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I have characterized inclusive fitness as ‘that property of an

individual organism which will appear to be maximized

when what is really being maximized is gene survival’...

One might generalize this principle to other ‘vehicles’. A

group selectionist might define his own version of inclusive

fitness as ‘that property of a group which will appear to be

maximized when what is really being maximized is gene

survival’! Dawkins (1982, p. 187)

Introduction

Darwinism is a theory of the process and purpose of

adaptation. It focuses upon the action of natural selec-

tion, which is mediated by changes in gene frequencies

due to differences in individual reproductive success

(Fisher, 1930). Genes that are associated with greater

individual reproductive success are predicted to accumu-

late in the population through the action of natural

selection and Darwin (1859) suggested that this process

leads to the evolution of well-adapted individuals that

have the appearance of being designed for the purpose of

achieving reproductive success. Darwinism is a predictive

theory of adaptation, explaining not only the origin of

adaptations, but also who wields them and for what

purpose.

This traditional conception of Darwinism struggles to

explain many social adaptations. For example, the

reproductive altruism of sterile workers in eusocial insect

colonies is contrary to the idea that individuals are

favoured to maximize their personal reproductive suc-

cess. Darwin (1859) suggested that heritable tendencies

(genes) underlying worker characters could be transmit-

ted to future generations indirectly, through the repro-

ductive success of their fertile relatives: a process that has

come to be known as ‘kin selection’ (Fisher, 1930;

Haldane, 1955; Hamilton, 1963, 1964, 1970; Maynard

Smith, 1964). As a consequence of kin selection, adap-

tations are not generally expected to function for the

good of the individual, but rather to maximize her

‘inclusive fitness’, i.e. her impact upon the reproductive

success of all her relatives (including herself), weighting

according to the genetic relatedness of each (Hamilton,

1964, 1970). The theories of kin selection and inclusive

fitness boast firm and formal mathematical foundations

(Taylor, 1990, 1996; Frank, 1998; Rousset, 2004; Grafen,

2006a; Gardner et al., 2007a), have gathered much

empirical support (Krebs & Davies, 1993; Alcock, 2005)

and are now regarded as part of the Darwinian canon.

Recently, Wilson & Wilson (2007) have championed

an alternative theory of social evolution. Darwin (1871)

suggested that social behaviours might also evolve when
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Abstract

Adaptation is conventionally regarded as occurring at the level of the

individual organism. However, in recent years there has been a revival of

interest in the possibility for group adaptations and superorganisms. Here, we

provide the first formal theory of group adaptation. In particular: (1) we clarify

the distinction between group selection and group adaptation, framing the

former in terms of gene frequency change and the latter in terms of

optimization; (2) we capture the superorganism in the form of a ‘group as

maximizing agent’ analogy that links an optimization program to a model of a

group-structured population; (3) we demonstrate that between-group selec-

tion can lead to group adaptation, but only in rather special circumstances; (4)

we provide formal support for the view that between-group selection is the

best definition for ‘group selection’; and (5) we reveal that mechanisms of

conflict resolution such as policing cannot be regarded as group adaptations.
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selection operates at levels of organization higher than

the individual organism. A costly behaviour that reduces

the relative fitness of an actor within its group can be

favoured by group selection provided that it brings a

sufficient benefit to the group when it is in competition

for space or resources with other groups (Price, 1972a;

Hamilton, 1975; Wilson, 1975; Okasha, 2006). Recogni-

tion of this multilevel selection process has led many

authors to suggest that social adaptations arise for the

good of the group, and that groups can be viewed as

adaptive individuals in their own right – i.e. ‘superor-

ganisms’ (Wheeler, 1911; Marais, 1925; Wells et al.,

1929; Emerson, 1932; Wynne-Edwards, 1962, 1993;

Seeley, 1989, 1997; Wilson & Sober, 1989; Hölldobler &

Wilson, 1990, 2009; Shapiro & Dworkin, 1997; Shapiro,

1998; Sober & Wilson, 1998; Reeve & Hölldobler, 2007;

Wilson & Wilson, 2007).

Wilson & Wilson (2007) have suggested that the

theoretical foundations of social evolution should be

revised so as to embrace this group-oriented approach.

