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This paper sets out a formal framework for the biological-evolutionary study of human
economic behaviour. Femina economica is a hypothetical parthenogenetic species with a
simple economy. Individuals make decisions about labour supply and fertility subject to time
and resource constraints. Labour is of differing types and a parent determines the type of
her offspring’s labour. Wages are determined as marginal productivities from an
economy-wide production function. Three propositions are proved, of which the first shows
that under very general conditions there exists a population genetic equilibrium, in which
individuals’ decisions are assumed to be under genetic control. The second shows that at a
population genetic equilibrium, individuals have the same behaviour as they would at an
economic equilibrium, in which individuals are assumed to maximise a common utility
function. The third proposition shows that if the common utility function fulfils certain
conditions, the attainment of an economic equilibrium brings about the same behaviour as
a population genetic equilibrium. This suggests a way in which evolutionarily stable
behaviour can be brought about without the necessity for changes in gene frequencies.
Demographic implications include the possibility of interpreting in Darwinian terms the
reductions in offspring number that occur in fertility transitions, and the weak or even
negative correlation in economically developed societies between control of resources and
offspring number. There are implications for economics of deriving utility maximisation from
population genetics.
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1. Introduction
On peut imaginer une société se reproduisant par
parthénogenèse ou composée d’hermaphrodites. (de
Beauvoir, 1949, p. 40)

This paper provides a formal framework for
the biological-evolutionary study of human
economic behaviour. The model to be presented
holds for the first time several chief aspects in
simultaneous formal focus. There is a genera-
tional structure in which individuals reproduce,
genotypes that can control behaviour, and genes
that can spread or not according to their effects
on reproduction. The set of behaviours of
possible mutants is rich enough to allow a

strategic approach, and one equilibrium concept
will be defined in terms of evolutionary game
theory. People’s choices involve not only
reproduction, but also the explicitly economic
decision about supply of labour, and they are
subject to time and budget constraints. A second
equilibrium concept will be based on Nash
equilibrium, with individuals maximising a
utility function. Finally, there is an outline
‘‘general equilibrium’’ in the sense that wages are
determined by the aggregate supply of different
types of labour, according to an economy-wide
production function. The model is both fully
biological and fully economic at the same time.
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Only with such a wide-ranging model can we
ensure a consistent biological-evolutionary
approach to human economic behaviour. The
hyphenated term ‘‘biological-evolutionary’’ is
needed, because there already exist ‘‘evolu-
tionary’’ approaches in economics that arise
from analogy with biology (for general intro-
ductions, see Hodgson, 1993, 1995; Witt,
1993), but do not study humans as biologists
study other animals. Extending the model
across biology and economics also exposes to
modellers in one discipline formal concerns from
the other.

The name Femina economica for the hypothet-
ical human-like species studied in the model is
biologically justified because the species is
assumed to be parthenogenetic for reasons of
simplicity, and so all individuals are female. The
model places fertility at the heart of economics,
making economically appropriate the contrast
with Homo economicus.

One set of concerns to which the model is
relevant centres on two major puzzles, ably and
systematically posed by Vining (1986). The first
puzzle is the reproductive restraint shown in
economically more developed countries, which
can be seen both in the drastic reduction in
fertility that occurs during so-called ‘‘demo-
graphic transitions’’, and by comparing present-
day more with less economically developed
countries. The second is the absence, in
economically more developed countries at least,
of the strong and positive relationship between
fertility and control of resources that a
Darwinian hypothesis would seem to predict.
Rogers (1990, 1995) and Harpending & Rogers
(1990) tackle these two puzzles with population
genetic models. However, the economic side of
those models, in terms of the choices of
individuals and the economic world they are part
of, is extremely primitive.

Questions that are better tackled with a unified
model include those that necessarily involve both
the biological and economic sides. How do
individuals act when they maximise biological
fitness in a model that incorporates economic
features? How is reproductive value affected by
economic considerations? What is the relation-
ship between utility functions and biological
fitness? What can the biological nature of

humans suggest to us about the forms of utility
functions?

The aim in constructing the model was to
model humans as a biologist would model any
other species in evolutionary terms. This straight
away implies that behaviour is determined by
genotype. A less obvious implication is that
economic elements, such as budget constraints,
types of labour, and the determination of wage
levels, must be treated as external factors subject
to their own laws. The advantage of linking
evolutionary biology with economics rather than
other aspects of human behaviour, is that it does
possess a substantial body of mathematical
theory capable of supplying the needed model
components. Boyd & Richerson (1986) set
themselves a more difficult task because they had
to construct a theory of cultural inheritance to
fill in the non-biological side of their ‘‘dual
inheritance theory’’. The natural selection of
genes makes no distinction between the conse-
quences of physical and physiological laws on
the one hand, and the consequences of economic
laws on the other, and neither does the model to
be presented here.

The model is of interest for any hints that
might emerge about the relationship between
evolutionary biology and human behaviour
more widely. On that more general subject, early
conceptual work of note includes Darwin (1971),
Fisher (1930) and Hamilton (1975); for later
empirically oriented work consult reviews by
Low et al. (1992) for demography, Betzig et al.
(1988) for behavioural ecology, Dunbar (1995)
for anthropology, and Turke (1990) and Pérusse
(1993) (each of which is followed by a series
of relevant commentaries) for ‘‘sociobiology’’
and ‘‘human ethology’’ and ‘‘evolutionary
psychology’’.

The model itself is developed formally in the
mathematical appendix, following a biological
rather than an economic tradition. A less formal
introduction of the model is presented in Section
2, and informal versions of the results in Section
3, where comparisons are drawn with the models
of Rogers (1990, 1995) and Harpending &
Rogers (1990). The discussion in Section 4 is
divided into subsections. It is the introduction of
fertility into economic decisions that allows
natural selection to act in the model, and Section
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4.1 examines how biological ideas have been
used in demographic discussions of fertility, and
how the model’s results may be relevant to
demography. Section 4.2 looks at biological
questions, such as the role of reproductive value,
whether we should expect evolutionary equilibria
to be attained in view of the rapidly changing
human environment, and the possibility of
relaxing assumptions of the model. Section 4.3
looks at implications for economics of the link
made with biology in the model, chiefly to do
with what properties utility functions might be
expected to have when viewed as derived from
maximisation of biological fitness. One branch
of economics, ‘‘New Home Economics’’, is
specifically concerned with decisions involving
fertility, and deals with them in a traditionally
economic way. The relationship to the biological
approach to integration of fertility and economic
decisions is discussed in Section 4.4. Finally,
the general importance of a technical modelling
issue is discussed in Section 4.5, namely whether
observed variation in behaviour is interpreted as
arising from identical individuals behaving
differently, or as flexible responses to pre-existing
differences. This brings out an important
difference between economic and biological
equilibrium concepts, as well as lessons for
biologists’ traditional expectations of game
theory models. The paper ends with a
Conclusion.

2. Description of the Model

2.1.  ’  

Each individual lives as an adult for one
generation (or period, for economists), in which
she is endowed with one unit of time and one
unit of labour, differentiated by type indexed by
j=1, 2 . . . n. A matrix H represents how the
adult would behave as each type. Offspring are
also differentiated by type, and Hij specifies how
much time a type j adult spends in producing
type i offspring. The wage per unit labour is wj .
A parent of type j who produces t units of type
i offspring spends t units of time and tCij units
of resource in doing so. It requires bj units of
resource to keep an adult alive. The bj and Cij are
assumed to be positive. The constraints facing a

parent who has to choose a strategy for each type
are therefore the time constraint:

s
i

Hij E 1 (1)

the resource constraint, subsuming time con-
straint:

bj + s
i

CijHij E01− s
i

Hij1wj (2)

and non-negativity of offspring production:

Hij e 0 (3)

The left hand side of the resource constraint is
expenditure on keeping the adult alive plus the
sum of the expenditure on all types of offspring.
The right hand side is the earnings from paid
employment. A purely economic model would
have the individual choose the matrix H to
maximise some utility function. In this model H
will also sometimes be considered to evolve by
natural selection.

Let xj denote the density of adults that are
of type j. Then the amount of labour supplied of
type j, to be denoted yj , in a homogeneous
population each of whose members makes
choices H is given by

yj = xj01− s
i

Hij1 (4)

2.2.    

 

The economy produces only one commodity,
in amount f(y) in one generation, where y
denotes the vector of densities of labour
employed of each type. We assume that f is
non-negative, continuous, convex, has constant
returns to scale and is not everywhere zero. We
assume the workers are paid their marginal value
in production. Let w denote the wage vector, and
p the price of the commodity, normalised so
p+Sjwj =1. We also assume that the economy
is feasible. That is, there must exist a vector of
labour supply, say ȳ, such that with some set of
associated wages and price (w̄, p̄), each type j
with ȳj q 0 can earn enough in wages to support
itself and engage in at least some reproduction.
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If and only if this feasibility condition is upheld
can the technology support a population whose
ratios of types remain constant over time without
transferring resources between individuals.

2.3.   

There are discrete generations, and an
individual lives for one generation as a child and
one as an adult. Each individual has a genotype.
It will suffice to assume there are at most two
genotypes present at any one time, and let them
be A and B. Genotype determines the choices of
H, according to a schedule based on the wage
vector w and price p. Formally, a genotype is a
mapping from possible (w, p) to resulting H. Let
the choices of H in generation t by genotype
g $ 4A, B5 be denoted Hg,t. Because reproduction
is asexual, an offspring has the same genotype as
her parent. The density of types with genotype g
in generation t can therefore be obtained as

xg,t =Hg,txg,t−1 (5)

A genotype with Hg,t constant and equal to H
will eventually grow exponentially at rate r(H),
where r(H) denotes the spectral radius of H. The
complexity of the model has been concentrated
into the calculation of Hg,t. In particular the wage
vector w depends on the frequencies of genotypes
A and B, and so the feasible values of H depend
on those frequencies. This links the equations for
different genotypes, which as presented in eqn (5)
seem to be separate. The definition of the model
is now complete, and we turn shortly to
introduce equilibrium concepts.

In principle, polymorphic equilibria are
possible, in which two genotypes are present in
stable proportions. Here attention is confined
to monomorphic equilibria, in keeping with
the evolutionarily stable strategy approach
(Maynard Smith, 1982). This is probably
reasonable, as the set of possible genotypes
includes all possible mappings from (w, p) to H.

It is useful to review now the parameters of the
model. bj is the amount of resource required to
support one adult of type j. Cij is the amount of
resource required for a type j adult to raise one
unit of type i offspring. Finally, there is the
production function f. The equilibria found will
depend on these parameters.

2.4.  

A state of the population will be represented
((w, p), H,x, y). A state is consistent if the
wages and price (w, p) represent marginal
productivities given the labour supply vector y;
the time allocation matrix H is non-negative and
satisfies the constraints in terms of (w, p) on
individual’s choices; x is a non-negative right
eigenvector of H; and y is the labour supply
produced by a population in density x each of
whose members is allocating their time according
to H. Loosely, the persistence of a consistent
state through time is possible, which is part of
the requirements for the two equilibrium
concepts.

