete-time LTI system:

x+ = Ax + Bu + Gw (4.1)

z = Czx + Dzu, (4.2)

where the system (4.1) is identical to the system (3.1) introduced in Chapter 3. We treat

the vector z ∈ R
q as a controlled output of (4.1), and will continue to assume that, at each

sample instant, a measurement of the state x is available.

Recall that in Section 3.2 we introduced a class of robust control policies for the control of

the system (4.1) over a finite horizon N . These policies modelled the input ui at each time

instant as an affine function of the state sequence {x0, . . . , xi}, so that

ui = gi +
i
∑

j=0

Ki,jxj , ∀i ∈ Z[0,N−1]. (4.3)

Given a state/input constraint set Z ⊂ R
n × R

m and target/terminal state constraint set

Xf ⊂ R
n, we defined Πsf

N (x) as the set of all control policies of the form (4.3) guaranteed

to steer the system (4.1) to the set Xf after N time steps, while guaranteeing that at each

time step (x, u) ∈ Z.

In Section 3.6.4, we defined a class of control laws based on a receding horizon implemen-

tation of finite horizon policies in the form (4.3). In particular, we established appropriate

terminal conditions such that the system (4.1)–(4.2), in closed-loop with a control law in

this class, could be guaranteed to satisfy the constraints (x, u) ∈ Z over an infinite horizon.

In this chapter and the next, we address the stability of the system (4.1)–(4.2) in closed-loop

with such control laws.
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To this end, we define a cost function Φ : R
n × R

mN × R
lN → R+ that is quadratic in the

controlled outputs, and seek a control policy in the form (4.3) that is optimal with respect

to this cost function in some sense. We define

Φ(x,u,w) := ‖xN‖2P +
N−1
∑

i=0

‖zi‖22 , (4.4)

where xi+1 := Axi +Bui +Gwi and zi := Czxi +Dzui for all i ∈ Z[0,N−1]. In this chapter we

will assume that, in addition to being contained inside the bounded set W , the disturbances

w in (4.1) are independent and identically distributed with zero mean and known covariance,

and will consequently define an optimal policy to be one that minimizes the expected value

of (4.4) over policies in the form (4.3).

By employing the equivalent disturbance feedback parameterization introduced in Chap-

ter 3, we will show that the problem of finding such an optimal policy can be posed as a

convex optimization problem, and will further demonstrate that such optimal policies allow

for the synthesis of a receding horizon control (RHC) law guaranteeing that the closed-loop

system is input-to-state stable (ISS). In Chapter 5, we will instead employ a min-max cost

based on (4.4) where the disturbances are negatively weighted as in H∞ control, and show

that the resulting closed-loop system has finite `2 gain.

Throughout this chapter, we will make the following assumptions relating to (4.1)–(4.4):

A4.1 (Standing Assumptions) The following conditions hold:

i. The assumptions A3.1 hold.

ii. The pair (Cz, A) is detectable.

iii. The matrices Cz and Dz are full column rank, with C>
zDz = 0.

iv. The matrix P is positive semidefinite.

Remark 4.1. Note that if A4.1(iii) holds, then the cost function (4.4) can be rewritten in

the standard quadratic form

Φ(x,u,w) = ‖xN‖2P +
N−1
∑

i=0

(

‖xi‖2Q + ‖ui‖2R
)

,

where C>
zCz =: Q Â 0 and D>

zDz =: R Â 0. We use the cost function (4.4) augmented with

the condition A4.1(iii) primarily for consistency of notation with Chapter 5.
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4.1.1 Notation and Definitions

As in Chapter 3, we assume that the current and future values of the disturbance are

unknown and may change from one time instant to the next, but are contained in a compact

and convex set W containing the origin in its interior. We further assume for the purposes

of this chapter that the disturbances are independent and identically distributed, with

E [w] = 0 and positive semidefinite covariance1 matrix Cw := E
[

ww>
]

∈ R
l×l. Finally, we

define the matrix Cw := I ⊗ Cw, so that E
[

ww>
]

= Cw ∈ R
lN×lN .

In addition to the stacked state, input and disturbance sequences x, u and w defined in

Section 3.1.1, we define a stacked vector of controlled outputs z ∈ R
qN as

z := vec(z0, z1, . . . , zN−1), (4.5)

and will often find it convenient to write the controlled outputs z in vectorized form as

z = Czx + Dzu,

where Cz :=
[

IN ⊗ Cz 0
]

and Dz := IN ⊗Dz. Recalling the definitions of A, B and G

from Section 3.1.1, and further defining

Ã :=
(

AN−1 · · · A I
)

, (4.6)

B̃ := Ã(IN ⊗B), G̃ := Ã(IN ⊗G), (4.7)

we can write z and xN as

z = CzAx + (CzB + Dz)u + CzGw

xN = AN
Nx + B̃u + G̃w,

where x0 = x is the initial state. The cost function Φ(x,u,w), defined in (4.4), can then

be written as

Φ(x,u,w) = ‖Hxx + Huu + Hww‖22 , (4.8)

1Though we assume that 0 ∈ int W , and will consider only control policies that are robust to every

disturbance sequence drawing values from W , we do not exclude the case Cw º 0, or even Cw = 0. The
result is that we can define policies that are robust to large disturbance sets W while treating as vanishingly
small the probability that such disturbances will actually occur in some (or all) directions.
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where

Hx :=

(

CzA

P
1
2 AN

)

, Hu :=

(

CzB + Dz

P
1
2 B̃

)

, and Hw :=

(

CzG

P
1
2 G̃

)

. (4.9)

In subsequent sections we will find the following fact about Hu useful in establishing various

results.

Lemma 4.2. If Dz is full column rank, then Hu is full column rank.

Proof. Obvious from the expansion

Hu =





























Dz 0 · · · · · · 0

CzB Dz 0 · · · 0

CzAB CzB
. . .

. . .
...

...
...

. . . Dz 0

CzA
N−2B CzA

N−3B · · · CzB Dz

P
1
2 AN−1B P

1
2 AN−2B · · · P

1
2 AB P

1
2 B





























.

4.2 An Expected Value Cost Function

In this chapter we define an optimal policy pair (K∗(x),g∗(x)) ∈ Πsf
N (x) to be one that

minimizes the expected value of the cost function (4.8) over the set of feasible affine state

feedback control policies Πsf
N (x). We thus define

VN (x,K,g) := E [Φ(x, ū,w)] , (4.10)

where ū := Kx̄ + g and x̄ := (I −BK)−1(Ax + Bg + Gw), and define an optimal policy

pair as

(K∗(x),g∗(x)) := argmin
(K,g)∈Πsf

N (x)

VN (x,K,g). (4.11)

We assume for the moment that the minimizer in (4.11) exists and is well-defined. We

define the receding horizon control law µN : Xsf
N → R

m by the first part of the optimal

affine state feedback control policy in (4.11), i.e.

µN (x) := g∗0(x) + K∗
0,0(x)x. (4.12)
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Note that the control law µN (·) is time-invariant and is, in general, a nonlinear function of

the current state. The system (4.1), in closed-loop with the controller µN (·), becomes

x+ = Ax + BµN (x) + Gw. (4.13)

We also define the value function V ∗
N : Xsf

N → R+ to be

V ∗
N (x) := min

(K,g)∈Πsf
N (x)

VN (x,K,g). (4.14)

In the remainder of this chapter, conditions sufficient to guarantee the stability of the

closed-loop system (4.13) under the receding horizon control law µN (·) will be derived. We

first establish some basic properties relating to the existence of the minimizer in (4.11),

to the convexity of the value function V ∗
N (·) and to the continuity of the receding horizon

control law µN (·); derivation of these results will be greatly facilitated by appealing to the

convexity and equivalence results of Chapter 3.

4.2.1 Exploiting Equivalence to Compute the RHC Law

The difficulty with implementing the control law µN (·) in (4.12) lies in the nonconvexity

of the set of feasible policies Πsf
N (x) (cf. Example 3.3), in the nonconvexity of the function

VN (x, ·, ·), and consequently in the nonconvexity of the optimization problem (4.14). We

therefore exploit the alternative disturbance feedback policy parameterization (3.17), and

define the analogous cost function

JN (x,M,v) := E [Φ(x, û,w)] , (4.15)

where û := Mw + v. In this case we define an optimal policy as

(M∗(x),v∗(x)) := argmin
(M,v)∈Πdf

N
(x)

JN (x,M,v). (4.16)

We again assume for the moment that the minimizer in (4.16) exists and is well-defined.

Proof of the following result then follows by direct application of Theorem 3.9.

Proposition 4.3 (Computation of µN (x)). The minimum value of JN (x, ·, ·) taken over
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the set of admissible affine disturbance feedback parameters is V ∗
N (x), i.e.

V ∗
N (x) = min

(M,v)∈Πdf
N (x)

JN (x,M,v). (4.17)

The RHC law µN (·), defined in (4.12), is given by the first part of the optimal control

sequence v∗(·), i.e.

µN (x) = v∗0(x) = g∗0(x) + K∗
0,0(x)x, ∀x ∈ Xsf

N . (4.18)

In the remainder of this section we show that, given an initial state x, the optimization

problem (4.17) is convex, and thus that the value of the RHC law µN (·) can in principle be

calculated using convex optimization techniques, since the set of feasible policies (M,v) is

a convex set. Methods for characterizing this set, and for calculating such control laws for

particular classes of constraint and disturbance sets, will be addressed in Chapter 6.

In Section 4.3 we will show that the value function V ∗
N (·) defined in (4.14) is convex and

lower semicontinuous everywhere, despite the fact that the function (K,g) 7→ VN (x,K,g)

is generally nonconvex. This will enable us to prove that the closed-loop system (4.13)

is input-to-state stable (ISS) under the control law µN (·). For the particular case where

the constraint sets Z and Xf and disturbance set W are polytopic, stronger results will

be possible – we will show that the value function V ∗
N (·) is Lipschitz continuous, providing

tighter bounds on the ISS gain.

4.2.2 Convexity of the Cost Function

We first demonstrate that the function JN (x, ·, ·) is convex, so that the problem (4.17) can

be posed as a convex optimization problem.

Proposition 4.4 (Convex Cost). The function (x,M,v) 7→ JN (x,M,v) is convex.

Proof. The function (4.15) can be rewritten as

JN (x,M,v) = E

[

‖Hxx + Hu(MGw + v) + Hww‖22
]

.
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Since E [w] = 0 and w is independent of both v and M, this simplifies to

JN (x,M,v) = ‖Hxx + Huv‖22 + E

[

‖(HuMG + Hw)w‖22 .
]

This can be further simplified by noting that E
[

w>Xw
]

= tr(C
1
2
wXC

1
2
w) for any X, so that2

JN (x,M,v) = ‖Hxx + Huv‖22 + tr

(

C
1
2
w(HuMG + Hw)>(HuMG + Hw)C

1
2
w

)

, (4.19)

which is convex, since it is a convex function of vector and matrix norms.

Since the function JN (x, ·, ·) is convex and is to be minimized over the convex set Πdf
N (x), the

optimization problem (4.17) is solvable in principle using standard methods from convex

optimization. However, since the minimization is to be performed over the potentially

unbounded set Πdf
N (x), it is not immediately obvious that a minimizer exists in (4.16); we

address this issue in the next section.

In Chapter 6, methods for actually solving (4.17) for certain classes of constraints and

disturbance sets will be examined. For example, it will be shown that, when the constraint

set Z is polytopic, then the optimization problem (4.17) is a quadratic program (QP) if the

disturbance set W is polytopic, or a second-order cone program (SOCP) if W is ellipsoidal

or 2–norm bounded.

4.3 Preliminary Results

We wish to find conditions under which the closed-loop system (4.13) is input-to-state stable

(ISS). In order to do this, we first develop some results related to the convexity of the value

function V ∗
N (·) in (4.14), and to input-to-state stability for systems with convex Lyapunov

functions. Proofs for all of the results in this section are presented in the appendix to the

chapter.

2 Note that since w is assumed zero mean, it follows that

E

h

w
>(Xw)

i

= tr
“

E

h

(Xw)w>

i”

= tr
“

XE

h

ww
>

i”

= tr (XCw) = tr(C
1
2
wXC

1
2
w).
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4.3.1 Continuity and Convexity

We first demonstrate that the value function V ∗
N (·) in (4.14) is convex and continuous

on the interior of its domain; this property will prove useful in our subsequent proof of

stability for the closed-loop system (4.13). Note that the proof presented here requires

only convexity of the state and input constraints, and does not make the usual assumption

(as in [BMDP02, Bor03]) that the constraint sets Z and Xf and disturbance set W are

polyhedral, leading to a piecewise quadratic value function. We instead exploit several

results from variational analysis to establish convexity of V ∗
N (·) directly; situations where

both the constraint and disturbance sets are polyhedral will be treated as a special case.

Proposition 4.5 (Properties of V ∗
N (·) and µN (·)). If Xsf

N has nonempty interior, then

the receding horizon control law µN (·) is unique on Xsf
N and continuous on int(Xsf

N ). The

value function V ∗
N (·) is convex on Xsf

N , continuous on int(Xsf
N ) and lower semicontinuous

everywhere on Xsf
N .

Corollary 4.6. If Xsf
N has nonempty interior, Z is polyhedral and W is polytopic, then

the receding horizon control law µN (·) is piecewise affine and the value function V ∗
N (·) is

piecewise quadratic on Xsf
N .

Corollary 4.7. The function JN (x, ·, ·) attains its minimum on the set Πdf
N (x).

Note that in conjunction with Thm. 3.9, Cor. 4.7 implies that VN (x, ·, ·) also attains its

minimum on the set Πsf
N (x) in (4.17), so that the optimal policy sets in (4.11) and (4.16)

are both well defined.

4.3.2 Input-to-State Stability

We next develop a generic result on the input-to-state stability of systems with convex

value functions. We can then exploit the convexity of the value function V ∗
N (·) to provide

conditions under which the closed-loop system (4.13) is input-to-state stable.

Consider a nonlinear, time-invariant, discrete-time system of the form

x+ = f(x, ω), (4.20)

where x ∈ R
n is the state and ω ∈ R

p is a disturbance that takes on values in a compact

set Ω ⊂ R
p containing the origin. It is assumed that the state is measured at each time
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instant, that f : R
n × R

p → R
n is continuous at the origin and that f(0, 0) = 0. Given an

initial state x and a disturbance sequence ω(·), where ω(k) ∈ Ω for all k ∈ Z[0,∞), let the

solution to (4.20) at time k be denoted by φ(k, x, ω(·)). For systems of this type, a useful

notion of stability is input-to-state stability [JW01, Kha02, Son00].

Definition 4.8 (K and K∞ functions). A continuous function γ : R+ → R+ is called a

K-function if it is strictly increasing and γ(0) = 0. It is a K∞-function if, in addition,

γ(s)→∞ as s→∞.

Definition 4.9 (KL functions). A continuous function β : R+ × R+ → R+ is called a

KL-function if, for all k ≥ 0, the function β(·, k) is a K-function and, for each s ≥ 0, β(s, ·)
is decreasing, with β(s, k)→ 0 as k →∞.

Definition 4.10 (Input-to-State Stability). The system (4.20) is input-to-state stable

(ISS) in X ⊆ R
n if there exist a KL-function β(·) and a K-function γ(·) such that for all

initial states x ∈ X and disturbance sequences ω(·), where ω(k) ∈ Ω for all k ∈ Z[0,∞), the

solution of the system satisfies φ(k, x, ω(·)) ∈ X and

‖φ(k, x, ω(·))‖ ≤ β(‖x‖ , k) + γ
(

sup
{

‖ω(τ)‖
∣

∣ τ ∈ Z[0,k−1]

})

(4.21)

for all k ∈ N.

Input-to-state stability implies that the origin is an asymptotically stable point for the

undisturbed system x+ = f(x, 0) with region of attraction X , and also that all state trajec-

tories are bounded for all bounded disturbance sequences. Furthermore, every trajectory

φ(k, x, ω(·))→ 0 if ω(k)→ 0 as k →∞.

In order to be self-contained, we also recall the following useful result from [JW01, Lem 3.5]:

Lemma 4.11 (ISS-Lyapunov function). The system (4.20) is ISS in X ⊆ R
n if the

following conditions are satisfied:

i. X contains the origin in its interior and is robust positively invariant for (4.20), i.e.

f(x, ω) ∈ X for all x ∈ X and all ω ∈ Ω.

ii. There exist K∞ functions α1(·), α2(·) and α3(·), a K-function σ(·), and a function

V : X → R+ such that for all x ∈ X ,

α1(‖x‖) ≤ V (x) ≤α2(‖x‖) (4.22a)

V (f(x, ω))− V (x) ≤− α3(‖x‖) + σ(‖ω‖). (4.22b)
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Remark 4.12. A function V (·) that satisfies the conditions in Lemma 4.11 is called an

ISS-Lyapunov function. Note that although it is assumed in [JW01], continuity of the

function V (·) is not required in the proof of Lemma 4.11, nor do we require that f(·) be

continuous everywhere on X ; recall that, in general, convex functions are not guaranteed to

be continuous everywhere.

In order to establish that the closed-loop system (4.13) is ISS, we will make use of the

following result building on Lemma 4.11:

Proposition 4.13 (Convex Lyapunov function for undisturbed system).

Let X ⊆ R
n be a compact robust positively invariant set for (4.20) containing the origin in

its interior. Furthermore, let there exist K∞-functions α1(·), α2(·) and α3(·), and a convex

function V : X → R≥0 such that for all x ∈ X ,

α1(‖x‖) ≤ V (x) ≤α2(‖x‖) (4.23a)

V (f(x, 0))− V (x) ≤− α3(‖x‖). (4.23b)

The function V (·) is an ISS-Lyapunov function and the system (4.20) is ISS in X if f(·)
can be written as

f(x, ω) := g(x) + ω, (4.23c)

where g(·) is continuous at the origin with g(0) = 0, and Ω is compact and convex, containing

the origin in its relative interior.

Remark 4.14. Note that Proposition 4.13 requires only that V (·) be convex on X , and

does not require continuity of the function V (·) everywhere on (and, in particular, on the

boundary of) its domain. This allows application of the result to a broad class of systems

with arbitrary convex constraints, since in these cases one can often only find functions,

such as the value function (4.17), which are convex and lower semicontinuous.

We next derive a result on input-to-state stability for systems with Lipschitz continuous

Lyapunov functions. This result will allow for a less conservative estimate of the ISS-gain

function σ(·) in (4.22b) than that found in the proof of Prop. 4.13; this will prove useful

in providing an alternative proof of input-to-state stability in the case that the state and

input constraint set Z and disturbance set W are polytopic.

Proposition 4.15 (Lipschitz Lyapunov function for undisturbed system).

Let X ⊆ R
n be a robust positively invariant set for (4.20) containing the origin in its

interior. Furthermore, let there exist K∞-functions α1(·), α2(·) and α3(·) and a function
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V : X → R+ that is Lipschitz continuous on X such that for all x ∈ X ,

α1(‖x‖) ≤ V (x) ≤α2(‖x‖) (4.24a)

V (f(x, 0))− V (x) ≤− α3(‖x‖). (4.24b)

The function V (·) is an ISS-Lyapunov function and the origin is ISS for the system (4.20)

with region of attraction X if either of the following conditions are satisfied:

i. f : X × Ω→ R
n is Lipschitz continuous on X × Ω.

ii. f(x, ω) := g(x) + ω, where g : X → R
n is continuous on X .

4.4 Input-to-State Stability of Receding Horizon Control Laws

Given the results of the previous sections, we can now provide conditions under which the

closed-loop system (4.13) is guaranteed to be ISS. We first make the following assumption:

A4.2 (Terminal Cost and Constraint)

i. A state feedback gain matrix Kf and terminal constraint set Xf have been chosen such

that

(a) The matrix A + BKf is Hurwitz.

(b) Xf ⊆ {x | (x, Kfx) ∈ Z }.

(c) (A + BKf )x + Gw ∈ Xf , for all x ∈ Xf and all w ∈W .

ii. The feedback matrix Kf and terminal cost matrix P are derived from the solution to

the discrete algebraic Riccati equation:

P := C>
zCz + A>PA−A>PB(D>

zDz + B>PB)−1B>PA

Kf := −(D>
zDz + B>PB)−1B>PA.

iii. The set of state and input constraints Z is compact and contains the origin in its

interior.

Remark 4.16. Note that the conditions in A4.2(i) are identical to those in A3.2. If

A4.2(ii) holds, then the terminal cost function F (x) := x>Px is a Lyapunov function in
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the terminal set Xf for the undisturbed closed-loop system x+ = (A + BKf )x, in the sense

that

F ((A + BKf )x)− F (x) ≤ −x>(C>
zCz + K>

fD>
zDzKf )x, ∀x ∈ Xf , (4.25)

which also guarantees the Hurwitz condition in A4.2(i). No cross terms C>
zDz appear in

A4.2(ii) since these are assumed zero in A4.1. The assumption about compactness of Z

in A4.2(iii) is more restrictive than the standing assumption in A4.1 (equivalently A3.1)

that the closed set Z is bounded only in the inputs; this compactness is required in the proofs

of stability that follow.

Remark 4.17. In the absence of constraints, the control policy u = Kfx minimizes both

the expected value of Φ(x,u,w) (assuming E [w] = 0), and the value of the deterministic or

certainty-equivalent cost one would compute by setting w = {0} [vW81] (i.e. by calculating

Φ(x,u, 0))). It should be noted that this certainty equivalence property does not hold in the

general constrained case considered here; i.e.

V ∗
N (x) = argmin

(M,v)∈Πdf
N

(x)

E [ΦN (x, ū,w)] 6= argmin
(M,v)∈Πdf

N
(x)

Φ(x, E [ū] , 0) = argmin
(M,v)∈Πdf

N
(x)

Φ(x,v, 0),

where ū = MGw + v. However, it is still true that v∗0(x) = Kfx for all x ∈ Xf , since in

this case A4.2(i) guarantees that the optimal unconstrained state feedback gain Kf is also

constraint admissible, so that the RHC law matches the behavior of an unconstrained LQR

or H2 control law.

The next result shows that the receding horizon control law µN (·) stabilizes the undisturbed

system x+ = Ax + BµN (x). This result is required in the proof of input-to-state stability

for the disturbed system (4.13).

Lemma 4.18 (Properties of µN (·) and V ∗
N (0)). If A4.2 holds, then the following con-

ditions hold:

i. The RHC law µN (·) satisfies µN (0) = 0.

ii. There exists a positive constant k1 such that V ∗
N (Ax+BµN (x))−V ∗

N (x) ≤−k1 ‖x‖22.

iii. There exist positive constants k2 and k3 such that k2 ‖x‖22≤(V ∗
N (x)−V ∗

N (0))≤k3 ‖x‖22.

iv. The undisturbed closed-loop system x+ =Ax+BµN (x) is exponentially stable in Xsf
N .

Proof. See the appendix.
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Combining this result with that of Proposition 4.13, which relates to ISS stability for systems

with convex Lyapunov functions, leads to the main result of this chapter:

Theorem 4.19 (ISS for RHC). If A4.2 holds, then the closed-loop system (4.13) is ISS

in Xsf
N . Furthermore, the input and state constraints (x(i), u(i)) ∈ Z are satisfied for all

time and for all allowable disturbance sequences if the initial state x(0) ∈ X sf
N .

Proof. For the system of interest, define V (·) = V ∗
N (·) − V ∗

N (0), and let Ω := GW and

f(x, w) := Ax + BµN (x) + Gw. If A4.2 holds, then the set Xsf
N is robust positively

invariant for system (4.13), with 0 ∈ int Xsf
N (Prop. 3.13). The set Xsf

N is closed (Thm. 3.5)

and bounded because Z is assumed compact in A4.1(iii), hence Xsf
N is compact.

From Prop. 4.5 the function V ∗
N (·) is convex and continuous on int(Xsf

N ). The remainder of

the proof follows by direct application of the results in Lem. 4.18 and Prop. 4.13.

The above result leads immediately to the following modified version of Theorem 4.19 with

a less conservative bound on the ISS-gain function σ(·):

Theorem 4.20 (ISS for RHC with Polytopic Constraints). Let the sets W , Z and

Xf be polytopes. If A4.2 holds, then the closed-loop system (4.13) is ISS in X sf
N . Fur-

thermore, the input and state constraints (x(i), u(i)) ∈ Z are satisfied for all time and for

all allowable disturbance sequences if the initial state x(0) ∈ Xsf
N . The ISS-gain satisfies

σ(·) ≤ LV ‖(·)‖, where LV is the Lipschitz constant of the ISS Lyapunov function V ∗
N (·).

Proof. Since Z is assumed compact, the function V ∗
N is piecewise quadratic (Prop. 4.6) with

compact domain, hence Lipschitz continuous. The remainder of the proof is identical to

that of Theorem 4.19, with the use of Cor. 4.6 and Prop. 4.15 in place of Prop. 4.5 and

Prop. 4.13, respectively. The bound on the ISS-gain function σ(·) is immediate from the

proof of Prop. 4.15(ii).

Remark 4.21. Upon examination of the proof of Lemma 4.18, it is straightforward to show

that if Cw = 0 then all of the results of this section still hold if the Riccati condition A4.2(ii)

on the matrices Kf and P is replaced with a more relaxed requirement of the form (4.25).

4.4.1 Non-quadratic costs

The choice of a quadratic function in (4.4) is primarily due to the convenience it affords

in dealing with the expected value operation in (4.15), and in particular to the ease with
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which convexity can be established in Prop. 4.4. If one instead defines the cost as a function

of the nominal or disturbance free state and input trajectory, then a larger variety of cost

functions can be handled conveniently.

Define the nominal states x̂i and nominal inputs ûi to be the expected values of the states

xi and inputs ui respectively. Note that since E [wi] = 0 by assumption, if the inputs ui are

chosen according to a disturbance feedback policy (M,v) of the form (3.17), then

x̂ :=vec(x̂0, . . . , x̂N−1, x̂N )= Ax + Bv. (4.26)

û := vec(û0, . . . , ûN−1) = v. (4.27)

Define a pair of proper, convex lower semicontinuous functions ` : R
n × R

m → R and

F : R
n → R, and a (potentially nonlinear) terminal control law κf : Xf → R

m. Then the

following result can be proven via straightforward modification of the results presented thus

far in this chapter:

Theorem 4.22. Suppose that the following conditions hold in place of those in A4.2:

i. `(x, u) is strictly convex in u.

ii. There exist positive constants k1, k2, k3, k4 and c such that

(a) k1 ‖(x, u)‖c ≤ `(x, u) ≤ x2 ‖(x, u)‖c

(b) k3 ‖x‖c ≤ F (x) ≤ k4 ‖x‖c,

iii. For all x ∈ Xf , the terminal set Xf , control law κf (·) and cost F (·) satisfy

(a) Xf ⊆ {x | (x, κf (x)) ∈ Z }

(b) F (Ax + Bκf (x))− F (x) ≤ −`(x, u)

(c) Ax + Bκf (x) + Gw ∈ Xf for all w ∈W .

iv. The set Z is compact.

