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Overview 
 
This is an introductory course for individuals with little or no previous knowledge of 
the practicalities involved in dynamic stochastic general equilibrium modelling. The 
intention of the course is not to train participants to become specialist model-builders 
but instead for them to be fully conversant in the main techniques involved in building 
and using dynamics models in their work. The aim is to make participants 
‘sophisticated consumers’ of dynamic models and to provide a deeper framework and 
knowledge within which to frame their discussions. Although no prior knowledge is 
assumed it is a fast paced course and additional reading is provided to help 
participants to consolidate material. 
 
Course objectives 
 
By the end of the course participants should: 
 

• Understand the economic foundations of dynamic models and how they relate 
to current policy issues 

• Be able to write dynamic models in a general form suitable for solution and 
simulation by computer 

• Implement basic solution and simulation techniques to analyse dynamic 
models, showing how the model economies behave and how they respond to 
different shocks 

• Be aware of how to extend simple models to answer more complex questions 
associated with monetary policy 

• Feel confident in discussing model-based analysis, evaluating the strength of 
models used and engaging in conversation with people building economic 
models 

 
Organisation 
 
The course runs over a series of five mornings. Each session will be a mixture of 
small-group teaching and practical exercises using MATLAB software to solve and 
simulate dynamic models. Afternoons are therefore free, allowing participants time to 
reflect and consolidate the morning work before the next session. The instructors will 
be available throughout each afternoon to answer any questions or queries that arise. 
 
Pre-readings 
 
Some pre-course readings will be assigned for those participants who wish to prepare 
in advance. The issues involved in the pre-reading will be dealt with in the course so 
there is no need to understand everything. The pre-reading is as much about getting 
participants to gauge what they do and don’t understand as it is to get ideas and issues 
across. 
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Ouline 
 
Session 1 Introduction to DSGE modelling.  

 
In this session we describe the key ingredients in a dynamic model, using the 
simplest available dynamic model with monetary policy. 
 
Exercises are designed to familiarise participants with the MATLAB 
computer language environment. 

Session 2 Taking a model to the computer 
 
We show how to rewrite the model in a form suitable for solving and 
simulating on a computer. There are two parts to this: (i) approximating the 
nonlinear model by a linear model and (ii) collecting the equations together 
into the so-called state-space form. 
 
In exercises we practice the techniques of log-linearisation and define state-
space forms. 

Session 3 Solution techniques 
 
After a short discussion of the range of possibilities, we explain the standard 
Blanchard-Kahn technique for solving linear models. We also discuss the role 
of the Blanchard-Kahn conditions in ensuring determinacy of the solution. 
 
The computer exercises take participants from the state-space form to the 
solution to the model and show the relevance of determinacy conditions. 

Session 4 Simulation techniques 
 
Having obtained the solution in the previous session, this session is devoted 
to developing a range of simulation techniques through which to analyse the 
model. Amongst others, we discuss stylised facts of volatilities and 
correlations at different leads and lags, impulse response analysis, forecast 
error variance decomposition. 
 
Computing exercises develop participants’ skills at analysing dynamic 
models. 

Session 5 Advanced dynamic models 
 
In the final session we survey some of the more advanced dynamic models 
that are useful for policy analysis. In particular, we focus on how to handle 
models with simple monetary policy rules such as those famously associated 
with Taylor. 
 
The exercises in the final session consolidate the work of the previous 
sessions. The participants will work through a series of exercises which 
simulate the behaviour of a dynamic economy under Taylor rules. Time 
permitting, participants will be able to analyse the response of the economy 
for different coefficients in the monetary policy rules. 
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Instructors 
 
The course architects are Martin Ellison and Alina Barnett. 
 
Martin Ellison, Assistant Professor, Warwick University 
 
Martin has an MPhil from Oxford University and a PhD from the European 
University Institute, Florence. He is an affiliate of the Centre for Economic Policy 
Research and a consultant at the Bank of England. His research focuses on monetary 
theory and monetary policy and he has just received a three-year ESRC Research 
Fellowship for his project “Improving Monetary Policy for Macroeconomic Stability 
in the 21st Century”. His research is regularly published in the top academic journals, 
as well as presented at leading conferences and central banks. 
 