Notice that a consistent population may be
growing or shrinking at a constant rate, but that
the ratios of types are required to remain fixed.
The two equilibrium concepts to be defined
below also permit constant growth or shrinkage.
It is usual in biological models to assume that a
‘‘bland density dependence’’ maintains the
population size (see for example Charlesworth,
1994), so that attention can be focused on the
ratios of types. Economists may see the
possibility of constructing a model developing
that presented here in the same way that Golden
Rule models develop the balanced growth model
of Gale (1956). [Mitra (1992) gives a succinct
technical description of Golden Rule models,
and also looks at possibilities of relaxing the
assumption of convexity of the production
function.] Such a model in the present context
could make explicit the population dynamics and
the determination of population size.

The first equilibrium concept is Evolutionarily
Stable State, which is based on the Evolutionar-
ily Stable Strategy (Maynard Smith & Price,
1973; Maynard Smith, 1982). A consistent state
of the population ((w, p) H, x, y) is an Evolu-
tionarily Stable State if H has the highest spectral
radius among time-allocation matrices satisfying
the individual’s constraints. It would be inaccur-
ate to refer to the state as an ‘‘Evolutionarily
Stable Strategy’’ because only H is a strategy,
and the rest of the state records information that
depends (but non-uniquely) on H and determines
the value of playing different possible time-
allocation matrices.
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Informally, an Evolutionarily Stable State is a
consistent state of the population in which there
is no genotype that, if introduced as a very small
proportion of each type into the population,
would ultimately increase in relative proportion
to the prevailing genotype.

The second equilibrium concept is the
Offspring-Linear Population Nash Equilibrium. A
consistent population state in combination with
a non-negative weighting vector z is an
Offspring-Linear Population Nash Equilibrium
if, for each type j (including absent types for
which xj =0), the j-th column of H achieves the
maximum value of Sizihi where h is constrained
to satisfy the constraints for an individual of type
j.

The central property of an Offspring-Linear
Population Nash Equilibrium is that each
individual acts as if maximising a weighted sum
of the numbers of offspring produced, where the
weights are given by z. This weighted sum can be
thought of as a common utility function in an
economic context. Biological interpretations will
be discussed shortly.

3. Results of the Model

Informal versions of the propositions are given
here. Formal versions and proofs are given in the
Appendix, as are more technical results.

Informal version of Proposition 1: An Evolution-
arily Stable State exists in the model of
Section 2.

To express the next proposition more under-
standably in this informal version, we anticipate
its content by revealing that the vector z
represents the reproductive value of the types.
Reproductive value is a biological term that,
loosely speaking, measures the contribution of
an individual or of a group of individuals to the
gene pool of distant generations. The biological
interpretation of Proposition 2 is that the
quantity maximised is the individual’s contri-
bution to the gene pool of distant generations.
Each type of offspring has a reproductive value,
and the parent makes her choices to maximise
the sum of the reproductive values of her
offspring.

We further define ‘‘relative reproductive
value’’, only for types with positive reproductive
value, as the summed reproductive value of the
offspring produced by that type, divided by that
type’s own reproductive value. An ‘‘extant’’ type
is one that has a non-zero density in the
equilibrium. We may now express the second
proposition.

Informal version of Proposition 2: To each
Evolutionarily Stable State in the model of
Section 2, there exists a corresponding Offspring-
Linear Population Nash Equilibrium with the
following properties.

1. The reproductive value of each extant type
is positive.

2. The relative reproductive values of extant
types are all equal.

3. Each absent type with positive reproductive
value has a relative reproductive value that
is no greater than the relative reproductive
value of the extant types.

These first two propositions contain, in
principle, potential resolutions of the two puzzles
of Vining (1986) discussed in Section 1. The
second proposition shows that individuals
maximise the sum of the reproductive values of
their offspring. Given that offspring types differ
in reproductive value, a completely Darwinian
model therefore predicts reproductive restraint.
At least, parents will not act to maximise their
unweighted number of offspring. They may have
fewer offspring in order to have better offspring.
This compatibility between Darwinism and
reproductive restraint is at first sight somewhat
surprising. The model shows how the kind of
quality–quantity trade-off postulated by de-
mographers to explain demographic transitions
can be given a Darwinian representation. The
Darwinian version does have the methodological
virtue that it can, at least in principle, be
quantified.

Vining’s second puzzle is the correlation or
lack of it between wealth and reproductive
success within developed societies. Proposition 2
asserts that the relative reproductive values of all
the types are equal, even though their absolute
reproductive values may be very different. In a
simple case in which each type makes only its
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own type of offspring, this corresponds to the
simple consequence of demographic equilibrium
that every type has the same number of offspring.
So a very low correlation between wealth and
offspring number does not necessarily imply a
very low correlation between wealth and
reproductive value.

The model’s results therefore suggest the
possibility of resolving Vining’s two puzzles. It is
at present quite unclear whether reproductive
values do differ so greatly between types of
offspring that the results do answer Vining. That
would require empirical work, as well as more
detailed modelling.

The results so far can be compared with those
of previous models in this branch of theory. A
major aim of the models of Rogers (1990, 1995)
and Harpending & Rogers (1990) was to resolve
Vining’s two puzzles in this way. The present
model is a more general resolution for a number
of reasons. First, it contains an explicit if simple
model of economic choices, as well as of
reproductive choices. Second, it is explicit that
the individual makes those choices in a way that
maximises reproductive value. This point lies
latent in the earlier works, though the concept of
reproductive value as measuring an individual’s
contribution to the gene pool of distant
generations is fully explored. The maximisation
of reproductive value allows links to be made
with demography, and with biologists’ use of the
concept of fitness. It also produces natural
expectations that in models with more complex
choices there will be again a quantity that
individuals act as if maximising at equilibrium,
and this is an important general conclusion
about the nature of economic and reproductive
behaviour.

A formal extension of the scope of the theory
that arises from the maximisation of reproduc-
tive value is given in the third proposition. To
express the proposition informally, it is con-
venient to retreat from giving z the label
‘‘reproductive values’’, and instead to refer to it
more neutrally as the weights in the weighted
sum which individuals act as if maximising.
Parallel to the usages above, let the ‘‘relative
weight’’ of a type with positive weight be the
weighted sum of its numbers of offspring divided
by the weight of its own type.

Informal version of Proposition 3: Suppose a
population is at an Offspring-Linear Population
Nash Equilibrium, so that individuals of extant
types do act as if maximising a weighted sum of
the numbers of offspring types, and individuals
of absent types would do so. Further suppose
that the following properties hold.

1. The relative weights of extant types are all
equal.

2. Each absent type with positive weight has
a relative weight that is no greater than the
relative weight of the extant types.

3. Each type with zero weight cannot earn
enough to reproduce.

Then the population is also in an Evolutionarily
Stable State.

This third proposition shows how a certain
pattern of flexible responses on the part of
utility-maximisers can bring about the same
effect as natural selection, without the necessity
for changes in gene frequencies. The significance
of this result is discussed in Sections 4.2 and 4.3.

4. Discussion

4.1. 

The explanation of human fertility is part of
the subject of demography. Biological and
economic ideas have been emphasised in the
construction of the model, and it is important to
understand how these ideas fit in to demogra-
phers’ views. This section looks at biological
ideas about human fertility in two works of
mainstream demography, points to work that
aims to link biology and demography, and
discusses Darwinian perspectives on human
fertility suggested by the model of Section 2.

The main business of Wrigley & Schofield
(1981) in their magisterial ‘‘Population History
of England 1541–1871’’ is to reconstruct
measures of fertility and mortality, and they
employ sophisticated historical and statistical
techniques to this end. Their comments on
explanations for fertility, at the level of the
individuals involved, are more tentative. They
are open-minded about the types of causes at
work, discussing on pp. 306–307 the ‘‘biological,
social, or economic mechanisms’’ that might link
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fertility, mortality and nuptiality. On p. 422 they
argue that ‘‘mediated by conventions about the
timing and incidence of marriage, the impact of
changing real wages on marriage patterns over a
period of time may be similar to that which
would be produced by conscious calculation’’,
despite the fact that ‘‘a knowledge of trends in
real wages and a conscious attempt to adjust
behaviour accordingly’’ were lacking. This
‘‘unconscious strategising’’ (see also Wrigley,
1978) is strongly redolent of Darwinism, which
supposes that our eyes are fashioned to see
irrespective of our understanding of optics, and
that our behaviour conduces to the propagation
of our genes irrespective of how we experience it.
In their concluding chapter, they discuss a ‘‘niche
model’’ of human reproduction, and refer on
p. 462 to ‘‘the situation found among some
species of birds which breed only after gaining
control of an individual territory’’, citing
Wynne-Edwards (1962). Although the biological
citation is now somewhat out of date [demogra-
phers wishing to learn about current biological
theory would do better to start with the
discussion specifically for them by Low et al.
(1992), or enter directly into the evolution
literature with the textbook of Ridley (1996)],
Wrigley & Schofield certainly seem comfortable
with the possibility of admitting biological
factors at various levels into the explanation of
patterns in human fertility.

A later work by Levine (1987) focusses on
explaining people’s reproductive decisions, and
his account has striking resonances with an
active neo-Darwinian approach, resonances to
which the author himself makes no reference. He
argues for the centrality of ‘‘the family’’ in
understanding population history, and defines
the family as ‘‘the product of strategies of
production and reproduction’’ (p. 4). He insists
on the ‘‘interconnectedness of production and
reproduction’’ (p. 4). The main theme is to
explain the patterns of English family life that
can be documented from feudal times to the
early 20th century, as the product of ‘‘an
underlying rationality in family formation
strategies’’ that he assumes ‘‘to have been
responsive to contemporaneous changes in the
material world’’ (p. 8). Levine corrects the
non-specialist’s belief that there was no repro-

ductive restraint before the industrial revolution
(p. 69ff). He refers to the tendency to marry
someone in a similar social station with the
approval of one’s parents as operating ‘‘through
an unconscious rationality’’ (p. 74). On p. 130,
Levine writes ‘‘In such a world of pullulating
forces, individuals are assumed to make strategic
decisions for their own reasons, in order to
optimise their perceived circumstances’’. His
‘‘fundamental’’ belief is that ‘‘fertility behaviour
is economically rational within the context of
socially determined economic goals and within
bounds largely set by biological and psychologi-
cal factors’’ (p. 161). His peasant demography
model and proletarian demography model are
stylised representations of the operations of the
family as they vary in space and time and
between social groups. He explains the models as
rational responses to the contingent circum-
stances of their respective eras. Levine empha-
sises throughout that principles can be used to
explain the response to contingent circum-
stances, while those contingent circumstances
themselves need fit no neat pattern.

Darwinism too supplies an optimising prin-
ciple, that can be viewed as acting through
unconscious rationality, and reacting to histori-
cal contingencies. Intriguingly, it seems likely
that an active neo-Darwinian account would not
contradict Levine’s own. The Darwinian account
would in theory supply an explicit optimising
principle, and so have the advantage of a
capacity for quantitative explanation. The model
of Section 2 and its results in Section 3 show in
outline how such an optimising principle could
be derived.