If the definitions (4.4) and (4.15) are replaced with

Φ(x,u,w) := F (xN ) +
∑N−1

i=0
`(xi, ui) (4.28)

JN (x,M,v) := Φ(x, E [u]) = Φ(x,v, 0) (4.29)

respectively, then all of the results in Prop 4.4, Prop. 4.5 and Thm. 4.19 still hold.
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4.5 Conclusions

By exploiting the results in Chapter 3 in the calculation of optimal receding horizon control

laws, we have shown that input-to-state stability of the closed-loop system can be established

for problems with general convex state and input constraints using the expected value of a

quadratic cost, given appropriate terminal conditions.

The keys to these results are proving the existence of minimizers and convexity of the value

function in the underlying optimal control problem using results from variational analysis,

as well as providing conditions under which input-to-state stability may be established using

convex Lyapunov functions. In the particular case that all the constraint sets are polytopic,

stronger bounds on the ISS gain of the system were established.

In the next chapter we consider an alternative to the expected value cost function considered

here, and employ a min-max cost where the disturbances are negatively weighted as in H∞

control. This will allow us to formulate RHC laws with guaranteed bounds on their `2 gain.

We have not yet commented in detail on how one could actually compute the solution to

any of the convex problems posed thus far. We rectify this in Chapters 6 and 7, where

computational methods will be presented.
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4.A Proofs

Proof of Proposition 4.5

Proof. We exploit the equivalence results of Prop. 4.3 and work with the convex prob-

lems (4.16) and (4.17). Define the function f : R
n × R

mN×nN × R
mN → R̄ as

f(x,M,v) :=







JN (x,M,v) if (x,M,v) ∈ CN ,

∞ otherwise,
(4.30)

where CN is defined as in (3.24) and is nonempty since Xdf
N is assumed nonempty (recall

that Xsf
N = Xdf

N from Thm. 3.9). Recall from (4.19) that

JN (x,M,v) = ‖Hxx + Huv‖22 + tr

(

C
1
2
w(HuMG + Hw)>(HuMG + Hw)C

1
2
w

)

, (4.31)

and from (4.16) and (4.17) that

V ∗
N (x) = min

(M,v)
f(x,M,v), (M∗(x),v∗(x)) = argmin

(M,v)
f(x,M,v). (4.32)

The central difficulty is that the function f(x,M,v) is not uniformly level bounded and

the set CN is unbounded in the policy parameter M, so that it is not possible to apply the

results of Prop. 2.23 directly to (4.32). We therefore define VN ⊆ R
n × R

mN×lN × R
mN

VN :=

{

(x,Y,v)

∣

∣

∣

∣

Y = MGC
1
2
w, (x,M,v) ∈ CN

}

. (4.33)

Since the mapping CN 7→ VN is a linear transformation satisfying the conditions of Lem. 3.4,

the set VN is nonempty, convex and closed. Define

f̃(x,M,v) :=







J̃N (x,Y,v) if (x,Y,v) ∈ VN ,

∞ otherwise,
(4.34)

where

J̃N (x,Y,v) := ‖Hxx + Huv‖22 + tr

(

(HuY + HwC
1
2
w)>(HuY + HwC

1
2
w)

)

, (4.35)

so that the function (4.34) is convex, lower semicontinuous and proper. Since Hu is full
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column rank (Lem. 4.1.1), f̃(x,Y,v) is strictly convex in (Y,v) and level bounded in (Y,v)

locally uniformly in x (Prop. 2.22). Rewriting (4.32) as

V ∗
N (x) = min

(Y,v)
f̃(x,Y,v), (Y∗(x),v∗(x)) = argmin

(Y,v)
f̃(x,Y,v), (4.36)

it follows that V ∗
N is convex and lower semicontinuous on Xdf

N (Prop. 2.23(ii)) and strictly

continuous on int Xsf
N (Prop. 2.15). The optimal feedback policy parameter v∗(x), defined

in (4.16) is single-valued on Xsf
N and continuous on int Xsf

N (Prop. 2.23(iv)). The uniqueness

and continuity properties of µN (·) = v∗0(·) then follow directly.

Proof of Corollary 4.6

Proof. If Z, Xf and W are polyhedral, then the set CN is polyhedral (Cor. 3.8). The

set VN in (4.33) is therefore also polyhedral (Prop. 2.10(iii)), so that the optimization

problem (4.36) is a strictly convex quadratic program in (Y,v). By applying the results

in [BMDP02], it follows that V ∗
N (·) is piecewise quadratic and v∗(·) (hence µN (·)) is piecewise

affine on Xsf
N .

Proof of Corollary 4.7

Proof. Obvious from the proof of Prop. 4.5.

Proof of Proposition 4.13

Proof. We assume that the condition Ω 6= {0} holds, otherwise the proof is trivial. It is

sufficient to show that there exists a constant γ such that

V (f(x, ω))− V (f(x, 0)) ≤ γ ‖ω‖ (4.37)

for all x ∈ X and all ω ∈ Ω. It then follows that

V (f(x, ω))− V (x) = V (f(x, 0))− V (x) + V (f(x, ω))− V (f(x, 0)) (4.38)

≤ −α3(‖x‖) + γ ‖ω‖ , (4.39)

and the conditions of Lemma 4.11 are satisfied with σ(s) := γ ‖s‖.

When the disturbance set Ω is compact and contains the origin in its (relative) interior,
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there exists a constant ρ > 0 such that

ρ := max
{

ε
∣

∣

∣ (Bε

⋂

lin Ω) ⊆ Ω
}

, (4.40)

where Bε := {x | ‖x‖ ≤ ε}; this is the size of the smallest vector3 on the (relative) boundary

of Ω. Since the set X is assumed compact, (4.23a) implies that V (·) is upper bounded by a

constant b and lower bounded by 0. Since the set X is robust positively invariant, it follows

that

g(x) ∈ X ∼ Ω, ∀x ∈ X (4.41)

where X ∼ Ω denotes the Pontryagin difference, i.e.

X ∼ Ω := {x ∈ R
n | x + ω ∈ X , ∀ω ∈ Ω} . (4.42)

Finding a suitable γ in (4.37) is equivalent to finding one that satisfies

V (x̃ + ω)− V (x̃) ≤ γ ‖ω‖ , ∀x̃ ∈ X ∼ Ω, ∀ω ∈ Ω. (4.43)

Since Ω is assumed convex and compact with 0 ∈ int (Ω), for any given ω ∈ Ω there

exists a ω̃ on the (relative) boundary of Ω such that ω = τω̃, with 0 ≤ τ ≤ 1 and

τ = ‖ω‖ / ‖ω̃‖ ≤ ‖ω‖ /ρ. Since X is robust positively invariant, x̃+ω̃ ∈ X for all x̃ ∈ X ∼ Ω.

Since V is convex, it follows that V (x̃ + ω) ≤ (1− τ)V (x̃) + τV (x̃ + ω̃), or

V (x̃ + ω)− V (x̃) ≤ τ(V (x̃ + ω̃)− V (x̃)) ≤ (b/ρ) ‖ω‖ . (4.44)

The proof is completed by selecting γ := b/ρ.

Proof of Proposition 4.15

Proof. Let LV be the Lipschitz constant of V (·).

i. Since ‖V (f(x, ω))− V (f(x, 0))‖ ≤ LV ‖f(x, ω)− f(x, 0)‖ ≤ LV Lf‖ω‖, where Lf is the

Lipschitz constant of f(·), it follows that V (f(x, ω)) − V (x) = V (f(x, 0)) − V (x) +

V (f(x, ω)) − V (f(x, 0)) ≤ −α3(‖x‖) + LV Lf‖ω‖. The proof is completed by letting

σ(s) := LV Lfs in Lemma 4.11.

ii. Note that ‖V (f(x, ω)) − V (f(x, 0))‖ ≤ LV ‖ω‖. The proof is completed as for (i), but

by letting σ(s) := LV s in Lemma 4.11.

3 Note that when Ω has a nonempty interior, this simplifies to ρ = max {ε | Bε ⊆ Ω}.
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Proof of Lemma 4.18

Proof. If the matrices Kf and P satisfy the Riccati condition in A4.2(ii), then it can be

shown [ÅW97, Sec. 11.2] that the cost function Φ(x,u,w) defined in (4.4) can be rewritten

as

Φ(x,u,w) = x>Px +
N−1
∑

i=0

(ui −Kfxi)
>(B>PB + D>

zDz)(ui −Kfxi)+

N−1
∑

i=0

(

w>
i G

>P (Axi + Bui) + (Axi + Bui)
>PGwi

)

+
N−1
∑

i=0

w>
i G

>PGwi. (4.45)

Since the disturbances wi are assumed independent and zero mean, the expected value of

this function is

E [Φ(x,u,w)]=x>Px+E

[

N−1
∑

i=0

‖(ui −Kfxi)‖2(B>PB+D>
zDz)+

N−1
∑

i=0

w>
i G

>PGwi

]

(4.46a)

=x>Px+E

[

N−1
∑

i=0

‖(ui −Kfxi)‖2(B>PB+D>
zDz)

]

+tr

(

C
1
2
wG>PGC

1
2
w

)

. (4.46b)

Recalling the definition of VN (x,K,g) in (4.10), if A4.2(i) holds then

(IN ⊗Kf , 0) = argmin
(K,g)∈Πsf

N
(x)

VN (x,K,g), for all x ∈ Xf , (4.47)

and the RHC law µN (x) = Kfx. This proves part (i), since 0 ∈ Xf by assumption. To

prove part (ii), suppose that for some state x ∈ Xsf
N the policy (K∗(x),g∗(x)) is optimal,

so that V ∗
N (x) = VN (x,K∗(x),g∗(x)) and µN (x) = K∗

0,0(x)x + g∗0(x). By definition,

VN (x,K∗(x),g∗(x)) = E [Φ(x,u∗(x),w)] ,

where u∗(x) := (I−K∗(x)B)−1(K∗(x)Ax+Gw)+g and u∗
0(x) = µN (x). From examination

of (4.46), it follows that

JN (x, K̃(x+), g̃(x+)) = E

[

Φ (x,u∗(x),w)
∣

∣

∣w0 = 0
]

+ ‖Ax + BµN (x)‖2P
−‖x‖2P − ‖µN (x)−Kfx‖2(B>PB+D>

zDz) .
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Recalling the definitions of Kf and P in A4.2,

‖Ax+BµN (x)‖2P−‖x‖2P − ‖µN (x)−Kfx‖2(B>PB+D>
zDz)

= −x>
[

P−A>PA+K>
f (B>PB+D>

zDz)Kf

]

x−µN (x)>[B>PB+D>
zDz]µN (x)

=−‖Czx‖22−‖µN (x)‖2(B>PB+D>
zDz) ,

so that

JN (x, K̃(x+), g̃(x+)) = E

[

Φ (x,u∗(x),w)
∣

∣

∣
w0 = 0

]

− ‖Czx‖22 − ‖µN (x)‖2(B>PB+D>
zDz) .

Since Φ(x,u∗(x),w) is a convex quadratic function of u∗(x) and the vector u∗(x) is an

affine function of the independent, zero-mean disturbances {w0, . . . , wN−1}, it follows that

E

[

Φ (x,u∗(x),w)
∣

∣

∣w0 = 0
]

≤ E

[

Φ (x,u∗(x),w)
]

= V ∗
N (x), (4.48)

so that

V ∗
N (Ax + BµN (x)) ≤ VN (x+, K̃(x+), g̃(x+)) ≤ V ∗

N (x)− ‖Czx‖22 − ‖µN (x)‖2(B>PB+D>
zDz) .

For a matrix Q, define σ̄(Q) and
¯
σ(Q) as the maximum and minimum singular values,

respectively. Selecting k1 =
¯
σ(C>

zCz) > 0 proves part (ii), since Cz is assumed full column

rank in A4.1. To prove part (iii), note that V ∗
N (x) ≥ ‖Czx‖22, so that the lower bound can

be obtained by selecting k2 =
¯
σ(C>

zCz). To obtain an upper bound, define

ub := max {‖u‖ | ∃x, (x, u) ∈ Z }
xb := max {‖x‖ | ∃u, (x, u) ∈ Z }

ρ := max
{

α
∣

∣

∣ αBn
2 ⊆ Xsf

N

}

,

all of which are finite and positive since each of Z and Xf is assumed to be compact and

to contain the origin in its interior. An upper bound for the function VN (·) is then

Vb := N
(

σ̄(C>
zCz)x

2
b + σ̄(D>

zDz)u
2
b

)

+ σ̄(P )x2
b .

Noting from (4.46) and (4.47) that the convex function (V ∗
N (·) − V ∗

N (0)) = ‖·‖2P on Xf ,

it follows that V ∗
N (x) − V ∗

N (0) ≤
(

max[σ̄(P ), Vb/ρ
2]
)

‖x‖22 , for all x ∈ Xsf
N . Since ρ ≤ xb

by construction, selecting k2 := max[σ̄(P ), Vb/ρ
2] = Vb/ρ

2 proves (iii). Part (iv) follows

from (ii) and (iii) using standard proofs of exponential stability [Kha02, Cor. 3.4].
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5.1 Introduction

In this chapter, we again consider the problem of finding an optimal control policy for the

system

x+ = Ax + Bu + Gw (5.1)

z = Czx + Dzu, (5.2)

over a finite horizon N , while satisfying a set of mixed constraints (x, u) ∈ Z for every

possible disturbance sequence drawing values from a compact set W . As in Chapter 3,

the class of policies considered will be restricted to those modelling the input ui at each

time step as an affine function of the prior disturbance (equivalently, prior state) sequence

{w0, . . . , wi}, so that

ui = vi +
i−1
∑

j=0

Mi,jGwj , ∀i ∈ Z[0,N−1]. (5.3)

In Chapter 4, an optimal policy was defined as one of the form (5.3) that minimized the

expected value of a certain quadratic cost function. It was shown that such an optimal

policy could be calculated in principle via convex optimization techniques, and that the

system (5.1) could be rendered input-to-state stable (ISS) in closed-loop with a receding

horizon control law synthesized from policies that were optimal in this sense. When such a

closed-loop system operates far from its state and inputs constraints, its behavior matches

that of a system subject to an optimal controller in the LQR or H2 sense.

In this chapter, we employ a different notion of optimality. Given a positive scalar γ

and an initial state x, we wish to determine whether there exists a constraint admissible
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feedback policy of the form (5.3) and a nonnegative scalar β(x) such that the following

finite horizon `2 gain property, routinely encountered in the literature on finite horizon H∞

control [HM80, GL95, JB95, Kha02], holds for all allowable disturbance sequences over a

finite horizon:

‖xN‖2P +
N−1
∑

i=0

‖zi‖22 ≤ β(x) +
N−1
∑

i=0

γ2‖wi‖22, (5.4)

where x0 := x, xi+1 := Axi + Bui + Gwi and zi := Czxi + Dzui for all i ∈ Z[0,N−1].

We also wish to find conditions under which receding horizon control laws synthesized

from (5.3) can guarantee a finite gain condition similar to (5.4) over an infinite horizon,

while simultaneously satisfying the system constraints for all time. To this end, we define

a cost function Φ : R
n × R

mN × R
lN → R that is negatively weighted in the disturbances

Φ(x,u,w) := ‖xN‖2P +
N−1
∑

i=0

(

‖zi‖22 − γ2 ‖wi‖22
)

, (5.5)

and will consider a policy to be optimal if it minimizes the maximum value (over all allow-

able disturbances) of (5.5) over policies of the form (5.3)1. Throughout this chapter, we

make use of the following standing assumptions relating to (5.1)–(5.4):

A5.1 (Standing Assumptions) The following conditions hold:

i. The assumptions A3.1 hold.

ii. The pair (Cz, A) is detectable and (Cz, A, Bz) has no zeros on the unit circle.

iii. The matrix Dz is full column rank.

iv. The matrix P is positive semidefinite.

We will also make use of much of the notation introduced in Sections 3.1.1 and 4.1.1.

Remark 5.1. Note that unlike the conditions in A4.1 used throughout Chapter 4, we do

not make any assumption about the rank of the matrix Cz, and allow C>
zDz 6= 0.

1 Note that (5.5) differs from the related cost function defined in (4.4) for the expected value case, since
it includes a negatively weighted disturbance component.
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5.2 A Min-Max Cost Function

In this chapter we work directly with the feedback policy parameterization (5.3), bearing

in mind that an equivalence condition similar to Prop. 4.3 can easily be found for the

state feedback policy parameterization presented in Chapter 3. We define the finite horizon

quadratic cost function

JN (x, γ,M,v,w) := Φ(x, û,w), (5.6)

where û = Mw + v, and consider a zero-sum game of the form:

min
(M,v)

max
w∈W

JN (x, γ,M,v,w). (5.7)

We first define a set of constraints on the feedback policy (M,v) and the gain γ such

that this zero-sum game can be guaranteed to be convex-concave. This will ensure the

existence of a saddle point solution in pure policies (see [BB91, Sect. 2.1]), and that (5.7) is

solvable via convex optimization techniques. We can then combine these constraints with

those presented in Chapter 3 to ensure robust constraint satisfaction, and define the set of

policies that is both constraint admissible and such that the problem (5.7) is convex-concave.

To this end, we consider the maximization part of (5.7) in isolation, and define

J∗
N (x, γ,M,v) := max

w∈W
JN (x, γ,M,v,w). (5.8)

Recalling the definitions of Section 4.1.1, (5.6) can be written as

JN (x, γ,M,v,w) = ‖Hxx + Hu(v + MGw) + Hww‖22 − γ2 ‖w‖22 , (5.9)

so that the following condition, guaranteeing that the minimization part of (5.7) is convex,

holds:

Proposition 5.2. For each fixed γ, the function (x,M,v) 7→ J ∗
N (x, γ,M,v) is convex,

lower semicontinuous, proper and bounded below by zero.

Proof. For any fixed w′ ∈ W, the function (x,M,v) 7→ JN (x, γ,M,v,w′) is convex and

continuous. Convexity and lower semicontinuity follow since the pointwise supremum of

lower semicontinuous and convex functions is lower semicontinuous and convex (Prop. 2.17).

The lower bound is obvious from inspection of (5.9) since 0 ∈ W by assumption. Since W
is assumed compact, the function is also finite for every (M,v); hence proper.
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We next impose a condition on γ such that the maximization problem in (5.8) is concave,

so that our eventual min-max policy optimization problem will be convex-concave:

Proposition 5.3. For any given M, there exists a γ ≥ 0 such that the following linear

matrix inequality (LMI) holds:

(

−γI (HuMG + Hw)

(HuMG + Hw)> −γI

)

¹ 0. (5.10)

Furthermore, if (5.10) is satisfied, then the function w 7→ JN (x, γ,M,v,w) is concave.

Proof. From inspection of (5.9), it is obvious that in order for w 7→ JN (x, γ,M,v,w) to be

concave, γ and M must satisfy

(HuMG + Hw)>(HuMG + Hw)− γ2I ¹ 0, (5.11)

and that it is always possible to ensure satisfaction of (5.11) by choosing γ large enough.

We need only to show that (5.10) is equivalent to (5.11). We first consider γ > 0, and

multiply (5.11) by 1/γ to get the equivalent condition

(HuMG + Hw)>(γ−1I)(HuMG + Hw)− γI ¹ 0, (5.12)

which is itself equivalent to (5.10) from the Schur complement Lemma 2.20. For the case

γ = 0 the condition (5.11) is only satisfied if (HuMG + Hw) = 0. This is also the case

for (5.10) since any matrix of the form
[

0 X
X 0

]

is indefinite for every X 6= 0.

Remark 5.4. If (5.11) holds, then the optimization problem (5.8) requires the maximiza-

tion of a concave function over a convex set or, equivalently, the minimization of a convex

function over a convex set. In particular, if W is a polytope, then (5.8) is equivalent to a

tractable quadratic program (QP) and if W is an ellipsoid or the affine map of a 2-norm

ball, then (5.8) can be written as a tractable second-order cone program (SOCP) [LVBL98].

We consider these problems in more detail in Chapter 6.

5.2.1 Notation and Definitions

As a result of Prop. 5.3, we will consider a policy of the form (5.3) to be feasible (with

respect to a given γ) if, given an initial state x, it is both constraint admissible and satisfies

the LMI condition (5.10). To this end, for a given state x and positive scalar γ, we define
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the set of policies satisfying these conditions as

Πγ
N (x, γ) :=

{

(M,v)
∣

∣

∣ (M,v) ∈ Πdf
N (x), (γ,M) satisfies (5.10)

}

, (5.13)

and the set of states for which a policy of the form (5.13) exists as

Xγ
N (γ) :=

{

x
∣

∣ Πγ
N (x, γ) 6= ∅

}

. (5.14)

Note that in these definitions, the superscript γ is used to indicate that an LMI constraint

of the form (5.10) has been used as a part of the set definition, while the argument γ is a

variable used to indicate the degree of tightness of this constraint.

Inclusion of these LMI constraints imposes tighter requirements on admissibility for the sets

Πγ
N (x, γ) and Xγ

N (γ) than for the related sets Πdf
N (x) and Xdf

N defined in Chapter 3, i.e. for

any state x and positive scalar γ, the set inclusions Xγ
N ⊆ Xdf

N and Πγ
N (x, γ) ⊆ Πdf

N (x, γ)

hold. It is also easily shown that Xγ
N (γ1) ⊆ Xγ

N (γ2) for any γ1 ≤ γ2. Also, since the state

and input constraint set Z is assumed bounded in the inputs, there exists some γ <∞ such

that Xγ
N (γ) = Xdf

N .

For a given initial state x ∈ Xdf
N , we are interested in computing the smallest positive value

of γ for which one can ensure that the finite horizon `2 gain property (5.4) holds when the

control inputs are chosen in accordance with a control policy in the form (5.3). For this

purpose, define the function γ∗
N : Xdf

N → R+ as

γ∗
N (x) := inf

{

γ
∣

∣ ∃(M,v) ∈ Πγ
N (x, γ)

}

. (5.15)

For a given initial state x and γ ≥ γ∗
N (x), we define an optimal policy pair (with respect to

γ) as

(M∗(x, γ),v∗(x, γ)) := argmin
(M,v)∈Πγ

N (x,γ)

J∗
N (x, γ,M,v), (5.16)

and assume that such a minimizer can be partitioned in a manner identical to that in (3.19),

so that the kth element of v∗(x, γ) is denoted v∗k(x, γ), and the (i, j)th submatrix of M∗(x, γ)

is denoted M∗
i,j(x, γ). We also define the value function V ∗

N : Xdf
N × R+ → R+ as

V ∗
N (x, γ) := min

(M,v)∈Πγ
N (x,γ)

J∗
N (x, γ,M,v). (5.17)

We assume for the moment that the minimizer in (5.16) exists and is well-defined.
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5.2.2 Finite Horizon Control Laws

Using the results presented thus far, we can derive conditions under which a finite horizon

gain condition of the form (5.4) can be guaranteed:

Theorem 5.5. For a given initial state x(0) ∈ Xdf
N and γ ≥ γ∗

N (x(0)), consider imple-

menting the following time-varying control policy on the system (5.1):

u(k) = v∗k(x(0), γ) +
k−1
∑

j=0

M∗
k,j(x(0), γ) (x(j + 1)−Ax(j)−Bu(j)) (5.18)

for all k ∈ {0, 1, . . . , N − 1}. For all disturbance sequences {w(k)}N−1
k=0 drawing values

from W , we have that (x(k), u(k)) ∈ Z for k ∈ {0, 1, . . . , N − 1}, x(N) ∈ Xf and the

following `2 gain property holds:

‖x(N)‖2P +

N−1
∑

k=0

‖z(k)‖22 ≤ V ∗
N (x(0), γ) +

N−1
∑

k=0

γ2‖w(k)‖22. (5.19)

5.3 Infinite Horizon `2 Gain Minimization

We next consider the infinite horizon case, and seek a control law that satisfies

∞
∑

k=0

‖z(k)‖22 ≤ β(x(0)) +
∞
∑

k=0

γ2‖w(k)‖22 (5.20)

for all disturbance sequences satisfying
∑∞

k=0 ‖w(k)‖22 < ∞. We construct our control law

by exploiting the parameterization introduced in (5.3) and implementing the control in a

receding horizon fashion. We define the receding horizon control law µN : Xdf
N ×R+ → R

m

by the first part of the optimal affine feedback control policy in (5.16), i.e.

µN (x, γ) := v∗0(x, γ). (5.21)

Note that this control law is nonlinear in general. For a fixed γ, the closed-loop system

dynamics become

x(k + 1) = Ax(k) + BµN (x(k), γ) + Gw(k) (5.22a)

z(k) = Czx(k) + DzµN (x(k), γ). (5.22b)
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We first establish various desirable properties of the control law µN (·, γ) and value function

V ∗
N (·, γ) for each γ, as well as of the minimum gain function γ∗

N (·). We also provide a

set of conditions under which the set Xγ
N (γ) is robust positively invariant for the closed-

loop system (5.22); these properties will be used in the next section to provide conditions

under which the system (5.22) satisfies the `2 gain condition (5.20) while simultaneously

satisfying the system constraints Z for all time. Proofs for all of the results in this section

are presented in the appendix to the chapter.

5.3.1 Continuity and Convexity

In order to establish various properties of the functions γ∗
N (·), V ∗

N (·, γ) and µN (·, γ), we will

find it useful to define the set

Cγ
N := {(x, γ,M,v) | (x,M,v) ∈ CN , (γ,M) satisfies (5.10)} . (5.23)

Note that given this set definition, it is obvious that the optimization problem defining

γ∗
N (x) in (5.15) is convex for each x.

Using arguments similar to those in the proof of Lemma 3.4, we can state the following

results related to the convexity and closedness of the sets defined thus far:

Lemma 5.6 (Convexity and Closedness).

i. The set Cγ
N is closed and convex.

ii. For each x ∈ Xdf
N and γ ≥ 0, the sets Πγ

N (x, γ) and Xγ
N (γ) are closed and convex.

iii. The set
{

(x, γ)
∣

∣ ∃(M,v), (x, γ,M,v) ∈ Cγ
N

}

is closed and convex.

Using these results, we can establish the following:

Proposition 5.7 (Properties of γ∗
N (·)). If Xdf

N has nonempty interior, then the mini-

mum gain function γ∗
N (·) is convex on Xdf

N , continuous on int(Xdf
N ) and lower semicontin-

uous everywhere on Xdf
N .

Proposition 5.8 (Properties of V ∗
N (·, γ) and µN (·, γ)). For a fixed γ ≥ 0, if Xγ

N (γ) has

nonempty interior then the receding horizon control law µN (·, γ) is unique on Xγ
N (γ) and

continuous on int(Xγ
N (γ)). The value function V ∗

N (·, γ) is convex on Xγ
N (γ), continuous on

int(Xγ
N (γ)) and lower semicontinuous everywhere on Xγ

N (γ).
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Corollary 5.9. For any x ∈ Xdf
N and any γ ≥ γ∗

N (x), the function J∗
N (x, γ, ·, ·) attains its

minimum on the set Πγ
N (x, γ).