Alina Barnett, Postgraduate Research Fellow, Warwick University 
 
Alina holds an MA in Economics from the Central European University in Budapest 
and a BA in Finance and Banking from the Academy of Economic Studies in 
Bucharest. Her research interests are in macroeconomics, time series econometrics 
and developing economies. Her professional experience includes financial analysis, 
banking and teaching economics at university and secondary school level. 
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Objective

To make participants ‘sophisticated consumers’
of dynamic stochastic general equilibrium 
models, and to provide a deeper framework 
and knowledge within which to frame 
discussions of economic policy issues.
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Aims

Understanding of simple DSGE models

Ability to solve and simulate simple DSGE 
models using MATLAB

Organisation

Five mornings

Each morning is a mixture of small-group teaching and 
practical exercises using MATLAB

Share of teaching is higher in first couple of days

Course organisers are available each afternoon to give 
extra help and answer questions
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Outline

Advanced dynamic models5

Simulation techniques4

Solution techniques3

Writing models in a form suitable for computer2

Introduction to DSGE models / Introduction to 
MATLAB

1

TopicsDay

Introduction to
DSGE modelling

Martin Ellison
University of Warwick and CEPR

Bank of England, December 2004
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Dynamic

Stochastic

General Equilibrium

Dynamic

tt-1 t+1

expectations
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Stochastic

Impulses

Propagation

Fluctuations

Frisch-Slutsky paradigm

Firms

General equilibrium

Households

Monetary
authority
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Households

Maximise present discounted value of expected 
utility from now until infinite future, subject to 
budget constraint

Households characterised by 
utility maximisation
consumption smoothing

Households
We show household consumption behaviour in a 
simple two-period deterministic example with no 
uncertainty

initial wealth W0
consumption C0 and C1
prices p0 and p1
nominal interest at rate i0 on savings from t0 to t1

Result generalises to infinite horizon stochastic 
problem with uncertainty
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Household utility
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Household utility maximisation
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Known as the dynamic IS curve
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Households - intuition
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it↑ → U’(Ct)↑ → Ct↓ Higher interest rates 
reduce consumption

Etπt+1↑ → U’(Ct)↓ → Ct ↑ Higher expected future
inflation increases 
consumption

Firms

Maximise present discounted value of expected 
profit from now until infinite future, subject to 
demand curve, nominal price rigidity and labour 
supply curve.

Firms characterised by 
profit maximisation
subject to nominal price rigidity
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Firms

Firm problem is mathematically complicated 
(see Walsh chapter 5) 

We present heuristic derivation of the results

Nominal price rigidity

Calvo model of price rigidity

ωProportion of firms unable to 
change their price in a period

Proportion of firms able to 
change their price in a period ω−1
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Aggregate price level

1ˆˆ)1(ˆ −+−= titt ppp ωω

price
setters

price
non-setters

Do not worry about the hat (^) notation. We will 
explain it later

1ˆˆ)1(ˆ −+−= titt ppp ωω

?

Derivation

15



Optimal price setting
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myopic
price

price
set at t

desired
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perfect price flexibility *ˆˆ tit pp =0=ω
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Myopic price

ttt mcpkp =*

Approximate myopic price with price that would 
prevail in flexible price equilibrium

ttt cmpp ˆˆˆ * +=

Price is constant mark-up k over marginal cost

In our hat (^) notation – to be explained later –
the myopic price is given by

Full derivation
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Marginal cost

tt wcm ˆˆ =

No capital in model → all marginal costs
due to wages 

Assume linearity between wages and marginal 
cost

Derivation

tt wcm ˆˆ =

1ˆˆ)1(ˆ −+−= titt ppp ωω

1
* ˆˆ)1(ˆ ++−= itttit pEpp βωβω

ttt cmpp ˆˆˆ * +=

?
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Wages
Assume a labour supply function

tt xw ˆ1ˆ
α

=

wages rise when 
output is above trend

1/α is elasticity of wage w.r.t output gap

wages rise
with output gap

Full derivation

tt wcm ˆˆ =

tt xw ˆ1ˆ
α

=

1ˆˆ)1(ˆ −+−= titt ppp ωω

1
* ˆˆ)1(ˆ ++−= itttit pEpp βωβω

ttt cmpp ˆˆˆ * +=
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Firms
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Known as the New Keynesian Phillips curve
Known as the forward-looking Phillips curve