Here is a sketch of a provisional and tentative
example in which a Darwinian account could
supplement Levine’s. In England, the birthrate
started to fall dramatically from about 1870.
Levine links this fall to the spread of the notion
of ‘‘respectability’’ through the working classes.
He also points out that around this time the
demand for completely unskilled labour was
falling fast enough to create an excess of
unskilled labourers. Marriage depended on
financial independence, and reproduction de-
pended almost exclusively on marriage. Fertility
fell fastest among those groups who could
educate their children (pp. 191–192). It remained
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considerably above average among miners, in
whose towns there was an increase rather than a
decrease in the demand for unskilled and child
labour (p. 207). The tentative Darwinian account
is that parents saw the poor economic, and so
marital, and so reproductive, prospects of the
completely unskilled. Those parents who were in
a position to invest effectively in their offspring’s
health, education and training responded by
producing fewer offspring and concentrating
their investment, to improve (consciously or
unconsciously) their reproductive prospects.
This account depends on many assumptions,
which could be investigated by historians and
demographers. For example, on the Darwinian
view we would expect the excess of supply over
demand for unskilled labour to have occurred
before the reduction in fertility, and to have been
observable by, and in fact observed by, those
who altered their fertility pattern. We would
expect the time of appearance of the reduction in
fertility to be geographically and socially linked
to the change in the conditions of the labour
market. Contemporary accounts of ‘‘respectabil-
ity’’ might be expected to point to the
importance of the low reproductive expectations
of unskilled labour. It would be worth investi-
gating whether reduction in offspring number
was in fact compensated by an improvement in
the reproductive prospects of the offspring. This
skeleton Darwinian account may well prove to
be untenable. It is proposed here merely to
illustrate the kind of historical evidence that
could be relevant, and to stress that a Darwinian
account can be viewed and judged in historical
terms.

The idea of applying Darwinian ideas to
demographic phenomena is not new. For
example, Low (1991), Low & Clarke (1991)
and Clarke & Low (1992) have conducted
Darwinian-inspired investigations of demo-
graphic phenomena in 19th century Sweden. My
aim with this example was to illustrate how well
the Darwinian ideas discussed in the present
paper resonate with the well-known, canonical
work of Levine (1987).

Levine (1987) deliberately adds a humanistic
element to the dry accounting air of Wrigley &
Schofield (1981), who stress quantitative descrip-
tion and aim at explanation mainly by

inter-relating demographic measures. Levine
aims to explain by setting out the situation in
which people found themselves and appealing to
the reader’s sense of what she would have done
in their place. The Darwinian account does not
detract from this humanistic endeavour. It seeks
to cast light simultaneously on the actions of the
historical subjects and the intuitive understand-
ing appealed to in the reader.

A review of specifically Darwinian expla-
nations in demography is provided by Low et al.
(1992), who also expound for non-biologists the
relevant areas of modern evolutionary theory.
They discuss in depth the approach from
‘‘behavioural ecology’’ to natural fertility,
population regulation and reproductive pro-
duction vs. investment, in each of which there is
relevant Darwinian literature. Low et al. portray
a convincing case that behavioural ecology has a
useful contribution to make in their proposed
journey ‘‘Toward an Ecological Demography’’.

For reasons to be discussed in Section 4.2, it
is likely that human behaviour does not accord
with Darwinian predictions. It is therefore of
interest that Proposition 2 from Section 3 does
suggest ways of representing non-Darwinian
behaviour. For example, people may maximise a
function with the wrong weights. Perhaps the
weights are out-of-date, or are wrong because of
misinformation, or have been psychologically
manipulated. One possibility is that the value of
social status is over-valued, so that people prefer
quality over quantity to too great an extent. It
may also be that people’s categories are wrong.
They may not make fine enough distinctions
between different types of offspring. The
Darwinian model would still be useful in these
circumstances, for suggesting a general frame-
work of maximising weighted sums of offspring
number, and for providing within it a standard
for comparison.

At a more general level, the model suggests
three ways of measuring the quantity of offspring
produced by a parent: by number, by reproduc-
tive value, and by the resources invested in them.
The easiest way is to count offspring, and it is by
this measure that fertility transitions are defined.
However, was the reduction in offspring number
accompanied by a reduction in reproductive
value? In other words, did individuals really
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change their behaviour in a way that made
them biologically worse off? In view of the
importance of reproductive values in evaluating
Darwinian fitness, this remains an open ques-
tion, and a vital one for an evolutionary
understanding of fertility transitions. It may also
be of interest to evaluate strategies for popu-
lation control by their congruence or conflict
with a proper understanding of the Darwinian
interests of those affected.

It is also of interest to ask whether the
reduction in offspring number in a fertility
transition is accompanied by a reduction or an
increase in the total amount of resources an adult
invests in her lifetime production of offspring. It
is in principle possible that the decrease in
offspring number was accompanied by an
increase in both the Darwinian fitness and
reproductive resource use of members of the
population. It may be that what saves developed
societies from the gloomy prediction of Malthus
(1798) is not liberation of individuals from their
slavery to reproduction, but rather, that biologi-
cally effective reproduction requires economi-
cally effective offspring, which in turn requires
less vicious and more civilised habits of life for
parents.

In conclusion, the model provides a formal
structure in a simple model, carrying the
implication of an analogous formal structure in
more complex models, that supports and extends
the application of Darwinian principles to
demography.

4.2. 

Various biological issues arise from the model.
This section begins with a discussion of
reproductive value, considers the question of
whether we should expect an evolutionary
equilibrium to be approximately attained in a
changing environment, and ends by looking at
the possibility of relaxing assumptions of the
model.

Many of the present model’s conclusions are
phrased in terms of reproductive value. Intro-
duced by Fisher (1930) in the context of
age-structured models, and explored further by
Hamilton (1966), it is still a key concept in that
area (see Charlesworth, 1994). It is increasingly
being employed in other kinds of model (a few

examples are Taylor, 1990; Boomsma & Grafen,
1991; McNamara, 1993; Leimar, 1996). Why is
reproductive value such an important concept?
The idea that all offspring are not equal was
explicit in the work of Lack (1968). He showed
that natural selection would lead birds to lay
fewer eggs than they could. The reasons included
the waste in producing eggs that, once hatched
into nestlings, could not be sufficiently fed to
survive to fledging; and that expending more
time and resources on producing eggs and
feeding nestlings prejudiced the survival chances
of the parents. Lack’s founding work forms part
of the framework of modern evolutionary
biology.

In simple cases, where all offspring that
survive to breed are equal, using reproductive
value amounts only to choosing a late enough
moment in the life-cycle at which to count
offspring. Lack’s work falls into this category.
However, in more complex cases in which all
offspring that survive to breed are not equal, it
is necessary to distinguish the types of offspring,
and to attach (at least in principle) a numerical
reproductive value to each type. The sex ratio
argument of Fisher (1930) is a simple example,
as it distinguishes female and male offspring.

Two important points can be made about the
reproductive values of the types. First, in general
they depend on the frequencies of those types in
the population. So when strategic behaviour
interacts with those frequencies, it is not possible
to calculate the reproductive values in advance of
knowing the state of the population, and hence
the strategies being played. The reproductive
values are endogenous to the equilibrium. Second,
once they are known, the reproductive values
provide a quantity that individuals act as if they
are maximising at equilibrium. This useful
quantity corresponds to what many biologists
refer to loosely as ‘‘fitness’’ (see Dawkins, 1982,
for a review of uses of this concept). Drawing
these two points together, fitness can be formally
constructed to correspond to informal usage. It
is then useful for interpreting behaviour at
equilibrium, but it does not suffice to find that
equilibrium in the first place. Reproductive value
thus provides a crucial link between population
genetic and game theoretic approaches to the
study of behaviour.
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In applications, it is likely biologists will need
to decide which distinctions it is necessary to
make between individuals. If offspring vary in a
way that is influenced by the parent on the one
hand, and affects the offspring’s reproductive
success on the other, it is important to recognise
those differences when evaluating reproductive
success, or fitness. Sex, size, possession of a
territory or breeding slot, and inherited social
status are obvious possible candidates. Evaluat-
ing the reproductive values of types could be
done directly, if enough were known about the
population, as the left eigenvector of the transi-
tion matrix that indicates how many offspring of
each type are produced by parents of each type.
Another possible approach is to infer reproduc-
tive values from the choices made by parents.

Now I turn briefly to a large and controversial
topic, the relevance of natural selection models
to current human behaviour, as it specially
applies here. See Alexander (1990) and Turke
(1990) with their following commentaries for an
introduction to the general debate. Types of
labour and production functions are very new
evolutionarily, and are subject to frequent
change. It is unreasonable to expect genes with
highly specific effects to be selected through the
population every time a relevant factor changes,
rapidly enough to ensure that human behaviour
is usually approximately Darwinian. Change will
usually be too rapid in comparison with the
speed of selection. On the other hand, we do not
require genes with highly specific effects in order
to use can openers, operate video machines,
devise strategies for chess and bridge, or to read.
Yet we do all these things fairly efficiently.

The relevance to current human behaviour of
models such as the one presented in this paper
stems from an assumption that humans have
general purpose cognitive abilities that allow
them to react to perceived circumstances.
Proposition 3 suggests what kind of general
purpose program might evolve that would
maintain an Evolutionarily Stable State in the
face of changed circumstances, without the need
for changes in gene frequencies. Suppose first
that humans are constructed to maximise a
weighted sum of offspring numbers, with the
weights to be evaluated during an individual’s
lifetime. Further suppose that they gain infor-

mation that allows them to determine the
transition matrix H between types, and have
evolved to calculate the weights as the left
eigenvector of H. Then Proposition 3 states that
a population following this rule, if in a consistent
state, would also be in an Evolutionarily Stable
State. Changes in the production function and
resource costs could be responded to, and a new
Evolutionarily Stable State attained, with no
changes in gene frequencies.

Of course such a rule is unlikely to work
perfectly. Knowledge of H will be imperfect, and
indeed even the appropriate set of types to
distinguish will in reality be unclear. But a
strategy broadly of the kind just outlined is likely
to be evolutionarily successful because of the
generality of its approach, and because it will
rapidly bring about evolutionarily appropriate
responses to changed conditions. Both these
reasons also encourage observers to expect to see
evolutionarily appropriate behaviour in a wide
range of circumstances, even those of recent
origin.

Perhaps other species too have general
purpose programs, rather than highly detailed
sets of behavioural rules? Certainly, a general
purpose program is likely to be more successful
within a species in the face of environmental
change, and species with more general purpose
programs are likely to endure longer than those
with highly detailed rules. To give just one
suggestive example, Davies (1992) shows that
dunnocks (Prunella modularis, a European bird
also known as the hedge sparrow) exhibit a wide
variety of types of breeding group within a small
area. There are monogamous pairs, trios with
two males, trios with two females, and larger
breeding groups. He shows convincingly that the
type of group reflects underlying strategic
variables such as resource availability, and that
the behaviour of an individual is adapted to the
type of breeding group to which he or she
belongs. It is unlikely that dunnocks have
hard-wired rules about each separate type of
breeding arrangement. Instead they probably
have flexible rules that may include learning.