5.3.2 Geometric and Invariance Properties

We next consider whether the optimization problem (5.16) required to implement the reced-

ing horizon control law µN (·, γ) can be solved for all time for the closed-loop system (5.22).

To make such an invariance guarantee, we require the following assumption on the terminal

set Xf and cost P :

A5.2 (Terminal Cost and Constraint)

i. A state feedback gain matrix Kf and terminal constraint set Xf have been chosen such

that

(a) The matrix A + BKf is Hurwitz.

(b) Xf ⊆ {x | (x, Kfx) ∈ Z }.

(c) (A + BKf )x + Gw ∈ Xf , for all x ∈ Xf and all w ∈W .

ii. The feedback matrix Kf and terminal cost matrix P satisfy the solution to an uncon-

strained H∞ state feedback control problem [BB91, GL95] with `2 gain γf :

P :=C>
zCz+A>P̄A−(A>P̄B+C>

zDz)(D
>
zDz+B>P̄B)−1(B>P̄A+D>

zCz) (5.24a)

Kf :=−(D>
zDz+B>P̄B)−1(B>P̄A + D>

zCz) (5.24b)

where P̄ := P + PG(γ2
fI −G>PG)−1G>P and γ2

fI −G>PG Â 0.

Remark 5.10. Note that the conditions in A5.2(i) are identical to those in A3.2 and that,

unlike the assumptions required for input-to-state stability in A4.2, there is no compactness

requirement on the constraint set Z. If the state x ∈ Xf and gain γ = γf , then the RHC

law µN (x) = Kfx matches the behavior of an unconstrained H∞ control law.

We first show that the sets Xγ
N (γ) are non-decreasing (with respect to set inclusion) for a

given γ:

Proposition 5.11. If A5.2 holds with γf ≤ γ, then the following set inclusion property

holds:

Xf ⊆ Xγ
1 (γ) ⊆ · · · ⊆ Xγ

N−1(γ) ⊆ XN (γ) ⊆ Xγ
N+1(γ) · · ·
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Corollary 5.12. If A5.2 holds, then the minimum gain function γ∗
N (·) satisfies γ∗

N+1(x) ≤
max{γf , γ∗

N (x)} for all x ∈ Xdf
N .

Remark 5.13. The significance of Corollary 5.12 is that, unlike existing H∞ receding

horizon control schemes such as [Rao00, Chap. 9], it will allow us to guarantee that the

achievable infinite horizon `2 gain for the closed-loop system (5.22) is non-increasing with

increasing horizon length.

Using these results we can also demonstrate that, for any γ ≥ γf , each of the sets Xγ
N (γ) is

robust positively invariant for the closed-loop system (5.22):

Proposition 5.14. If A5.2 holds with γf ≤ γ, then, for each N ∈ {1, 2, . . . }, the set

Xγ
N (γ) is robust positively invariant for the closed-loop system (5.22a), i.e. if x ∈ Xγ

N (γ),

then x+ = Ax + BµN (x, γ) + Gw ∈ Xγ
N (γ) for all w ∈W .

5.3.3 Finite `2 Gain in Receding Horizon Control

We can now state the main result of this chapter, which allows us to place an upper bound

on the `2 gain of the closed-loop system (5.22) under the proposed RHC law µN (·, γ):

Theorem 5.15. If A5.2 holds with max{γf , γ∗
N (x(0))} ≤ γ then, for the closed-loop sys-

tem (5.22), the `2 gain from the disturbance w to the costed/controlled variable z is less

than γ. Furthermore, the constraints Z are satisfied for all time if the initial state x(0) ∈
Xγ

N (γ).

Proof. Define

∆ϕ(x, u, w) := ϕ(Ax + Bu + Gw)− ϕ(x), (5.25)

and functions

Vf (x, u, w) := ‖x‖2P (5.26)

`(x, u, w) := (‖z‖22 − γ2 ‖w‖22) (5.27)

`f (x, u, w) := (‖z‖22 − γ2
f ‖w‖22), (5.28)

where z = Czx + Dzu. If A5.2 holds for the terminal cost matrix P and controller Kf ,

then a standard result in unconstrained linear H∞ control is that

max
w∈Rl

[∆Vf + `f ] (x, Kfx, w) = 0. (5.29)
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Since γf ≤ γ implies `(x, u, w) ≤ `f (x, u, w) for all (x, u, w),

[∆Vf + `] (x, u, w) ≤ [∆Vf + `f ] (x, u, w), for all (x, u, w), (5.30)

so that

max
w∈W

[∆Vf + `] (x, Kfx, w) ≤ 0 (5.31)

for any x. Exploiting the equivalence between the policy parameterization (5.3) and affine

state feedback policies (Thm. 3.9) and the assumed robust invariance of the terminal set

Xf in A5.2, given a state x+ = Ax + BµN (x, γ) + Gw, one can construct a feasible control

policy (M̃, ṽ) ∈ Πγ
N (x+, γ) such that the terminal control input is uN = KfxN . Application

of (5.31) then guarantees that

[∆Vγ + `](x, µN (x, γ), w) ≤ 0 (5.32)

for all x ∈ Xγ
N (γ) and all w ∈ W , where Vγ(·) := V ∗

N (·, γ) — note that this is a standard

result from the literature on predictive control [MRRS00]. For any integer q and disturbance

sequence {w(k)}q−1
i=0 taking values in W , it then follows from (5.32) that

V ∗
N (x(q), γ) ≤ V ∗

N (x(0), γ)−
q−1
∑

k=0

` (x(k), µN (x(k), γ), w(k)) (5.33)

where x(k +1) = Ax(k)+BµN (x(k), γ)+Gw(k) for all k ∈ Z[0,q−1]. From the lower bound

established in Prop. 5.2, it follows that

V ∗
N (x, γ) = inf

(M,v)

{

J∗
N (x, γ,M,v)

∣

∣ (M,v) ∈ Πγ
N (x, γ)

}

≥ 0, (5.34)

so that, for any integer q ≥ 0, (5.33) implies

q−1
∑

k=0

‖z(k)‖22 ≤ V ∗
N (x(0), γ) + γ2

q−1
∑

k=0

‖w(k)‖22 , (5.35)

and the claim about finite gain follows. Constraint satisfaction is then guaranteed by

Prop. 5.14.

Remark 5.16. For a given initial state x(0), it follows immediately that the achievable

closed-loop gain γ in Theorem 5.15 is a non-increasing function of the horizon length N ,

since Corollary 5.12 ensures that max{γf , γ∗
N+1(x(0))} ≤ max{γf , γ∗

N (x(0))}.
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5.4 Conclusions

By imposing additional convex constraints on the class of robust control policies proposed in

Chapter 3, we have shown that one can formulate a robust RHC law with guaranteed bounds

on the `2 gain of the closed-loop system, while simultaneously guaranteeing feasibility and

constraint satisfaction for all time.

The proposed control law requires the solution, at each time instant, of a convex-concave

min-max problem, making it a suitable candidate for on-line implementation. In Chapter 6,

we present methods for actually solving this problem for particular classes of constraints

and disturbances.
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5.A Proofs

Proof of Lemma 5.6

Proof. The set of all (γ,M) satisfying the LMI condition (5.10) is closed and convex

[BEFB94], so Cγ
N is convex since it is the intersection of closed and convex sets, proving (i).

A similar argument establishes convexity of the set Πγ
N (x, γ) in (ii).

For the remaining results, we define the sets

M := {M | M satisfies (3.19), My = 0, ∀y ⊥ R(G)} (5.36)

M⊥ := {M | M satisfies (3.19), My = 0, ∀y ∈ R(G)} (5.37)

C̃γ
N := Cγ

N ∩ (Rn × R+ ×M× R
mN ). (5.38)

Using arguments identical to those in the proof of Lemma 3.5, it is easily shown that

Cγ
N = C̃γ

N ⊕ ({0} × {0} ×M⊥ × {0}), (5.39)

and that the set C̃γ
N is bounded in policies, i.e. there exist bounded sets B1 ⊆ R

mN×nN and

B2 ⊆ R
mN such that C̃γ

N ⊆ (Rn × R+ ×B1 ×B2). Define a linear mapping L such that

L(x, γ,M,v) := x, so that for a given γ ≥ 0,

Xγ
N (γ) = L

(

Cγ
N

⋂

(

R
n × {γ} × R

mN×nN × R
mN
)

)

(5.40)

= L
(

C̃γ
N

⋂

(

R
n × {γ} × R

mN×nN × R
mN
)

)

⊕ L({0} × {0} ×M⊥ × {0}). (5.41)

The left-hand term in the summation (5.41) is closed and convex since it is compact in both

policies and the parameter gamma (Prop. 2.10), so that (5.41) is the sum of closed and

orthogonal sets, therefore also closed (Prop. 2.9). This completes the proof for (ii).

Proof of convexity and closedness of the set defined in (iii) is similar that of Xγ
N (γ) above,

but with the linear map L defined as L(x, γ,M,v) := (x, γ).

Proof of Proposition 5.7

Proof. The epigraph of γ∗
N (·) is the closed and convex set defined in Lem. 5.6(iii), so that

γ∗
N (·) is convex ([RW98, Prop. 2.4]) and lower semicontinuous ([RW98, Thm. 1.6]) on Xdf

N .

Strict continuity of γ∗
N (·) on int(Xdf

N ) follows from its convexity on Xdf
N (Prop. 2.15).

80



5.A Proofs

Proof of Proposition 5.8

Proof. Recalling the definition of C̃γ
N in (5.38), for a fixed γ define

f(x,M,v) :=







J∗
N (x, γ,M,v) if (x, γ,M,v) ∈ C̃γ

N ,

∞ otherwise,
(5.42)

where

J∗
N (x, γ,M,v) = max

w∈W

(

‖Hxx + Hu(v + MGw) + Hww‖22 − γ2 ‖w‖22
)

. (5.43)

Since the control law µN (·, γ) is defined by the first part of the optimal policy parameter

v∗(x, γ) only, we partition v into two components and define

v[1,N ] := vec(v1, · · · , vN−1),

so that v =
[ v0
v[1,N ]

]

. The functions V ∗
N (·, γ) and µN (·, γ) can then be written as

V ∗
N (x, γ) = min

v0

p(x, v0), µN (x, γ) = argmin
v0

p(x, v0), (5.44)

where

p(x, v0) := min
(M,v[1,n])

f(x,M,v). (5.45)

All of the results then follow from Prop. 2.23 if (5.45) can be shown to be proper, convex,

lower semicontinuous, strictly convex in v0 and level bounded in v0 locally uniformly in x.

By defining

D̄z :=

(

0 0

0 (IN−1 ⊗Dz)

)

and Hu :=

(

CzB + D̄z

P
1
2 B̃

)

,

the convex function (5.43) can be rewritten as

J∗
N (x, γ,M,v) = ‖Dzv0‖22 + J̄∗

N (x, γ,M,v), (5.46)

where

J̄∗
N (x,M,v, γ) := max

w∈W

(

∥

∥Hxx + H̄uv + HuMGw + Hww
∥

∥

2

2
− γ2 ‖w‖22

)

. (5.47)

The function (x,M,v[1,N ]) 7→ J̄∗
N (x, γ,M,v) can be shown to be convex, lower semicontin-

uous, proper and bounded below by zero using arguments identical to those in the proof

81



5. Min-Max Costs (H∞ Control)

of Prop. 5.2. We then define

f̄(x,M,v) :=







J̄∗
N (x, γ,M,v) if (x, γ,M,v) ∈ C̃γ

N ,

∞ otherwise,
(5.48)

p̄(x, v0) := min
(M,v[1,n])

f̄(x,M,v), (5.49)

so that (5.45) can be written as

p(x, v0) := ‖Dzv0‖22 + p̄(x, v0). (5.50)

Recall from the proof of Lemma 5.6 that the set C̃γ
N is compact in policies. Since f̄(x,M,v)

is convex, lower semicontinuous and proper and C̃γ
N is nonempty by assumption, the function

(x, v0) 7→ p̄(x, v0) is convex, lower semicontinuous and proper (Prop. 2.23(iib)). Since

‖Dzv0‖22 is convex and continuous in v0, it follows that (x, v0) 7→ p(x, v0) is also convex,

lower semicontinuous and proper. It also follows that p(x, v0) ≥ ‖Dv0‖22 since (5.48) is

bounded below by zero, and that (p, v0) is strictly convex in v0 since Dz is assumed full

column rank and the sum of convex and strictly convex functions is strictly convex. The

result then follows from straightforward application of Prop. 2.22 and Prop. 2.23.

Proof of Corollary 5.9

Proof. Obvious from the proof of Prop. 5.8.

Proof of Proposition 5.11

Proof. The proof is by induction and is similar to the proof of Prop. 3.13, except that

satisfaction of the LMI condition (5.10) must also be ensured. Note that all of the matrix

definitions required for the proof can be found in Section 4.1.1.

For any x ∈ Xγ
N (γ), there exists a policy (M,v) ∈ Πγ

N (x, γ) ⊆ Πdf
N (x) by definition. If A5.2

holds, then it is possible to construct a pair (M+,v+) ∈ Πdf
N+1(x) such that the final input

is uN := KfxN (Cor. 3.15), by defining

M+ :=

(

M 0

M̃ 0

)

, v+ :=

(

v

ṽ

)

, (5.51a)
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where

M̃ := Kf (Ã + B̃M)

ṽ := Kf (ANx + B̃v).
(5.51b)

We need only show that this choice of policy also satisfies (M+,v+) ∈ Πγ
N+1(x, γ), i.e. that

(γ,M+) satisfies the LMI condition (5.10) or, equivalently, the QMI condition (5.11). We

therefore define

HN := γ2I − (HuMG + Hw)>(HuMG + Hw), (5.52)

so that (5.11) is satisfied if HN º 0, and will show that the policy (M+,v+) satisfies

HN+1 := γ2I − (H+
u M+G+ + H+

w )>(H+
u M+G+ + H+

w ) º 0, (5.53)

where

H+
u :=







CzB + Dz 0

CzB̃ Dz

P
1
2 AB̃ P

1
2 B






, H+

w :=







CzG 0

CzG̃ 0

P
1
2 AG̃ P

1
2 G






, and G+ :=

(

G 0

0 G

)

. (5.54)

Defining Y := (G̃ + B̃MG), substituting (5.54) and (5.51) into (5.53) and collecting terms

yields

HN+1 =

(

HN + X −Y>(A + BKf )>PG

−G>P (A + BKf )Y γ2I −G>PG

)

, (5.55)

where

X := Y>
(

P − (Cz + DzKf )>(Cz + DzKf )− (A + BKf )>P (A + BKf )
)

Y. (5.56)

Claim 5.17. The following matrix identity holds:

P − (Cz + DzKf )>(Cz + DzKf ) = (A + BKf )>P̄ (A + BKf ), (5.57)

when P , P̄ and Kf are defined as in A5.2.

Proof. Rewrite P̄ in (5.24a) as

P̄ = C>
zCz + A>P̄A + (A>P̄B + C>

zDz)Kf , (5.58)
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and manipulate (5.24b) to get

K>
f (D>

zDz + B>P̄B)Kf + K>
f (B>P̄A + D>

zCz) = 0. (5.59)

Adding (5.59) to the right hand side of (5.58) and collecting terms gives the desired result.

Application of the result in Claim 5.17 to (5.56) gives

X =Y>
(

(A + BKf )>(P̄ − P )(A + BKf )
)

Y (5.60)

=Y>
(

(A + BKf )>PG(γ2
fI −G>PG)−1G>P (A + BKf )

)

Y, (5.61)

where (5.61) results from the definition of P̄ in A5.2. Applying the Schur complement

Lemma 2.20 to (5.55), the QMI condition HN+1 º 0 is equivalent to

HN + X − Y>(A + BKf )>PG(γ2I −G>PG)−1G>P (A + BKf )Y º 0, (5.62)

whenever γ ≥ γf , since (γ2
fI −G>PG) Â 0 by assumption in A5.2. Recalling that HN º 0

by construction, we can substitute (5.61) into (5.62) and conclude that HN+1 º 0 if

PG(γ2
fI −G>PG)−1G>P º PG(γ2I −G>PG)−1G>P, (5.63)

which, once again applying A5.2, always holds since γ ≥ γf by assumption. We conclude

that (M+,v+) satisfies the LMI condition (5.10), so that (M+,v+) ∈ Πγ
N+1(x, γ) and

x ∈ Xγ
N+1(γ). The proof is completed by verifying, in a similar manner, that Xf ⊆Xγ

1 (γ).

Proof of Proposition 5.14

Proof. If A5.2 holds then, from Prop. 5.11, there exists a policy

(M+,v+) ∈ Πγ
N+1(x, γ) ⊆ Πdf

N+1(x)

such that the first component of v+ matches µN (x, γ). Using arguments identical to those in

the proof of Prop. 3.20, a shifted pair (M̄, v̄) ∈ Πdf
N (Ax+Bµ(x, γ)+Gw) can be constructed

by partitioning (M+,v+) into

M+ =:

(

0 0

M̄ M̄

)

, v+ =:

(

v̄

v̄

)

. (5.64)
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Recalling the definitions in (5.54), (γ,M+) satisfies

(

−γI (H+
u M+G+ + H+

w )

(H+
u M+G+ + H+

w )> −γI

)

¹ 0. (5.65)

Partitioning M+ as in (5.64) and rewriting the matrices in (5.54) as

H+
u =







Dz 0

CzAB CzB + Dz

P
1
2 ANB P

1
2 B̃






, H+

w =







0 0

CzAG CzG

P
1
2 ANG P

1
2 G̃






, and G+ =

(

G 0

0 G

)

, (5.66)

the inequality (5.65) can be written as













−γI 0 0 0

0 −γI Ȳ (HuM̄G + Hw)

0 Ȳ> −γI 0

0 (HuM̄G + Hw)> 0 −γI













¹ 0, (5.67)

where

Ȳ :=

(

(CzB + Dz)M̄G + CzAG

P
1
2 (AN + B̃M̄)G

)

. (5.68)

Rearranging rows and columns of (5.67) to get













−γI 0 0 0

0 −γI Ȳ> 0

0 Ȳ −γI (HuM̄G + Hw)

0 0 (HuM̄G + Hw)> −γI













¹ 0, (5.69)

it follows that (γ, M̄) satisfies the LMI condition (5.10), since any principal submatrix of a

negative semidefinite matrix is negative semidefinite [HJ91, Thm. 7.1.2].
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Chapter 6. Computational Methods

6.1 Introduction

In Chapter 3 it was shown that

Πdf
N (x) :=



























(M,v)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (3.19)

x = Ax + Bu + Gw

u = MGw + v

(x,u) ∈ Z, ∀w ∈ W



























, (6.1)

the set of admissible finite horizon affine feedback policies from a given state x, is a convex

set when the constraint set Z is convex.

In Chapters 4 and 5, different cost functions were used to help discriminate between policies

(M,v) ∈ Πdf
N (x). In both chapters, conditions were presented that ensured certain theo-

retical properties relating to the stability and continuity of receding horizon control laws

synthesized from such optimal policies. It was also shown that the problem of selecting a

policy (M,v) ∈ Πdf
N (x) that is optimal with respect to either of these cost functions is a

convex problem. We have thus far stated that such an optimization problem is convex in

principle only, since the difficulty of actually solving such a problem is determined by the

simplicity with which the set (6.1) can be characterized.

In this chapter, we address the computational issues relating to these theoretical results. We

consider the finite horizon problem of determining a policy (M,v) ∈ Πdf
N (x) (either feasible

or optimal in some sense) given an initial state x. The main motivation is to show that

such finite horizon problems can be solved using standard convex optimization methods in

those cases in which the universal quantifier in (6.1) can be easily eliminated, so that the

receding horizon control laws described in Chapters 4 and 5 can be implemented efficiently.
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6.1.1 Definitions and Notation

We continue to use much of the notation introduced in Sections 3.1.1 and 4.1.1, and will

employ the basic set of assumptions A3.1. We will restrict our attention to the particular

case where the state and input constraint sets Z and Xf are polytopic, so that

Z := {(x, u) | Ccx + Dcu ≤ b} (6.2)

Xf := {x | Ycx ≤ z } , (6.3)

for some matrices Cc ∈ R
s×n, Dc ∈ R

s×m and Yc ∈ R
sf×n, and vectors b ∈ R

s and z ∈ R
sf .

The constraint set Z can then be defined as a set of t := sN + sf linear inequalities in the

form

Z =

{

(x,u)

∣

∣

∣

∣

∣

Ccx + Dcu ≤ b

YcxN ≤ z

}

, (6.4)

where

Cc :=
[

IN ⊗ Cc 0
]

, Dc := IN ⊗Dc and b := 1N ⊗ b. (6.5)

Note, however, that all of the results in this chapter will hold when the set Z in (6.4) is

defined for any matrices Cc ∈ R
t×nN and Dc ∈ R

t×mN and vector f ∈ R
t, and not just for

those with the particular structure of (6.5). This includes problems with time-varying or

rate-limited constraints on the states and inputs, although theoretical properties of control

laws derived for systems with such constraints will not be considered.

If we further define

Fx :=

(

CcA

YcA
N

)

, Fu :=

(

CcB + Dc

YcB̃

)

, Fw :=

(

CcG

YcG̃

)

, and f :=

(

b

z

)

, (6.6)

then the set of feasible policies Πdf
N (x), defined in (6.1), can be written as

Πdf
N (x) :=

⋂

w∈W

{

(M,v)

∣

∣

∣

∣

∣

(M,v) satisfies (3.19)

Fxx + Fuv + (FuMG + Fw)w ≤ f

}

, (6.7)

or equivalently, as

Πdf
N (x) =







(M,v)

∣

∣

∣

∣

∣

∣

(M,v) satisfies (3.19)

Fxx + Fuv + max
w∈W

(FuMG + Fw)w ≤ f







. (6.8)
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The maximization maxw∈W(FuMG+Fw)w in (6.8) is to be interpreted row-wise; note that

the maximum value in each row is achieved since the set W is assumed compact. This

row-wise maximization is equivalent to evaluating the support function σW(·) of the set W
on each column of the matrix (FuMG + Fw)>, so that Πdf

N can be written as

Πdf
N (x) =



















(M,v)

∣

∣

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (3.19)

(Fxx + Fuv)i + σW

(

(FuMG + Fw)>i

)

≤ (f)i

∀i ∈ Z[1,t]



















, (6.9)

where (F )i represents the ith row of a matrix F , and (f)i the ith element of a vector f .

As in the case for general convex constraints Z, the set of feasible control policies Πdf
N (x)

in (6.9) is convex (Thm. 3.5). This is reflected in the fact that σW(·) is a convex function,

so that each of the constraints defining the set Πdf
N (x) in (6.9) is convex.

Note that since 0 ∈ intW by assumption, the support function σW(x) is positive for any

nonzero x (Prop. 2.19). Therefore each of the terms σW

(

(FuMG + Fw)>i
)

in (6.9) can

be viewed as a reduction or contraction of the corresponding right-hand side constraint

term (f)i, i.e. each of the constraints in (6.9) can be written as

(Fxx + Fuv)i ≤ (f)i − ci, (6.10)

where

ci := σW

(

(FuMG + Fw)>i

)

≥ 0. (6.11)

The degree to which each of these constraints is contracted is then dictated by the particular

choice of the feedback parameter M.

6.1.2 Non-polytopic state and input constraints

Before proceeding, we briefly touch on the reasons for dealing exclusively with polytopic

state and input constraint sets Z, while allowing the disturbance set W to be any compact

set. Suppose that Z were characterized by the intersection of feasible regions for t inequality

constraints defined by functions fi : R
nN × R

mN → R:

Z =
{

(x,u)
∣

∣ fi(x,u) ≤ 0, ∀i ∈ Z[1,t]

}

, (6.12)
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so that the set Πdf
N (x) could be written as

Πdf
N (x) :=































(M,v)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (3.19)

x = Ax + Bu + Gw

u = MGw + v

sup
w∈W

fi(x,u) ≤ 0, ∀i ∈ Z[1,t]































.

Defining the functions gi : R
mN×nN × R

mN → R as

gi(M,v) := sup
w∈W

fi

(

[Ax + B(MGw + v) + Gw], [MGw + v]
)

, (6.13)

we can conclude that if each function fi is convex, then each of the functions gi is also

convex, since they are defined as the pointwise suprema of convex functions. Convexity of

these functions then ensures that the set of feasible policies Πdf
N (x) is convex as well1.

On the other hand, for each i ∈ Z[1,t] define the function hi : R
lN → R as

hi(w) := fi

(

[Ax + B(M̄Gw + v̄) + Gw], [M̄Gw + v̄]
)

,

where (M̄, v̄) is some fixed control policy. In order to evaluate whether that policy is

constraint admissible, i.e. whether (M̄, v̄) ∈ Πdf
N (x), it would be necessary to solve each of

the optimization problems

max
w∈W

hi(w), ∀i ∈ Z[1,t]. (6.14)

If any of the functions fi is convex (so that hi is also convex), then the associated problem

in (6.14) requires the maximization of a convex function over a convex set, a very difficult

proposition in general. However, if each of the functions fi is concave, then the optimization

problems (6.14) are all convex.

For the particular case where the state and input constraints are polytopic, each of the

functions fi is affine, and therefore both convex and concave. This makes each of the

functions gi in (6.13) convex, as well as making each of the optimization problems (6.14)

convex. Taken together these conditions considerably simplify the problem of finding a pair

(M,v) ∈ Πdf
N (x).

1Note, however, that convexity of the functions fi is not a necessary condition. For example the sets
{(M,v) | gi(M,v) ≤ 0} could each be nonconvex, but with convex intersection.

90



6.2 Computation of Admissible Policies

6.2 Computation of Admissible Policies

We will find it helpful to convert the set of policies defined by (6.9) into a more compu-

tationally attractive form, by rewriting Πdf
N (x) in terms of the gauge function of the polar

set W◦; this will allow us to remove the maximization implicit in the support function

representation (6.9). Recalling from Lemma 2.19 that σW(·) = γW◦(·), the set Πdf
N (x) can

be written as

Πdf
N (x) =



















(M,v)

∣

∣

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (3.19)

(Fxx + Fuv)i + γW◦

(

(FuMG + Fw)>i

)

≤ (f)i

∀i ∈ Z[1,t]



















, (6.15)

or, recalling the definition of the gauge function on page 16, as

Πdf
N (x) =















(M,v)

∣

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (3.19)

∃ci ≥ 0, (Fxx + Fuv)i + ci ≤ (f)i

(FuMG + Fw)>i ∈ ciW◦, ∀i ∈ Z[1,t]















. (6.16)

This alternative representation of Πdf
N (x) will be considerably more convenient to work

with when the polar set W◦ is easily characterized. In the remainder of this section, we

consider several cases in which a simple characterization of W◦ is available, and for which

computation of a feasible pair (M,v) ∈ Πdf
N (x) is possible using one of the standard convex

optimization methods discussed in Section 2.3.

