Neural Network Learning for Nonlinear Economies

Julian Ashwin¹ Paul Beaudry² Martin Ellison³

¹Maastricht University

²University of British Columbia

³University of Oxford and CEPR

 \overline{AB}) \overline{AB}) \overline{AB}) \overline{AB}

4 0 8

Introduction

- Nonlinearities abound in macroeconomics
	- \triangleright flattening of Phillips curve at low inflation
	- ▶ zero lower bound on nominal interest rate
- Any nonlinear REE can be represented by a neural network
	- ▶ Universal Approximation Theorem
	- ▶ Cybenko 1989, Hornik et al. 1989, Hornik 1991
- We ask if agents can learn the neural network representation
	- \blacktriangleright application of stochastic approximation theory
	- \triangleright extends e-stability analysis to nonlinear models

化重新润滑脂

Simple feed-forward neural network

4 **D F**

4 E X 4 E X

Neural network learning

- Agents use the neural network to form expectations
- Learn parameters w_1, w_2 by method of gradient descent
- Update estimates in response to prediction error $\zeta_t = y_t \hat{y}_t$

$$
w'_1 = w_1 - \gamma_t \nabla_{w_1} \zeta_t
$$

$$
w'_2 = w_2 - \gamma_t \nabla_{w_2} \zeta_t
$$

- ∇_{w_1} and ∇_{w_2} are partial derivatives of prediction error
- Learning rate parameter γ_t regulates magnitude of updating

Stochastic approximation

Updating equations are ordinary difference equation

$$
\underbrace{\begin{bmatrix} w_1' \\ w_2' \end{bmatrix}}_{\theta_t} = \underbrace{\begin{bmatrix} w_1 \\ w_2 \end{bmatrix}}_{\theta_{t-1}} + \gamma_t \underbrace{\begin{bmatrix} X_t^T w_2^T \psi'(X_t w_1) \\ \psi(X_t w_1)^T \end{bmatrix}}_{Q(\theta_{t-1}, Z_t)} \zeta_t
$$

- This is a stochastic recursive algorithm of standard form
- Stochastic approximation theory says we can learn a lot about its properties by associating an ordinary differential equation (ODE)

Associated ODE

$$
\frac{d\theta}{d\tau} = h(\theta(\tau))
$$

$$
h(\theta) = \lim_{t \to \infty} EQ(\theta, \bar{Z}_t(\theta))
$$

- $h(\theta(\tau))$ is expected update as a function of $\bar{Z}_t(\theta)$
- $\bar{Z}_t(\theta)$ is stochastic process for Z_t holding θ_{t-1} fixed at θ
- Limit point $h(\theta^*) = 0$ represents an equilibrium of system
- Equilibrium learnable if ODE asymptotically stable
- Asymptotic stability requires all eigenvalues of Jacobian $Dh(\theta)$ to have negative real parts when evaluated at θ^*

イ何 ト イヨ ト イヨ トー

A target range for inflation

- FOMC discussed adoption of target range for inflation in September 2019 when deliberating on future of US monetary policy framework
- Target range "the hallmark of inflation targeting" (Bernanke, 2003)
- Recent research by Bianchi et al. 2021, Le Bihan et al. 2023
- Implicit assumption is that monetary policy reacts differently depending on whether inflation is inside or outside target range

Analytic example

$$
\pi_t = E_t \pi_{t+1} + \kappa y_t + \epsilon_t
$$

\n
$$
y_t = -\sigma (R_t - E_t \pi_{t+1})
$$

\n
$$
R_t = \begin{cases}\n\alpha (\pi_t + \pi^*) & \text{if } \pi_t < -\pi^* \\
0 & \text{if } -\pi^* \le \pi_t \le \pi^* \\
\alpha (\pi_t - \pi^*) & \text{if } \pi_t > \pi^*\n\end{cases}
$$

- \bullet Disturbance term ϵ_t follows 6-state Markov chain
- Probability of remaining in same state is p
- Probability of switching to each other state is $(1-p)/5$