The final issue for biological discussion is the
implications of relaxing some restrictive assump-
tions of the model of Section 2. The model has
asexual individuals. Incorporation of two sexes
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would introduce a number of new elements. Let
us discuss first for simplicity a case in which a
sexual model leads to the formation of
permanent monogamous ‘‘households’’ by
‘‘marriage’’. Questions arise of division of
productive and reproductive labour between the
sexes. Now suppose ‘‘households’’ are not
permanent, and ‘‘divorce’’ is possible. A conflict
of interest arises between the partners in a
household, and here lies the germ of another
kind of explanation of reproductive restraint—
that the game played between partners in a
household results in a solution that is less than
fully cooperative, to an extent that will depend
on institutional arrangements in respect of
divorce, remarriage, and rules of inheritance and
child maintenance.

Another unrealistic aspect is the purely
economic nature of the types. Instead types
could be defined in non-economic ways. The type
distinctions will be biologically important if they
have any influence over reproduction, for
example if an individual’s type affects what type
of offspring they produce or what type of
individual they marry. This applies whether these
effects arise in a strong way by explicit social
rules, for example type 1 is not permitted to
marry type 2; or instead more weakly as
correlations, for example type 1 is less likely to
marry type 2 because social conventions mean
these types rarely meet. Relaxation of assump-
tions would allow a wide spectrum of social
behaviour to be considered within the same basic
framework.

4.3. 

The main lesson to be drawn, therefore, is not that
preferences are biologically determined in any
complete way—but rather, that they are scientifically
analysable and even in principle predictable in terms
of the inheritance of past genetic and cultural
adaptations together with the new adjustments called
for by current environmental circumstances. (Hirsh-
leifer, 1977, p. 26)

This section aims to pursue Hirshleifer’s
proposed program by discussing two kinds of
link between utility maximisation studied by
economists, represented in the formal develop-
ment here by the Offspring-Linear Population
Nash Equilibrium, and the evolutionary stability

studied by biologists, represented by the
Evolutionarily Stable State.

One relationship suggested by the current
model is that natural selection has brought about
human behaviour which can be viewed as
utility-maximising. Proposition 2 shows that at a
population genetic equilibrium, there exists a
function which each individual acts as if to
maximise. It is a weighted sum of offspring
produced, the weights being the reproductive
values of types. Generalising, it can be suggested
that fitness maximisation creates utility
maximisation.

Let us see how this works in the model. The
set of reproductive values, and so the utility
function, is the same for everyone, but is not
expressed in terms natural to an economist. This
single ‘‘underlying utility function’’ can be
unpacked into a set of ‘‘imputed utility
functions’’, one for each of the types, that ignore
reproduction and are functions of consumption
and leisure. For example, we could postulate a
utility function for each type k,

uk (c, l)= akcbkl1− bk

where c is household consumption and l is the
amount of leisure. ak and bk are positive
constants. The choice of ak is irrelevant here, and
could even vary on an individual basis, but serves
to remind us of the incomparability of utilities.
If we have an ESS of the model of Section 2, then
we can choose bk =SiHik , and the reader will
readily confirm that each type maximises its
uk (c, l), subject to time and resource constraints,
at that equilibrium.

The simplicity of the model makes this
example trivial in some ways, but it illustrates
the following conclusions. First, the use made
of time out of paid employment is likely to
depend strongly on child-rearing commitments,
and a formulation that classes nappy-changing
with water-skiing into a single homogeneous
‘‘leisure’’ constitutes a heroic simplification.
From the point of view of the present model,
reproduction is central and the first aspects of
decision-making that should be articulated are
therefore those relating to the rearing of
offspring.

Second, the usual economic formulation
presupposes that a clear conceptual separation
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can be made between people’s preferences and
properties of the available technology. The
biological underpinning suggests on the contrary
that the quantity that people will act as if they
are maximising, at equilibrium, will depend on
all the parameters of the model. Specifically, z is
expected to depend on f, as well as on the Cij and
bj .

Third, the maximand provided by the Popu-
lation Nash Equilibrium is not available as a
utility function in a formulation that ignores
reproduction. We have however constructed
‘‘imputed utility functions’’, in terms of more
usual economic variables. The imputed utility
functions are type-dependent, because the types
vary in number of children and investment per
child. Looking at economics in this light suggests
that people’s different preferences may result
from an underlying common utility function,
and from differences between people in variables
that are omitted from study in any particular
case.

Various conclusions follow from viewing
reproductive value as utility. For example,
reproductive values are comparable between
individuals. Comparability has been of interest
to economists because it allows the construction
of a social utility function to measure social
welfare and so provides a method of choosing
between different options in a way that is not
interpersonally arbitrary. Ironically, while bio-
logical reproductive values are comparable, they
are inherently competitive, so that it is
impossible to raise everyone’s reproductive
value. It follows that one natural attempt at a
social welfare function, the sum of individuals’
reproductive values, is constant (or, more
accurately, arbitrary) and independent of
social or individual actions (with the arguable
exception of those causing the death of all
humankind). On the other hand, one can
compare the reproductive values of individuals.

Reproductive value is also cardinal, that is, it
makes sense to say ‘‘X is twice as fit as Y ’’. The
reproductive value of groups of individuals can
therefore be compared. Selection would also act
on average reproductive value when decisions
must be taken under uncertainty. One assump-
tion sometimes made about utility is that it tends
to negative infinity as consumption tends to

some minimal value. It corresponds to the
assumption that an individual will take every
possible action to avoid the slightest chance of
death. The absolute minimising of the risk of
dying is not a property of human behaviour
expected on biological grounds. A person should
be evolutionarily indifferent to playing double-
or-quits with her reproductive value.

A second link between the models of human
choice is suggested by Proposition 3. The general
purpose rules that are likely to be evolutionarily
successful, as discussed in Section 4.2, will
incorporate the acquisition of information that
helps to determine the individual’s utility
function, and a behavioral rule that involves
choosing actions to maximise that utility
function. Maximisation of a function to be
determined can be expected to be built in as part
of the mechanism that gives rise to an
individual’s behaviour. Maximisation should
then be part of the psychology of human
behaviour, consistent with the maximisation of
functions that are ‘‘best guesses’’ at, or
evolutionarily out-of-date versions of, reproduc-
tive value; or even of quite novel functions that,
from a biological point of view, would be
regarded as ‘‘mistakes’’.

The major implications sketched here of the
biological approach for economics are therefore
(i) the possibility of constraints on the plausible
forms of utility functions, along with their
comparability, cardinality and risk-neutrality
when measured appropriately, (ii) the centrality
of reproduction in the determination of people’s
preferences and behaviour, (iii) preferences may
not, even conceptually, be independent of the
available technology, and (iv) biology provides a
reason to expect humans to be designed to
maximise some quantity that becomes fully
determined only during the individual’s lifetime.

4.4.   

The New Home Economics of Becker (1991),
Becker & Barro (1988), Barro & Becker (1989),
and related work (e.g. Cigno, 1991) is the main
economic treatment of the subjects, for example
marriage, divorce, fertility and legacies, that can
most readily be tackled by Darwinian methods.
Here the formal bases of the present model and
the New Home Economics are compared. Becker
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& Barrow (1988) begin with the assumption
that a parent’s utility depends on her own
consumption, on the number of her children, and
on the utilities of her children. Their utilities
therefore depend in turn on the utilities of
their own children. Making some technical
assumptions Becker & Barro arrive in their
eqn (5) at a dynastic utility function ‘‘that
depends on the consumption and number of
children of all descendants of the same family
line’’, thus:

U0 = s
a

i=0

AiNiu(cini )

where i indexes generations forward in time from
now, ni is the number of children and ci is the
consumption per adult in generation i. Ai is the
implied degree of altruism of the dynastic head
(the decision-maker) towards each descendant in
the i-th generation, which approaches zero
rapidly enough to guarantee that the sum
converges. Ni is the number of descendants in
generation i, and u is a standard one-period
utility function.

A first attempt at a biological version of what
should be maximised in this notation is the
long-run rate of increase in number of descen-
dants, as follows

lim
i:a

N1/i
i

A refined version might allow for the ultimate
(asymptotic) distribution of capital, and ques-
tions arise of whether Ni or N1/i

i will converge
more usefully, but these sophistications do not
affect the points to be made here.

The biological view is that consumption is
irrelevant except insofar as it helps to determine
the number and types of descendants. Some
consumption is needed directly to acquire the
energy to permit work to be done and children
to be reared. Other consumption may be needed
rather less directly, to acquire or retain a social
standing necessary for the production of certain
types of offspring. But the formulation of the
dynastic utility function in terms of consumption
purely for its own sake is inconsistent with the
biological viewpoint. Further, it is only the
eventual number of descendants that matter, and

not the number in any particular intermediate
generation.

Despite this formal dichotomy, New Home
Economics is in more general terms extremely
congenial to the Darwinian approach. It treats
those aspects of human life closest to reproduc-
tion and assumes a maximisation principle.
The conclusions may often not depend critically
on what is being maximised, particularly as
general forms of utility function are often
assumed. The extent to which the conclusions of
the New Home Economics, about choice of
marriage partner, divorce, and fertility, also
hold under an explicitly Darwinian model is
worth further study. A technical advantage
over the New Home Economics is that the form
of the utility function is highly constrained,
which may enable more definite predictions to be
made.

4.5.    

Some more general points about evolutionary
models with different types are made here, which
arise from the specific model constructed earlier.
If we observe that a society contains two kinds
of people, say labourers and lawyers, there are
two simple modelling responses. The first is to
take the behaviour of the two kinds as fixed, and
to model how some individuals become labour-
ers and others become lawyers. This corresponds
to making strategies of the kinds, and is the
traditional ESS approach to variation in
behaviour. The second is to assume that an
individual is allotted a kind, but then to study
how labourers behave and how lawyers behave
assuming they act to best evolutionary advan-
tage. This makes types of the kinds. Reality is
likely to be more complicated, with some
individual influence over the kind she becomes,
and over behaviour within each role, both
affected by underlying pre-existing individual
differences.

The traditional ESS approach makes the
strong conclusion that each strategy should have
equal fitness at equilibrium. The types approach
by itself makes no such claim. When, as in the
model of Section 2, an individual’s type is chosen
by her parents, we do have the conclusion that
each type must have equal relative reproductive
value.
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The definition of ESS used in the present paper
has been adjusted to the existence of a variety of
types, so that it involves maximising an
eigenvalue, instead of a simple payoff function.
This is standard practice where types are
involved (e.g. Taylor, 1990; McNamara, 1993;
Leimar, 1996). It is necessary because the
reproductive values of the different types are not
known a priori and the eigenvalue calculation
effectively works them out. This is quite different
from incorporating the dynamics of gene
frequencies into the ESS definition, though that
would also lead to eigenvalue calculations. Their
introduction here follows the ESS philosophy of
keeping the gene dynamics as simple as
possible—one putative stable allele vs. one
candidate mutant—in order to allow the biology
to be more sophisticated. This aspect of the
definition of ESS represents a more substantial
conceptual difference from other equilibrium
concepts, such as Population Nash Equilibrium,
than the ‘‘second condition’’ of the ESS
definition.