6.2.1 Conic Disturbance Sets

We first consider the case where the disturbance setW is defined by an affine conic inequal-

ity. Suppose that W is defined as

W := {w | Sw ¹
K

h} , (6.17)

where K is a convex cone. We can establish the following result about its polar set:

Proposition 6.1. Suppose that W is defined as in (6.17) with 0 ∈ intW. The scaled polar

set cW◦ is

cW◦ =
{

S>z
∣

∣

∣
∃z º

K
0, h>z ≤ c

}

. (6.18)
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Proof. Recall that the polar set W◦ is defined as

W◦ :=
{

y
∣

∣

∣ max
{

y>w | w ∈ W
}

≤ 1
}

, (6.19)

where ‘sup’ can be replaced with ‘max’ in the usual polar set definition since W is assumed

compact, so that the maximum is always attained. Exploiting the dual of (6.19), we have

that

max
w

{

y>w | Sw ¹
K

h
}

≤ min
z

{

h>z
∣

∣

∣
y = S>z, z º

K∗ 0
}

, (6.20)

where K∗ is the dual cone of K. Since 0 ∈ W is a strictly feasible point in (6.17), strong

duality holds and the relation (6.20) is satisfied with equality [BV04, Sec. 5.9]. The polar

set W◦ can then be written as

W◦ =
{

S>z
∣

∣

∣ ∃z º
K∗ 0, h>z ≤ 1

}

. (6.21)

The relation (6.18) follows by noting that y ∈ cW◦ is equivalent to 1
cy ∈ W◦.

Remark 6.2. In certain cases, the relationship between a set and its polar admits a straight-

forward geometric interpretation. For example, suppose that W := {w | Sw ≤ 1}, so that

W is defined by the intersection of half-planes whose normal vectors are the rows of the

matrix S. Then from (6.21), its polar set is

W◦ =
{

S>z
∣

∣

∣
∃z ≥ 0, 1>z ≤ 1

}

,

which is a polytope whose vertices are defined by the rows of S.

Remark 6.3. In defining the scaled polar set (6.18), we have made the implicit assumption

that the convex cone K is a subset of an inner product space where the inner product 〈x, y〉
is defined by the familiar vector product x>y. If K is a subset of a finite-dimensional space

equipped with a different inner product (e.g. if K is the positive semidefinite cone with

〈X, Y 〉 ≡ tr(X>Y )), one can more generally write

W = {w | Sw ¹
K

h}
cW◦ =

{

S∗z
∣

∣ ∃z º
K∗ 0, 〈z, h〉 ≤ c

}

,

where S∗ is the adjoint of the linear operator S. We will make the assumption throughout

that this degree of generality is not required, since all of the specific characterizations for W
defined as in (6.17) that will be considered in detail will have 〈x, y〉 ≡ x>y and S∗ ≡ S>.
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By direct substitution of (6.18) into (6.16), the set Πdf
N (x) can then be written as

Πdf
N (x) =



























(M,v)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (3.19)

∃zi ºK∗ 0, ∀i ∈ Z[1,t]

(Fxx + Fuv)i + h>zi ≤ (f)i

(FuMG + Fw)>i = S>zi



























. (6.22)

It is therefore possible, given an initial state x, to calculate a constraint admissible policy

(M,v) ∈ Πdf
N (x) by solving a single convex optimization problem defined by affine general-

ized inequalities when the disturbance set W is defined as in (6.17).

Remark 6.4. It is of course possible to derive the expression (6.22) without recourse to

the polar set W◦, since one can exploit the duality relation (6.20) directly to eliminate the

support function in (6.9); this is the approach used by the author in [GKM06], and the

methods are entirely equivalent. However, we will generally prefer the method presented

here, since the polar set is a useful intermediate device that affords a more geometric view

of the problem, and is slightly more flexible.

In the remainder of this section, we discuss several special cases of (6.17) for the most

common classes of disturbance set.

6.2.2 Polytopic Disturbance Sets

Suppose that W is a polytope containing the origin in its interior. In this case the distur-

bance set can be written as

W = {w | Sw ≤ h} , (6.23)

where S ∈ R
a×lN and h ∈ R

a; this set description is equivalent to (6.17) with K de-

fined as the positive orthant in R
a. In the most general case, this set description includes

disturbances with both time-varying constraints and rate limits, although typically one

would assume that W = W N , with the disturbance set W time-invariant2. Note that

both 1– and ∞–norm bounded sets are special cases of this disturbance class, though these

will be dealt with separately in Section 6.2.3. Recalling (6.21), the polar of W is

W◦ =
{

S>z
∣

∣

∣ z ≥ 0, h>z ≤ 1
}

,

2 In the time-invariant case, if W :=
˘

w∈R
l
˛

˛ S̄w ≤ h̄
¯

then W can be written as in (6.23), with
S :=IN ⊗ S̄ and h :=1N ⊗ h̄.
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so that the set of feasible policies (6.22) becomes

Πdf
N (x) =



























(M,v)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (3.19)

∃zi ≥ 0, ∀i ∈ Z[1,t]

(Fxx + Fuv)i + h>zi ≤ (f)i

(FuMG + Fw)>i = S>zi



























. (6.24)

By combining the vectors zi into a matrix Z :=
[

z1 . . . zN

]>
∈ R

t×a, the set Πdf
N (x) can

be expressed in terms of linear element-wise matrix inequalities

Πdf
N (x) =















(M,v)

∣

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (3.19), ∃Z ≥ 0

Fxx + Fuv + Zh ≤ f

ZS = (FuMG + Fw)















. (6.25)

In this case it is possible to find a policy (M,v) ∈ Πdf
N (x) via the solution of a single linear

program in a polynomial number of decision variables and constraints.

Remark 6.5. The matrix products in (6.25) can be written in a vectorized form compatible

with standard convex optimization software packages. Using the Kronecker product iden-

tity vec(ABC) = (C>⊗A)vec(B), (6.25) is equivalent to

Πdf
N (x) =















(M,v)

∣

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (3.19), ∃Z ≥ 0

Fxx + Fuv + (h>⊗ It)vec(Z) ≤ f

(S>⊗ It)vec(Z) = (G>⊗ Fu)vec(M) + vec(Fw)















. (6.26)

6.2.3 Norm Bounded Disturbance Sets

Suppose that the disturbance setW is the p–norm unit ball in R
lN , so that it can be written

as3

W := BlN
p =

{

w ∈ R
lN
∣

∣

∣
‖w‖p ≤ 1

}

. (6.27)

We consider first the case where p ∈ (1,∞)/{2} – the particular cases p ∈ {1, 2,∞} will

be addressed separately in subsequent sections, where simpler results than those presented

3 It is easy to apply the methods of this section to the case where the disturbance set W is p–norm
bounded, i.e where W = Bl

p, and W = W N . We work with the case W = BlN
p primarily for simplicity of

notation.
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here will be obtained. Recalling Prop. 2.12(vi), the polar of the set W in this case is

W◦ = BlN
q =

{

w ∈ R
lN
∣

∣

∣ ‖w‖q ≤ 1
}

,

where p−1 + q−1 = 1. Substituting into (6.16), the set Πdf
N (x) can be written as

Πdf
N (x) =



















(M,v)

∣

∣

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (3.19)

(Fxx + Fuv)i +
∥

∥

∥
(FuMG + Fw)>i

∥

∥

∥

q
≤ (f)i

∀i ∈ Z[1,t]



















. (6.28)

Remark 6.6. This result can also be obtained by defining the convex cone

Kp :=
{

[ wt ]
∣

∣

∣
‖w‖p ≤ t

}

, (6.29)

so that the norm bounded disturbance set is defined as in (6.17), i.e.

W =
{

w
∣

∣

∣

[

−I
0

]

w ¹
Kp

[ 0
1 ]
}

. (6.30)

The result then follows by substitution into (6.22), where K∗
p = Kq.

A feasible policy (M,v) ∈ Πdf
N (x) can be found in this case via the solution of a single convex

optimization problem. However, this optimization problem may still require considerable

computational effort to solve relative to one based on one of the simpler classes of convex

optimization problems described in Section 2.3. Fortunately, for control applications the

cases p ∈ {1, 2,∞} are by far the most common, and the convex optimization problems

arising in these cases have the added benefit of belonging to such simpler problem classes.

We address each of these cases in turn in the remainder of this section.

2–norm Bounded Disturbance Sets

For the particular case p = 2, the set Πdf
N (x) can be written as

Πdf
N (x) =



















(M,v)

∣

∣

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (3.19)

(Fxx + Fuv)i +
∥

∥

∥
(FuMG + Fw)>i

∥

∥

∥

2
≤ (f)i

∀i ∈ Z[1,t]



















, (6.31)
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so that a feasible policy (M,v) ∈ Πdf
N (x) can be found by solving a second-order cone

program, for which more specialized solution methods may be available [LVBL98]. Note

that this result is easily extended to the case where the disturbance set W is ellipsoidal

through judicious redefinition of the matrix G.

Remark 6.7. If the disturbance is Gaussian with a known mean and covariance, then

one cannot guarantee that Πdf
N (x) is nonempty since the disturbance sequence is no longer

bounded. However, this problem can be circumvented by requiring that the constraints only

hold with pre-specified probabilities. Suppose that a design goal is to guarantee that the ith

constraint in (6.8) holds only with probability ηi, i.e.

P
[

(Fxx + Fuv)i + (FuMG + Fw)iw ≤ (f)i

]

≥ ηi, ∀i ∈ Z[1,t]. (6.32)

If the disturbance sequence w is Guassian with zero mean and covariance Cw, then by

straightforward application of the results in [BV04, pp. 157–8], these probabilistic constraints

can be converted into the equivalent set of hard constraints

(Fxx + Fuv)i + ϕ−1(ηi)

∥

∥

∥

∥

C
1
2
w(FuMG + Fw)>i

∥

∥

∥

∥

2

≤ (f)i, ∀i ∈ Z[1,t], (6.33)

where

φ(z) :=
1

2π

∫ z

−∞
e−t2/2 dt (6.34)

is the cumulative distribution function for a zero mean Guassian random variable with

unit variance. If each of the probability thresholds ηi ≥ 0.5, then each of the constraints

in (6.33) is a second-order cone constraint, since φ−1(ηi) ≥ 0 for any ηi ≥ 0.5. In this case

an admissible affine disturbance feedback policy can once again be found by solving a single,

tractable SOCP.

1– and ∞–norm Bounded Disturbance Sets

If the disturbance set W is 1– or ∞–norm bounded, then it is possible to find a feasible

policy (M,v) ∈ Πdf
N (x) by solving a single linear program. This is evident from the fact

that each of the sets BlN
1 and BlN

∞ are polytopes, so that the results of Section 6.2.2 can be

directly applied. In this section we take an alternative approach, and specialize the general

results for p-norm bounded disturbances to the cases p ∈ {1,∞}.
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1–Norm Bounds: For the case W = BlN
1 , we set q =∞ in (6.28) and rewrite Πdf

N (x) as

Πdf
N (x) =



















(M,v)

∣

∣

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (3.19)

(Fxx + Fuv)i +
∥

∥

∥(FuMG + Fw)>i

∥

∥

∥

∞
≤ (f)i

∀i ∈ Z[1,t]



















. (6.35)

The constraints in this problem can be transformed to a set of purely linear constraints

through the introduction of a set of scalar slack variables qi bounding the absolute values

of the vectors (FuMG + Fw)>i , so that

|(FuMG + Fw)>i | ≤ 1qi, ∀i ∈ Z[1,t].

The set Πdf
N (x) can then be written as

Πdf
N (x) =



























(M,v)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (3.19)

∃(q1, . . . , qt) ≥ 0, ∀i ∈ Z[1,t]

(Fxx + Fuv)i + qi ≤ (f)i

−1qi ≤ (FuMG + Fw)>i ≤ 1qi



























, (6.36)

or, defining the vector q := [q1, · · · , qt]
>, as

Πdf
N (x) =















(M,v)

∣

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (3.19), ∃q
Fxx + Fuv + q ≤ f

−q1>≤ FuMG + Fw ≤ q1>















. (6.37)

Since this set is defined entirely in terms of linear inequalities, it is possible to find a feasible

policy (M,v) ∈ Πdf
N (x) by solving a single linear program.

∞–Norm Bounds: A similar procedure leads to another polytopic set description in the

case W = BlN
∞ . We set q = 1 in (6.28) and rewrite Πdf

N (x) as

Πdf
N (x) =



















(M,v)

∣

∣

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (3.19)

(Fxx + Fuv)i +
∥

∥

∥
(FuMG + Fw)>i

∥

∥

∥

1
≤ (f)i

∀i ∈ Z[1,t]



















. (6.38)

The constraints in this problem can be transformed to set of purely linear constraints

through the introduction of a set of vector slack variables λi bounding the absolute values
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of the elements of the vectors (FM + G)>i , so that

|(FuMG + Fw)>i | ≤ λi, ∀i ∈ Z[1,t] (6.39)
∥

∥

∥
(FuMG + Fw)>i

∥

∥

∥

1
≤ λ>i1, ∀i ∈ Z[1,t]. (6.40)

Combining these vectors into a matrix Λ :=
[

λ1 . . . λt

]>
, the set Πdf

N (x) can then be

written as

Πdf
N (x) =















(M,v)

∣

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (3.19), ∃Λ
Fxx + Fuv + Λ1 ≤ f

−Λ ≤ FuMG + Fw ≤ Λ.















. (6.41)

As in the 1–norm bounded disturbance case, this set is defined entirely in terms of linear

inequalities, so it is possible to find a feasible policy (M,v) ∈ Πdf
N (x) by solving a single

linear program.

Remark 6.8. Since each of the sets BlN
1 and BlN

∞ is polytopic, it is also possible to derive

the results of this section via direct application of the methods described in Section 6.2.2.

For example, in the case W = BlN
∞ the set description (6.25) defined for general polytopes

is easily converted to the form (6.41) by setting

Z =
[

Λ1 Λ2

]

, S =

[

+I

−I

]

, and h =

[

1

1

]

,

and defining Λ = Λ1 + Λ2.

6.2.4 L-Nonzero Disturbance Sets

As a final example, we consider disturbances generated from a less conventional set – the

set of all disturbances with elements taking values in {−1, 0, 1}, and with at most L nonzero

terms. We define such a set in R
n as

Vn
L =

{

x ∈ R
n

∣

∣

∣

∣

∣

xi ∈ {−1, 0, 1},
n
∑

i=1

|xi| ≤ L

}

, (6.42)

and would like to model the disturbance set as W = V lN
L for some L ∈ Z[1,lN ].

98



6.2 Computation of Admissible Policies

Recalling the discussion of Section 3.4.1, it is sufficient for our purposes to work with convex

hulls, i.e. to set W = conv (V lN
L ). Since V lN

L is the union of a finite number of points, its

convex hull is a polytope; it is therefore conceptually possible to use the methods described

in Section 6.2.2 directly for this disturbance model. However, this approach is ill-advised,

since, as noted in [Gra04], the set V lN
L has 2L(lN)!/(L!(lN − L)!) vertices. In this section

we take an alternative approach based on a direct characterization of the polar set (Vn
L)◦.

Lemma 6.9. If Vn
L is defined as in (6.42) then, for any c ≥ 0, the set c(Vn

L)◦ is

c(Vn
L)◦ =

{

w

∣

∣

∣

∣

∣

∃(λ, q) ≥ 0,
|w| ≤ (λ + 1q)

Lq + 1>λ ≤ c

}

. (6.43)

Proof. Taking the convex hull of the set (6.42) and exploiting the properties of polar sets

(Prop. 2.12), we can write conv(Vn
L) as

conv (Vn
L) = (LBn

1 )
⋂

(Bn
∞) =

(

(
1

L
Bn
∞)
⋃

(Bn
1 )

)◦

, (6.44)

so that the polar of Vn
L can be written as the convex hull of a union of sets

(Vn
L)◦ = (conv (Vn

L))◦ =

(

(
1

L
Bn
∞)
⋃

(Bn
1 )

)◦◦

= conv

(

(
1

L
Bn
∞)
⋃

(Bn
1 )

)

. (6.45)

We then write c(Vn
L)◦ directly as the set of all convex combinations of vectors in c

LBn
∞

and cBn
1 :

c(Vn
L)◦ =







w

∣

∣

∣

∣

∣

∣

∃(x, y, α), w = αx + (1− α)y

0 ≤ α ≤ 1, x ∈ c

L
Bn
∞, y ∈ cBn

1







=







w

∣

∣

∣

∣

∣

∣

∃(x̃, ỹ, α), w = x̃ + ỹ

0 ≤ α ≤ 1, ‖x̃‖∞ ≤
αc

L
, ‖ỹ‖1 ≤ (1− α)c







=















w

∣

∣

∣

∣

∣

∣

∣

∣

∃(x̃, ỹ, α, q, λ), w = x̃ + ỹ

0 ≤ α ≤ 1, −1q ≤ x̃ ≤ 1q, Lq ≤ αc

(q, λ) ≥ 0, −λ ≤ ỹ ≤ λ, λ>1 ≤ (1− α)c















=

{

w

∣

∣

∣

∣

∣

∃(q, λ), −(1q + λ) ≤ w ≤ (1q + λ)

(q, λ) ≥ 0, Lq + 1>λ ≤ c

}

,

where the last equality comes from addition of constraints to eliminate (x̃, ỹ, α).
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Remark 6.10. It is easy to show from the definition (6.42) that the set (Vn
L)◦ is the unit

ball in the largest-L norm, which we denote ‖·‖[L], and thus that γ(Vn
L)◦(·) = ‖·‖[L]. The

largest-L norm is defined as

‖w‖[L] :=
L
∑

i=1

|w[i]|,

where w[i] is the ith largest element of the vector w in absolute value terms, so that

|w[1]| ≥ |w[2]| ≥ · · · ≥ |w[n−1]| ≥ |w[n]|.

Given the polar set representation (6.43), it is now possible to define the set of constraint

admissible control policies Πdf
N (x) given the disturbance setW = V lN

L . By direct substitution

into (6.16), the set Πdf
N (x) can be written as

Πdf
N (x) =



























(M,v)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (3.19)

∃(λ1, q1, · · · , λt, qt) ≥ 0, ∀i ∈ Z[1,t]

(Fxx + Fuv)i + Lqi + λ>i1 ≤ (f)i

−(λi + 1qi) ≤ (FuMG + Fw)>i ≤ (λi + 1qi)



























, (6.46)

or, in matrix form, as

Πdf
N (x) =















(M,v)

∣

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (3.19), ∃(Λ,q) ≥ 0

Fxx + Fuv + qL + Λ1 ≤ f

−(Λ + q1>) ≤ FuMG + Fw ≤ (Λ + q1>)















. (6.47)

In this case, it is once again possible to find a feasible policy (M,v) ∈ Πdf
N (x) via the solution

of a single linear program in a polynomial number of decision variables and constraints. Note

that the set description (6.47) for the case W = V lN
L has more variables than either of the

cases W = BlN
1 and W = BlN

∞ (cf. (6.37) and (6.41) respectively).

Remark 6.11. As in the case of conic set descriptions for W, it is possible to derive the

set description (6.47) directly from convex programming duality (cf. Remark 6.4). Recalling

that the support function of a set matches the support function of its convex hull, we can

write

σVn
L
(x) = max

{

x>w | ‖w‖∞ ≤ 1, ‖w‖1 ≤ L
}
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which, by LP duality, is equivalent to

σVn
L
(x)=max

{

x>w

∣

∣

∣

∣

∣

∃z,
−z ≤ w ≤ z ≤ 1

1>z ≤ L

}

=min

{

1>λ+Lq

∣

∣

∣

∣

∣

−(λ + 1q) ≤ x ≤ (λ + 1q)

λ ≥ 0, q ≥ 0

}

.

This is the preferred approach, for example, in [Gra04, Sec2.9].

Remark 6.12. Although the disturbance set W = V lN
L is integer valued, the methods in

this section are applicable to cases where L is any positive (potentially non-integer) value

satisfying L ∈ (1, lN) and the disturbance is modelled as W = LBlN
1

⋂BlN
∞ . Note that if

L ≤ 1 then LBlN
1 ⊂ BlN

∞ ; likewise if L ≥ lN , then LBlN
1 ⊃ BlN

∞ . In these cases the problem

reduces to the simpler 1- and ∞-norm bounded cases discussed in Section 6.2.3.

6.2.5 Computational Complexity

The common feature of all of the particular disturbance sets discussed in this section is

that, given an initial state x, a feasible policy pair (M,v) ∈ Πdf
N (x) can be calculated by

solving a convex optimization problem in a tractable number of variables. The total number

of variables and constraints for each of the problem types considered thus far is outlined

in Table 6.1. Note that the number of variables and constraints grows quadratically in the

horizon length N (recall that the number of constraints in Z is t := sN +sf ). However, the

table is useful only as a rough guide to computational complexity, since no consideration

is paid to the number of variables appearing in each constraint (i.e. the problem sparsity),

nor to any underlying problem structure that may be exploited. This issue is dealt with in

more detail for the ∞–norm bounded disturbance case in Chapter 7.

6.3 Expected Value Problems

In Chapter 4 we defined an optimal control policy (M,v) ∈ Πdf
N (x) to be one that minimized

the expected value of a certain quadratic cost function. It was shown that such a minimizer

could be found as a solution to the optimization problem

min
(M,v)

JN (x,M,v)

subject to: (M,v) ∈ Πdf
N (x),

(6.48)
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Table 6.1: Computational Complexity for Different Disturbance Classes

Disturbance
Class Variables Equalities

Linear
Inequalities

Nonlinear
Inequalities

Solution
Method

Polytopic‡ 1
2mnN(N−1)
+mN + ta

tlN t + ta – LP

2–Norm
Bounded

1
2mnN(N−1)

+mN
– – t SOCP

1–Norm
Bounded

1
2mnN(N−1)

+mN + t
– t + 2tlN – LP

∞–Norm
Bounded

1
2mnN(N−1)
+mN + tlN

– t + 2tlN – LP

L-Largest 1
2mnN(N−1)
+mN+t+tlN

– 2t + 3tlN – LP

where the cost function

JN (x,M,v) := ‖Hxx + Huv‖22 + tr

(

C
1
2
w(HuMG + Hw)>(HuMG + Hw)C

1
2
w

)

, (6.49)

is convex and quadratic in the policy variables (M,v).

Remark 6.13. Recalling the Kronecker product identities vec(AXB) = (B>⊗ A)vec(X)

and tr(A>B) = vec(A)>vec(B), (6.49) can be written in a more familiar vectorized form as

JN (x,M,v) =
∥

∥

∥
Hxx + Huv

∥

∥

∥

2

2
+

∥

∥

∥

∥

[(C
1
2
wG>)⊗Hu]vec(M) + vec(HwC

1
2
w)

∥

∥

∥

∥

2

2

. (6.50)

This is the more suitable representation of JN (x,M,v) for use with most convex optimiza-

tion software packages.

In this section, we show that the problem (6.48) can be solved using standard convex

optimization methods for several of the most common disturbance types encountered in

Section 6.2.
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Polytopic Sets and Quadratic Programming

When the set W is a polytope, the optimization problem (6.48) can be posed as a con-

vex quadratic program. Substitution of the set description for Πdf
N (x) in (6.25) into the

problem (6.48) gives the following QP:

min
Z,M,v

‖Hxx + Huv‖22 + tr

(

C
1
2
w(HuMG + Hw)>(HuMG + Hw)C

1
2
w

)

subject to: Mi,j = 0, ∀i ≤ j

Fxx + Fuv + Zh ≤ f

ZS = (FuMG + Fw), Z ≥ 0.

(6.51)

2–Norm Bounded Sets and Second-Order Cone Programming

If the disturbance setW is 2–norm bounded, the optimization problem (6.48) can be written

as a second-order cone program (SOCP). However, some care must be taken to convert the

problem to the standard SOCP form described in Section 2.3.2, which uses a linear objective

function expected by most SOCP solvers, since the objective function in (6.49) is quadratic

in the decision variables M and v. The following lemma is useful for making this conversion:

Lemma 6.14 (Hyperbolic Constraints ([LVBL98])). Given a vector x ∈ R
n and real

scalars y and z,

‖w‖22 ≤ xy, x ≥ 0 and y ≥ 0 ⇐⇒
∥

∥

∥

∥

∥

(

2w

x− y

)∥

∥

∥

∥

∥

2

≤ x + y. (6.52)

Using the policy set description (6.31) for the 2–norm bounded disturbance case, the opti-

mization problem (6.48) can be written as

min
M,v

‖Hxx + Huv‖22 + tr

(

C
1
2
w(HuMG + Hw)>(HuMG + Hw)C

1
2
w

)

subject to: Mi,j = 0, ∀i ≤ j

(Fxx + Fuv)i +
∥

∥

∥
(FuMG + Fw)>i

∥

∥

∥

2
≤ (f)i, ∀i ∈ Z[1,t].

(6.53)

Writing the cost function in the vectorized form (6.50), adding additional variables t1 and t2

to serve as upper bounds for the quadratic components of the cost, and applying Lem. 6.14

yields the following problem:
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min
M,v,t1,t2

t1 + t2

subject to: Mi,j = 0, ∀i ≤ j
∥

∥

∥

∥

∥

(

2 [Hxx + Huv]

t1 − 1

)∥

∥

∥

∥

∥

2

≤ t1 + 1

∥

∥

∥

∥

∥

∥





2

[

[(C
1
2
wG>)⊗Hu]vec(M) + vec(HwC

1
2
w)

]

t2 − 1





∥

∥

∥

∥

∥

∥

2

≤ t2 + 1

(Fxx + Fuv)i +
∥

∥

∥
(FuMG + Fw)>i

∥

∥

∥

2
≤ (f)i, ∀i ∈ Z[1,t],

(6.54)

which is an SOCP in standard form.

∞–Norm Bounded Sets and Quadratic Programming

As in the polytopic disturbance case, the policy optimization problem (6.48) can be posed

as a convex quadratic program if the disturbance set W is 1– or ∞–norm bounded, or if W
is characterized using the L-nonzero set description of Section 6.2.4; recall that all of these

sets are actually special cases of the general polytopic disturbance class. For example, in

the ∞–norm case substitution of the set description (6.41) into (6.48) yields the following

quadratic program:

min
Λ,M,v

‖Hxx + Huv‖22 + tr

(

C
1
2
w(HuMG + Hw)>(HuMG + Hw)C

1
2
w

)

subject to: Mi,j = 0, ∀i ≤ j

Fxx + Fuv + Λ1 ≤ f

−Λ ≤ FuMG + Fw ≤ Λ.

(6.55)

Similar problem formulations are easily constructed for the 1–norm bounded and L–nonzero

disturbance set cases using the set descriptions (6.37) and (6.47) respectively. A simplified

version of the quadratic program (6.55) will be the topic of particular interest in Chapter 7.
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6.3.1 Soft Constraints and Guaranteed Feasibility

An important practical consideration for control applications is the handling of potential

infeasibility of the optimization problem (6.48). If the RHC law proposed in Chapter 4 is to

be implemented on-line for a real system, it is important to guarantee reasonable controller

behavior if the plant enters a state x such that Πdf
N (x) is empty (equivalently, if x /∈ Xdf

N ).