→ イ何 ト イヨ ト イヨ トー

4 0 F

- One state variable so REE characterised by π_t at each ϵ_t (abstracting for now from sunspot solutions)
- Start with REE in which inflation sometimes outside target range
- **•** Guess and verify to obtain unique REE
- Nature of unique REE depends on persistence p of ϵ_t
	- ▶ Monotonic if $p < p^*$
	- Non-monotonic if $p > p^*$
- Highly persistent ϵ_t disinflationary in target range
	- $R_t = 0$ and $E_t \pi_{t+1} \approx \pi_t$ → $y_t \approx \sigma \pi_t$ and $\pi_t \approx -\epsilon_t/(\sigma \kappa)$

スター・スキャス キャッチ

REE with inflation sometimes outside the target range

э

メロトメ 倒 トメ ヨ トメ ヨ トー

Learning

- REE piecewise linear with two breakpoints
- Sufficient to have neural network with one node always activated and two nodes activated by ReLU functions
- Neural network representation

 $\mathsf{E}_{t}\pi_{t+1} = b_{21}(a_{1} + \epsilon_{t}) + b_{22}$ max $(a_{2} + \epsilon_{t}, 0) + b_{23}$ max $(a_{3} + \epsilon_{t}, 0)$

- Supports REE for $w_1^* \equiv (a_1^*, a_2^*, a_3^*)$ and $w_2^* \equiv (b_{21}^*, b_{22}^*, b_{23}^*)$
- Six parameters to learn by method of gradient descent

イ何 トマミ トマミト ニヨ

Associated ODE

• Stochastic recursive algorithm of standard form

$$
\underbrace{\begin{bmatrix} w_1' \\ w_2' \end{bmatrix}}_{\theta_t} = \underbrace{\begin{bmatrix} w_1 \\ w_2 \end{bmatrix}}_{\theta_{t-1}} + \gamma_t \underbrace{\begin{bmatrix} X_t^T w_2^T \psi'(X_t w_1) \\ \psi(X_t w_1)^T \end{bmatrix} \zeta_t}_{Q(\theta_{t-1}, Z_t)},
$$
\n(1)

- Prediction errors $\zeta_t = \pi_t \mathcal{E}_{t-1}\pi_t$ depend on ϵ_t and ϵ_{t-1}
- Six states for ϵ_t so $6^2 = 36$ possible prediction errors
- Six parameters so $h(\theta)=\lim_{t\to\infty} E Q\left(\theta, \bar{Z}_t(\theta)\right)$ is 6×1 vector
- Jacobian $Dh(\theta)$ is 6 \times 6 matrix

Learnability

- $h(\theta^*)=0$ at REE parameter values w_1^* and w_2^*
- Learnability requires all eigenvalues of Jacobian $Dh(\theta)$ to have negative real parts when evaluated at θ^*
- Six eigenvalues so require $|Dh(\theta)| > 0$ at θ^*
- Necessary condition $p < p^*$
- REE not learnable if persistence of ϵ_t is high
- REE could be learnable if persistence of ϵ_t is mild

Learnability of REE with mild persistence

4 0 F

Þ

э \rightarrow Non-learnability of REE with high persistence

• Neural network representation

 $\mathsf{E}_{t}\pi_{t+1} = b_{21}(a_{1} + \epsilon_{t}) + b_{22}$ max $(a_{2} + \epsilon_{t}, 0) + b_{23}$ max $(a_{3} + \epsilon_{t}, 0)$

- Consider perturbation to a_2 that increases inflation expectations when inflation is in its target range
- Increase in inflation expectations raises inflation more than proportionately as long as inflation stays in the target range
- Prediction error $\zeta_t = \pi_t E_{t-1}\pi_t > 0$
- Update to a_2 takes it even further away from its REE value