Irreducibility of the transition matrix H is a
major technical concern with a meaning. If H is
irreducible, then all the types are linked by paths
of descent. If H is reducible, then there exist
subsets of types that do not connect with each
other, but are connected within each subset.
While it may be reasonable to solve this problem
just by assuming that there is some chance of
each type giving rise to any other, in simple
models in which optimal choices are made,
reducibility is a likely outcome. The issue of
reducibility is connected with the role of
inter-marriage in strife between sections of a
community.

One aspect of reducibility is that reproductive
values may not be uniquely defined at equi-
librium. They are uniquely defined within each
internally-connecting subset, up to multipli-
cation by a positive constant. Between subsets,
they need satisfy only inequalities which ensure
that no type can gain by making types outside its
own subset. Reducibility will be an important
modelling concept whenever evolutionary
models include types.

More realistic evolutionary models in many
areas will need to incorporate a variety of types.
The requirement that observed kinds should

have equal fitness has been seen as a hallmark of
the ESS approach. However, that is true only of
simple models.

5. Conclusion

The model is an extremely simple represen-
tation of an economic society. It is possible to
draw tentative conclusions about the outcome of
more realistic models that follow the same
approach in incorporating models of social
institutions and neo-Darwinian assumptions
about the evolution of individuals’ decisions.
The Darwinian part of the model produces
behaviour on the part of an individual that
maximises the individual’s fitness given the
choices of all other individuals. However, that
fitness is not simply measured as number of
offspring, but rather as a weighted sum of
offspring produced. The formal impact of social
institutions on the model can be seen in two
ways. First, they determine which types of
offspring it is necessary to distinguish. In this
example they are defined by the types of labour.
Second, social institutions play an essential
rox le in determining the weights employed in
calculating fitness. Here the method of wage
determination is important. In more realistic
models, other social constructs could be import-
ant, such as marriage customs, the taxation
system, and laws about primogeniture, inheri-
tance and child support. A likely outcome of
such models is a categorisation of offspring into
types, and a corresponding set of weights such
that individuals act so as to maximise their
weighted sum of offspring produced.

The sophisticated Darwinian approach to
reproduction and economic behaviour taken
here is essential for those who take seriously the
Darwinian hypothesis about human behaviour.
Simpler models that do not recognise types and
their different reproductive values will not
suffice. The approach may also appeal for
methodological reasons to demographers study-
ing fertility, as it suggests a formal framework
with fairly restrictive conditions, and so is likely
to make fairly sharp predictions. Economists
may find food for thought about the currently
peripheral place of reproduction in their
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discipline, seen against the suggestion that
people have a common underlying utility
function that is linear in offspring numbers and
is independent of consumption. Finally, those
who wish to deny on empirical rather than
ideological grounds that Darwinian ideas can
help to explain human behaviour, will need to be
aware of this kind of model. It displaces earlier
simpler conceptions that did not distinguish
between types, and it provides a theoretical
framework for serious modern Darwinian
approaches to the quantitative study of human
behaviour.

I am grateful to Jim Mirrlees, who read an earlier
version and made many useful comments. His advice
about the mathematical model has allowed me to
make it shorter, more general and easier to
understand. I am grateful too, for help with references
and useful comments on earlier drafts of the
manuscript, to: Marian Dawkins, Magnus Enquist,
Frank Hahn, Heribert Hofer, Desmond King, Jack
Langton, Olof Leimar, Bobby Low, Ruth Mace,
Serena Olsaretti, Andrew Read, Mark Ridley, Alan
Rogers, Steven Siller, Howard Smith, and Tony
Wrigley.
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APPENDIX A

The first subsection of the Appendix proves
three technical lemmas, then the second provides
formal definitions of terms, and of optimisation
programs, that are needed for the main
argument. In the next subsection, three lemmas
are proved. The three propositions are proved in
the fourth and final subsection.

Non-standard notation will be used as follows.
If x and A are an n-vector and n× n matrix, and
IW41, 2 . . . n5, then x[I ] will refer to the vector
with elements xi where i $ I, and A[I ] will refer
to the matrix of values Aij where i, j $ I.
Elementwise multiplication between conformal
matrices will be denoted by ×, so A×B=C
means AijBij =Cij [i,j. A non-negative square
matrix will be termed stochastic if each column
sums to one. Vectors are not categorised as
‘‘row’’ or ‘‘column’’, and the inner product Sixizi

is written simply as xz. Similarly, SiziAij is
written zA, SjAijxj as Ax, and SijziAijxj as zAx.
Lower-case Greek letters have been used for
scalars, except that p has been used to denote
price.

A.1. Technical Preliminaries

The first lemma obtains results about the
wages that are consistent with determination as
marginal productivities given the economy-wide
production function f, and simply provides a
convenient point of reference for results that
have no claim to novelty. The second lemma is
needed to prove the third. The third lemma is
thought to be new, and it is hoped may be of
value in future studies in which the elements of
a non-negative matrix are chosen subject to
column-wise linear constraints, with the aim of
maximising the matrix’s spectral radius.

Lemma 1

Suppose f:Rn
+ : R+ is continuous, non-nega-

tive, convex and not everywhere zero, and that
f(my)= mf(y) for me 0. We now define
F:Rn

+ : 2Rn+1
+ :{95. For y$ 0, let

F(y)= 4(w, p):we 0,pe 0,p+ s
i

wi =1,

w(y'− y)e p( f(y')− f(y)) [y'5

and let F(0) equal *4y:y$ 05F(y).
Then F is upper semicontinuous on 4y:

ye 0, Sjyj =15, and F(y) is convex over the
same set. Further, suppose (w, p) $ F(y) and
(w', p') $ F(y'). Then

1. (w, p) $ F(my), for me 0
2. w$ 0
3. w(y'− y)e p( f(y')− f(y))
4. wy= pf(y)
5. wy'e pf(y')
6. (p'w− pw')yE 0
7. (p'w− pw')(y− y')E 0
8. y�0 implies (pq 0 and f(y)q 0).

Proof

Upper semicontinuity of F is immediate from
the definition, as is convexity of F(y), for
Sjyj =1, which excludes the case y=0. Constant
returns to scale for f, and the union definition of
F(0) for the case m=0, imply Part 1. Part 3
follows directly from the definition of F for
y$ 0. If we choose y= mȳ, and let m tend to
zero, the preservation of the inequalities in the
definition shows that Part 3 is also true for y=0.
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Part 4 follows by letting y' equal zero in Part 3,
obtaining wyE pf(y); then by letting y'=2y,
obtaining wye pf(y).

Suppose contrary to Part 2 that w=0. Then
by definition of F, we also have p=1. Part 3 then
implies that f(y')E f(y) for all y'. But by
hypothesis there is some value of y, ỹ say, with
f( ỹ)q 0; and so we can increase f(y') without
bound by employing f(y')= f(mỹ)= mf( ỹ) with
large enough m. Hence w$ 0, proving Part 2.
Part 5 follows from substituting Part 4 into Part
3. Multiplying Part 3 by p' yields, together with
its symmetrical formula,

p'w(y'− y)e p'p( f(y')− f(y))

pw'(y− y')e pp'( f(y)− f(y'))

Adding the inequalities yields Part 7, and then
letting y' tend to zero gives Part 6. Part 8 follows
from Parts 2 and 4, as wy must then be positive,
and equal pf(y). q

We now establish notation and some results
about the ‘‘rates of sequences of types’’. These
are the growth rates of subpopulations that
employ a sequence of types in succeeding
generations, and choice of fastest growth rates
will turn out to define an Evolutionarily Stable
State. Complications arise because of non-
uniqueness, and Lemma 3 supplies useful strong
conditions for the optimality of mixed strategies
of reproduction.

Let

ijVm = 4v:v1 = i,vm+1 = j,vk $ 41, ,2 . . . n5

for k $ 42, 3 . . . m55

iVm = iiVm

ijV	 m = 4v $ ijVm :vk = vk'c (k= k', or k=1,

or k=m+1)5

iV	 m = iiV	 m

and let the rate of a sequence v $ ijVm in relation
to a non-negative matrix Q be defined by

fQ (v)=0t
m

k=1

Qvk+1vk1
1/m

Now we define sets of ‘‘optimal sequences’’ by
letting

ifQ =max 4fQ (v):v $ iV	 m5

fQ =max 4ifQ :i $ 41, 2 . . . n55

iV*m = 4v $ iVm :fQ (v)=fQ5

ijV*m = 4v $ ijVm :v' $ i'V*m',vk+ k' = v'k

for k $ 41, 2 . . . m+155

ijV	 *m = ijV*m + ijV	 m

Now we define the set of types that can follow
a given type j in non-repeating cycles that are
optimal given they include j. Let

jUQ = 4i:v $ jV	 m ,fQ (v)= jfQ ,v2 = i5

Note that jUQ is non-empty by definition of jfQ .
We are now able to define properly placed.

Given a square non-negative matrix Q, a
conformal substochastic matrix S is said to be
properly placed on Q if, for each i, j, either Sij =0
or i $ jUQ . This means, loosely, that S is positive
only on elements that belong to fastest rate
sequences over Q.

Lemma 2

Let Q be a non-negative square matrix of
order n,

fmax(Q)=max4Qij5

and

fmin(Q)=min4fQ (v):v $ ijV	 *m 5

Suppose fQ q 0. Then

1. For v $ ijVm ,

fQ (v)m Efm
Q 0fmax(Q)

fQ 1
n

2. For v $ ijV*m ,

fQ (v)m efm
Q 0fmin(Q)

fQ 1
n

q 0

Proof

We begin by operating on a sequence v $ ijVm ,
and obtaining a formula for its rate in terms of
the rates of elements of kVm . Then we turn to
proving Parts 1 and 2. If v $ ijV	 m , then we let
l=0 and have finished. Otherwise there is at
least one repeated element, and we can find
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consecutive subsequence of v, say c1 $ j1V	 m1.
Replacing the subsequence c1 with the single
element j1 forms a new sequence v2 $ ijVm−m1. We
repeat this process until there are no repeated
elements, and let l equal the number of
replacements. This yields a series of extracted
subsequences ce , e $ 41, 2 . . . l5, along with their
lengths me . The final sequence vl+1 has no
repeated elements, so m−Sme E n. The defi-
nition of rate ensures that

fQ (v)m =fQ (vl+1)m−Sme t
l

e=1

fQ (ce )me

Now we prove Part 1. The rate of each ce is no
more than fQ . The rate of vl+1 cannot be greater
than fmax(Q)m−Sme. Hence

fQ (v)m E (fQ )Sme(fmax(Q))m−Sme

As already noted, m−Sme E n, and the
definition of rate implies that fQ Efmax(Q). This
proves Part 1.