However, group selection has already been incorporated

into social evolution theory, and is found to be exactly

equivalent to kin selection: the two approaches are

simply different ways of describing the same evolution-

ary process and both lead to the prediction that individ-

uals should maximize their inclusive fitness (reviewed by

West et al., 2007). The relative neglect of the group

selection approach is due to the difficulty in applying its

methodology to the biology of real organisms (reviewed

by West et al., 2008). By contrast, a proper treatment of

group adaptation and the superorganism is lacking, due

to difficulties in articulating exactly what these ideas

mean, and because of a general failure to distinguish

group adaptation from the quite separate issue of group

selection (Lloyd, 1999). The problem is of considerable

interest, as it lies at the heart of the research programme

on the ‘major transitions’ in evolution, which are usually

conceptualized in terms of group adaptation and transi-

tions in individuality from organism to social group

(Buss, 1987; Maynard Smith, 1988; Maynard Smith &

Szathmáry, 1995; Szathmáry & Maynard Smith, 1995;

Queller, 1997, 2000; Stearns, 2007).

In this article, we provide a formal foundation for the

group-centred view of social adaptation. Our first aim is

to formalize the idea of the superorganism in mathemat-

ical terms, and we achieve this by drawing on the

concept of maximizing agents from economics theory. In

particular, we construct a ‘group as maximizing agent’

(GMA) analogy that conveys in a precise way the idea of

the social group as a purposeful unit. Our second aim is

to capture the process of group adaptation and we

achieve this by establishing links between the mathe-

matics of selection and the mathematics of optimization.

In particular, we find that there is a strong mathematical

correspondence between the dynamics of gene frequency

change and the GMA analogy in scenarios where groups

comprise genetically identical individuals or where

within-group competition is repressed. This correspon-

dence reveals that, in such scenarios, natural selection

acts to optimize group phenotypes for the purpose of

group fitness maximization – i.e. group adaptation.

A biological model

The proper basis of evolutionary theory lies in population

genetics and so a formal theory of group adaptation must

engage with this discipline. In this section, we develop a

population genetical model of a group-structured popu-

lation, complete with a model of group phenotypes,

which will serve to anchor ideas of agency and adapta-

tion to be introduced in later sections. We use Price’s

theorem to define natural selection, operating within and

between groups, in terms of gene frequency change.

Population genetics

We consider a very large, finite population of individuals

with arbitrary (although not mixed) ploidy, organized

into M groups of size N within which all social interac-

tions take place. (Mathematical notation used in this

article is summarized in Table 1.) We assume discrete,

nonoverlapping generations and no class structure at the

point of census in every generation. Individuals may

separate into distinct classes after the census; so, our

model does allow for reproductive specialization and

other forms of division of labour. Each social group is

arbitrarily assigned a unique index i 2 I = (1, 2, …, M)

and, within every group, each individual is arbitrarily

assigned a unique index j 2 J = (1, 2, …, N). We describe

an individual’s additive genetic (breeding) value for any

character of interest as a linear weighted sum of genic

values, or ‘p-score’ (Price, 1970; Falconer, 1981; Grafen,

1985). This allows for any number of loci with arbitrary

interactions: see Frank (1998) for the distinction between

an analysis of additive (average) effects and the assump-

tion of additive gene action. We denote the p-score for the

jth individual of the ith group as pij, and so pi ¼
P

J pij=N

is the average p-score of the ith group and

p ¼
P

I;J pij=MN is the average p-score of the population.

We incorporate demographic uncertainty in reproduc-

tive success by assigning a unique index x 2 W for every

possible reproductive outcome for the population, and by

denoting the individual’s reproductive success (number

of offspring surviving to next census) under outcome x
as wx

ij . Thus, the reproductive success of the group can be

expressed as wx
i ¼

P
J wx

ij =N and the average reproduc-

tive success taken over all individuals in the population is

wx ¼
P

I;J wx
ij =MN: Averaging over outcomes, weighting

according to their probability of occurrence qx, the

expected reproductive success of the individual is

wij ¼
P

X qxwx
ij , the expected reproductive success of

the group is wi ¼
P

X qxwx
i and the expected reproduc-

tive success of the population is w ¼
P

X qxwx. For sim-

plicity, we will assume that density-dependent regulation
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maintains a constant population size of MN at each

census; so, wx = w = 1 for all x 2 W.