A common approach in the literature in receding horizon control is to treat some or all

of the constraints in Z or Xf as so-called soft constraints, i.e. constraints that may be

violated if necessary to guarantee that the optimization problem (6.48) remains feasible for

all x. Techniques for soft constraint handling are well established in the literature on linear

predictive control for undisturbed systems [RWR98, SR99, Mac02], and we show briefly

how these ideas can be extended to cover the robust control problems considered here.

We use the problem (6.55) as an example, since it will be of further interest in Chapter 7.

We consider the simplest case where every constraint is a soft constraint, and replace the

hard state and input constraints with constraints of the form

Cxi + Dui ≤ b + ξi, ξi ≥ 0, ∀i ∈ Z[0,N−1] (6.56a)

Y xN ≤ z + ξN , ξN ≥ 0. (6.56b)

We also augment the objective function with convex linear-quadratic terms (γ>i ξi + ξ>i Γiξi)

penalizing the soft constraint violations ξi, where Γi º 0 and γi ≥ 0 for each i. The

optimization problem (6.55) becomes

min
Λ,M,v

JN (x,M,v) +
N
∑

i=0
(γ>i ξi + ξ>i Γiξi)

subject to: Mi,j = 0, ∀i ≤ j

Fxx + Fuv + Λ1 ≤ f + ξ

−Λ ≤ FuMG + Fw ≤ Λ, ξ ≥ 0.

(6.57)

where ξ := vec(ξ0, . . . , ξN ). Note that the quadratic program (6.57) is feasible for all x, so

that a receding horizon controller synthesized via repeated solution of this QP is defined

everywhere on R
n. A well-known feature of such penalty function formulations is that if,

in the spirit of [Fle87, Sec. 12.3] [Mac02, Sec. 3.4], the penalty terms γi are chosen large

enough, then solutions to (6.57) correspond exactly to solution of (6.55) for all x ∈ Xdf
N .
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6.4 Min-Max Problems

In Chapter 5 we defined an optimal control policy (M,v) ∈ Πγ
N (x, γ) to be one that mini-

mized the maximum value of a quadratic cost, while satisfying an additional LMI constraint

in the matrix M and the `2 gain parameter γ. This led to the following optimization prob-

lem

min
M,v

max
w∈W

‖(Hxx + Huv) + (HuMG + Hw)w‖22 − γ2 ‖w‖22

subject to: (M,v) ∈ Πdf
N (x)

(

−γI (HuMG + Hw)

(HuMG + Hw)> −γI

)

¹ 0,

(6.58)

where the gain parameter γ was treated as a pre-specified constant.

In this section, we show that, like the expected value problem described in the previous

section, the optimization problem (6.58) can be solved using standard convex optimization

methods for several of the most common disturbance types encountered in Section 6.2.

Remark 6.15. Note that if one instead wishes to minimize the achievable gain γ given an

initial state x, i.e. to determine

γ∗
N (x) := inf

{

γ

∣

∣

∣

∣

∣

∃(M,v) ∈ Πdf
N (x),

(

−γI (HuMG + Hw)

(HuMG + Hw)> −γI

)

¹ 0

}

as defined in (5.15), then it is obvious from the discussion thus far that this constitutes a

standard form convex optimization problem when the disturbance set W takes any of the

forms considered in Section 6.2.

The principal difficulty with the optimization problem (6.58) lies in the elimination of

the maximization operation from the cost function. Recall from Prop. 5.3 that the LMI

constraint in (6.58) is equivalent to the QMI condition

(HuMG + Hw)>(HuMG + Hw)− γ2I ¹ 0, (6.59)

and is imposed in order to ensure that the maximization problem

max
w∈W

(

‖(Hxx + Huv) + (HuMG + Hw)w‖22 − γ2 ‖w‖22
)

(6.60)
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is concave (i.e. equivalent to the minimization of a convex function). This enforced concavity

enables exploitation of the dual of (6.60), so that (6.58) can be written as a single convex

optimization problem.

6.4.1 Conic Disturbance Sets

Suppose that the disturbance set W is defined by an affine conic inequality as in Sec-

tion 6.2.1, so that

W := {w | Sw ¹
K

h} , (6.61)

where K is a convex cone4 with dual cone K∗. When writing the dual of the maximization

problem (6.60), we must bear in mind that the matrix M is itself a decision variable in the

outer minimization problem of (6.58), so care must be taken to avoid a formulation that

involves products or inverses of matrices involving this term. We therefore formulate the

dual of (6.60) in a slightly unconventional fashion using an LMI:

Proposition 6.16. If the QMI (6.59) holds, then the following duality result holds:

max
w

{(

‖(Hxx + Huv) + (HuMG + Hw)w‖22 − γ2 ‖w‖22
)

| Sw ¹
K

h
}

= (6.62)

min
δ, yº

K∗0











2h>y+δ

∣

∣

∣

∣

∣

∣

∣







δ y>S (Hxx + Huv)>

S>y γ2I (HuMG + Hw)>

(Hxx + Huv) (HuMG + Hw) I






º 0











. (6.63)

Proof. Define V to be the maximum attainable value in the problem (6.62), and define the

vector β := −(Hxx + Huv) and matrices Γ := (HuMG+Hw) and Θ := (γ2I−Γ>Γ), so that

V := max
w

{

β>β − 2β>Γw −w>Θw | Sw ¹
K

h
}

. (6.64)

We first write (6.64) as a minimization and take the dual, so that

V = −min
w

{

−β>β + 2β>Γw + w>Θw | Sw ¹
K

h
}

(6.65)

= − max
λº

K∗0

{

−h>λ− β>β + min
w

{

(2Γ>β + S>λ)>w + w>Θw
}}

, (6.66)

where equality is achieved in (6.66) since 0 ∈ W by assumption, so that strong duality

4Recalling Rem. 6.3, we again make the assumption that K is a subset of a finite dimensional inner
product space equipped with the inner product 〈x, y〉 := x>y and adjoint operator S∗ := S>.
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holds [BV04, Sec. 5.9]. Considering the inner unconstrained minimization of (6.66) in

isolation, a well known result [BV04, Sec. A.5.5] when Θ º 0 (not necessarily positive

definite) is

min
w∈W

(

(2Γ>β+S>λ)>w+w>Θw
)

=







−1
4(2Γ>β+S>λ)>Θ†(2Γ>β+S>λ) if (2Γ>β+S>λ)∈R(Θ),

−∞ otherwise,

where

(2Γ>β + S>λ) ∈ R(Θ) ⇔ (I −ΘΘ†)(2Γ>β + S>λ) = 0. (6.67)

We can then make the constraint (6.67) explicit and substitute into (6.66) to get

V =−max
λº

K∗0

{

−h>λ−β>β− 1

4
(2Γ>β+S>λ)>Θ†(2Γ>β+S>λ)

∣

∣

∣
(I−ΘΘ†)(2Γ>β+S>λ) = 0

}

= min
λº

K∗0

{

+h>λ+β>β+
1

4
(2Γ>β+S>λ)>Θ†(2Γ>β+S>λ)

∣

∣

∣
(I−ΘΘ†)(2Γ>β+S>λ) = 0

}

.

(6.68)

Adding a variable δ to serve as an upper bound to the quadratic terms in (6.68) and applying

the Schur complement Lemma 2.20 then gives

V = min
δ, λº

K∗0







h>λ + δ

∣

∣

∣

∣

∣

∣

β>β +
1

4
(2Γ>β + S>λ)>Θ†(2Γ>β + S>λ) ≤ δ

(I −ΘΘ†)(2Γ>β + S>λ) = 0







(6.69)

= min
δ, λº

K∗0

{

h>λ + δ

∣

∣

∣

∣

∣

(

(δ − β>β) (Γ>β + 1
2S>λ)>

(Γ>β + 1
2S>λ) Θ

)

º 0

}

. (6.70)

Finally, setting y = 1
2λ and once again applying the Schur complement Lemma to (6.70),

V = min
δ, yº

K∗0

{

2h>y + δ

∣

∣

∣

∣

∣

(

δ y>S

S>y γ2I

)

−
(

−β>

Γ>

)

(

−β Γ
)

º 0

}

(6.71)

= min
δ, yº

K∗0











2h>y + δ

∣

∣

∣

∣

∣

∣

∣







δ y>S −β>

S>y γ2I Γ>

−β Γ I






º 0











, (6.72)

gives the desired result.
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Remark 6.17. Note that if the LMI in the minimization problem (6.63) holds, then the

QMI (6.59) (equivalently, the LMI in the optimization problem (6.58)) holds automatically.

Using this result, we can write the min-max optimization problem (6.58) as a single min-

imization problem when the disturbance set is defined as in (6.61). We consider the most

important of these situations in the remainder of this section.

Polytopic Disturbance Sets

We first consider the case where the disturbance set is polytopic, so that

W = {w | Sw ≤ h} ,

which is equivalent to (6.61) with the cone K defined as the positive orthant in R
lN . Re-

calling the characterization of the set Πdf
N (x) in (6.25), the optimization problem (6.58) can

be written as

min
δ,y,Z,M,v

2h>y + δ

subject to: Mi,j = 0, ∀i ≤ j

Fxx + Fuv + Zh ≤ f

ZS = (FuMG + Fw)

Z ≥ 0, y ≥ 0






δ y>S (Hxx + Huv)>

S>y γ2I (HuMG + Hw)>

(Hxx + Huv) (HuMG + Hw) I






º 0,

(6.73)

by direct application of the results of Prop. 6.16. The problem (6.73) is recognizable as a

semidefinite program in a tractable number of variables (cf. Table 6.1).

Norm Bounded Disturbance Sets

We next consider the case where the disturbance set is p–norm bounded. Recalling Rem. 6.6,

such a set can be written as in (6.61) by setting

S =

(

−I

0

)

and h =

(

0

1

)

,
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with K = Kp defined as in (6.29), and with dual cone K∗
p = Kq. In this case the optimization

problem (6.58) can be written as

min
δ,θ,ȳ,M,v

2θ + δ

subject to: Mi,j = 0, ∀i ≤ j

‖ȳ‖q ≤ θ

(Fxx + Fuv)i +
∥

∥

∥
(FuMG + Fw)>i

∥

∥

∥

q
≤ (f)i, ∀i ∈ Z[1,t]







δ −ȳ> (Hxx + Huv)>

−ȳ γ2I (HuMG + Hw)>

(Hxx + Huv) (HuMG + Hw) I






º 0,

(6.74)

where y =:
[

ȳ
θ

]

. As in the polytopic disturbance case, this optimization problem is a

semidefinite program when p ∈ {1, 2,∞}.

2–Norm Bounded Disturbances: We examine only the 2–norm bounded disturbance

case in detail, since the 1– and ∞ norm bounded cases are straightforward. If p = 2, the

optimization problem (6.74) can be written as

min
δ,θ,ȳ,M,v

2θ + δ

subject to: Mi,j = 0, ∀i ≤ j

‖ȳ‖2 ≤ θ

(Fxx + Fuv)i +
∥

∥

∥
(FuMG + Fw)>i

∥

∥

∥

2
≤ (f)i, ∀i ∈ Z[1,t]







δ −ȳ> (Hxx + Huv)>

−ȳ γ2I (HuMG + Hw)>

(Hxx + Huv) (HuMG + Hw) I






º 0.

(6.75)

The only consideration is the conversion of the SOCP constraints in (6.75) to LMI con-

straints so that the problem is in standard SDP form. Using straightforward procedures

from [LVBL98], the convex optimization problem (6.75) can be written as the following
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standard form semidefinite program:

min
δ,θ,ȳ,M,v

2θ + δ

subject to:

Mi,j = 0, ∀i ≤ j
(

θI ȳ

ȳ> θ

)

º 0

(

((f)i − (Fxx + Fuv)i) I (FuMG + Fw)>i
(FuMG + Fw)i ((f)i − (Fxx + Fuv)i)

)

º 0, ∀i ∈ Z[1,t]







δ −ȳ> (Hxx + Huv)>

−ȳ γ2I (HuMG + Hw)>

(Hxx + Huv) (HuMG + Hw) I






º 0.

(6.76)

Remark 6.18. As in the case of the expected value minimization problems discussed in

the previous section, it is straightforward to treat some or all of the constraints in the

optimization problems posed in this section as soft constraints, so that feasibility can be

guaranteed for all x ∈ R
n.

6.5 Conclusions

In this chapter we have shown that when the state and input constraint sets are polytopic,

the policy optimization problems introduced in Chapters 3, 4 and 5 are solvable as standard

convex optimization problems for a wide variety of disturbance classes. Additionally, for all

of the problems considered in this chapter, the number of decision variables and constraints

increases polynomially with the data defining the problem. The importance of this result

should not be understated, since efficient computation is a critical consideration if the

receding horizon controls proposed in Chapters 4 and 5 are to be implemented in real

systems.

In the next chapter, we consider the efficient numerical solution of one of these optimization

problems in greater detail, and will show that considerable efficiency gains are achievable

by exploiting the special structure of the problem.
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Chapter 7. Efficient Computation for ∞–norm Bounded Disturbances

7.1 Introduction

All of the finite horizon control problems defined in Chapter 6 for various classes of distur-

bance sets are convex problems – in principle, such problems are solvable in an amount of

time which is a polynomial function of the number of variables and constraints by which

they are defined [NN94, Wri97, BTN01]. However, these problems may still require consid-

erable computational effort to reach a solution, since the dimensions of the problem can be

very large.

This is particularly problematic if the problems in Chapter 6 are to be solved on-line in the

implementation of a receding horizon control law, since the maximum update rate of the

controller is dictated by the speed with which the underlying finite horizon problem can

be solved. Additionally, the applications for which robust constrained control methods are

of greatest potential benefit (including, for example, those in the aerospace or automotive

industries) may have much faster dynamics than those typically associated with receding

horizon control techniques. Computational speed and efficiency are therefore essential if

the ideas presented thus far are to be of practical use.

We consider in greater detail the problem of finding an optimal control policy in the case

where the disturbance set W is modelled as an ∞-norm bounded set

W = {w ∈ R
l | ‖w‖∞ ≤ 1}, (7.1)

with W := WN , and the cost to be minimized is quadratic in the nominal or disturbance-

free state and input sequences (cf. Section 4.4.1) . Note that this problem is a version of the

problem introduced in Section 6.3 on page 104 with Cw = 0. From (6.55), the optimization
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problem of interest is a quadratic program in the variables M, Λ, and v:

min
M,Λ,v

‖Hxx + Huv‖22

subject to: Mi,j = 0, ∀i ≤ j

Fxx + Fuv + Λ1 ≤ f

−Λ ≤ FuMG + Fw ≤ Λ.

(7.2)

In this chapter, we will develop an efficient computational solution method for this problem.

We continue to use much of the notation introduced in previous chapters, and we make the

following assumptions throughout:

A7.1 (Standing Assumptions) The following conditions hold:

i. The assumptions A3.1 hold.

ii. The matrix Dz is full column rank, with C>
zDz = 0.

iii. The matrix Dc is full column rank.

iv. The matrix P is positive semidefinite.

Note that these assumptions are a subset of those made in developing the theoretical results

of Chapter 4, and that the full rank assumption on Dc is implied assumption in A3.1 that

the system is bounded in the inputs. For simplicity of presentation, we define the nominal

state trajectory as

x̂ := Ax + Bv (7.3a)

=: vec(x̂0, x̂1, . . . , x̂N ), (7.3b)

and define matrices Q := C>
zCz and R := D>

zDz, so that the cost function in (7.2) can be

written as

‖Hxx + Huv‖22 = ‖x̂N‖2P +
N−1
∑

i=0

(

‖x̂i‖2Q + ‖vi‖2R
)

.

Remark 7.1. Recall from Section 6.2.5 that the total number of decisions variables in

(7.2) is mN in v, mnN(N − 1)/2 in M, and (slN 2 + sf lN) in Λ, with the number of

constraints equal to (sN + sf ) + 2(slN2 + sf lN)), or O(N2) overall. For a naive interior-

point computational approach using a dense factorization method, the resulting quadratic

program would therefore require computation time of O(N 6) at each iteration [Wri97].
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7.1.1 A QP in Separable Form

We first define the variable transformation U := MG, so that the matrix U ∈ R
mN×lN has

a block lower triangular structure similar to that defined in (3.19) for M, i.e.

U :=













0 · · · · · · 0

U1,0 0 · · · 0
...

. . .
. . .

...

UN−1,0 · · · UN−1,N−2 0













. (7.4)

Note that use of this variable transformation is tantamount to parameterizing the control

policy directly in terms of the generating disturbances wi, so that ui = vi +
∑i−1

j=0 Ui,jwj ,

or u = Uw + v.

When the matrix G (and thus G) is full column rank, the QP (7.2) can be solved using this

variable transformation by solving an equivalent QP in the variables U, Λ and v:

min
U,Λ,v

‖Hxx + Huv‖22 (7.5a)

subject to: Mi,j = 0, ∀i ≤ j (7.5b)

Fxx + Fuv + Λ1 ≤ f (7.5c)

−Λ ≤ FuU + Fw ≤ Λ. (7.5d)

When G is full column rank as assumed in A3.1, the equivalence between the QPs (7.2)

and (7.5) is easily demonstrated by employing a left inverse G† such that G†G = I, since any

feasible solution (M,Λ,v) satisfying the constraints in (7.5) also satisfies the constraints

in (7.2) with M = UG†. As in the case of the problem (7.2), calculating a solution to (7.5)

using a naive interior point method would typically require O(N 6) computations at each

iteration (cf. Remark 7.1).

The critical feature of the quadratic program (7.5) is that the columns of the variables U

and Λ are decoupled in the constraint (7.5d). This allows column-wise separation of the

constraint into a number of subproblems, subject to the coupling constraint (7.5c). In the

sequel, we will exploit this structure to develop an efficient computational technique that

reduces the solution complexity of (7.5) (and thus of (7.2)) from O(N 6) to O(N3). The

method we employ is similar to that proposed in [RWR98] in the case of receding horizon
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control without disturbances, where it was shown that a reduction in computational effort

of O(N3) to O(N) was possible in the undisturbed case.

7.2 Recovering Structure

The quadratic program (QP) defined in (7.5) can be rewritten in a more computationally

attractive form by re-introducing the eliminated state variables to achieve greater struc-

ture. The remodelling process separates the original problem into subproblems; a nominal

problem, consisting of that part of the state resulting from the nominal control vector v,

and a set of perturbation problems, each representing the components of the state resulting

from each of the columns of (7.5d) in turn.

Nominal States and Inputs

We first define a constraint contraction vector c ∈ R
sN+sf such that

c := vec(c0, . . . , cN ) = Λ1, (7.6)

so that the constraint (7.5c) becomes

Fxx + Fuv + c ≤ f. (7.7)

Recalling that the nominal states x̂i are defined in (7.3) as the expected states given no

disturbances, the constraint (7.7) can be written explicitly in terms of the nominal controls

vi and states x̂i as

x̂i+1 −Ax̂i −Bvi = 0, ∀i ∈ Z[0,N−1] (7.8a)

Ccx̂i + Dcvi + ci ≤ b, ∀i ∈ Z[0,N−1] (7.8b)

Ycx̂N + cN ≤ z, (7.8c)

where x̂0 = x, which is in a form that is exactly the same as that in conventional receding

horizon control problem with no disturbances, but with the right-hand-sides of the state and

input constraints at each stage i modified by the constraint contractions terms ci; compare

(7.8a)–(7.8c) with (3.1), (6.2) and (6.3) respectively.
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Perturbed States and Inputs

We next consider the contribution of each of the columns of (FuU + Fw) in turn, and

construct a set of problems similar to that in (7.8). We treat each column as the output

of a system subject to a unit impulse in a single element of the disturbance sequence w,

and construct a subproblem that calculates the effect of that disturbance on the nominal

problem constraints (7.8b)–(7.8c) by determining its contribution to the total constraint

contraction vector c.

From the original QP constraint (7.5d), the constraint contraction vector c can be written

as

|FuU + Fw|1 ≤ Λ1 =: c. (7.9)

The left-hand side of (7.9) is just a summation over the columns of the matrix |FuU + Fw|,
so that

|FuU + Fw|1 =
lN
∑

p=1

|(FuU + Fw)(p)|. (7.10)

where (FuU+Fw)(p) denotes the pth column of the matrix (FuU+Fw). Define yp ∈ R
sN+sf

and cp ∈ R
sN+sf as

yp := (FuU + Fw)(p) and cp := |yp|. (7.11)

Note that the pth column of the matrix U represents the system control input resulting

from a disturbance in some element j of the generating disturbance wk at some time step

k, with no disturbances at any other step1. If we denote the jth column of G as G(j), then

it is easy to recognize yp as the stacked output vector of the system

(up
i , x

p
i , y

p
i ) = 0, ∀i ∈ Z[0,k] (7.12a)

xp
k+1 = G(j), (7.12b)

xp
i+1−Axp

i−Bup
i = 0, ∀i ∈ Z[k+1,N−1] (7.12c)

yp
i −Ccx

p
i−Dcu

p
i = 0, ∀i ∈ Z[k+1,N−1] (7.12d)

yp
N − Ycx

p
N = 0, (7.12e)

where yp =: vec(yp
0 , . . . , y

p
N ). The inputs up

i of this system come directly from the pth

column of the matrix U, i.e. they are columns of the sub-matrices Ui,k in (7.4). If the

constraint terms cp for each subproblem are similarly written as cp := vec(cp
0, . . . , c

p
N ), then

1Note that this implies p = lk + j, k = b p−1
l

c and j = 1 + ((p − 1) mod l).
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each component must satisfy the linear inequality constraint

−cp
i ≤ yp

i ≤ cp
i . (7.13)

The vectors cp therefore correspond exactly to the columns of the matrix Λ. Note that

for the pth subproblem, representing a disturbance at stage k = b p−1
l c, the constraint

contraction terms are zero prior to stage (k + 1).

By further defining

C̄ :=

[

+Cc

−Cc

]

D̄ :=

[

+Dc

−Dc

]

Ȳ :=

[

+Yc

−Yc

]

H :=

[

−Is

−Is

]

Hf :=

[

−Ir

−Ir

]

, (7.14)

equations (7.12d) and (7.12e) can be combined with (7.13) to give

C̄xp
i + D̄up

i + Hcp
i ≤ 0, ∀i ∈ Z[k+1,N−1] (7.15a)

Ȳ xp
N + Hfcp

N ≤ 0. (7.15b)

Complete Robust Control Problem

We can now restate the complete robust optimization problem (7.5) as:

min
x̂1,...,x̂N ,v0,...vN−1,c0,...,cN ,

x1
0,...,x1

N ,u1
0,...u1

N−1,c10,...,c1N ,
...,

xlN
0 ,...,xlN

N ,ulN
0 ,...ulN

N−1,clN
0 ,...,clN

N

1

2
‖x̂N‖2P +

N−1
∑

i=0

(

1

2
‖x̂i‖2Q +

1

2
‖vi‖2R

)

(7.16)

subject to (7.8), (7.12a)–(7.12c) and (7.15), which we restate here for convenience:

x̂i+1 −Ax̂i −Bvi = 0, ∀i ∈ Z[0,N−1] (7.17a)

Ccx̂i + Dcvi + ci ≤ b, ∀i ∈ Z[0,N−1] (7.17b)

Ycx̂N + cN ≤ z, (7.17c)

where x̂0 = x, and

ci =
lN
∑

p=1

cp
i , ∀i ∈ Z[0,N ], (7.18)
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and, for each p ∈ Z[1,lN ]:

(up
i , x

p
i , c

p
i ) = 0, ∀i ∈ Z[0,k] (7.19a)

xp
k+1 = G(j), (7.19b)

xp
i+1 −Axp

i −Bup
i = 0, ∀i ∈ Z[k+1,N−1] (7.19c)

C̄xp
i + D̄up

i + Hcp
i ≤ 0, ∀i ∈ Z[k+1,N−1] (7.19d)

Ȳ xp
N + Hfcp

N ≤ 0 (7.19e)

where k = bp−1
l c and j = 1 + ((p− 1) mod l).

The decision variables in this problem are the nominal states and controls x̂i and vi at

each stage (the initial state x̂0 is known, hence not a decision variable), plus the perturbed

states, controls, and constraint contractions terms xp
i , up

i , and cp
i for each subproblem at

each stage.

Remark 7.2. Recalling the discussion of Section 6.3.1, soft constraints are easily incorpo-

rated into the optimization problem (7.16)–(7.19) via modification of the cost function (7.16)

and of the constraints (7.17b)–(7.17c). The important point regarding this soft constraint

inclusion is that it does not result in a modification of any of the perturbation constraints

(7.19), so that the qualitative results to be presented in Section 7.3 relating to efficient so-

lution of the QP (7.16)–(7.19) are not fundamentally altered by the incorporation of soft

constraints.

We can now state the following key result, proof of which follows directly from the discussion

of Section 7.1.1 and of this section.

Theorem 7.3. The convex, tractable QP (7.16)–(7.19) is equivalent to the robust optimal

control problems (7.2) and (7.5).

The importance of the re-introduction of states in (7.17) and (7.19) is that significant

structure and sparsity can be revealed in the problem through an interleaving of decision

variables by time index. For the nominal problem, define the stacked vector of variables:

x0 := vec(v0, x̂1, v1, . . . , x̂N−1, vN−1, x̂N ). (7.20)

For the pth perturbation problem in (7.19), which models a unit disturbance at stage
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k = bp−1
l c, define:

xp := vec(up
k+1, c

p
k+1, x

p
k+2, u

p
k+2, c

p
k+2, . . . ,

xp
N−1, u

p
N−1, c

p
N−1, x

p
N , cp

N ).
(7.21)

Using this reordering, the constraints (7.17)–(7.19) can be written as a single set of linear

constraints in singly-bordered block-diagonal form with considerable structure and sparsity:













A0

A1

. . .

AlN

























x0

x1

...

xlN













=













b0

b1

...

blN













,













C0 J1 · · · JlN

C1

. . .

ClN

























x0

x1

...

xlN













≤













d0

d1

...

dlN













. (7.22)

The coefficient matrices A0 and C0 in (7.22) originate from the nominal problem con-

straints (7.17), and are defined as

A0 :=











B −I

A B −I

. . .

A B −I











, C0 :=















Dc

Cc Dc

. . .

Cc Dc

Yc















, (7.23)

with corresponding right hand sides

b0 := vec(−Ax, 0, 0, . . . , 0), d0 := vec(b− Ccx, b, . . . , b, z). (7.24)

The coefficient matrices Ap and Cp in (7.22) originate from the constraints for the pth

perturbation subproblem in (7.19), and are defined as

Ap :=











B 0 −I

A B 0 −I

. . .

A B 0 −I 0











, Cp :=















D̄ H

C̄ D̄ H

. . .