For Part 2, we are given that v $ ijV*m , which
implies there exists v' $ i'Vm' such that v is a
consecutive subsequence of v' and fQ (v')=fQ .
The process of extraction from v can be applied
to the same locations in v', forming a parallel
series of sequences v'e . We then carry on with the
process of extraction, continuing the series ce and
v'e up to e= l'. We now show that fQ (ce )=fQ

for e $ 41, 2 . . . l5. If not, then either fQ (cex )qfQ

for some ex or fQ (v'l'+1)qfQ . But these are both
impossible, as fQ is the maximum possible rate
for a sequence in i0V	 m0 for all i 0, m0. Hence
fQ (ce )=fQ for e $ 41, 2 . . . l5, as claimed, and
we return to considering the original sequence v.
The rate of the residual sequence vl+1 cannot be
less than fmin(Q). Hence

fQ (v)m e (fQ )Sme(fmin(Q))m−Sme

As m−Sme E n and fQ efmin(Q), the weak
inequality in Part 2 follows immediately. The
strong inequality follows from fmin(Q)q 0,
which we now prove. Suppose to the contrary
that fmin(Q)=0. Then there must exist vmin $ ijV*m
such that fQ (vmin)=fmin(Q). There must also
exist v'min $ i'V*m' such that fQ (v'min)=fQ and vmin is

a consecutive subsequence of v'min. Then
fmin(Q)=0 implies fQ (vmin)=fQ (v'min) =
fQ =0. But we are given as a hypothesis of the
lemma that fQ q 0. Hence fmin(Q)q 0 as
required. q

Lemma 3
Let Q be a non-negative square matrix of order
n, and S a conformal substochastic matrix. Then

1. r(S×Q)EfQ

2. Consider the following conditions on Q and
S:

r(S×Q)=fQ (i)

S is stochastic (ii)

S is properly placed on Q (iii)

S×Q is irreducible (iv)

Then

(a) ii & iii c i
(b) i & iv c ii & iii

3. Suppose (S×Q)x=fQx, xe 0, x$ 0 and
let I= 4i:xi q 05. Then

(a) S[I ] is stochastic and properly placed on
Q[I ]

(b) S[I ] has a block diagonal structure in which
each block has a spectral radius of fQ , and
is irreducible and stochastic

(c) fQ[I] =fQ

(d) Suppose i $ J implies fQ[J] QfQ . Then
xi =0.

Proof
Let A=S×Q, and consider the formula for

powers of A in terms of ijVm :

(Am)ij = s
v $ ijVm

fA (v)m

= s
v $ ijVm

fQ (v)mfS (v)m

Then employing Part 1 of Lemma 2,

(Am)ij E0fmax(Q)
fQ 1

n

fm
Q s

v $ ijVm

fS (v)m

=0fmax(Q)
fQ 1

n

fm
Q (Sm)ij
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It follows that

max4(Am)ij51/m E0fmax(Q)
fQ 1

n/m

fQ max 4(Sm)ij51/m

Employing Gelfand’s formula for spectral radius
(see e.g. Deimling, 1985, p. 79) we conclude that
the limits as m : a exist, and

r(A)EfQr(S)EfQ (A.1)

where the second inequality follows because the
spectral radius of a substochastic matrix cannot
exceed one. This proves Part 1 of the statement
of the lemma.

We now turn to proving Part 2a. Let
K= 4i: ifQ =fQ5, which is non-empty. It is
given that S is stochastic and properly placed on
Q, and it is now shown that S[K] is stochastic
and properly placed on Q[K]. For j $ K, it
follows immediately from the definitions of ifQ

and jUQ that jUQWK. If S is properly placed on
Q, then Sij =0 for i(jUQ . Hence
Si $ KSij =SiSij =1 for j $ K, showing S[K] is
stochastic. We also have jUQ[K] = jUQ for j $ K.
So, as claimed, S[K] is stochastic and properly
placed on Q[K]. Let B=S[K]×Q[K]. We now
study r(B). Because Skl =0 for k(K, l $ K, we
have the following for i, j $ K:

(Bm)ij = s
v$ijVm

fQ (v)mfS (v)m

Only those terms are non-zero for which v $ ijV*m ,
for otherwise fS (v)=0. It follows from Part 2 of
Lemma 2, that

(Bm)ij efm
Q 0fmin(Q)

fQ 1
n

(Sm)ij

and so

max 4(Bm)ij )51/m efQ0fmin(Q)
fQ 1

n/m

max 4(Sm)ij )51/m

Gelfand’s formula again shows the limits exist as
m : a. B is a diagonal submatrix of A, so we
know that r(A)e r(B). Hence we obtain

r(A)e r(B)efQr(S[K])=fQ

In combination with Part 1 of the lemma, this
proves r(A)=fQ as required.

Next, we turn to Part 2b. S×Q is irreducible
by hypothesis, from which it follows that S itself
is irreducible. Remark 2 on p. 63 of Gantmacher
(1960) shows that for irreducible substochastic S

r(S)=1\ S is stochastic

Equation (A1) together with condition (i) imply
that r(S)=1, so establishing condition (ii).

If condition (iii) does not hold, then there must
be i, j, k such that Sij q 0, i(jUQ , k $ jUQ . Define
Q� as equal to Q except that Q� ij =Qij + t, where
tq 0 is chosen to ensure jUQ� = 4i5 * jUQ . Let S�
be defined to ensure that S×Q=S� ×Q� . Note
that S� ij Q Sij but the elements are otherwise
equal. The argument establishing Part 1 can be
repeated for S� and Q� to establish that

r(S� ×Q� )EfQ� r(S� )

But r(S� )Q 1, as S� is irreducible and strictly
substochastic. Hence

r(S×Q)= r(S� ×Q� )QfQ

This contradicts condition (i) and completes the
proof of Part 2b.

Finally, we turn to Part 3. The ‘‘Normal Form
of a Reducible Matrix’’ (see Gantmacher, 1960,
p. 75) provides a block decomposition of S[I ] as
follows.

S11

0
0

. . .
0

Sg+1,1

Sg+2,1

. . .
Ss,1

0
S22

0
. . .
0

Sg+1,2

Sg+2,2

. . .
Ss,2

0
0

. . .

. . .

. . .

. . .

. . .

. . .

. . .

0
0
0

. . .
0

. . .

. . .

. . .

. . .

0
0
0

. . .
Sgg

. . .

. . .

. . .

. . .

0
0
0

. . .
0

Sg+1,g+1

. . .

. . .

. . .

0
0
0

. . .
0
0

Sg+2,g+2

. . .

. . .

0
0
0

. . .
0
0
0

. . .

. . .

0
0
0

. . .
0
0
0

. . .
Ss,s

G
G

G

G

G

G

G

F

f

G
G

G

G

G

G

G

J

j
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where (a) for each i, g+1E iE s, at least one
of the Sij for jE i−1 is non-zero, and (b) each
diagonal block is irreducible. Theorem 6 on p.77
of Gantmacher (1960) shows that as S[I ] has a
strictly positive right eigenvector, both
r(Sii)= r(S[I ]) for 1E iE g (the isolated
blocks), and r(Sii)Q r(S[I ]) for g+1E iE s.
We can apply Part 2b to each isolated block,
showing that Sii is stochastic for 1E iE g. As S
itself is stochastic, it follows that Ski =0 for
k$ i. But then we must have g= s, for
otherwise Sg+1,g+1 exists, and by definition at
least one of the Sg+1,j would have to be non-zero
for 1E jE g. Hence S[I ] has a block diagonal
structure in which each block has a spectral
radius of fQ , and is irreducible and stochastic,
proving Part 3b. It also follows from Part 2b that
each block of S[I ] is properly placed on Q[I ].
S[I ] inherits from its blocks stochasticity and
proper placement on Q[I ], proving Part 3a.

To establish Part 3c, we apply Part 2a to S[I ]
and Q[I ].

There remains Part 3d, which follows immedi-
ately from the conclusion that fQ[I] =fQ . q

A.2. Definitions of Equilibrium Concepts
and Programs

This subsection defines optimisation programs
that will be needed in later proofs. The
optimisation programs are then used to define
equilibrium concepts. One key aspect in the
technical development is employing the result of
Gale (1972), which in Lemma 4 is used to link
ProgA to ProgL, which allows the two
equilibrium concepts to be linked. Also defined
here in formal terms are some concepts explained
in the text.

The first two optimisation programs are
ProgESS and ProgPNE, as follows.

H max r(H), ProgESS(w̄, p̄)

Hij e 0,

01− s
i

Hij1w̄j − p̄bj − p̄ s
i

CijHij e 0

h max z̄h, ProgPNE( j̄, z̄, w̄, p̄)

he 0,

01− s
i

hi1w̄j̄ − p̄bj̄ − p̄ s
i

Cij�hi e 0

A state ((w, p), H, x, y) is consistent if

1. He 0, r(H)q 0
2. xe 0, x$ 0
3. Hx= r(H)x

4. yj =
xj (1−SiHij )

Sjxj (1−SiHij )

5. pq 0
6. there exists w' such that

(a) (w', p) $ F(y)
(b) wj =max 4w'j , pbj5

7. H is feasible in ProgESS(w, p)

A consistent state of the population
((wx , px ), H
 , xx , yx ) is an Evolutionarily Stable State
if Hx solves ProgESS (wx , px ).

A consistent state of the population
((wx , px ), H
 , xx , yx ) with an associated n-vector zx e 0
is an Offspring-Linear Population Nash Equi-
librium if zx xx =1 and, for each j, the j-th column
of H
 solves ProgPNE(j, zx , wx , px ). Note that the
behaviour of absent types (with xx j =0) is
required to be optimal by this definition. An
Offspring-Linear Population Nash Equilibrium
will be denoted as ((wx , px ), zx , H
 , xx , yx ).

Next we define a program and its ‘‘linearisa-
tion’’ following the balanced-growth model of
Gale (1956).

(H, x) max a, ProgA(w̄, p̄)

Hij e 0,

xj e 0,

s
j

xj =1,

(Hx)j e axj ,

01− s
i

Hij1w̄j − p̄bj − p̄ s
i

CijHij e 0

(H, x) max
z̄Hx
z̄x

, ProgL(z̄, w̄, p̄)

Hij e 0,

xj e 0,

s
j

xj =1,
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01− s
i

Hij1w̄j − p̄bj − p̄ s
i

CijHij e 0,

z̄xq 0

The strict inequality is required to ensure that
the maximand is defined for feasible (H, x), and
needs careful attention when the existence of a
solution is being claimed. When a solution does
exist, the strict inequality is irrelevant, and so it
has been ignored in the Lagrangean for ProgL,
which is given next, together with the first order
conditions and complementary slackness con-
ditions evaluated at H=HL, x= xL. In appli-
cations of these results, it will always be true that
z̄xL =1, and so this is assumed for ease of
reading.

