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Introduction

Nonlinearities abound in macroeconomics
▶ flattening of Phillips curve at low inflation
▶ zero lower bound on nominal interest rate

Any nonlinear REE can be represented by a neural network
▶ Universal Approximation Theorem
▶ Cybenko 1989, Hornik et al. 1989, Hornik 1991

We ask if agents can learn the neural network representation
▶ application of stochastic approximation theory
▶ extends e-stability analysis to nonlinear models
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Simple feed-forward neural network

...
X y

Input layer

Xw1 = H

Hidden layer

ψ(H) = A Aw2 = ŷ

Output layer
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Neural network learning

Agents use the neural network to form expectations

Learn parameters w1,w2 by method of gradient descent

Update estimates in response to prediction error ζt = yt − ŷt

w ′
1 = w1 − γt∇w1ζt

w ′
2 = w2 − γt∇w2ζt

∇w1 and ∇w2 are partial derivatives of prediction error

Learning rate parameter γt regulates magnitude of updating
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Stochastic approximation

Updating equations are ordinary difference equation[
w ′
1

w ′
2

]
︸ ︷︷ ︸

θt

=

[
w1

w2

]
︸ ︷︷ ︸
θt−1

+γt

[
XT
t wT

2 ψ
′(Xtw1)

ψ(Xtw1)
T

]
ζt︸ ︷︷ ︸

Q(θt−1,Zt)

This is a stochastic recursive algorithm of standard form

Stochastic approximation theory says we can learn a lot about its
properties by associating an ordinary differential equation (ODE)
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Associated ODE

dθ

dτ
= h(θ(τ))

h(θ) = lim
t→∞

EQ
(
θ, Z̄t(θ)

)
h(θ(τ)) is expected update as a function of Z̄t(θ)

Z̄t(θ) is stochastic process for Zt holding θt−1 fixed at θ

Limit point h(θ∗) = 0 represents an equilibrium of system

Equilibrium learnable if ODE asymptotically stable

Asymptotic stability requires all eigenvalues of Jacobian Dh(θ) to
have negative real parts when evaluated at θ∗
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A target range for inflation

FOMC discussed adoption of target range for inflation in September
2019 when deliberating on future of US monetary policy framework

Target range “the hallmark of inflation targeting” (Bernanke, 2003)

Recent research by Bianchi et al. 2021, Le Bihan et al. 2023

Implicit assumption is that monetary policy reacts differently
depending on whether inflation is inside or outside target range
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Analytic example

πt = Etπt+1 + κyt + ϵt

yt = −σ(Rt − Etπt+1)

Rt =


α(πt + π∗) if πt < −π∗

0 if − π∗ ≤ πt ≤ π∗

α(πt − π∗) if πt > π∗

Disturbance term ϵt follows 6-state Markov chain

Probability of remaining in same state is p

Probability of switching to each other state is (1− p)/5
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REE

One state variable so REE characterised by πt at each ϵt
(abstracting for now from sunspot solutions)

Start with REE in which inflation sometimes outside target range

Guess and verify to obtain unique REE

Nature of unique REE depends on persistence p of ϵt
▶ Monotonic if p < p∗

▶ Non-monotonic if p > p∗

Highly persistent ϵt disinflationary in target range
▶ Rt = 0 and Etπt+1 ≈ πt → yt ≈ σπt and πt ≈ −ϵt/(σκ)
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REE with inflation sometimes outside the target range

ϵt

1 21/3-1/3-1-2

π∗

-π∗

πt

(a) ϵt mildly persistent

ϵt

1 21/3-1/3-1-2

π∗

-π∗

πt

(b) ϵt highly persistent
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Learning

REE piecewise linear with two breakpoints

Sufficient to have neural network with one node always activated and
two nodes activated by ReLU functions

Neural network representation

Etπt+1 = b21(a1 + ϵt) + b22max(a2 + ϵt , 0) + b23max(a3 + ϵt , 0)

Supports REE for w∗
1 ≡ (a∗1, a

∗
2, a

∗
3) and w∗

2 ≡ (b∗21, b
∗
22, b

∗
23)

Six parameters to learn by method of gradient descent
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Associated ODE

Stochastic recursive algorithm of standard form[
w ′
1

w ′
2

]
︸ ︷︷ ︸

θt

=

[
w1

w2

]
︸ ︷︷ ︸
θt−1

+γt

[
XT
t wT

2 ψ
′(Xtw1)

ψ(Xtw1)
T

]
ζt ,︸ ︷︷ ︸

Q(θt−1,Zt)

(1)

Prediction errors ζt = πt − Et−1πt depend on ϵt and ϵt−1

Six states for ϵt so 62 = 36 possible prediction errors

Six parameters so h(θ) = limt→∞ EQ
(
θ, Z̄t(θ)

)
is 6× 1 vector

Jacobian Dh(θ) is 6× 6 matrix
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Learnability

h(θ∗) = 0 at REE parameter values w∗
1 and w∗

2

Learnability requires all eigenvalues of Jacobian Dh(θ) to have
negative real parts when evaluated at θ∗

Six eigenvalues so require |Dh(θ)| > 0 at θ∗

Necessary condition p < p∗

REE not learnable if persistence of ϵt is high

REE could be learnable if persistence of ϵt is mild
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Learnability of REE with mild persistence
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Non-learnability of REE with high persistence