C̄ D̄ H

Ȳ Hf















, (7.25)

with corresponding right hand sides

bp := vec(−AG(j), 0, . . . , 0), dp := vec(0, 0, . . . , 0, 0). (7.26)
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The coupling matrices Jp in (7.22) are then easily constructed from the coupling equa-

tion (7.18).

Remark 7.4. It is possible to define, in a fairly obvious way, a problem structure akin to

that in (7.16)–(7.19) for the general norm-bounded discussed in Section 6.2.3 via introduc-

tion of states in a similar manner. A similar statement can be made about the general

polytopic disturbance case discussed in Section (6.2.2); however, in the latter case the per-

turbation subproblems (7.19) require an additional coupling constraint for the subproblems

associated with each stage.

7.3 Interior-Point Method for Robust Control

In this section we demonstrate that, using a primal-dual interior-point solution technique,

the quadratic program defined in (7.16)–(7.19) is solvable in an amount of time that is

cubic in the horizon length N at each iteration, when n + m is dominated by N ; this situ-

ation is common, for example, in the rapidly growing number of aerospace and automotive

applications of predictive control [Mac02, Sec. 3.3][QB03]. This is a major improvement

on the O(N6) work per iteration associated with the compact (dense) formulation (7.2),

or the equivalent problem (7.5); cf. Remark 7.1. This computational improvement comes

about due to the improved structure and sparsity of the problem. Indeed, akin to the situ-

ation in [RWR98], we will show that each subproblem in the QP (7.16)–(7.19) has the same

structure as that of an unconstrained optimal control problem without disturbances.

7.3.1 General Interior-Point Methods

We first outline some of the general properties of interior-point solution methods by con-

sidering the general constrained quadratic optimization problem

min
θ

1

2
θ>Qθ subject to Aθ = b, Cθ ≤ d, (7.27)

where the matrix Q is positive semidefinite. An optimal solution θ for this system exists

if and only if the Karush-Kuhn-Tucker conditions are satisfied, i.e. there exist additional
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vectors π, λ and z satisfying the following conditions:

Qθ + A>π + C>λ = 0 (7.28a)

Aθ − b = 0 (7.28b)

−Cθ + d− z = 0 (7.28c)

(λ, z) ≥ 0 (7.28d)

λ>z = 0. (7.28e)

The variables λ and z in (7.28) will be referred to as the Lagrange multipliers and slack

variables, respectively. In primal-dual interior point methods [Wri97], the central path is

defined as the set of parameters (θ, π, λ, z) satisfying (7.28a)–(7.28d), with the complemen-

tarity condition (7.28e) relaxed, for each element i, to λizi = µ, where µ > 0 parameterizes

the path. This guarantees that λ and z are strictly positive vectors. The central path

converges to a solution of (7.28) as µ ↓ 0 if such a solution exists.

The constraints λizi = µ can be rewritten in a slightly more convenient form by defining

diagonal matrices Λ and Z such that

Λ =









λ1

. . .

λn









, and Z =









z1

. . .

zn









, (7.29)

so that the relaxed complementarity condition becomes ΛZ1 = µ1. Primal-dual interior-

point algorithms search for a solution to the KKT conditions (7.28) by producing a sequence

of iterates (θκ, πκ, λκ, zκ) which approximate the central path solution at some µκ > 0.

These iterates are updated via repeated solution of a set of Newton-like equations of the

form












Q A> C>

A

C I

Z Λ

























∆θ

∆π

∆λ

∆z













= −













rQ

rA

rC

rZ













, (7.30)

where the residuals (rQ, rA, rC) take the values of the left-hand sides of (7.28a)–(7.28c)

respectively, evaluated at the current values (θκ, πκ, λκ, zκ), and the matrices (Z, Λ) are

formed from the current iterates (zκ, λκ) as in (7.29). The residual vector rZ is typically

defined as rZ = (ΛZ1 − 1µ̄), where µ̄ is chosen such that µ̄ ∈ (0, µκ). Once the linear
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system (7.30) has been solved, the solution is updated as

(θκ+1, πκ+1, λκ+1, zκ+1)← (θκ, πκ, λκ, zκ) + α(∆θ, ∆π, ∆λ, ∆z),

where α > 0 is chosen to maintain strict positivity of λk+1 and zk+1, and the path parameter

µκ is updated to some µκ+1 ∈ (0, µκ). The particular method for selecting the parameters µ̄

and α at each iteration depends on the specific interior-point algorithm employed; the reader

is referred to [Wri97] for a thorough review.

Since all such methods maintain the strict inequalities (λ, z) > 0 at each iteration as µ ↓ 0,

the matrices Λ and Z are guaranteed to remain full rank, and the system of equations

in (7.30) can be simplified through elimination of the variables ∆z to form the reduced

system






Q A> C>

A

C −Λ−1Z













∆θ

∆π

∆λ






= −







rQ

rA
(

rC − Λ−1rZ

)






. (7.31)

Since the number of interior-point iterations required in practice is only weakly related to

the number of variables [Wri97], the principal consideration is the time required to factor

the Jacobian matrix (i.e. the matrix on the left-hand-side), and solve the linear system

in (7.31). In the remainder of this chapter we focus on the development of an efficient

solution procedure for this linear system when the problem data for the QP (7.27) is defined

by the problem (7.16)–(7.19).

7.3.2 Robust Control Formulation

For the robust optimal control problem described in (7.16)–(7.19), the system of equations

in (7.31) can be arranged to yield a highly structured set of linear equations through ap-

propriate ordering of the primal and dual variables and their Lagrange multipliers at each

stage. As will be shown, this ordering enables the development of an efficient solution

procedure for the linear system in (7.31).

We use λi and λN to denote the Lagrange multipliers for the constraints (7.17b) and (7.17c)

in the nominal system, and zi and zN for the corresponding slack variables. We similarly

use λp
i and λp

N to denote the multipliers in (7.19d) and (7.19e) for the pth perturbation

subproblem, with slack variables zp
i and zp

N . We use πi and πp
i to denote the dual variables

for (7.17) and (7.19).
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The linear system (7.31), defined for the particular robust control problem (7.16)–(7.19), can

then be reordered to form a symmetric, block-bordered, banded diagonal set of equations by

interleaving the primal and dual variables within the nominal and perturbed problems, while

keeping the variables from each subproblem separate. If the pth perturbation subproblem

corresponds to a unit disturbance at some stage k = b p−1
l c, then the components of the

system of equations (7.31) corresponding to the nominal variables and the variables for the

pth perturbation subproblem are coupled at all stages after k.

Considering for the moment only that part of (7.19) corresponding to the first perturbation

problem (with p = 1), this reordering yields the coupled linear system











































































R D>c B>

Dc −Σ0 0

B 0 0 −I

−I Q 0 C>c A>

0 R D>c B>

Cc Dc −Σ1 0 I

A B 0 0 −I

−I Q 0 C>c A>

0 R D>c B>

Cc Dc −Σ2 0 I

A B 0
. . .

. . .
. . . P Y>c

Yc −ΣN I

0 0 D̄> B>

I 0 0 H> 0

D̄ H −Σ1
1 0

B 0 0 0 −I

−I 0 0 0 C̄> A>

0 0 0 D̄> B>

I 0 0 0 H> 0

C̄ D̄ H −Σ1
2 0

A B 0 0
. . .

. . .
. . . 0 0 Ȳ>

I 0 0 H>f

Ȳ Hf −Σ1
N
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(7.32)

The diagonal matrices Σi and Σp
i in (7.32) correspond to the matrix products Λ−1Z in

(7.31), and are defined as

Σi := (Λi)
−1Zi, ∀i ∈ Z[0,N ] (7.33)

Σp
i := (Λp

i )
−1Zp

i , ∀i ∈ Z[k+1,N ], (7.34)

where the matrices Λi, Λp
i , Zi, and Zp

i are diagonal matrices formed from the Lagrange
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multipliers and slack variables λi, λp
i , zi and zp

i from the nominal and perturbation sub-

problems.

If all of the perturbation problems (7.19) are incorporated into a linear system of the

form (7.32), the result is a system of equations whose coefficient matrix can be partitioned

into block-bordered form as



















A J1 J2 · · · JlN

J>
1 B1

J>
2 B2

...
. . .

J>lN BlN





































xA

x1

x2

...

xlN



















=



















bA

b1

b2

...

blN



















, (7.35)

where the banded matrix A is derived from the coefficients in the nominal problem (7.17),

the banded matrices Bp are derived from the lN perturbation subproblems (7.19), and the

matrices Jp represent the coupling between the systems. The vectors bA, bp, xA, and xp

(which should not be confused with the stacked sequence of state vectors x) are constructed

from the primal and dual variables and residuals using the ordering in (7.32). The matrices

Jp are constructed from identity matrices coupling the rows of A that contain the Σi terms

with the columns of Bp that contain the H terms. It should of course be noted that for the

matrix Bp, corresponding to a unit disturbance at stage k = b p−1
l c, terms from stages prior

to stage k + 1 are not required.

7.3.3 Solving for an Interior-Point Step

We can now estimate the solution time for the robust optimization problem (7.16)–(7.19) by

demonstrating that the linear system in (7.35) can be solved in O((m + n)3N3) operations.

We recall that, in practice, the number of interior-point iterations is only weakly dependent

on the size of the problem [Wri97]. Throughout this section, we make the simplifying

assumption that the number of constraints s and sf defining Z and Xf are O(m+n) and

O(n), respectively.

We first require the following preliminary results, proofs for which can be found in the

appendix to this chapter.

Lemma 7.5. For the robust control problem (7.16)–(7.19), the Jacobian matrix in (7.32)

is full rank.
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Lemma 7.6. The sub-matrices Bp arising from the perturbation subproblems in (7.35) are

full rank. Additionally, recalling that k = b p−1
l c,

i. A solution to the linear system Bpxp = bp can be found in O
(

(m+n)3(N − k + 1)
)

operations.

ii. If a solution to (i) above has been found, then a solution for each additional right hand

side requires O
(

(m+n)2(N − k + 1)
)

operations.

Remark 7.7. Note that each of the blocks Bp on the diagonal of (7.35) is banded and

symmetric indefinite. Several methods exist for the stable construction of Cholesky-like de-

compositions of symmetric indefinite matrices into factors of the form LDL> [BKP76], and

efficient algorithms for performing this factorization for sparse matrices are freely available

[DER86, HSL02]. However, it is generally not possible to guarantee that the banded struc-

ture of an indefinite matrix, such as Bp, will be exploited using these methods if symmetry

and stability of the factorization are to be preserved. Instead, the special structure of the

matrices Bp allows us to employ a specialized technique for solution of the linear system

Bpxp = bp based on a Riccati recursion [Ste95, RWR98] in the proof of Lemma 7.6 in

Appendix 7.A.2.

We can now demonstrate that it is always possible to solve the linear system (7.35) in

O((m+n)3N3) operations.

Theorem 7.8. For the robust optimal control problem (7.16)–(7.19), each primal-dual in-

terior point iteration requires no more than O((m+n)3N3) operations.

Proof. The linear system (7.35) can be factored and solved using a Schur complement

technique, so that
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xlN
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1 J>

1 I

− B−1
2 J>

2 I

...
. . .
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lN J>

lN I
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1

B−1
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B−1
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I −J1B
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1 −J1B

−1
2 . . . −JlNB−1

lN
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I

. . .

I

































bA

b1

b2

...

blN

















,

with

∆ := A−
lN
∑

p=1

JpB−1
p J>

p .

where, by virtue of Lemma 7.5, the matrix ∆ is always full rank [HJ85, Thm. 0.8.5]. The
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O((m+n)3N3) complexity bound can then be attained by solving (7.35) using the following

procedure:

Operation Complexity

solve: x̃p = B−1
p bp ∀p ∈ Z[1,lN ] lN · O((m+n)3N) (7.36a)

Sp = Jp

(

B−1
p J>

p

)

∀p ∈ Z[1,lN ] lN · O((m+n)3N2) (7.36b)

factor: ∆ = A−
lN
∑

p=1

Sp lN · O((m+n)N) (7.36c)

= L∆D∆L>
∆ O((m+n)3N3) (7.36d)

solve: zA = bA −
lN
∑

p=1

(Jpx̃p), lN · O((m+n)N) (7.36e)

xA = (L>
∆)−1(D−1

∆ (L−1
∆ zA)), O((m+n)2N2) (7.36f)

zp = J>
p xA, ∀p ∈ Z[1,lN ] lN · O((m+n)N) (7.36g)

xp = x̃p − B−1
p zp. ∀p ∈ Z[1,lN ] lN · O((m+n)2N). (7.36h)

The complexity of the solution to the linear system (7.36a) follows from Lemma 7.6(i). The

complexity of the solution to (7.36b) and (7.36h) follows from Lemma 7.6(ii), where each

of the matrices J>
p in (7.36b) have O((m + n)N) nonzero columns.

Remark 7.9. In the solution procedure (7.36), it is important to note that since the cou-

pling matrices Ji have no more than a single 1 on every row and column, matrix products

involving left or right multiplication by Ji or J>
i do not require any floating point operations

to calculate. The reader is referred to [BV04, App. C] for a more complete treatment of

complexity analysis for matrix operations.

Remark 7.10. If the solution procedure (7.36) is employed, then the robust optimization

problem is an obvious candidate for parallel implementation2. However, it is generally

not necessary to hand implement the suggested variable interleaving and block factorization

procedure to realize the suggested block-bordered structure in (7.35) and O((m + n)3N3)

solution time, as any reasonably efficient sparse factorization code can be expected to perform

similar steps automatically; see [DER86]. Note that the “arrowhead” structure in (7.35)

should be reversed (i.e. pointing down and to the right) in order for direct LDL> factorization

to produce sparse factors.

2Note that if a parallel scheme is employed to factor the lN matrices Bp, the overall complexity of O(N3)
is not reduced – it would still require O(N3) operations to factor the dense matrix ∆.
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Remark 7.11. Recalling the discussion of soft constraint handling in Section 6.3.1 and

Remark 7.2, it is easy to show that the inclusion of soft constraints does not qualitatively

alter the complexity results of Theorem 7.8, since the inclusion of such constraints amounts

only to a modification of the matrix A (and thus of the dense matrix ∆) in (7.36c), and

does not effect the complexity of any of the operations involving the banded matrices Bi.

7.4 Numerical Results

Two sparse QP solvers were used to evaluate the proposed formulation. The first, OOQP

[GW03], uses a primal-dual interior-point approach configured with the sparse factorization

code MA27 from the HSL library [HSL02] and the OOQP version of the multiple-corrector

interior-point method of Gondzio [Gon96].

The second sparse solver used was the QP interface to the PATH [DF95] solver. This

code solves mixed complementarity problems using an active-set method, and hence can

be applied to the stationary conditions of any quadratic program. Note that since we are

dealing with convex QPs, each optimization problem and its associated complementarity

system have equivalent solution sets.

All results reported in this section were generated on a single processor machine with a

3 GHz Pentium 4 processor and 2GB of RAM. We restrict our attention to sparse solvers

as the amount of memory required in the size of the problems considered is prohibitively

large for dense factorization methods.

A set of test cases was generated to compare the performance of the two sparse solvers

using the (M,v) formulation in (7.2) and the decomposition-based method of Section 7.2.

Each test case is defined by its number of states n and horizon length N . The remaining

problem parameters were chosen using the following rules:

• There are twice as many states as inputs.

• The constraint sets W , Z and Xf represent randomly selected symmetric bounds on

the states and inputs subjected to a random similarity transformation.

• The state space matrices A and B are randomly generated, with (A, B) controllable,

and with A potentially unstable.

• The dimension l of the generating disturbance is chosen as half the number of states,

with randomly generated G of full column rank.

• All test cases have feasible solutions. The initial state is selected such that at least

some of the inequality constraints in (7.17b) are active at the optimal solution.
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The average computational times required by each of the two solvers for the two problem

formulations for a range of problem sizes are shown in Table 7.1. Each entry represents the

average of ten test cases, unless otherwise noted. It is clear from these results that, as ex-

Table 7.1: Average Solution Times (sec)
(M,v) Decomposition

Problem Size OOQP PATH OOQP PATH

2 states, 4 stages 0.004 0.004 0.005 0.005
2 states, 8 stages 0.020 0.010 0.016 0.019
2 states, 12 stages 0.061 0.027 0.037 0.052
2 states, 16 stages 0.172 0.091 0.072 0.198
2 states, 20 stages 0.432 0.123 0.132 1.431

4 states, 4 stages 0.024 0.026 0.018 0.024
4 states, 8 stages 0.220 0.316 0.099 0.357
4 states, 12 stages 0.969 1.162 0.264 2.019
4 states, 16 stages 3.755 17.50 0.576 16.63
4 states, 20 stages 11.67 41.45 1.047 22.26

8 states, 4 stages 0.667 1.282 0.136 0.261
8 states, 8 stages 7.882 81.50 0.858 14.89
8 states, 12 stages 46.97 257.9† 2.81 183.8†

8 states, 16 stages 189.75 2660† 6.781 288.9†

8 states, 20 stages 620.3 x 13.30 x

12 states, 4 stages 6.292 75.608 0.512 5.044
12 states, 8 stages 132.1 1160† 4.671 388.9†

12 states, 12 stages 907.4 x 14.08 x
12 states, 16 stages x x 37.99 x
12 states, 20 stages x x 82.06 x

x – Solver failed all test cases
† – Based on limited data set due to failures

pected, the decomposition-based formulation can be solved much more efficiently than the

original (M,v) formulation for robust optimal control problems of nontrivial size, and that

the difference in solution times increases dramatically with increased problem dimension.

Additionally, the decomposition formulation seems particularly well suited to the interior-

point solver (OOQP), rather than the active set method (PATH). Nevertheless we expect

the performance of active set methods to improve relative to interior-point methods when

solving a sequence of similar QPs that would occur in a receding horizon control scheme,

where a good estimate of the optimal active set is typically available at the start of compu-

tation. That is, interior-point methods are particularly effective in “cold start” situations,

while the efficiency of active set methods is likely to improve given a “warm start”.
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Figure 7.1 shows that the interior-point solution time increases cubicly with horizon length

for randomly generated problems with 2, 4, 8 and 12 states. The performance closely

matches the predicted behavior described in Section 7.2. For the particular problems shown,

the number of iterations required for the OOQP algorithm to converge varied from 12 to

20 over the range of horizon lengths and state dimensions considered. The total number of

interior-point iterations required to solve each problem as a function of horizon length is

shown in Figure 7.2

7.5 Conclusions

In this chapter we have derived a highly efficient computational method for calculation of

affine state feedback policies for robust control of constrained systems with bounded dis-

turbances. This is done by exploiting the structure of the underlying optimization problem

and deriving an equivalent problem with considerable structure and sparsity, resulting in

a problem formulation that is particularly suited to an interior-point solution method. As

a result, the robustly stabilizing receding horizon control law proposed in Chapter 4 is

practically realizable, even for systems of significant size or with long horizon lengths.

In Section 7.3 we proved that, when applying an interior-point solution technique to our

robust optimal control problem, each iteration of the method can be solved using a number

of operations proportional to the cube of the control horizon length. We appeal to the

Riccati based factorization technique in [Ste95, RWR98] to support this claim. However,

it should be stressed that the results in Section 7.4, which demonstrate this cubic-time

behavior numerically, are based on freely available optimization and linear algebra packages

and do not rely on any special factorization methods.

A number of open research issues remain. It may be possible to further exploit the structure

of the control problem discussed in this chapter by developing specialized factorization

algorithms for the factorization of each interior-point step, e.g. through the parallel block

factorization procedure alluded to in Remark 7.10.

It is also possible to extend, in a fairly obvious way, the results of this chapter to certain

of the other H2 control problems for various disturbance classes proposed in Chapter 6. Of

particular interest, however, would be an extension of the results presented here allowing

the efficient solution of the various semidefinite programming problems arising in Chapter 6

in relation to constrained H∞ control problems.
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Figure 7.1: Computation time vs. horizon length for systems of increasing state dimension,
using the decomposition method and OOQP solver. Also shown is the constant line N 3/1000
for comparison.
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Figure 7.2: Iterations vs. horizon length for systems of increasing state dimension, using
decomposition method and OOQP solver.
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7.A Proofs

7.A.1 Rank of the Robust Control Problem Jacobian (Proof of Lemma 7.5)

We demonstrate that the Jacobian matrix defined in (7.32) is always full rank. Recalling

the discussion in Section 7.3.1, for any quadratic program the Jacobian matrix is full rank

if the only solution to the system







Q A> C>

A 0 0

C 0 −Σ













∆θ

∆π

∆λ






=







0

0

0






(7.37)

satisfies ∆θ = 0, ∆π = 0, and ∆λ = 0, where Σ := Λ−1Z Â 0, Q º 0 and the coefficient

matrices A and C come from the equality and inequality constraints of the QP respectively

(cf. (7.27)). From the first two rows of this system,

∆θ>Q∆θ + (∆θ>A>)∆π + ∆θ>C>∆λ = ∆θ>Q∆θ + ∆θ>C>∆λ = 0. (7.38)

Incorporating the final block row, C∆θ = Σ∆λ, we have

∆θ>Q∆θ + ∆λ>Σ∆λ = 0. (7.39)

Since Q º 0 for a convex QP and Σ Â 0 for a strictly interior point, we conclude that

∆λ = 0. We next make use of the following matrix condition, which is easily verified:

Fact 7.12. The matrix
[

X Y
0 Z

]

is full column rank for any Y if both X and Z are full column

rank.

Since ∆λ = 0 always holds, sufficient conditions to guarantee ∆θ = 0 and ∆π = 0 in (7.37)

are that:

(i) A is full row rank.

(ii)
[

A
C

]

is full column rank.

For the quadratic program defined by the robust control problem (7.17)–(7.19), the equality

and inequality constraints are defined as in (7.22). For this convex QP, it is straightforward

to show that the above rank conditions on A and C are equivalent to requiring that:

(i) Each of the matrices A0, A1, . . . , AlN is full row rank.
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(ii) Each of the matrices
[

A0
C0

]

,
[

A1
C1

]

, . . . ,
[

AlN

ClN

]

is full column rank.

The condition (ii) is derived by noting that, for the particular problem (7.17)–(7.19), the

general rank condition on
[

A
C

]

is equivalent to requiring that the matrix































C0 J1 J2 . . . JlN

A0

C1

A1

C2

A2

. . .

ClN

AlN































is full column rank, which reduces to (ii) upon repeated application of Fact 7.12 above to

eliminate the coupling terms Jp. If A7.1(iii) holds so that Dc is full column rank, then

both of these rank conditions are easily verified by examination of the definitions in (7.23)

and (7.25). The Jacobian matrix for the QP defined in (7.17)–(7.19) is thus full rank, and

it remains full rank if its rows and columns are reordered as in (7.32).

7.A.2 Solution of Bpxp = bp via Riccati Recursion (Proof of Lemma 7.6)

We demonstrate that the system of equations Bpxp = bp has a unique solution for every

bp, where Bp, xp and bp are defined as

Bp :=

































0 0 D̄> B>

0 0 H> 0

D̄ H −Σ
p
k+1

0

B 0 0 0 −I

−I 0 0 0 C̄> A>

0 0 0 D̄> B>

0 0 0 H> 0

C̄ D̄ H −Σ
p
k+2

0

A B 0 0
. . .

. . .
. . . 0 0 Ȳ>

0 0 H>f

Ȳ Hf −Σ
p
N

































, (7.40a)

xp :=vec(∆up
k+1, ∆cp

k+1, ∆λp
k+1, ∆πp

k+1, ∆xp
k+2, ∆up

k+2, ∆cp
k+2, ∆λp

k+2, . . . , ∆xp
N , ∆cp

N , ∆λp
N ),

bp :=vec( rup
k+1 , rcp

k+1 , rλp
k+1 , rπp

k+1 , rxp
k+2 , rup

k+2 , rcp
k+2 , rλp

k+2 , . . . , rxp
N , rcp

N , rλp
N )
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and k = bp−1
l c, and that this solution is obtainable in O((m + n)3N) operations. We

first perform a single step of block elimination on the variables ∆λp
i and ∆cp

k+1, so that

the resulting linear system is solvable via specialized methods based on Riccati recursion

techniques [Ste95, RWR98] (see also related results in [DB89] for the unconstrained case).

It is straightforward to eliminate the terms ∆λp
i and ∆cp

i from each of the subproblems,

yielding a linear system B̃px̃p = b̃p. The coefficient matrix B̃p is:

B̃p :=























R
p
k+1

B>

B 0 −I

−I Q
p
k+2

M
p
k+2

A>

(M
p
k+2

)> R
p
k+2

B>

A B 0 −I

−I Q
p
k+3

M
p
k+3

A>

(M
p
k+3

)> R
p
k+3

B>

A B

. . .
. . .

. . . Q
p
N























(7.41)

where, for stages i ∈ Z[k+1,N−1]:

Φp
i := H>(Σp

i )
−1H (7.42a)

Θp
i := (Σp

i )
−1 − (Σp

i )
−1H(Φp

i )
−1H>(Σp

i )
−1 (7.42b)

Qp
i := C̄>Θp

i C̄ (7.42c)

Rp
i := D̄>Θp

i D̄ (7.42d)

Mp
i := C̄>Θp

i D̄, (7.42e)

and for stage N :

Φp
N := H>

f (Σp
N )−1Hf (7.42f)

Θp
N := (Σp

N )−1 − (Σp
N )−1Hf (Φp

N )−1H>
f (Σp

N )−1 (7.42g)

Qp
N := Ȳ>Θp

N Ȳ. (7.42h)

The vectors x̃p and b̃p are defined as:

x̃p := vec(∆up
k+1, ∆πp

k+1, ∆xp
k+2, ∆up

k+2, ∆πp
k+2, . . . , ∆xp

N ) (7.43)

b̃p := vec( r̃up
k+1 , rπp

k+1 , r̃xp
k+2 , r̃up

k+2 , rπp
k+2 , . . . , r̃xp

N ) , (7.44)
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where, for stages i ∈ Z[k+1,N−1]:

r̃xp
i := rxp

i + C̄
(

Θp
i r

λp
i − (Σp

i )
−1H(Φp

i )
−1rcp

i

)

(7.45a)

r̃up
i := rup

i + D̄
(

Θp
i r

λp
i − (Σp

i )
−1H(Φp

i )
−1rcp

i

)

, (7.45b)

and, for stage N :

r̃xp
N := rxp

N + Ȳ
(

Θp
Nrλp

N − (Σp
N )−1Hf (Φp

N )−1rcp
N

)

. (7.45c)

Remark 7.13. The matrix B̃p is equivalent to the KKT matrix for the unconstrained con-

trol problem:

min
uk+1,...,uN−1,

xk+1,...,xN





1

2
x>NQp

NxN +
N−1
∑

i=(k+1)

1

2
(x>iQ

p
i xi + u>iR

p
i ui + 2xiM

p
i ui)



 (7.46)

subject to:

xk = G(j), (7.47a)

xi+1 = Axi + Bui, ∀i ∈ Z[k+1,N−1]. (7.47b)

Lemma 7.14. Each of the matrices Rp
i , Qp

i and Qp
N are positive semidefinite. If A7.1

holds, then Rp
i is positive definite.