L=
z̄Hx
z̄x

+ s
ij

GijHij + s
u

suxu + k0s
j

xj −11
+s

j

lj0w̄j − p̄bj − s
t

Htj (w̄j + p̄Ctj )1 (A.2)

and

1L
1Hkl

=0= z̄kxL
l +Gkl − ll (w̄l + p̄Ckl ) (A.3)

1L
1xl

=0=(z̄HL)l −(z̄HLxL)z̄l + sl (A.4)

6Gij e 0
HL

ij e 0 6 sj e 0
xL

j e 0

6 lj e 0
(1−StHL

tj )w̄j − p̄bj − p̄StCtjHL
tj e 0

(A.5)

The terms in k have been omitted for ease of
reference, as

0= s
l

xL
l

1L
1xL

l
= k

As a final definition, an economy will be said
to be feasible if there exists ȳe 0, ȳ$ 0, such
that there exists (w̄, p̄) $ F( ȳ) for which

ȳi q 0 implies w̄i q p̄bi

In a feasible economy, each extant type can
support itself and have at least some resource left
over for reproduction.

A.3. Lemmas

Three lemmas are proved here. Lemma 4
moves from a solution to ProgESS to a solution
to ProgL. Lemma 5 moves from a solution to
ProgL to eigensystem conditions. Lemma 6
proves continuity and convexity results about
the solution to ProgESS in preparation for the
fixed-point argument in Proposition 1. A key
point in the technical development is the use of
Lemma 3 to find the solutions to ProgESS.

Lemma 4

Suppose H* solves ProgESS(w̄, p̄),
a*0 r(H*)q 0, x*e 0, and H*x*= a*x*$ 0.
Then there exists z*, such that

1. z*e 0,z*x*=1
2. (H*, x*) solves ProgL(z*, w̄, p̄)

Proof

We first prove that (H*, x*) solves Pro-
gA(w̄, p̄). H* is feasible in ProgA, as the
constraints on H are the same in ProgESS and
ProgA. If H* is irreducible, then eqn (40) on
p. 65 of Gantmacher (1960) states that

max
4xe 0,x$ 05

min
j

(H*x)j

xj
= r(H*)

Thus the maximum a attainable in ProgA by
(H*, x) is r(H*). This conclusion also holds if
H* is reducible, for we then consider the
‘‘Normal Form of a Reducible Matrix’’ (see
Gantmacher, 1960, p. 75) and apply the same
argument to the irreducible diagonal blocks with
the highest spectral radius. This highest value is
attained whenever H*x= r(H*)x, and in par-
ticular by (H*, x*).

Suppose (H', x') attains a'q a* in ProgA.
Then the same results of Gantmacher (1960)
show that r(H')e a'. But H' is feasible in
ProgESS, and has r(H')q r(H*), contradicting
the optimality of H* in ProgESS. Therefore, no
such (H', x') exists, and so (H*,x*) solves
ProgA, as required.
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Gale (1972) shows, though in a somewhat
different notation, that for a solution (H*, x*) to
ProgA(w̄, p̄) there exists z*e 0 such that
z*x*=1 and (H*, x*) solves ProgL(z*, w̄, p̄),
proving Parts 1 and 2.

Lemma 5

Suppose z̄e 0, (H*,x*) solves ProgL(z̄, w̄, p̄),
a*0 r(H*)q 0, x*e 0, H*x*= a*x*$ 0 and
z̄x*=1. Let I= 4i:x*i q 05. Then

1. z̄[I ]�0
2. a*z̄[I ]= z̄[I ]H*[I ]
3. a*z̄e z̄H*
4. w̄j − p̄bj q 0 implies z̄j q 0
5. x*j q 0 implies that the inequalities

g
G

G

F

f

H*ij e 0

z̄i
w̄j − p̄bj

w̄j + p̄Cij
E a*z̄j

hold with complementary slackness.

Proof

z̄k =0 implies by eqn (A.3) that for all l, either
H*kl =0 or ll =0. ll =0 in turn implies that
x*l =0, for otherwise by eqn (A.3) we would
have z̄i =0 for all i, contrary to the hypothesis
of the Lemma that z̄x*=1. Hence SlH*kl x*l =0,
and the eigen property of x* then yields x*k =0.
So x*j q 0 implies z̄j q 0, proving Part 1.

ProgL(z̄, w̄, p̄) is solved by (H*, x*), and so its
first order conditions and complementary slack-
ness conditions hold. The hypotheses of the
lemma give z̄H*x*= a*z̄x*= a*, and so eqn
(A.4) yields the following inequalities, holding
with complementary slackness.

6 x*j e 0
a*z̄j eSi z̄iH*ij

The eigenvector condition of the lemma implies
that H*ij =0 for i ( I, j $ I, which with those
inequalities establishes Part 2. The second
inequality itself is Part 3.

To prove Part 4, we first show there exists k
such that w̄k − p̄bk q 0 and z̄k q 0. Suppose to
the contrary that z̄j q 0 implies w̄j − p̄bj =0.
Then z̄j q 0 also implies, through the budget
constraint of ProgL, that H*ij =0 for all i. Part

3 shows that H*ij =0 for z̄i q 0, z̄j =0, so it
follows that z̄i q 0 implies H*ij =0 for all j. Now
the eigen property of x* shows
SjH*ij x*j = a*x*i =0. But we have shown that
z̄i q 0 implies x*i =0, contradicting the hypo-
thesis of the Lemma that z̄x*=1.

Thus we may choose k so that w̄k − p̄bk q 0
and z̄k q 0. Now suppose, contrary to Part 4,
that there exists l such that w̄l − p̄bl q 0 but
z̄l =0. Construct (H
 , xx ) by H
 =0 except that

H
 kl =
w̄l −p̄bl

w̄l + p̄Ckl
q 0,

and xx =0 except that xx k + xx l =1. Then by
choosing xx k small enough we can ensure that

z̄H
 xx
z̄xx

=
z̄kH
 klxx l
z̄kxx k

q z̄H*x*
z̄x*

contradicting the hypothesis of the lemma that
(H*, x*) solves ProgL.

Turning to Part 5, we begin by multiplying eqn
(A.3) by H*kl and summing over k, yielding

0= (z̄H*)lx*l − ll s
k

H*kl (w̄l + p̄Ckl )

We can then multiply eqn (A.4) by xl , and use
this to substitute for (z̄H*)l in the left hand term,
and apply the complementary slackness con-
dition for l in eqn (A.5) in the right hand term,
to obtain

0= a*z̄lx*l − ll (w̄l − p̄bl )

Now x*l q 0 implies z̄l q 0 by Part 1, and so the
above equation shows that w̄l − p̄bl q 0 also. We
can therefore divide by w̄l − p̄bl to obtain, for
x*l q 0,

ll =
a*z̄lx*l
w̄l − p̄bl

Substituting back into eqn (A.3) yields
Part 5. q

Lemma 6

Suppose pq 0 and wj e 0. Let

Qij =max 60,
wj − pbj

wj + pCij7
w̃j =max 4pbj , wj5
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and

F1(w, p)= 4H:H=S×Q,

S is stochastic and properly placed on Q5

Then F1 is uppersemicontinuous and F1(w, p) is
convex for all (w, p). Furthermore H $ F1(w, p)
implies that H solves ProgESS(w̃, p) with value
fQ .

Proof

Q is a continuous function of (w, p), and the
set of S that is stochastic and properly placed on
Q is convex, and considered as a function of Q
is uppersemicontinuous. It follows that S×Q is
uppersemicontinuous in (w,p). Hence F1 is
uppersemicontinuous and F1(w, p) is convex.

The set of feasible H in ProgESS(w̃, p) is

H0 4H:H=S×Q,S is substochastic5

It follows from Part 1 of Lemma 3 that
r(H')EfQ for H' $ H. But F1(w, p)WH, and
Part 2a of Lemma 3 shows that H $ F1(w, p)
implies r(H)=fQ and so H solves
ProgESS(w̃, p) with value fQ .

A.4. Propositions

The meaning and interpretation of the Pro-
positions are discussed in the text. Note the use
of Lemma 3 in linking to ProgESS during the
proof of Proposition 3.

Proposition 1

An Evolutionarily Stable State exists in the
model of Section 2.

Proof

We claim that there exists ((w*, p*), H*, x*,
y*) that satisfies the conditions for an Evolution-
arily Stable State, and proceed by constructing a
multivalued mapping F: V : 2V:{95, parame-
terised by pmin, where

V= 4((w̃, p̃), (w, p), H, x, y):

w̃e 0,p̃e 0,p̃+ s
j

w̃j =1,we 0,pe pmin,

p+ s
j

wj =1,He 0,s
i

Hij E 1,xe 0,

s
j

xj =1,ye 0,s
j

yj =15

We define F by

((w̃', p̃'), (w', p'), H', x', y')0v' $ F(v)

0F(((w̃, p̃), (w, p), H, x, y))

iff

(w̃', p̃') $ F(y)

(w', p')=g
G

G

F

f

(w̃, p̃)

01− pmin

1− p̃
w̃,pmin1

p̃e pmin

p̃Q pmin

H' $ F1(w, p)=

6H̄:Qij =max 60,
wj − pbj

wj + pCij7, H̄=S×Q,

S is stochastic and properly placed on Q7
x' $ F2(H)06x̄:Hx̄= r(H)x̄,x̄e 0, s

i

x̄i =17
y' $ F3(x, H)

06ȳ:bȳj = xj01− s
i

Hij1,ȳe 0, s
j

ȳj =17
F is upper semicontinuous and Fv is convex
for all v, because the analogous properties hold
for each of the individual component mappings.
The only difficult cases are F(y) and F1(w, p),
dealt with in Lemmas 1 and 6, respectively.

By Kakutani’s theorem (see for example
Mas-Colell et al., 1995, p. 953) there therefore
exists for pmin =1/t a fixed point ((w̃t, p̃t), (wt, pt),
Ht, xt,yt) of F, for t $ 42, 3 . . . a5. If ptx q 1/t
 for
some tx , then ((w̃tx , p̃tx ), (wtx , ptx ), Htx , xtx , ytx ) is also a
fixed point for all te tx and for all pmin E 1/tx . We
now show that there must exist such a tx . Suppose
to the contrary that pt =1/t for all t. Then the
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sequence of fixed points is on a compact set and
so we may replace the sequence with a conver-
gent subsequence that tends to, say, ((w̃, p̃=0),
(w, p=0), H, x, y). Let I= 4i:yi q 05, which is
non-empty. We will show in turn that w[I ]=0;
xt[I ]=0 for sufficiently large t; and y[I ]=0,
providing the contradiction.

(a) To prove that w[I ]=0. Lemma 1 shows
that wy= pf( y), and as p=0, it follows that
yi q 0 implies wi =0.

(b) To prove that xt[I ]=0 for sufficiently
large t. Because Ht $ F1(wt, pt), we know that
Ht =St ×Qt where St satisfies the conditions of
Part 3d of Lemma 3 which we now apply. We
therefore proceed to show that wi =0, i $ J
implies fQt[J] QfQt for sufficiently large t, as this
will establish that xt

i =0 for sufficiently large t,
as required. At this point we need to use notation
and concepts developed in Section A.1. Let S(v)
denote the subset of elements of 41, 2 . . . n5
present in the sequence v. Then we need to show
that for sufficiently large t,

max 4fQt[J]:J + I$ 95

=max 4fQt(v):v $ ijV	 y ,S(v) + I$ 95Q

min 4fQt(v):v $ ijV	 m ,S(v) + I= 95EfQt

(A.6)

The outer relations hold by definition, leaving
the central inequality to be shown. The minimum
tends to 1, because pt : p=0, and S(v) + I= 9
so that wt

j : wj q 0. Hence

Qt
ij =

wt
j − ptbj

wt
j + ptCij

: 1

for all Qt
ij involved in the calculation of the rates.