Group phenotypes

Group adaptations are supposed to manifest in the

group’s phenotype; so, here we develop an explicit

model of group phenotypes and their relation to geno-

types and reproductive success. We consider a set of all

possible individual genotypes G and we denote the

genotype of the jth individual in the ith group as gij.

Next, we describe the genotype of a group as a non-

ordered list of the genotypes of its constituent individu-

als. The set of all possible group genotypes is G and the

genotype of the ith group is denoted ci. We next describe

a set of all possible group phenotypes P and denote the

phenotype of the ith group as pi. We assume that the

group’s phenotype is fully specified by its genotype; so,

we can write pi = P(ci), and we refer to P as the

phenotype function. Finally, we assume a simple rela-

tionship between the group’s phenotype and its expected

reproductive success: wi ¼ WðpiÞ= �W ; where W is the

fitness function and the scaling factor �W ¼
P

IWðpiÞ=M

ensures that population size remains constant. Thus,

group reproductive success is unaffected by the pheno-

type of any other group (consistent with our assumption

of no between-group social interaction), except in the

density-dependent scaling that is applied equally to all

groups in any generation. We will find it useful to denote

the maximum value ofW over the set of phenotypes P as

W*.

Natural selection

Natural selection is formally defined in terms of changes

in gene frequencies (Fisher, 1930). Here, we will assume

that natural selection due to differential reproductive

success of individuals is the only process that is respon-

sible for systematic change in gene frequencies. It is well

established that non-Darwinian evolutionary processes

tend to erode adaptation (Fisher, 1930; Price, 1972b;

Grafen, 2003); so, we exclude these in order to present a

‘best case’ scenario for adaptation. For example, we

eliminate sources of systematic change such as

Table 1 A summary of notation for the

evolutionary model and optimization

program.

Evolutionary model Optimization program

Meaning Notation Notation Meaning

Number of groups M M Number of agents

Group size N – –

Group index i i Agent index

Set of group indices I I Set of agent indices

Individual index j – –

Set of individual indices J – –

p-score of jth individual in ith group pij – –

Average p-score of individuals in ith group pi – –

Average p-score in population p – –

Reproductive outcome x – –

Set of reproductive outcomes W – –

Probability of reproductive outcome x qx – –

Reproductive success of jth individual in

ith group given xth outcome

wx
ij – –

Expected reproductive success of jth

individual in ith group

wij – –

Reproductive success of ith group given

xth outcome

wx
i – –

Expected reproductive success of ith group wi – –

Average reproductive success of population wx ¼ w – –

Group fitness function W(p) F (r) Objective function

Genotype of jth individual in ith group gij – –

Set of individual genotypes G – –

Genotype of ith group ci – –

Group genotype function (clonal groups

model only)

G(g) – –

Set of group genotypes G – –

Phenotype of ith group pi ri Strategy of ith agent

Group phenotype function P(c) – –

Optimal group phenotype p* r* Optimal strategy

Generic group phenotype p, / r, a Generic strategy

Set of group phenotypes P S Strategy set
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spontaneous mutation and meiotic drive, but by incor-

porating uncertainty we do allow for random genetic

drift. From Price’s (1970) theorem, the change in average

p-score under outcome x is given by:

Dpx ¼ covI�Jðwx
ij ; pijÞ; ð1Þ

where cov denotes a covariance taken over the indicated

set and I · J is the Cartesian product of sets I and J (i.e.

the covariance is taken over all individuals in the

population, giving equal weighting to each; see also

Robertson, 1968). Averaging over uncertainty eliminates

random drift; so, the expected change provides a state-

ment of natural selection and is given by:

EXðDpxÞ ¼ covI�Jðwij; pijÞ; ð2Þ

where E denotes an expectation, or arithmetic average,

taken over the indicated set of individuals. Natural

selection is defined according to expected change in

gene frequency, and is equal to the covariance of p-score

and expected relative reproductive success across all the

individuals in the population (Grafen, 1999; and see

Grafen, 2000 for more discussion on the development of

the Price equation for uncertainty).