Full solution

Firms - intuition
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(π t - βEtπt+1) < 0 → xt < 0 Inflation expected to 
rise in future, firms set 
high prices now, 
choking supply 

Etπt+1↑ → pit ↑ → xt ↓ Higher expected future
inflation chokes supply 
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Sets the interest rate

Simplest case is simple rule

Interest rate reacts to inflation, with shocks

Monetary authority

ttt vi += πδ ˆˆ

Firms

Baseline DSGE model

Households

Monetary
authority ttt vi += πδ ˆˆ
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Next steps

Introduction to MATLAB

How to write the DSGE model in a format 
suitable for solution

How to solve the DSGE model

Solving the DSGE model in MATLAB
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Martin Ellison
University of Warwick and CEPR

Bank of England, December 2005

Introduction to 
MATLAB

What is MATLAB?

MATLAB is a tool for doing numerical 
computations with matrices and vectors. It is very 
powerful and easy to use. It integrates 
computation, graphics and programming in the 
same environment.

MATLAB stands for “Matrix Laboratory”.
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Matrix

MATLAB works with essentially only one kind 
of object – a rectangular numerical matrix with 
possible complex entries. 

Entering a matrix

Matrices can be 

Entered manually
Generated by built-in functions
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An example

A = [1, 2, 3; 7, 8, 9] 

Use ; to indicate the end of each row

Use comma to separate elements of a row

Matrix operations

+ addition
- subtraction
* multiplication 
^ power
‘ transpose

To make * and ^ operate element-by-element, 
we write .* and .^
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Example

A= [1, 2; 3, 4]
B = [0.5, 0.6; 1, 1.5]

C = A*B 
C = A.*B

Subscripts

The element in row i and column j of A is 
denoted by A(i, j). 

Example: A = zeros(2,2); 
A(1,1) + A(1,2) + A(2,2) 
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The colon operator
The colon : is one of MATLAB ’s most 
important operators. It has many uses.

3:-2:-11 is a row vector containing integers 
from 3 to -11 with a increment of -2. 

Subscript expressions involving colons refer to 
portions of a matrix. A(1:3, 2) is the first to the 
third elements of the second column of A.

Working with matrices
MATLAB provides four functions that generate 
basic matrices.

zeros: all zeros. A = zeros(1,3)
ones: all ones. A = ones(2,4)
rand: uniformly distributed random 

numbers. A = rand(3,5)
randn: normally distributed random 

numbers. A = randn(2,2)
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Working with matrices

Concatenation: join small (compatible) matrices 
to make bigger ones. B = [A A-2; A*2 A/4]

Deleting rows and columns. B(:,2) = [ ]

Functions
MATLAB provides a large range of standard 
elementary mathematical functions, including abs, 
sqrt, exp, and sin. 

For help on functions, type

help elfun (elementary mathematical functions)
help specfun (advanced mathematical functions)
help elmat (advanced matrix functions)
help datafun (data analysis functions)
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Suppressing output

If you simply type a statement and press Enter,
MATLAB automatically displays the results on 
screen. If you end the line with a semicolon ; 
MATLAB performs the computation but does 
not display any result.

Example: C = randn(5,1)
C = randn(5,1);

Programming with MATLAB

Files that contain code in the MATLAB 
language are called M-files. You create M-files 
using a text editor, then use them as you would 
any other MATLAB functions or command. 
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Flow Control

MATLAB has many flow controls. The most 
basic are

if statement
for loops
while loops

if … elseif … else … end

if A > B
‘greater’

elseif A < B
‘less’

elseif A = = B
‘equal’

end
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for … end

for i = 1:m
for j = 1:n

H(i,j) = 1/(i+j)
end

end

while … end

i = 0;
while (i<10000) 

s = s + i;
i = i + 1;

end
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Graphics

x = 0 : 0.01 : 100;
y = x^2;
plot(x,y)

Adding plots to an existing graph: hold on

Multiple plots in one figure: subplot
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Taking a model
to the computer

Martin Ellison
University of Warwick and CEPR

Bank of England, December 2005

Firms

Baseline DSGE model

Households

Monetary
authority ttt vi += πδ ˆˆ
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Households

Two simplifying assumptions:

CRRA utility function
σ

σ
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Non-linear relationship

Difficult for the computer to handle

We need a simpler expression

34



Log-linear approximation

Begin by taking logarithms of dynamic IS curve
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Taylor series expansion of logarithmic function

To a first order (linear) approximation

Applied to dynamic IS curve
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Log-linearisation
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))1(ln()1ln()ln(ln)ln(ln 11 ++ +−++−−=−− tttttt EiYYEYY πσσ

Log-linear expansion of dynamic IS curve

Steady-state values (more later)

(1) – (2)

(1)

(2)

Deviations from steady state

What is YYt lnln − ?

t
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In case of output,                 is output gap, YYt lnln − tx̂

percentage deviation of 
Zt from steady state Z
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Log-linearised IS curve
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Advanced log-linearisation

The dynamic IS curve was relatively easy to 
log-linearise

For more complicated equations, need to apply 
following formula
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Firms

Previously solved for firm behaviour directly in 
log-linearised form. Original model is in Walsh 
(chapter 5).

Aggregate price level

Log-linearised
version

Original equation

θθθ ωω −
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Optimal price setting

Log-linearised
version

Original equation
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Marginal cost

Log-linearised
version

Original equation
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Monetary authority

ttt vi += πδ ˆˆWe assumed

( ) ttt vii +−=− − ππδ lnlnlnln 1Equivalent to

Very similar to linear rule if it small

Firms

Log-linearised DSGE model
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Assume                   for monetary authority

From household

Steady state

Need to return to original equations to calculate 
steady-state
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Full DSGE model
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State-space form

10110 ++ += tttt vBXAXEA

Generalised state-space form

Models of this form (generalised linear rational 
expectations models) can be solved relatively 
easily by computer

Next steps

Derive a solution for log-linearised models

Blanchard-Kahn technique
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Solution techniques
Martin Ellison

University of Warwick and CEPR

Bank of England, December 2005

State-space form

10110 ++ += tttt vBXAXEA

Generalised state-space form

Many techniques available to solve this class of 
models

We use industry standard: Blanchard-Kahn
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Alternative state-space form
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Jordan decomposition of A
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eigenvectors diagonal matrix 
of eigenvalues

Blanchard-Kahn condition

The solution of the rational expectations model 
is unique if the number of unstable eigenvectors 
of the system is exactly equal to the number of 

forward-looking (control) variables.

i.e., number of eigenvalues in Λ greater than 1 
in magnitude must be equal to number of 
forward-looking variables
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Too many stable roots

0w

multiple solutions

equilibrium path 
not unique

need alternative 
techniques
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ty

Too many unstable roots

0w

no solution

all paths are 
explosive

transversality
conditions violated
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Blanchard-Kahn satisfied

0w

one solution

equilibrium path     
is unique

system has saddle 
path stability

Rearrangement of Jordan form
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Partition of model
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Decoupled equations
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Decoupled equations can be solved separately

stable

unstable

Solution strategy

Solve unstable 
transformed equation ty~

Translate back into 
original problem
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Solution of unstable equation

As         , only stable solution is12 >Λ tyt ∀= 0~
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Solve unstable equation forward to time t+j

Forward-looking (control) variables are function 
of backward-looking (predetermined) variables  

Solution of stable equation
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Solve stable equation forward to time t+j

As         , no problems with instability11 <Λ
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Solution of stable equation
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variables are function of current backward-
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Full solution
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All variables are function of backward-looking 
(predetermined) variables: recursive structure
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Baseline DSGE model
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State space form  

To make model more interesting, assume 
policy shocks vt follow an AR(1) process  

New state-space form
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One backward-looking variable

Two forward-looking variables
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Blanchard-Khan conditions
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Require one stable root and two unstable roots

Partition model according to  

Next steps

Exercise to check Blanchard-Kahn conditions 
numerically in MATLAB

Numerical solution of model

Simulation techniques
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Simulation techniques
Martin Ellison

University of Warwick and CEPR

Bank of England, December 2005

Baseline DSGE model
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Recursive structure makes model easy to 
simulate
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Numerical simulations

Stylised facts

Impulse response functions

Forecast error variance decomposition

Stylised facts

Variances

Covariances/correlations

Autocovariances/autocorrelations

Cross-correlations at leads and lags
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Recursive simulation
1. Start from steady-state value w0 = 0