イロト イ押 トイヨ トイヨ トーヨ

Aside on REE with sunspot fluctuations

- REE with sunspot fluctuations also exist
- Sunspot η_t attached to $E_t \pi_{t+1}$ when inflation in target range
- η_t switches between $\pm \eta$ with 'resonant frequency' $q(p, \sigma, \kappa)$
- REE has neural network representation

 $\mathsf{E}_{t}\pi_{t+1} = b_{21}(a_{1} + b_{11}\epsilon_{t} + c_{1}\eta_{t}) + b_{22}$ max $(a_{2} + b_{12}\epsilon_{t}, 0)$ $+$ b_{23} max $(a_3 + b_{13}\epsilon_t, 0),$

- $h(\theta)$ now a 7 \times 1 vector and $Dh(\theta)$ a 7 \times 7 matrix
- $p > p^*$ when 'resonant frequency' condition satisfied
- Condition that facilitates sunspot fluctuations in REE precludes agents and neural network from learning them

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ ... 할

REE with inflation always outside the target range

- REE exist where inflation always outside target range
- Guess and verify to obtain REE

• Each has neural network representation

Learnability

- $h(\theta)$ is 4×1 vector and $Dh(\theta)$ is 4×4 matrix
- $|Dh(\theta)| > 0$ and Descartes' rule of signs \rightarrow no positive roots at θ^*
- REE with inflation always outside target range are learnable

Numerical example with target range for inflation

$$
\pi_t = \beta E_t \pi_{t+1} + \kappa y_t + \epsilon_{\pi, t}
$$
\n
$$
y_t = \eta y_{t-1} - \sigma (R_t - E_t \pi_{t+1}) + \epsilon_{y, t}
$$
\n
$$
R_t = \begin{cases}\n\phi_{\pi} \pi_t + \alpha (\pi_t + \pi^*) & \text{if } \pi_t < -\pi^* \\
\phi_{\pi} \pi_t & \text{if } -\pi^* \leq \pi_t \leq \pi^* \\
\phi_{\pi} \pi_t + \alpha (\pi_t - \pi^*) & \text{if } \pi_t > \pi^*\n\end{cases}
$$

$$
\frac{\beta}{0.95} \quad \frac{\kappa}{0.05} \quad \frac{\eta}{(0.75, 0.95)} \quad \frac{\sigma}{0.25} \quad \frac{\phi_{\pi}}{0.5} \quad \frac{\alpha}{0.75} \quad \frac{\rho_{\pi}}{0.5} \quad \frac{\rho_{y}}{0.5} \quad \frac{\sigma_{\pi}}{0.2} \quad \frac{\sigma_{y}}{0.2}
$$

 QQ

造

メロトメ 倒 トメ ヨ トメ ヨ トー

Deterministic steady states

K ロ > K dj > K 글 > K 글 > H 글

Equilibrium dynamics under neural network learning

э

イロト イ押 トイヨ トイヨト

Perfect foresight

Figure: Perfect foresight paths

지수는 지금 아버지를 지나가 되었다.

Empirical tests for indeterminacy

- Apply Lubik and Schorfheide (2004) test to simulated data from model under neural network learning
- Compare probability data generated by a locally-determinate system as opposed to perturbations of perfect foresight paths in a locally-indeterminate system
- Learnable REE dynamics resemble neither saddlepath stable system nor perturbations to perfect foresight paths when inertia is high
- Can test misleadingly favour sunspots as a driver of simulated data?

→ 何 ト → ヨ ト → ヨ ト

Recap on Lubik and Schorfheide (2004)

• Solve log-linearised model under RE

$$
\mathbb{E}_t \tilde{x}_{1,t+1} = \Lambda_1 \mathbb{E}_{t-1} \tilde{x}_{1,t} + \Lambda_1 (\tilde{x}_{1,t} - \mathbb{E}_{t-1} \tilde{x}_{1,t}) + \tilde{\epsilon}_{1,t}, \n\mathbb{E}_t \tilde{x}_{2,t+1} = \Lambda_2 \mathbb{E}_{t-1} \tilde{x}_{2,t} + \Lambda_2 (\tilde{x}_{2,t} - \mathbb{E}_{t-1} \tilde{x}_{2,t}) + \tilde{\epsilon}_{2,t}.
$$