Neural network representation

Etπt+1 = b21(a1 + ϵt) + b22max(a2 + ϵt , 0) + b23max(a3 + ϵt , 0)

Consider perturbation to a2 that increases inflation expectations when
inflation is in its target range

Increase in inflation expectations raises inflation more than
proportionately as long as inflation stays in the target range

Prediction error ζt = πt − Et−1πt > 0

Update to a2 takes it even further away from its REE value
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Aside on REE with sunspot fluctuations

REE with sunspot fluctuations also exist

Sunspot ηt attached to Etπt+1 when inflation in target range

ηt switches between ±η with ‘resonant frequency’ q(p, σ, κ)

REE has neural network representation

Etπt+1 =b21(a1 + b11ϵt + c1ηt) + b22max(a2 + b12ϵt , 0)

+ b23max(a3 + b13ϵt , 0),

h(θ) now a 7× 1 vector and Dh(θ) a 7× 7 matrix

p > p∗ when ‘resonant frequency’ condition satisfied

Condition that facilitates sunspot fluctuations in REE precludes
agents and neural network from learning them
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REE with inflation always outside the target range

REE exist where inflation always outside target range

Guess and verify to obtain REE
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Learnability

h(θ) is 4× 1 vector and Dh(θ) is 4× 4 matrix

|Dh(θ)| > 0 and Descartes’ rule of signs → no positive roots at θ∗

REE with inflation always outside target range are learnable

ϵt

1 21/3-1/3-1-2

π∗

-π∗

πt
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Numerical example with target range for inflation

πt = βEtπt+1 + κyt + ϵπ,t

yt = ηyt−1 − σ(Rt − Etπt+1) + ϵy ,t

Rt =


ϕππt + α(πt + π∗) if πt < −π∗

ϕππt if − π∗ ≤ πt ≤ π∗

ϕππt + α(πt − π∗) if πt > π∗

β κ η σ ϕπ α ρπ ρy σπ σy
0.95 0.05 (0.75,0.95) 0.25 0.5 0.75 0.5 0.5 0.2 0.2
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Deterministic steady states

y
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(a) η low
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(b) η high
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Equilibrium dynamics under neural network learning
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Perfect foresight

y

π∗

-π∗

π

(a) η low

y

π∗

-π∗

π

(b) η high

Figure: Perfect foresight paths
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Empirical tests for indeterminacy

Apply Lubik and Schorfheide (2004) test to simulated data from
model under neural network learning

Compare probability data generated by a locally-determinate system
as opposed to perturbations of perfect foresight paths in a
locally-indeterminate system

Learnable REE dynamics resemble neither saddlepath stable system
nor perturbations to perfect foresight paths when inertia is high

Can test misleadingly favour sunspots as a driver of simulated data?

Ashwin, Beaudry & Ellison NNL for NLE 23 / 30



Recap on Lubik and Schorfheide (2004)

Solve log-linearised model under RE

Et x̃1,t+1 = Λ1Et−1x̃1,t + Λ1(x̃1,t − Et−1x̃1,t) + ϵ̃1,t ,

Et x̃2,t+1 = Λ2Et−1x̃2,t + Λ2(x̃2,t − Et−1x̃2,t) + ϵ̃2,t .

Indeterminacy if Λ1 or Λ1 both inside unit circle

Sunspot process ζt has to respect RE s.t. ζt = πt − Et−1πt

ζt can be correlated with innovations to disturbance terms

Et−1

ϵπ,tϵy ,t
ζt

ϵπ,tϵy ,t
ζt

′

=

 σπ 0 ωπ,ζ

0 σy ωy ,ζ

ωπ,ζ ωy ,ζ σζ


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Results
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Numerical example with a Zero Lower Bound

Evans et al. (2023)

Add consumption habits and endogenous government spending

Continuum of identical household-producers indexed by i

E0,i

∞∑
t=0

βt{ log(ct,i + ξtgt − λct−1) + χ log

(
Mt−1,i

Pt

)
− (1 + ϵ)−1h1+ϵ

t,i − Φ

(
Pt,i

Pt−1,i

)
}

Φ(·) ≥ 0 is a convex pricing friction
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Numerical example with a Zero Lower Bound

Nominal interest rate

Rt = max

{
R∗
(πt
π∗

)ϕπ
(
yt
y∗

)ϕy

, 1

}
,

Government spending

gt =
ḡ

1 + ek(πt−π∗)
.

Lump-sum taxes balance period budget constraint

bt +mt +Υt = gt + (mt−1 + Rt−1bt−1)/πt
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Equilibrium conditions

Euler equation for consumption

ct = max(c∗t , 0)

1

c∗t + ξtgt − λct−1
= βRtEt

(
π−1
t+1

c∗t+1 + ξt+1gt+1 − λct

)

Nonlinear New Keynesian Phillips curve

Φ′(πt)πt =
ν

α

(
ct + gt
At

) ϵ+1
α

+
1− ν

ct + ξtgt − λct−1
(ct + gt)

+ βEtΦ
′(πt+1)πt+1
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Deterministic steady states and equilibrium dynamics

yt−1

π∗

y ∗ ȳ
¯
y

β

0

πt

PCIS
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Conclusions

Neural network learning is a practical and powerful tool

Any REE has a neural network representation

Learnability of any REE can be checked analytically or numerically

A solution technique and equilibrium selection device

High persistence drives inflation away from target range

REE with sunspot fluctuations typically not learnable

Inflation pushed outwards if there is a ZLB
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