To pursue the maximum, let

uk =lim
t:a 0 pt

wt
vk
+ ptCvk+1vk1,

umin =min 4uk5, K= 4k:uk q 05

If umin q 0, then the maximum approaches a limit
strictly less than one, and we have established the
inequality (A.6). If umin =0, the limit equals one,
and is attained only by sequences satisfying
S(v) + K= 9. We now proceed to compare the
rates of sequences attaining the minimum and

maximum, to first order in pt. We may write the
rate as

fQt(v)=1−
pt

m
s
k

bvk +Cvk+1vk

wt
k

+O2(pt)

Our task has now reduced to showing that

min 6sk bvk +Cvk+1vk

mwt
k

+O(pt):

S(v) + I$ 9,S(v) + K= 97q

max 6sk bvk +Cvk+1vk

mwt
k

+O(pt):S(v) + I= 97
for sufficiently large t. But in the minimum, at
least one of the wt

i tends to zero whereas in the
maximum, none does. Hence the minimum
increases without limit as t : a while the
maximum remains bounded. This establishes
that the inequality holds for large enough t, and
so completes the proof that xt[I ]=0 for
sufficiently large t.

(c) To prove that y[I ]=0. xt[I ]=0 implies
that yt[I ]=0, only provided Skxt

k (1−SiHt
ik ) q

0, which is true because pt q 0 ensures that
SiHt

ij Q 1. Hence yt[I ]=0 for sufficiently large t,
establishing y[I ]=0 as claimed. This is the
required contradiction.

The steps (a) to (c) have completed the proof
that there must exist tx such that ((w̃tx , p̃tx ), (wtx , ptx ),
Htx , xtx , ytx ) is a fixed point of F for pmin =1/tx , and
with ptx q 1/tx . It is therefore also a fixed point of
F for all smaller pmin. Let

w*j =max 4wtx

j , ptxbj5 p*= ptx H*=Htx

x*= xtx y*j = x*j 01− s
i

H*ij 1
The form of F, together with Lemma 6, shows
that ((w*, p*), H*, x*, y*) satisfies all the con-
ditions of an Evolutionarily Stable State except
one element of consistency. What remains to
prove is that r(H*)q 0.

We first show that wtx 9 ptxb. It is an
assumption of the model that the economy is
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feasible, and so let y' and (w', p') $ F(y') satisfy
the feasibility condition that y'i q 0 implies
w'i q p'bi . If we assume, contrary to what we aim
to show, that wtx E ptxb, we obtain, recalling that
ptx q 0,

y'i q 0 implies ptxw'i q ptxp'bi e p'wtx
i

However, Part 6 of Lemma 1 provides that

y'(ptxw'− p'wtx )E 0

establishing a contradiction. Hence wtx 9 ptxb, as
claimed.

There must therefore be i such that wtx
i q ptxbi ,

which implies that a positive maximand can be
attained in ProgESS(wtx , ptx ). A solution must
therefore have a positive value, and so r(Htx )q 0,
as required. q

Proposition 2

Suppose ((w*, p*), H*, x*, y*) is an Evolu-
tionarily Stable State in the model of Section 2,
and let I= 4i:x*i q 05. Then there exists
H**e 0 and z*e 0 such that

1. H*ij =H**ij for j $ I
2. ((w*, p*), H**, x*, y*) is an Evolutionarily

Stable State

3. z*x*=1
4. ((w*, p*), z*, H**, x*, y*) is an Offspring-

Linear Population Nash Equilibrium

5. z*[I ]�0
6. a*z*[I ]= z*[I ]H*[I ]
7. a*z*e z*H*
8. x*j q 0 implies that the inequalities

g
G

G

F

f

H*ij e 0

z*i
w*j − p*bj

w*j + p*Cij
E a*z*j

hold with complementary slackness.

Proof

The suppositions of Lemma 4 hold with
w̄=w*, p̄= p*, giving the existence of z* such
that z*e 0 and z*x*=1, proving Part 3, and
such that (H*, x*) solves ProgL(z*, w*, p*).

Now we define H** by H**ij =H*ij for j $ I,
establishing Part 1, and by choosing a solution
to ProgPNE(j, z*, w*, p*) for the j-th column
where j(I. H** is feasible in ProgL, and
(H**, x*) is easily verified to be a solution.

H** is feasible in ProgESS, so to prove Part
2, it will suffice to show that r(H**)e r(H*).
Part 1 shows that r(H**[I ])= p(H*[I ]), and, as
a diagonal submatrix cannot have a spectral
radius higher than the original matrix,
r(H**)e r(H**[I ]). We need now only show
that r(H*[I ])= r(H*), but this follows immedi-
ately from the consistency of an Evolutionarily
Stable State. This completes the proof of Part 2.

We now prove that ((w*, p*), z*, H**, x*, y*)
is an Offspring-Linear Population Nash Equi-
librium. First, we show that the j-th column of
H** solves ProgPNE(j, z*, w*, p*). This is true
by definition for j(I. Suppose that for some j $ I
there exists h
 , feasible in ProgPNE(j, z*, w*, p*),
with t= z*h
 − (z*H**)j q 0. Let H
 equal H**
except that the j-th column equals h
 . Then
(H
 , x*) is feasible in ProgL, and

z*H
 x*
z*x*

=
z*H**x*+ tx*j

z*x*
q z*H**x*

z*x*

contradicting the solution of ProgL by (H**,
x*). Hence the j-th column of H** solves
ProgPNE(j, z*, w*, p*), as required. The con-
ditions of Lemma 5 are met with z̄= z*, w̄=w*
and p̄= p*, and its Part 4 shows that
w*j − p*bj q 0 implies z*j q 0, completing the
conditions for an Offspring-Linear Population
Nash Equilibrium, and the proof of Part 4.

Recalling that (H*, x*) solves ProgL(z*, w*,
p*), the remainder of the proposition follows
directly from Lemma 5.

Proposition 3

Suppose ((w*, p*), z*, H*, x*, y*) is an Offs-
pring-Linear Population Nash Equilibrium, and
let I= 4i:x*i q 05. Suppose that for some a*q 0
we have

1. a*z*[I ]= z*[I ]H*[I ]
2. a*z*e z*H*

Then ((w*, p*), H*, x*, y*) is an Evolutionarily
Stable State.
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Proof

Let

Qij =max 60,
w*j − p*bj

w*j + p*Cij7
The feasible values for H in ProgPNE are such
that H=S×Q where S is a substochastic
matrix. Let S* be such that H*=S*×Q.

For the next stage of the proof, restrict
attention to j such that w*j − p*bj q 0. This
guarantees that the value of ProgPNE(j, z*,
w*, p*) is positive, and so that SiS*ij =1. We let

gj =max
i

4z*i Qij5

and claim that the following pairs of inequalities
hold with complementary slackness

6 H*ij e 0
z*i Qij E gj

(A.7)

6 x*j e 0
gj E a*z*j

(A.8)

To establish (A.7), we note that Offspring-Linear
Population Nash Equilibrium provides that
H*ij q 0 implies gj =Qijz*i , while the definition of
gj implies gj eQijz*i .

To establish (A.8), we first prove that
gj E a*z*j . Multiplying the inequalities in eqn
(A.7) by S*ij and summing over i, we obtain

s
i

z*i S*ij Qij = gj s
i

S*ij = gj

Condition (2) of the lemma establishes that the
l.h.s. is less than or equal to a*z*j , proving the
inequality. It is now established for later use that
z*j q 0. Otherwise by the inequality just proved,
gj =0=max 4z*i Qij5, which implies that Qij =0
for all i, which contradicts the standing
assumption that w*j − p*bj q 0.

To complete the proof of the complementary
slackness in (A.8), we need to show that x*j q 0
implies gj = a*z*j . Multiplying the inequalities in
eqn (A.7) by S*ij and summing over I, we obtain

s
i $ I

z*i S*ij Qij = gj s
i $ I

S*ij

The l.h.s. equals a*z*j by Condition 1 of the
lemma. We turn to prove the r.h.s. equals gj .
Consistency of the Population Nash Equilibrium
implies that H*x*= r(H*)x*, and so H*ij =0
for j $ I, i(I. Hence Si $ IS*ij =SiS*ij =1, estab-
lishing that the r.h.s. equals gj , as required. This
completes the proof of the complementary
slackness condition (A.8). We now lift the
restriction on j.

In the remainder of the proof, we first employ
the notation of Section A.1, in combination with
the complementary slackness conditions just
established, to prove in turn that (i)
a*=fQ =fQ[I] and (ii) p(H*)=fQ . Then we
show that the value of ProgESS is fQ , which
implies that H* solves ProgESS. The conclusion
of the lemma then follows directly.

Consider a sequence v $ iV	 m . We claim that
fQ (v)E a*. Consider first the case in which there
is a k such that w*vk − p*bvk =0. Then Qvk+1vk =0
and so fQ (v)=0E a* as required.

We need therefore consider further only
sequences for which w*vl − p*bvl q 0 for all l. The
first part of the proof established that if j is an
element in such a sequence, then the complemen-
tary slackness conditions (A.7) and (A.8) apply,
and z*j q 0. Using all three of these results, we
obtain

t
k

Qvk+1vk E t
k

gvk

z*vk+1

E (a*)m z*v1z*v2 . . . z*vm−1z*vm

z*v2z*v3 . . . z*vmz*v1

= (a*)m

and hence

fQ (v)E a*

as required. This shows that fQ E a*.
It was shown earlier that S*[I ] is stochastic,

and so there is a sequence v such that xvk q 0 and
S*vk+1vk q 0. The other parts of the complemen-
tary slackness conditions then hold with equality
for such sequences, and the previous calculation
holds with equality throughout. Hence fQ = a*.
All the elements of such sequences are in I by
definition, and so fQ[I] = a*. This establishes (i).

The attainment of fQ by all sequences v $ iVm

such that xvk q 0 and S*vk+1vk q 0 shows that S*[I ]
is properly placed on Q[I ]. It was earlier
established that S*[I ] is stochastic, and so Part
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2a of Lemma 3 proves that r(H*[I ])=fQ[I], and
by (i) we have r(H*[I ])=fQ . Part 1 of Lemma
3 implies that r(H*)EfQ , but the spectral
radius of a diagonal submatrix cannot exceed
that of the original matrix. Hence r(H*)=fQ ,
establishing (ii).

To complete the proof, it remains only to state
that, by Lemma 6, the value of ProgESS is fQ .
For this shows that H* solves ProgESS, and so
((w*, p*), H*, x*, y*) is an Evolutionarily Stable
State, as claimed.

q