Proof. Recall that the matrix Θp
i is defined as

Θp
i = (Σp

i )
−1 − (Σp

i )
−1H

(

H ′(Σp
i )

−1H
)−1

H>(Σp
i )

−1 (7.48)

Partition the diagonal and positive definite matrix Σp
i into Σp

i =
[

Σ1 0
0 Σ2

]

. Recalling that

H := −
[

I
I

]

, Θp
i can be written as

Θp
i =

[

Σ−1
1 − Σ−1

1 (Σ−1
1 + Σ−1

2 )−1Σ−1
1 −Σ−1

1 (Σ−1
1 + Σ−1

2 )−1Σ−1
2

−Σ−1
2 (Σ−1

1 + Σ−1
2 )−1Σ−1

1 Σ−1
1 − Σ−1

2 (Σ−1
1 + Σ−1

2 )−1Σ−1
2

]

(7.49)

=

[

I

−I

]

(Σ1 + Σ2)
−1
[

I −I
]

(7.50)

which is easily verified using standard matrix identities and the fact that the matrices Σ1

and Σ2 are diagonal.

135



7. Efficient Computation for ∞–norm Bounded Disturbances

Recalling that D̄ :=
[

Dc

−Dc

]

, it follows that Rp
i is positive semidefinite since it can be written

as

Rp
i = D̄>

[

I

−I

]

(Σ1 + Σ2)
−1
[

I −I
]

D̄ (7.51)

= 4D>(Σ1 + Σ2)
−1D º 0. (7.52)

If A7.1(iii) holds so that Dc is full column rank, then Rp
i is positive definite. A similar

argument establishes the result for Qp
i and Qp

N .

We are now in a position to prove Lemma 7.6. Since Rp
i is positive definite and Qp

i and

Qp
N are positive semidefinite, the linear system B̃px̃p = b̃p (and consequently the original

system Bpxp = bp) has a unique solution that can found in O((m+n)3(N−k+1)) operations

using the Riccati recursion procedure described in [Ste95, RWR98]. Once such a solution has

been obtained, a solution for each additional right hand side requires O
(

(m+n)2(N−k+1)
)

operations [RWR98, Sec. 3.4]. We note that in [RWR98] the Riccati factorization procedure

is shown to be numerically stable, and that similar arguments can be used to show that

factorization of (7.41) is also stable.
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Chapter 8. Constrained Output Feedback

In this chapter we extend the results for the state feedback problem considered in the ma-

jority of this dissertation to the output feedback case. The results presented here broadly

parallel the results of Chapter 3; a class of feedback policies will be introduced that guar-

antees constraint satisfaction for all time for a linear system subject to convex constraints

and bounded disturbances and output measurement errors, and that can be computed via

the solution of a convex optimization problem.

8.1 Problem Definition

Throughout, we consider the following discrete-time linear time-invariant system:

x+ = Ax + Bu + w (8.1)

y = Cx + η (8.2)

where x ∈ R
n is the system state at the current time instant, x+ is the state at the next

time instant, u ∈ R
m is the system input, w ∈ R

n is a disturbance, y ∈ R
r is the system

output and η ∈ R
r is a measurement error. We will assume that, at each time step, a

measurement of the output y is available, but a measurement of the state x is not.

We assume that the disturbances w are unknown but contained within a compact set W

containing the origin, and that the measurement errors η are unknown but contained in a

compact set H ⊂ R
r, also containing the origin. We will also assume that an initial state

estimate s ∈ R
n is provided along with a compact estimation error set E , such that the

state x is initially known to satisfy x ∈ {s} ⊕ E .

As in Chapter 3, the system is subject to mixed constraints on the states and inputs, so

that a design goal is to guarantee that (x, u) ∈ Z ∈ R
n × R

m for all time; note that such a

constraint may include constraints on the output y. For finite horizon problems, one may
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8. Constrained Output Feedback

additionally specify some closed and convex target set XT which the state x must reach

after a fixed number of time steps.

We will only consider the problem of finding a feasible (i.e. constraint admissible) output

feedback control policy for the system (8.1)–(8.2), without regard to optimality. We make

use of the following assumptions about the system (8.1)–(8.2) throughout this chapter:

A8.1 (Standing Assumptions)

i. The pairs (A, B) and (C, A) are stabilizable and detectable respectively.

ii. The state and input constraint set Z ⊆ R
n × R

m is closed, convex, contains the origin

in its interior and is bounded in the inputs, i.e. there exists a bounded set B such that

Z ⊆ R
n ×B.

8.2 Control Policy and Observer Structure

As in the full state information case considered in Chapter 3, finding an arbitrary finite

horizon control policy that satisfies the constraints of the system (8.1)–(8.2) for all possible

uncertainty realizations is extremely difficult in general. As a result, we will restrict the

class of control policies considered to those in which each control input ui is affine in the

measurements {y0, . . . , yi−1}, i.e.

ui = gi +
i−1
∑

j=0

Ki,jyj , ∀i ∈ Z[0,N−1], (8.3)

and consider the problem of finding a policy in this form that is guaranteed to satisfy the

system constraints for all possible uncertainty realizations. Note that such a control policy

is the logical counterpart, in the output feedback case, to the class of state feedback policies

introduced in Section 3.2. For infinite horizon problems, we will consider the construction

of constraint admissible control laws based on receding horizon implementations of policies

in the form (8.3).

8.2.1 Observers and Terminal Sets

For infinite horizon problems, we will find it helpful to introduce a linear control law and

associated robust positively invariant set to serve as a target/terminal constraint in a manner
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similar to that used in Chapter 3 (cf. the assumptions of A3.2). The obvious extension

of A3.2 when implementing receding horizon controllers based on output feedback policies

in the form (8.3) is to define a feedback matrix Kf such that (A + BKfC) is Hurwitz, and

to find an associated robust positively invariant for the system (8.1)–(8.2) in closed loop

with the control law u = Kfy. However, the problem of finding such a Kf is generally

believed to be NP hard [BT97].

As an alternative, we specify a Luenberger type observer gain L such that

s+ = As + Bu + L(y − Cs) (8.4)

and define the state estimation error e ∈ R
n as e := x− s, such that

e+ = (A− LC)e− Lη + w, (8.5)

where s+ and e+ represent a state estimate and estimation error at the next time instant.

In conjunction with this observer, we define a closed and convex target/terminal constraint

set Xf for the joint state estimate and estimation error, so that a design goal (for finite

horizon problems) will be to drive the system (8.4)–(8.5) to satisfy (s, e) ∈ Xf at the end of

the planning horizon1. For receding horizon implementations, we will define Xf such that

it is robust positively invariant for the system (8.4)–(8.5) in closed loop with a stabilizing

control law of the form u = Kfs.

Note that if one only wishes to ensure that x ∈ XT for some target set XT at the end of a

finite planning horizon, then one can define

Xf := {(s, e) | s + e ∈ XT } . (8.6)

In such a case no observer is required, and nothing is gained or lost by specifying one.

However, in order to maintain consistency of notation throughout, we will use a target set

Xf as defined above with the understanding that it can be defined as in (8.6) if required.

Note that if it is known initially that x ∈ {s} ⊕ E , then the state at the next time instant

will be known to satisfy

x+ ∈ {s+} ⊕ (A− LC)E ⊕W ⊕ (−L)H (8.7)

1This definition of the terminal constraint differs from that used in previous chapters, where Xf was
defined as a constraint on the true state x, rather than on the joint state estimate and estimation error pair
(s, e).
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if an observer of the form (8.4)–(8.5) is used. The main technical issue to be addressed in

this chapter is the problem of synthesizing a receding horizon control law from policies in

the form (8.3) that is both time-invariant and that can be calculated by solving a finite-

dimensional optimization problem. The difficulty of computing such a control law arises

mainly from the fact that given an initial estimation error set E of fixed complexity (e.g. one

characterized by a finite number of linear inequalities), the complexity of future state esti-

mation error sets generally increases without bound if one employs a linear state observer.

As will be shown, this problem can be circumvented via the use of an outer approximation

to the initial error set which is robust positively invariant in closed loop with the state

estimator.

Remark 8.1. Note that unlike in previous chapters, the disturbance input to the sys-

tem (8.1) is not multiplied by a matrix G, and the disturbances are drawn from a set W

containing the origin in its interior (note that the interior of the set GW might be empty if

G is not full row rank, even when W has nonempty interior). The reason for this distinc-

tion is twofold; first, the results to follow will require the construction of an invariant outer

approximation to the minimal robust positively invariant set for the error dynamics (8.5)

using the results of [RKKM04, RKKM05]. The methods for constructing such a set require

that W ⊕ (−L)H has nonempty interior. Second, the method to be proposed for defining

an invariant control law for the system (8.1) is based on a modification of W such that the

disturbance inputs to the system (8.1) are drawn from a slightly larger set with nonempty

interior; this method would be incompatible with any G that is not invertible.

8.2.2 Alternative Observer Schemes

In this chapter we propose a method for calculating robust finite horizon control policies

for the system (8.1)–(8.2), where the control input uk at each time k is determined as an

affine function of the measurements {y0, . . . , yk−1}. The decision not to allow the control

input uk to also depend on the measurement yk will be consistent with the choice of the

Luenberger form observer in (8.4) when developing the invariance results of Section 8.5.

As an alternative, one could employ a predictor-corrector type observer of the form

sk+1 = (I − LC)(Ask + Buk) + Lyk+1 (8.8a)

ek+1 = (I − LC)(Aek + wk)− Lηk+1, (8.8b)

when constructing an invariant terminal set. Such an observer would be consistent with a
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control policy where each input uk is modelled as an affine function of the measurements

{y0, . . . , yk}. Such an alternative formulation is not qualitatively different from the method

used here, and observers in both forms are in widespread use. Note that if one were to

employ an observer in the form (8.8) with H = {0}, C = I and L = I, and were then

to define an affine control policy in {y0, . . . , yk}, then one would recover exactly the affine

state feedback control problem of Section 3.2.

We elect to use an observer of the form (8.4) primarily for consistency and convenience

of comparison with related work within the predictive control literature on output feed-

back [LK01, RH05, MRFA06]. Additionally, the proposed parameterization is slightly more

relaxed, since it does not require the measurement yk, which may not always be available,

to calculate uk. It should be stressed that use of the alternative state estimate and error

dynamics (8.8) would not by itself alleviate the main technical difficulties to be addressed

in Section 8.5.

Finally, this chapter will not directly address the issue of computational delay since this issue

can be adequately managed using available methods in the literature. For example, [Mac02,

Sec. 2.5] gives a procedure for transforming a system with computational delay into the

standard form considered in (8.1)–(8.4).

8.2.3 Notation

We will use of much of the notation introduced in Section 3.1.1, and further define stacked

versions of the state estimate, estimation error, output, and measurement error vectors

s ∈ R
n(N+1), e ∈ R

n(N+1), y ∈ R
rN and η ∈ R

rN respectively, as

s :=













s0

s1

...

sN













, e :=













e0

e1

...

eN−1













, y :=













y0

y1

...

yN−1













, and η :=













y0

y1

...

yN−1













, (8.9)

where s0 := s and e0 := e denote the current values of the state estimate and estimation

error respectively, and si+1 := (A−LC)si +Bui +Lyi and ei+1 := (A−LC)ei−Lηi +wi for

all i ∈ Z[0,N−1]. The predicted measurements after i time instants are yi = C(si + ei) + ηi

for all i ∈ Z[0,N−1]. The actual values of the state, state estimate, estimation error, input

and output at time instant k are denoted x(k), s(k), e(k), u(k) and y(k), respectively.

We define a closed and convex set Z, appropriately constructed from Z and Xf , such that
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the constraints to be satisfied are equivalent to (s, e,u) ∈ Z, i.e.

Z :=

{

(s, e,u)

∣

∣

∣

∣

∣

(si + ei, ui) ∈ Z, ∀i ∈ Z[0,N−1]

(sN , eN ) ∈ Xf

}

. (8.10)

Note that, as with the set Xf , this definition of Z differs from that used in previous chapters

since it is defined in terms of the joint state estimate and estimation error sequences s and

e, rather than the sequence of true states x.

Define AL := (A − LC) and matrices Φ ∈ R
n(N+1)×n, Γ ∈ R

n(N+1)×nN , L ∈ R
nN×rN and

C ∈ R
nN×rN as

Φ :=















In

AL

A2
L

...

AN
L















, Γ :=















0 0 · · · 0

In 0 · · · 0

AL In · · · 0
...

...
. . .

...

AN−1
L AN−2

L · · · In















,

L := IN ⊗ L, and C := [(IN ⊗ C) 0] respectively. Finally, define affine functions fe and fs

such that the vectors s and e can be written as

s =fs(s, e,u,w, η) := As + Bu + EL(Ce + η) (8.11)

e = fe(e,w, η) := Φe− ΓLη + Γw. (8.12)

Note that using these definitions, the state estimates s can alternatively be expressed di-

rectly as an affine function of y, i.e.

s = Φs + ΓBu + ΓLy. (8.13)

We define E to be the set of all compact subsets of R
n, and W to be the set of all compact

subsets of R
n containing the origin in their interior.

The reason for defining the sets E and W in this way is to allow for some flexibility in

subsequent control policy definitions, where the set of feasible policies will be defined in

terms of the disturbances and initial errors to which they are robust. We will typically

specify that the estimation error e and true initial state x are such that e ∈ E and x ∈ {s}⊕E ,
for some E ∈ E, and that the disturbances w are unknown but drawn from some known set

W ∈W.
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8.3 Affine Feedback Parameterizations

8.3.1 Output Feedback

Recalling (8.3), we restrict our attention to the class of control policies that model the

control inputs ui as affine functions of the measurements {y0, . . . , yi−1}, i.e.

ui = gi +
i−1
∑

j=0

Ki,jyj , ∀i ∈ Z[0,N−1], (8.14)

where each Ki,j ∈ R
m×r and gi ∈ R

m. For notational convenience we define the vector

g ∈ R
mN and matrix K ∈ R

mN×rN as

K :=















0 · · · · · · 0

K1,0
. . . · · · 0

...
. . .

. . .
...

KN−1,0 · · · KN−1,N−2 0















, g :=













g0

g1

...

gN−1













, (8.15)

so that the control input sequence can be written as u = Ky + g.

For a given initial state estimate s, estimation error set E ∈ E and disturbance set W ∈W,

the set of feasible output feedback policies that are guaranteed to satisfy the state and input

constraints Z for all possible uncertainty realizations (assuming that the true initial state

x ∈ {s} ⊕ E) is

Πof
N (s, E , W ) =

⋂

w∈W N

η∈HN, e∈E







































(K,g)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(K,g) satisfies (8.15)

s = fs(s, e,u,w, η)

e = fe(e,w, η)

y = C(s + e) + η

u = Ky + g, (s, e,u) ∈ Z







































. (8.16)

For a given estimation error set E ∈ E and disturbance set W ∈ W, define the set of all

initial state estimates for which a constraint admissible policy exists as

Sof
N (E , W ) :=

{

s
∣

∣

∣ Πof
N (s, E , W ) 6= ∅

}

.
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Remark 8.2. It is important to recognize that for a finite horizon problem with a terminal

state constraint in the form xN ∈ XT , it is not necessary to specify an observer, and nothing

is gained or lost by doing so. For problems of this type, one can rewrite (8.16) as

Πof
N (s, E , W ) =

⋂

w∈W N

η∈HN, e∈E







































(K,g)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(K,g) satisfies (8.15)

x = Ax + Bu + Ew

y = Cx + η, u = Ky + g

(xi, ui) ∈ Z, ∀i ∈ Z[0,N−1]

x = s + e, xN ∈ XT







































, (8.17)

which is not related to any choice of observer, nor is the set Sof
N (E , W ). The advantage

of accounting explicitly for the action of a linear observer in defining the policy set (8.16)

is that it will allow us to construct an invariant receding horizon control law when the

constraint set Xf is defined as a robust positively invariant set for the system (8.4)–(8.5)

in closed loop with a linear feedback control law.

Remark 8.3. The feedback policy (8.14) includes the class of “pre-stabilizing” control poli-

cies in which the control is based on perturbations {ci}N−1
i=0 to a fixed linear state feed-

back gain K, so that ui = ci + Ksi, since the estimated state si can be expressed as an

affine function of the measurements {y0, . . . , yi−1} (cf. (8.13)). Such a scheme is com-

monly employed in conjunction with a stabilizing linear observer gain L for output feed-

back [LK01, RH05, YB05]. The method proposed can also be shown to subsume tube-based

schemes such as [MSR05, MRFA06] when the invariant sets defining the tube are based on

linear state feedback, though these methods also confer additional stability properties which

we do not address here. Finally, note that unlike the certainty-equivalence based method pro-

posed in [BR71], we do not combine the state estimation error set E with the disturbance

set W into a single lumped disturbance at each time step, but rather consider the effect of

the estimation error e ∈ E at the initial time propagated over the planning horizon.

Remark 8.4. As in the state feedback case considered in Chapter 3, the set Πof
N (s, E , W )

is nonconvex, in general, due to the nonlinear relationship between the estimated states s

and feedback gains K in (8.16).
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8.3 Affine Feedback Parameterizations

8.3.2 Output Error Feedback

As an alternative to the parameterization (8.14), we consider a control policy parameterized as

ui = vi +

i−1
∑

j=0

Mi,j(yj − Csj), ∀i ∈ Z[0,N−1] (8.18)

= vi +
i−1
∑

j=0

Mi,j(Cej + ηj), ∀i ∈ Z[0,N−1], (8.19)

where each Mi,j ∈ R
m×r and vi ∈ R

m. We further define the matrix M ∈ R
mN×rN and

vector v ∈ R
mN as

M :=













0 · · · · · · 0

M1,0 0 · · · 0
...

. . .
. . .

...

MN−1,0 · · · MN−1,N−2 0













, v :=













v0

v1

...

vN−1













, (8.20)

so that the control input sequence can be written as

u = M(y −Cs) + v (8.21)

= M(Ce + η) + v. (8.22)

By virtue of the relation (8.12), this control parameterization is affine in the unknown

parameters e, w and η. The control parameterization (8.19) is therefore the logical coun-

terpart, in the output feedback case, to the class of disturbance feedback policies introduced

in Section 3.3. For a given initial state estimate s, estimation error set E ∈ E and distur-

bance set W ∈ W, the set of feasible feedback policies that are guaranteed to satisfy the

system constraints for all possible uncertainty realizations (assuming that the true initial

state x ∈ {s} ⊕ E) is

Πef
N (s, E , W ) =

⋂

w∈W N

η∈HN, e∈E







































(M,v)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (8.20)

s = fs(s, e,u,w, η)

e = fe(e,w, η)

u = M(Ce + η) + v

(s, e,u) ∈ Z







































. (8.23)
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For a given error set E ∈ E and disturbance set W ∈ W, define the set of all constraint

admissible initial state estimates to be

Sef
N (E , W ) :=

{

s
∣

∣

∣
Πef

N (s, E , W ) 6= ∅
}

. (8.24)

Remark 8.5. As in the affine output feedback case, the set Sef
N (E , W ) is independent of

any choice of observer for finite horizon problems with a terminal constraint in the form

xN ∈ XT (cf. Remark 8.2).

We next characterize two critical properties of the parameterization (8.19) which make

it attractive in application to control of the system (8.1), and which parallel the results

in Section 3.3 for the disturbance feedback case.

8.4 Convexity and Equivalence

8.4.1 Convexity and Closedness

We first establish convexity and closedness of the sets Πef
N (s, E , W ) and Sef

N (E , W ). Proof

of the following results closely parallels the proof of the corresponding results for the dis-

turbance feedback case in Section 3.4, and so will not be repeated here.

Theorem 8.6 (Convexity). For any E ∈ E, W ∈ W and s ∈ Sef
N (E , W ), the set of

constraint admissible feedback policies Πef
N (s, E , W ) is closed and convex. Furthermore,

the set of state estimates Sef
N (E , W ), for which at least one admissible affine output error

feedback policy exists, is also closed and convex.

Proposition 8.7 (Convexification of Uncertainty Sets). Given sets W ∈W and E ∈
E, the sets Πef

N (s, W, E) and Sef
N (E , W ), defined in (8.23) and (8.24) respectively, are un-

changed if E, W and H are replaced with their convex hulls.

Corollary 8.8 (Polyhedral Sets). If the constraint sets Z and Xf are polyhedral and the

sets E, W and H are polytopes, then the set Sef
N (E , W ) is polyhedral and Πef

N (s, E , W ) is

polyhedral for each s ∈ Sef
N (E , W ).
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8.4.2 Equivalence of Affine Policy Parameterization

We next show that, as with the state and disturbance feedback parameterizations introduced

in Chapter 3, the two affine feedback policies introduced in this chapter are equivalent.

Theorem 8.9. Given any initial state estimation error set E ∈ E and any disturbance set

W ∈W, the sets Sef
N (E , W ) and Sof

N (E , W ) are equal. Additionally, given any s ∈ Sof
N (E , W ),

for any admissible (K,g) an admissible (M,v) can be found which yields the same state

and input sequence for all allowable disturbance sequences, and vice-versa.

Proof. Sof
N (E , W ) ⊆ Sef

N (E , W ): By definition, for any s ∈ Sof
N (E , W ), there exists a pair

(K,g) ∈ Πof
N (s, E , W ). A bit of algebra shows that, given any uncertainty realization e, η

and w, the input sequence u can be written as

u = ∆−1K [C(Ae + Ew) + η] + ∆−1(KCAs + g), (8.25)

where ∆ := (I −KCB), and the matrix ∆ is always invertible since KCB is strictly lower

triangular. Noting the identity C(Ae+Ew)+η = (I+CEL)(y−Cs), the input sequence u

can be written as

u = ∆−1K(I + CEL)(y −Cs) + ∆−1(KCAs + g).

A constraint admissible policy (M,v) ∈ Sef
N (E , W ) can then be found by selecting

M = ∆−1K(I + CEL), v = ∆−1(KCAs + g). (8.26)

Thus, s ∈ Sef
N (E , W ) for all s ∈ Sof

N (E , W ), so Sof
N (E , W ) ⊆ Sef

N (E , W ).

Sef
N (E , W ) ⊆ Sof

N (E , W ): By definition, for any s ∈ Sef
N (E , W ), there exists a pair (M,v) ∈

Πef
N (s, E , W ). Using the relation (8.13), the output error terms can be written as y−Cs =

(I −CΓL)y −CΦs−CΓBu, and the control input sequence u = M(y −Cs) + v as

u = ∆̂−1M(I −CΓL)y + ∆̂−1(v −MCΦs),

where ∆̂ := (I + MCΓB), and the matrix ∆̂ is always invertible since MCΓB is strictly

lower triangular. A constraint admissible policy (K,g) ∈ Sof
N (E , W ) can then be found by
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8. Constrained Output Feedback

selecting

K = ∆̂−1M(I −CΓL), g = ∆̂−1(v −MCΦs). (8.27)

Thus, s ∈ Sof
N (E , W ) for all s ∈ Sef

N (E , W ), so Sef
N (E , W ) ⊆ Sof

N (E , W ).

Remark 8.10. A control policy based on the measurement prediction error terms (y −Cs)

was proposed in [vHB05], and independently in the context of robust optimization in [BBN06].

The latter gives an equivalence proof similar to that presented here, but without the inclusion

of a nonzero initial state estimate or observer dynamics. In the sequel, we make explicit

use of these error dynamics to derive conditions under which receding horizon control laws

based on the parameterization (8.19) can be guaranteed to satisfy constraints for the resulting

closed-loop system for all time.

8.5 Geometric and Invariance Properties

In this section, we characterize some of the geometric and invariance properties associated

with control laws synthesized from the feedback parameterization (8.19). We first require

the following assumption about the terminal constraint set Xf :

A8.2 (Terminal Constraint) For a given disturbance set W ∈ W, a state feedback gain

matrix Kf , observer gain L and terminal constraint set Xf have been chosen such that:

i. The matrices A + BKf and A− LC are Hurwitz.

ii. Xf is contained inside the set for which the constraints
(

(s + e), u
)

∈ Z are satisfied

under the control u = Kfs, i.e. Xf ⊆
{

(s, e)
∣

∣

(

(s + e), Kfs
)

∈ Z
}

.

iii. Xf is robust positively invariant for the closed-loop system s+ = (A+BKf )s+L(Ce+η)

and e+ = ALe−Lη+w, i.e. (s+, e+) ∈ Xf for all (s, e) ∈ Xf , all w ∈W and all η ∈ H.

Remark 8.11. If the set W × H is a polytope or affine map of a p-norm ball and the

constraints Z are polyhedral, then one can calculate an invariant set which satisfies the

conditions A8.2 by applying the techniques in [Bla99, KG98] to the augmented system

[

s+

e+

]

=

[

(A + BKf ) LC

0 (A− LC)

][

s

e

]

+

[

0 L

I −L

][

w

η

]

. (8.28)
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In general, one wishes to select the terminal set Xf such that it is a maximal invariant set,

so that the set ΠN (E , W ) is as large as possible. Alternatively, one can use the techniques

in [LK99] for calculating a target set of a given complexity.

Remark 8.12. If one wishes to employ the alternative observer scheme (8.8) in conjunc-

tion with a control policy of the form ui = gi+
∑i

j=0 Ki,jyj, then construction of an invariant

terminal set Xf would need to be modified accordingly. One could, for example, replace the

augmented system (8.28) with the system

[

s+

e+

]

=

[

(A + BK) LC

0 (I − LC)A

][

s

e

]

+

[

LC L

(I − LC) −L

][

w

η

]

, (8.29)

and then employ all of the same methods suggested in Rem. 8.11 to calculate the set Xf .

8.5.1 Monotonicity of Sof
N (E ,W ) and Sef

N (E ,W )

Proposition 8.13 (Monotonicity). If A8.2 holds, then the following set inclusions hold

for any E ∈ E and any W ∈W:

Sof
1 (E , W ) ⊆ · · · ⊆ Sof

N−1(E , W ) ⊆ Sof
N (E , W ) ⊆ Sof

N+1(E , W ) . . . (8.30)

Sef
1 (E , W ) ⊆ · · · ⊆ Sef

N−1(E , W ) ⊆ Sef
N (E , W ) ⊆ Sef

N+1(E , W ) . . . (8.31)

Proof. The proof of the first relation is by induction. Suppose that s ∈ Sof
N (E , W ) and

(K,g) ∈ Πof
N (s, E , W ). Recalling the relation (8.13), the state estimates s can be found as

an affine function of the measurements y using

s = Φs + ΓBg + Γ(BK + L)y (8.32)

One can therefore find a pair (K̄, ḡ) ∈ Πof
N+1(s, E , W ), where K̄ :=

[

K 0
K̄1 K̄2

]

and ḡ :=
[ g

ḡ

]

,

by defining

ḡ := Kf

(

ÃL(BK + L)g + AN
L s
)

(8.33)

K̄1 := Kf

(

ÃL(BK + L)
)

, K̄2 := 0 (8.34)

where

ÃL :=
(

AN−1
L · · · AL I

)

,
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so that the final stage input is uN = KfsN . Since s ∈ Sof
N (E , W ) implies (sN , eN ) ∈ Xf by

definition, then it follows that (sN +eN , uN ) ∈ Z and (sN+1, eN+1) ∈ Xf for all w ∈W and

all η ∈ H if A8.2 holds. Thus (K̄, ḡ) ∈ Πof
N+1(s, E , W ) and s ∈ Sof

N+1(E , W ). The second

relation then follows from Theorem 8.9.