2. Draw shocks {vt} from normal distribution

3. Simulate {wt} from {vt} recursively using

11
1*

21
1*

22
*

12
*

11

*
21

1*
22

*
12

*
111

1*
21

1*
22

*
12

*
111

)(

)()(

+
−−

−−−
+

−+

−Λ−=

t

tt

vRPPPP

wPPPPPPPPw

Recursive simulation

4. Calculate {yt} from {wt} using

5. Calculate desired stylised facts, ignoring first 
few observations

tt wPPy *
21

1*
22
−−=
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Variances

0.46Inflation

1.39Output gap

0.46Interest rate

Standard 
deviation

Correlations

11-1Inflation

11-1Output gap

-1-11Interest rate

InflationOutput 
gap

Interest 
rate
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Autocorrelations

0.060.120.250.50Inflation

0.060.120.250.50Output gap

0.060.120.250.50Interest rate

t,t-4t,t-3t,t-2t,t-1

Cross-correlations

Correlation with output gap at time t

-0.25-0.50-1-0.50-0.25Interest rate
0.250.5010.500.25Inflation
0.250.5010.500.25Output gap
t+2t+1tt-1t-2
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Impulse response functions

What is effect of 1 standard deviation shock in 
any element of vt on variables wt and yt?

1. Start from steady-state value w0 = 0

2. Define shock of interest
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Impulse response functions

3. Simulate {wt} from {vt} recursively using
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4. Calculate impulse response {yt} from {wt}
using tt wPPy *
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Response to vt shock
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Forecast error variance
decomposition (FEVD)
Imagine you make a forecast for the output gap 
for next h periods

Because of shocks, you will make forecast errors

What proportion of errors are due to each shock 
at different horizons?

FEVD is a simple transform of impulse response 
functions
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FEVD calculation

Define impulse response function of output gap 
to each shocks v1 and v2
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Contribution to 
variance at 
horizon 1
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Shock

FEVD at horizon h = 1

At horizon h = 1, two sources of forecast errors
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FEVD at horizon h = 1

Contribution of v1
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Contribution to 
variance at 
horizon 2

Impulse 
response at 
horizon 2

Shock

FEVD at horizon h = 2

At horizon h = 2, four sources of forecast errors
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FEVD at horizon h = 2

Contribution of v1
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At horizon h, 2h sources of forecast errors
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FEVD for output gap
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FEVD for inflation
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FEVD for interest rates
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Next steps

Models with multiple shocks

Taylor rules

Optimal Taylor rules
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Advanced dynamic 
models
Martin Ellison

University of Warwick and CEPR

Bank of England, December 2005

More complex models

Impulses

Propagation

Fluctuations

Frisch-Slutsky paradigm
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Shocks may be correlated

Impulses

Can add extra shocks to the model
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Propagation

Add lags to match dynamics of data      
(Del Negro-Schorfeide, Smets-Wouters)
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Solution of complex models
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Blanchard-Kahn technique relies on invertibility
of A0 in state-space form.

QZ decomposition

For models where A0 is not invertible
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Recursive equations
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Recursive structure means unstable equation 
can be solved first

Solution strategy

Solve unstable 
transformed equation ty~

Translate back into 
original problem
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Substitute into stable 
transformed equation
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Simulation possibilities

Stylised facts

Impulse response functions

Forecast error variance decomposition

Optimised Taylor rule

What are best values for parameters in Taylor 
rule ?ttxtt vxi ++= ˆˆˆ δπδπ

Introduce an (ad hoc) objective function for policy

)ˆˆˆ(min 222

0
titxt

i

i ix λλπβ ++∑
∞

=
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Brute force approach

Try all possible combinations of Taylor rule 
parameters

Check whether Blanchard-Kahn conditions are 
satisfied for each combination

For each combination satisfying B-K condition, 
simulate and calculate variances

Brute force method

Calculate simulated loss for each combination

Best (optimal) coefficients are those satisfying 
B-K conditions and leading to smallest 
simulated loss
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Grid search

πδ

xδ

0 1 2

2

1

For each point 
check B-K 
conditions

Find lowest loss 
amongst points 
satisfying B-K 

condition

Next steps

Ex 14: Analysis of model with 3 shocks

Ex 15: Analysis of model with lags

Ex 16: Optimisation of Taylor rule coefficients
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