Equation 2 summarizes the net effect of selection, oper-

ating within and between groups, in the form of a single

population statistic. Alternatively, we may apply a ‘levels

of selection’ partition (Price, 1972a), which makes the

separate contributions of within-group selection and

between-group selection more explicit. Equation 2 can

be re-written as:

EXðDpxÞ ¼ covIðwi; piÞ þ EIðcovJðwij; pijÞÞ; ð3Þ

so that the total expected response to selection is the sum

of the covariance of expected reproductive success and

p-score over groups (first term; ‘between-group selec-

tion’) and the average covariance of expected reproduc-

tive success and p-score of individuals within groups

(second term; ‘within-group selection’). This partition

provides the formal basis for the theory of levels of

selection (Price, 1972a; Hamilton, 1975; Wade, 1985;

Frank, 1998; Keller, 1999; Okasha, 2006). Here, it is

averaged over uncertainty for the first time.

Capturing the superorganism

A mechanical population model is sufficient for describ-

ing the evolutionary process. Nevertheless, social evolu-

tion is often – and usefully – conceptualized in other

ways. A popular and powerful approach, employed

particularly in the discipline of behavioural ecology, is

to view the individual organism as an economic agent

that is driven to maximize its inclusive fitness. This

‘individual as maximizing agent’ (IMA) analogy has been

explicitly captured in optimization theoretic terms and

formally justified, on the basis that it has strong math-

ematical links to the dynamics of gene frequency change,

by Grafen (1999, 2002, 2006a, 2007). The tantalizing

idea that the social group might also be viewed in this

way – i.e. as a purposeful superorganism – can similarly

be framed in terms of a GMA analogy. In this section, we

introduce the formalism of the optimization program,

and we apply this to our biological model in order to

develop such a GMA analogy. Our sole aim here is

to capture the idea of the superorganism in mathematical

terms. Formal justification for applying this idea to

social evolution will be sought in the next section of this

article.

The optimization program

The optimization program is a mathematical device that

is regularly employed in economics theory (see the

textbook of Mas-Collel et al., 1995) and control theory

(see the textbook of Macki & Strauss, 1982), but it is little

used in evolutionary theory. In simple terms, an optimi-

zation program describes an objective and the means by

which that objective might be pursued. The key elements

are: (1) the employed strategy, r; (2) the set of all

possible strategies, S; and (3) a real-valued objective

function F (r), defined for all r 2 S, that describes how

well the employed strategy realizes the objective. A better

strategy yields a higher value of the objective function

and so the optimization program defines a maximization

problem where the maximand (quantity to be maxi-

mized) is the value of the objective function, i.e.

r max
r2S
FðrÞ: ð4Þ

The optimization program provides a mathematical

framework for describing goal-oriented phenomena,

and so it formally captures the ideas of purpose and

function, and it can be interpreted as specifying the

agenda of some implicit agent: the strategist. The

optimization program also provides a mathematical

definition of optimality: an optimal strategy is one that

maximizes the objective function within the constraints

of the strategy set (it solves the optimization program).

Formally, a suboptimal strategy r 2 S is defined by the

existence of some other strategy a 2 S such that

F (a) > F (r), and an optimal strategy r* 2 S is defined

by F (r*) ‡ F (a) for all a 2 S. Note that the optimization

program provides an explicit statement of a problem,

without the implication that this problem is actually

solved. In other words, it establishes the idea of a goal,

purpose or function, without implying optimality.

The ‘group as maximizing agent’ analogy

We have introduced the concept of the optimization

program. We now apply this formalism to our biological

model, developing a GMA analogy in which the social

group is described as a purposeful being with its own

agenda. This captures the superorganism concept in

explicit, mathematical terms.