- Indeterminacy if Λ_1 or Λ_1 both inside unit circle
- **•** Sunspot process ζ_t has to respect RE s.t. $\zeta_t = \pi_t E_{t-1}\pi_t$
- \bullet ζ_t can be correlated with innovations to disturbance terms

$$
\mathbb{E}_{t-1}\begin{pmatrix} \epsilon_{\pi,t} \\ \epsilon_{y,t} \\ \zeta_t \end{pmatrix} \begin{pmatrix} \epsilon_{\pi,t} \\ \epsilon_{y,t} \\ \zeta_t \end{pmatrix}' = \begin{pmatrix} \sigma_{\pi} & 0 & \omega_{\pi,\zeta} \\ 0 & \sigma_y & \omega_{y,\zeta} \\ \omega_{\pi,\zeta} & \omega_{y,\zeta} & \sigma_{\zeta} \end{pmatrix}
$$

Results

メロトメ団 トメ 君 トメ 君 トッ 君 QQ

Numerical example with a Zero Lower Bound

- Evans et al. (2023)
- Add consumption habits and endogenous government spending
- Continuum of identical household-producers indexed by *i*

$$
\mathsf{E}_{0,i} \sum_{t=0}^{\infty} \beta^t \{ \log(c_{t,i} + \xi_t g_t - \lambda c_{t-1}) + \chi \log \left(\frac{M_{t-1,i}}{P_t} \right) - (1+\epsilon)^{-1} h_{t,i}^{1+\epsilon} - \Phi \left(\frac{P_{t,i}}{P_{t-1,i}} \right) \}
$$

 $\Phi(\cdot) \geq 0$ is a convex pricing friction

14 E K 4 E K

Numerical example with a Zero Lower Bound

o Nominal interest rate

$$
R_t = \max \left\{ R^* \left(\frac{\pi_t}{\pi^*} \right)^{\phi_{\pi}} \left(\frac{y_t}{y^*} \right)^{\phi_y}, 1 \right\},
$$

• Government spending

$$
g_t = \frac{\bar{g}}{1+e^{k(\pi_t-\pi^*)}}.
$$

Lump-sum taxes balance period budget constraint

$$
b_t + m_t + \Upsilon_t = g_t + (m_{t-1} + R_{t-1}b_{t-1})/\pi_t
$$

 \rightarrow 3 \rightarrow 3 \rightarrow

4 **D F**

Equilibrium conditions

• Euler equation for consumption

$$
c_{t} = \max(c_{t}^{*}, 0)
$$

$$
\frac{1}{c_{t}^{*} + \xi_{t}g_{t} - \lambda c_{t-1}} = \beta R_{t}E_{t}\left(\frac{\pi_{t+1}^{-1}}{c_{t+1}^{*} + \xi_{t+1}g_{t+1} - \lambda c_{t}}\right)
$$

Nonlinear New Keynesian Phillips curve

$$
\Phi'(\pi_t)\pi_t = \frac{\nu}{\alpha} \left(\frac{c_t + g_t}{A_t}\right)^{\frac{\epsilon+1}{\alpha}} + \frac{1-\nu}{c_t + \xi_t g_t - \lambda c_{t-1}} (c_t + g_t) + \beta \mathsf{E}_t \Phi'(\pi_{t+1})\pi_{t+1}
$$

4 0 8

医毛囊 医牙骨下的

э

Deterministic steady states and equilibrium dynamics

4 **D F**

 QQ

∍

Conclusions

- Neural network learning is a practical and powerful tool
- Any REE has a neural network representation
- Learnability of any REE can be checked analytically or numerically
- A solution technique and equilibrium selection device
- High persistence drives inflation away from target range
- REE with sunspot fluctuations typically not learnable
- Inflation pushed outwards if there is a ZLB