8.5.2 Time-Varying and mRPI-based RHC Laws

We next consider some properties of receding horizon control laws synthesized from the

parameterization (8.14) (equivalently, (8.19)). In particular, we develop conditions under

which such an RHC law can be guaranteed to be robust positively invariant for the resulting

closed-loop system.

We define the set-valued map κN : R
n × E×W→ 2R

m
as

κN (s, E , W ) :=
{

u
∣

∣

∣ ∃(K,g) ∈ Πof
N (s, E , W ) s.t. u = g0

}

(8.35)

=
{

u
∣

∣

∣
∃(M,v) ∈ Πef

N (s, E , W ) s.t. u = v0

}

, (8.36)

where 2R
m

is the set of all subsets of R
m, and (8.36) follows directly from Theorem 8.9. We

define a function µN : R
n × E×W→ R

m as any selection from the set κN , i.e. given E ∈ E

and W ∈W, µN (·, E , W ) must satisfy

µN (s, E , W ) ∈ κN (s, E , W ), ∀s ∈ Sof
N (E , W ). (8.37)

We wish to develop conditions under which time-varying or time-invariant control schemes

based on (8.37) can be guaranteed to satisfy the system constraints Z for all time. We

first introduce the following standard definition from the theory of invariant sets [KG98,

RKKM05]:

Definition 8.14. The set Ei is defined as

Ei :=
i
⊕

j=0

Aj
L(W ⊕ L(−H)), ∀i ∈ {0, 1, . . . }. (8.38)

The minimal robust positively invariant (mRPI) set E∞ is defined as the limit set of the

sequence {Ei}, i.e. E∞ := limi→∞ Ei.

Remark 8.15. As noted in [KG98], unless the observer gain L is selected such that there

exists an integer k ≥ 0 and 0 ≤ α < 1 such that Ak
L = αAL (e.g. when L is a deadbeat
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observer, so that AL is nilpotent), then the set E∞ may not be characterized by a finite

number of inequalities, since it is a Minkowski sum with an infinite number of terms2.

We consider the implementation of a time-varying RHC law based on the function µN (·).
Taking the initial time to be 0 (which is always possible since the system (8.4)–(8.5)

is time-invariant), and given an initial state estimate s(0), initial state estimation er-

ror set E ∈ E and disturbance set W ∈ W, we define the time-varying RHC control

law ν : R
n × N× E×W→ R

m as

ν(s(k), k, E , W ) :=







µN (s(k), E , W ), if k = 0

µN (s(k), Ak
LE ⊕ Ek−1, W ), if k > 0.

(8.39)

Note that the error sets required in the calculation of µN (s(k), Ak
LE ⊕ Ek−1, W ) can be

defined recursively, i.e. Ak+1
L E ⊕ Ek = AL[Ak

LE ⊕ Ek−1]⊕ E0, though an explicit calculation

of these sets via Minkowski summation is not required (cf. Section 8.6). The resulting

closed-loop system can be written as:

x(k + 1) = Ax(k) + Bν(s(k), k, E , W ) + w(k) (8.40)

s(k + 1) = As(k) + Bν(s(k), k, E , W ) + L(y(k)− Cs(k)) (8.41)

e(k + 1) = ALe(k)− Lη(k) + w(k) (8.42)

y(k) = Cx(k) + η(k), (8.43)

where w(k) ∈ W and η(k) ∈ H for all k ∈ {0, . . . }. Note that given the estimation error

set E at time 0, the estimation errors {e(k)}∞k=0 in (8.42) are only known by the controller

to satisfy e(k) ∈ Ak
LE ⊕ Ek−1. Our first invariance result follows immediately:

Proposition 8.16. If A8.2 holds and s(0) ∈ Sof
N (E , W ), then the closed-loop system

(8.40)–(8.43) satisfies the constraints Z for all time and all possible uncertainty realiza-

tions if the true initial state x(0) ∈ {s(0)} ⊕ E.

Proof. If s ∈ Sof
N (Ẽ , W ) for some Ẽ ∈ E, then there exists an output feedback policy pair

(K,g) ∈ Πof
N (s, Ẽ , W ) for which µN (s, Ẽ , W ) = g0. It is then easy to show that

s+ = As + BµN (s, Ẽ , W ) + L(Ce + η) ∈ Sof
N−1(ALẼ ⊕ E0, W ), ∀e ∈ Ẽ ,

since one can construct a feasible policy pair (K̃, g̃) ∈ Πof
N−1(s

+, ALẼ ⊕ E0, W ) from (K,g)

2Note that this situation is not alleviated if one employs the alternative observer scheme (8.8).
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by dropping the first component of g and the first block row and column of K. If A8.2

holds, then s+ ∈ Sof
N−1(ALẼ ⊕ E0, W ) implies s+ ∈ Sof

N (ALẼ⊕E0, W ) from Proposition 8.13,

and the result follows.

We note that if the state estimation error set E = E∞, then the control law ν(·) defined

in (8.39) is actually time-invariant, so that

ν(s(k), k, E∞, W ) = µN (s(k), E∞, W ), k = 0, 1, . . . . (8.44)

The next result follows immediately:

Corollary 8.17. If A8.2 holds, then the set Sof
N (E∞, W ) is robust positively invariant

for the closed-loop system (8.40)–(8.43) under the time-invariant control law (8.44), i.e. if

s(0) ∈ Sof
N (E∞, W ) and x(0) ∈ {s(0)}⊕ E∞, then s(k) ∈ Sof

N (E∞, W ) and the constraints Z

are satisfied for all time and for all possible uncertainty realizations.

8.5.3 A Time-Invariant Finite-Dimensional RHC Law

The central difficulty with the control law defined in (8.44) is that the set E∞ is not finitely

determined, in general (cf. Remark 8.15). The calculation of the control law ν(·, ·, E , W )

in (8.39) is thus of increasing complexity with increasing time, and the calculation of the

control law ν(·, ·, E∞, W ) in (8.44) requires the solution of an infinite-dimensional optimiza-

tion problem. We therefore seek a control law that is of fixed and finite complexity, while

preserving the time-invariant nature of (8.44). To this end, we define a robust positively

invariant (RPI) error set EI ∈ E which satisfies the following:

A8.3 (Invariant Error Set) For a given disturbance set W ∈ W, the set EI ∈ E is

chosen such that:

i EI is robust positively invariant for the system e+ = ALe−Lη+w, i.e. ALe−Lη+w ∈ EI
for all e ∈ EI , w ∈W and η ∈ H.

ii For some p-norm, EI is an ε-outer approximation for E∞, so that there exists some ε > 0

such that E∞ ⊆ EI ⊆ E∞ ⊕ εBn
p .

Remark 8.18. In [RKKM05] it is shown how one can calculate an arbitrarily close outer

approximation EI to the set E∞ (which can be represented by a tractable number of inequal-
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ities if W and H are polytopes) such that E∞ ⊆ EI ⊆ E∞ ⊕ εBn
p and such that the set EI

is robust positively invariant. Further, it is shown in [RKKM05] that, if only the support

function of the set EI is required, then calculation of an explicit representation of EI via

Minkowski summation is not necessary, a fact which we exploit in the computational results

of Section 8.6.

We can now guarantee an invariance condition similar to the one in Proposition 8.16 using

the finitely determined set EI , by slightly enlarging the disturbance set W from which

feedback policies of the form (8.19) are selected. We henceforward assume that the true

disturbances are known to be drawn from some set W ∈W, and define

Wε := W ⊕ εBn
p (8.45)

where p and ε satisfy the conditions of A8.3 for the set EI . Using this enlarged disturbance

set, we consider the following modified assumption on the target/terminal constraint set

Xf ⊆ R
n × R

n:

A8.4 (Modified Terminal Constraint) For a given disturbance set W ∈ W, a state

feedback gain matrix Kf , observer gain L and terminal constraint set Xf have been chosen

such that:

i. The terminal conditions A8.2 hold.

ii. Xf is robust positively invariant for the closed-loop system s+ = (A+BKf )s+L(Ce+η)

and e+ = ALe − Lη + w, i.e. (s+, e+) ∈ Xf for all (s, e) ∈ Xf , all w ∈ W ⊕ εBn
p and

all η ∈ H.

In the sequel, we will choose an invariant set EI and scalar ε > 0 satisfying the conditions

of A8.3 and A8.4 such that a time-invariant control law constructed from Πof
N (s, EI , Wε)

(equivalently, Πef
N (s, EI , Wε)) can be guaranteed to satisfy the system constraints for all

time.

We define the time-invariant control law νI : Sof
N (EI , Wε)→ R

m as:

νI(s) := µN (s, EI , Wε). (8.46)
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When applied to the control of the system (8.1), the closed-loop system dynamics become

x+ = Ax + BνI(s) + w (8.47)

s+ = As + BνI(s) + L(y − Cs) (8.48)

e+ = ALe− Lη + w (8.49)

y = Cx + η, (8.50)

where w ∈ W and η ∈ H. It is critical to note that, though the control law νI(·) defined

in (8.46) is conservatively constructed using the enlarged disturbance set Wε, the distur-

bances w in (8.47) are generated from the true disturbance set W . It is this conservativeness

that will ensure that the time-invariant control law (8.46) can guarantee constraint satisfac-

tion of the closed-loop system for all time. In particular, this conservativeness will allow us

to show that, using the control law νI(·) in (8.46), if s ∈ Πof
N (EI , Wε), then s+ ∈ Πof

N (EI , Wε)

for all w ∈ W and all η ∈ H. Note that if W had been used in place of Wε in (8.46), then

one can only guarantee that s ∈ Πof
N (EI , W ) implies s+ ∈ Πof

N (ALEI ⊕ E0, W ). The latter

situation is less desirable, since in general the set ALEI ⊕ E0 will be more complex (i.e.

characterized by more inequalities) than the set EI . One would also be forced to employ

a time-varying control scheme of the form (8.39), where the control calculation becomes

increasingly complex with increasing time.

We can now state our final result:

Theorem 8.19. If A8.3 and A8.4 hold, then the set Sof
N (EI , Wε) is robust positively

invariant for the closed-loop system (8.47)–(8.50), i.e. if s ∈ Sof
N (EI , Wε) and x(0) ∈

{s(0)} ⊕ EI , then s+ ∈ Sof
N (EI , Wε) and the constraints Z are satisfied for all time and

for all possible uncertainty realizations.

Proof. If A8.4 holds then it can be shown, using arguments identical to those in the proof

of Proposition 8.16, that s ∈ Sof
N (EI , Wε) implies that the successor state

s+ ∈ Sof
N (ALEI ⊕Wε ⊕ L(−H), Wε), (8.51)

or, equivalently, that

s+ ∈ Sof
N (ALEI ⊕ E0 ⊕ εBn

p , Wε). (8.52)

154



8.5 Geometric and Invariance Properties

If A8.3 holds, so that E∞ ⊆ ALEI ⊕ E0 ⊆ EI , then

EI ⊆ E∞ ⊕ εBn
p ⊆ ALEI ⊕ E0 ⊕ εBn

p .

Using the set intersection notation in (8.16) it is easily verified that, for any sets E ′ ∈ E and

E ′′ ∈ E, E ′ ⊆ E ′′ implies

Πof
N (s, E ′′, Wε) ⊆ Πof

N (s, E ′, Wε) for all s ∈ R
n,

and consequently that Sof
N (E ′′, Wε) ⊆ Sof

N (E ′, Wε). It follows that

Sof
N (ALEI ⊕ E0 ⊕ εBn

p , Wε) ⊆ Sof
N (EI , Wε),

so that s+ ∈ Sof
N (EI , Wε) for all e ∈ EI , η ∈ H and w ∈ W . Finally we verify that the

closed-loop system (8.47)–(8.50) satisfies the constraints Z for all time. We again use set

intersection arguments to confirm that Πof
N (s, EI , Wε) ⊆ Πof

N (s, EI , W ). This implies that

κN (s, EI , Wε) ⊆ κN (s, EI , W ), which guarantees that (s + e, νI(s)) ∈ Z for all e ∈ EI if

s ∈ Sof
N (EI , Wε).

Remark 8.20. If A8.3 holds, then ALEI ⊕ (W ⊕ L(−H)) ⊆ EI and E∞ ⊆ EI . Such a set

can be calculated in a variety of ways using standard techniques (cf. Remark 8.11), or, more

usefully, as an invariant outer approximation to the mRPI set using results from [RKKM05].

In both cases, the resulting set is polytopic when all of the relevant constraints and uncer-

tainty sets are polytopic, and the set EI can be characterized by a finite number of linear

inequalities, though an explicit representation of the set EI is not required (cf. Remark 8.15

and the results of Section 8.6).

In general, one should expect that the initial error set E will be provided as a part of the

problem description, and will not be an RPI set. In addition, if the initial estimation error

set E is large, it may be undesirable to employ a time-invariant policy of the form (8.46)

with E ⊆ EI .

In such cases a variety of methods may be devised for mitigating computational complexity

while preserving a large region of attraction. For example, given some initial error set E and

disturbance set W , one could elect to use a time-varying controller (see (8.39)) over some

interval, and then switch to a time-invariant controller (see (8.46)) once Ak
LE ⊕ Ek−1 ⊆ EI ,

where EI satisfies A8.3. Such a control scheme is easily shown to satisfy the system con-
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straints for all time if the control inputs are

u(k) =



















µN (s(k), k, E , Wε), if k = 0

µN (s(k), k, Ak
LE ⊕ Ek−1, Wε), if k ∈ {1, . . . , q}

νI(s(k), EI , Wε), if k ∈ {q + 1, . . . },
(8.53)

where the integer q is chosen large enough so that Aq
LE ⊕ Eq−1 ⊆ EI3. In order to increase

the region of attraction for such a scheme, it is advantageous to minimize the size of the set

EI , i.e. to choose ε as small as computational resources allow.

8.6 Computation of Feedback Control Laws

Finally, we comment briefly on the computational problem of finding feedback policies of

the form (8.23) for the implementation of the control law (8.39). As in Chapter 6, we

consider the particular case when the constraint sets Z and Xf and uncertainty sets W ,

H and E are polytopes, while the uncertainty sets E , W and H can be any compact and

convex sets. Suppose that one defined matrices S, T and U and a vector b of appropriate

dimensions such that Z could be written as a set of linear inequalities

Z = {(s, e,u) | Ss + Te + Uu ≤ b} . (8.54)

In this case the set of feasible control policies can be written as

Πef
N (s, E , W ) =



















































(M,v)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (8.20)

SAs + Pv + δe + δw + δη ≤ b

δe = max
e∈E

(PMQe + Re )e

δw = max
w∈W N

(PMQw + Rw)w

δη = max
η∈HN

(PMQη + Rη )η



















































, (8.55)

where the matrices Qe, Qw, Qη, Re, Rw, Rη and P are defined as

Qe := CΦ,

Re := (SELC + T )Φ,

Qw := CΓ,

Rw := (SELC + T )Γ,

Qη := (I −CΓL),

Rη := (SE(I − LCΓ)− TΓ)L,

3This condition holds if A
q
LE ⊆ εBn

p . This is trivial to test, for example, in the case where the set E is a
hypercube and p = ∞.
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and P := (SB + U) respectively4, where all of the maximizations are performed row-wise.

Note that all of the maxima in (8.55) are attained since the sets E , W and H are assumed

compact. Using the methods of Chapter 6, it is then a simple matter to compute a policy

(M,v) ∈ Πef
N (s, E , W ) when each of the polar sets E◦, W ◦ and H◦ is easily characterized.

It is important to note that it is not necessary to explicitly perform the Minkowski sum-

mation of error sets in the calculation of the time-varying control law (8.39), since only the

support functions of these sets is of interest. Given an initial error set E at time 0, one

needs to calculate, at each time k, a feasible policy pair (M,v) ∈ Πef
N (s(k), Ak

LE ⊕ Ek−1).

In this case the vector δe in (8.55) can be written as

δe = max
e∈Ak

LE⊕Ek−1

(PMQe + Re)e (8.56)

= max
e∈E

(PMQe + Re)A
k
Le + max

e∈Ek−1

(PMQe + Re)e, (8.57)

where

max
e∈Ek−1

(PMQe+Re)e =
k−1
∑

i=0

[(

max
w∈W

(PMQe + Re)A
i
Lw

)

+

(

max
η∈H

(PMQe + Re)A
i
L(−L)η

)]

and one may deal with each component of this summation separately using the methods of

Chapter 6. For example, if the sets E , W and H are each polytopic then the set (8.55) can

be characterized by a number of variables, and linear inequalities increasing linearly with k.

An identical procedure can be used to find an element of the set Πef
N (s, EI , Wε) in the

implementation of the time-invariant control law (8.46), resulting in a convex optimization

problem of fixed and finite complexity, where once again it is not necessary to explicitly

form the Minkowski sum in (8.45), and where the support function of EI can be determined

using an implicit representation of a Minkowski sum of a finite number of polytopes as

in [RKKM05]. In particular, the results in [RKKM05] demonstrate that, for any p-norm

and approximation accuracy ε > 0, there exists a finite integer q and a scalar β > 1, such

that E∞ ⊆ EI ⊆ E∞ ⊕ εBn
p , where

EI = β

q−1
⊕

i=0

Ai
L(W ⊕ L(−H)). (8.58)

4 A bit of algebra confirms that the matrix identities E = (I + ELC)Γ and A = (I + ELC)Φ hold, so
that one may also use the equivalent matrix definitions Re := SA − (S − T )Φ, Rw := SE − (S − T )Γ and
Rη := (S − T )ΓL.
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It is of particular importance to note that the number of terms q in this summation is

primarily dependent on the spectral radius of the matrix (A−LC), which is selected by the

designer of the controller [RKKM04]. Note that all of EI , L, q, β and ε are fixed and can

be determined off-line. One can thus write

δe = β

q−1
∑

i=0

[(

max
w∈W⊕εBn

p

(PMQe + Re)A
i
Lw

)

+

(

max
η∈H

(PMQe + Re)A
i
L(−L)η

)]

(8.59)

in (8.55), and once again apply the methods of Chapter 6 to each element of this summation.

It is therefore possible to obtain a representation of the set Πef
N (s, EI , W ) in a number of

variables and constraints that is polynomial in the size of the problem data, and that does

not increase with time.

8.6.1 Numerical Example

We consider the discrete-time system

x+ =

[

1 1

0 1

]

x +

[

0.2

1

]

u + w (8.60)

y =
[

1 1
]

x + η (8.61)

with stable feedback gain Kf and observer gain L chosen as

Kf =
[

−0.75 −1.85
]

and L =
[

1.15 0.65
]>

. (8.62)

The sets Z, E , W and H are defined as

Z :=















(x, u) ∈ R
2 × R

∣

∣

∣

∣

∣

∣

∣

∣

−3 ≤ x1 ≤ 25

−3 ≤ x2 ≤ 25

|u| ≤ 5















(8.63)

E :=
{

e ∈ R
2 | ‖e‖∞ ≤ 0.4

}

(8.64)

W :=
{

w ∈ R
2 | ‖w‖∞ ≤ 0.1

}

(8.65)

H :=
{

η ∈ R
2 | ‖η‖∞ ≤ 0.1

}

, (8.66)

where xi is the ith element of x. In order to obtain the set Xf , we calculate the maximal

RPI set compatible with Z for the system (8.28) using the method of [KG98, Alg. 6.2].
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We consider the set of feasible initial state estimates Sof
i (E , W ) (equivalently Sef

i (E , W ))

for this system. For comparison, we also consider the sets SK
i (E , W ) for which a feasible

control policy can be found when the policy is parameterized in terms of perturbations to

a fixed state feedback gain, such that uj = cj + Ksj . Recall that SK
i (E , W ) ⊆ Sof

i (E , W )

for all i ∈ {0, 1, . . . } (cf. Remark 8.3). The resulting sets of feasible initial state estimates

for this system are shown in Figure 8.1.
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10 (E , W )

s1

s 2

Figure 8.1: Feasible initial state estimate sets Sof
i (E , W ) and SK

i (E , W ) for i ∈ {2, 6, 10}

8.7 Conclusions

The main contribution of this chapter is to propose a class of time-invariant receding horizon

output feedback control laws for control of linear systems subject to bounded disturbances

and measurement errors. The proposed method is based on a fixed linear state observer

combined with optimization over the class of feedback policies which are affine in the se-

quence of prior outputs.
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8. Constrained Output Feedback

As in the state feedback case considered in Chapter 3, it is possible to compute such

an output feedback policy using an appropriate convexifying reparameterization. As a

consequence, receding horizon control laws in the proposed class can be computed using the

methods of Chapter 3, while providing a larger region of attraction than methods based on

calculating control perturbations to a static linear feedback law.
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Chapter 9. Conclusions

9.1 Contributions of this Dissertation

The main focus of this dissertation has been the use of affine feedback policies in robust

receding horizon control of constrained systems. Specific contributions are as follows:

Affine Feedback Policies

The main idea underpinning all of the results in this dissertation is that, for a constrained

linear system subject to bounded disturbances, the class of robust finite horizon feedback

policies modelling the input at each time step as an affine function of prior states is equiva-

lent to the class of policies modelling each input as an affine function of prior disturbances.

This equivalence result is reminiscent of the well-known Youla parameterization in linear

system theory [YJB76].

The main advantage of affine disturbance feedback policies is that, given an initial state,

the set of constraint admissible policies for a system with convex constraints is a convex

set — one can therefore compute a policy in this class using standard convex optimization

tools in many cases.

One the other hand, affine state feedback policies generally are not computable using convex

optimization techniques. However, this class of policies has a close connection to existing

research in robust predictive control, and many standard predictive control techniques for

ensuring invariance of receding horizon control laws can be preserved for control laws syn-

thesized from policies in this class. The equivalence result described above allows one to

exploit the advantageous properties of both affine disturbance and state feedback policies

simultaneously.
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Stability Results

Using the aforementioned properties of affine feedback policies, a family of receding horizon

control laws was defined that guarantee infinite horizon constraint satisfaction. If one

wishes to guarantee that such a control law is also stabilizing, then it is necessary to define

a cost or objective function to help discriminate from amongst feasible policies at each time

step. Properties of control laws developed using two such cost functions were presented in

Chapters 4 and 5:

Expected Value Costs and Input-to-State Stability

If one chooses to minimize the expected value of a quadratic cost function of states and

control inputs, then a receding horizon control law can be constructed that guarantees

invariance and input-to-state stability for a system with arbitrary convex constraints.

The behavior of this control law matches that of a linear-quadratic or H2 control law

when the system operates far from its constraints.

Central to this result is a proof of the existence of minimizers and convexity of the value

function in the underlying finite horizon optimal control problem. In order to derive this

result, we also provided conditions under which input-to-state stability can be established

using convex Lyapunov functions.

Min-Max Costs and `2 Gain Minimization

If one instead chooses to minimize the maximum value of quadratic cost, where the

disturbances are negatively weighted as in H∞ control, then an invariant receding horizon

control law can be constructed with guaranteed bounds on the `2 gain of the closed-loop

system.

The proposed control law requires the imposition of additional LMI constraints of the

set of feedback policies over which one must optimize at each time step – this constraint

ensures that the min-max problem to be solved is convex-concave, making the method a

suitable candidate for on-line implementation.

Computational Results

It was shown in Chapter 6 that when all the system constraints are linear, then a finite

horizon control policy can be calculated using standard techniques in convex optimization

for a wide variety of disturbance classes — the same statement applies to the computation of
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policies with respect to either the expected value or min-max costs employed in deriving the

aforementioned stability results. In all of these cases, the size of the optimization problem

to be solved grows polynomially with the problem data, and in particular with the horizon

length. This result is a major improvement on the complexity one would expect using

methods based on dynamic programming, where exponential growth with horizon length is

generally to be expected.

Robust Output Feedback

In Chapter 8, the main results of the dissertation were extended to the output feedback

case. A family of receding horizon control laws were proposed based on optimization over

the class of feedback policies that are affine in the sequence of prior outputs — as in the

state feedback case, it was shown that this class of policies can be rendered convex via an

appropriate reparameterization. Appropriate conditions were established to guarantee that

such a receding horizon control law would satisfy the system constraints for all time. The

main technical issue addressed was the problem of synthesizing a control law that is time-

invariant and that can be calculated by solving a finite-dimensional optimization problem

using policies in this class.

9.2 Directions for Future Research

Possible directions for future research are outlined as follows:

Degree of Approximation

A central motivation for this work is that the problem of finding a finite horizon robust

control policy composed of arbitrary functions (e.g. using dynamic programming) is far

too difficult in almost all cases of practical interest. By restricting the class of functions

considered to affine functions the problem becomes tractable, but it is unclear how closely

this class approximates the ideal case or in what cases the two approaches achieve the

same result. Development of a method to quantify the degree of approximation, preferably

without explicitly calculating the relevant control laws, is of considerable interest.

It would also be interesting to compare the performance of the proposed method with that

of methods based on linear control design, and in particular with `l control design methods.
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Computational Methods

The results of Chapter 7 on efficient computational methods are particular to the combina-

tion of a quadratic cost function of nominal state and input sequences and a disturbance set

modelled as an ∞–norm bounded ball. However, the basic idea of re-introduction of states

appears to be easily generalizable to the other disturbance models considered, and it is likely

that significant improvements in computational efficiency can be achieved in these cases as

well, particularly for those problems using the expected value cost function of Chapter 4.

A more difficult problem is the extension of these ideas to the H∞ problem developed in

Chapter 5, since it is not immediately clear whether the method of re-introduction of states

can be applied to the additional LMI constraint that appears in these problems.

An entirely different approach to improve computational efficiency would be to define a

class of control policies where the input at each time step is an affine function of a fixed

number of prior disturbances only. Use of such an approximation would invalidate nearly

all of the invariance results presented in this dissertation, since the key equivalence result

of Chapter 3 could no longer be exploited. However, it might be possible to find alternative

terminal conditions than those used in Chapter 3 to guarantee invariance, or one might find

a suitably modified class of state feedback policies, e.g. policies based on deadbeat control,

with which an equivalence result might hold.

Stability and Output Feedback

In the output feedback results of Chapter 8, we have only considered the problem of finding

a feasible control policy at each time, without regard to optimality. As in the state feedback

case, it is possible to define a variety of cost functions to motivate the selection from amongst

this feasible set of policies, and we have not addressed any stability results which may be

derived based on this selection. In order to be practically useful, the results could also be

extended to handle the cases of setpoint tracking and offset-free control.
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