4 A. GARDNER AND A. GRAFEN
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The first step is to locate the agent that is implicitly

defined by an optimization program as an explicit object

in the biological model. As we are forming a GMA

analogy, the agent is identified as the social group. More

precisely, as there are M social groups in the biological

model, we describe M agents, each with its own optimi-

zation program. We index agents and their correspond-

ing optimization programs according to the indexing of

groups, i.e. i 2 I. Second, we equip each superorganism

with an instrument to be used in the pursuit of its

agenda, by identifying the ith social group’s phenotype as

the ith agent’s strategy, i.e. pi ” ri. Third, we summarize

the constraints faced by the superorganism, by identify-

ing the set of all possible group phenotypes as the

strategy set, i.e. P ” S. These three steps formalize the

idea of the group as a purposeful agent – without

specifying its agenda – and can be summarized in the

form of an optimization program:

pi max
pi2P
FðpiÞ: ð5Þ

The fourth, unspecified element of the GMA analogy is

the objective function, F . The idea of the superorganism –

i.e. of the group as a purposeful agent – does not in itself

commit us to any particular objective function; this

decision is largely arbitrary. However, in the spirit of the

existing literature on superorganisms (e.g. Wilson &

Sober, 1989; Sober & Wilson, 1998), we will proceed on

the assumption that the group’s objective is to maximize

its expected reproductive success, and we write:

pi max
pi2P
WðpiÞ: ð6Þ

One benefit deriving from this formal approach is that we

can make such a clear distinction between those aspects

of the traditional superorganism concept that necessarily

follow from the core idea of the group as a maximizing

agent, and those aspects that may be adjusted according

to our personal tastes. In the Discussion, we revisit the

issue of choice of objective function and suggest that this

presents an interesting avenue for future research.

The explicit GMA analogy captured in expression 6

permits us to make formal statements regarding the

optimality, or ‘aptness’, of group phenotypes. This is

simply the extent to which the phenotype realizes the

superorganism’s agenda, and it is given by the fitness

function. A suboptimal phenotype p 2 P is defined by

the existence of a variant phenotype / 2 P such that

W(/) > W(p), whereas an optimal phenotype p* 2 P is

defined as satisfying W(p*) ‡ W(/) for all / 2 P.

The GMA analogy is a statement of an optimization

problem, and it does not imply that this problem has

been solved. In other words, it captures the agenda of the

social group, and the purpose of the group’s phenotype,

without implying that the group’s phenotype is actually

optimal. The GMA analogy provides a way of looking at

social groups as purposeful, economic agents, but we

have not yet provided any justification for this group-

oriented view. Formal justification will be sought in the

next section of this article, in which we pursue a theory

of group adaptation.

A formal theory of group adaptation

Adaptation is the process of optimization of the pheno-

type under the action of natural selection. A formal

theory of adaptation must therefore make explicit links

between the mathematics of optimization and the

mathematics of selection. Such links have been estab-

lished for individual-level adaptation, i.e. the theory of

inclusive fitness (Table 2; Grafen, 2002, 2006a). They

reveal that natural selection acts according to the design

principle of inclusive-fitness maximization. In this sec-

tion, we seek to establish similar links between group

optimization (captured by the GMA analogy) and mul-

tilevel selection (captured by the Price equation), to

provide a formal theory of group adaptation.

Table 2 Adaptation of individuals and groups.

Correspondence Description

Individual as

maximizing agent

Group as maximizing agent

Clonal

groups

Repression

of competition

General

model

I If all agents are optimal, then there is no scope for selection Yes Yes Yes No

II If all agents are optimal, then there is no potential for positive selection Yes Yes Yes No

III If all agents are equally suboptimal, then there is no scope for selection Yes Yes Yes No

IV If all agents are equally suboptimal, then there is potential for positive selection Yes Yes No No

V If agents vary in their optimality, then the change in every gene frequency is

given by its covariance with the agent’s relative maximand value

Yes Yes Yes No

VI If there is no scope for selection and no potential for positive selection,

every agent behaves optimally

Yes Yes No No

The theory of individual-level adaptation (inclusive fitness theory) is formally justified on the basis of six mathematical correspondences

between the action of natural selection and the optimization of the individual’s phenotype (Grafen, 2002, 2006a). The theory of group-level

adaptation and superorganisms is fully justified for clonal groups (six correspondences hold), is partially justified for groups that have complete

repression of internal competition (four correspondences hold) and is not justified when group mates are nonclonal and permitted to compete

(zero correspondences hold).
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Clonal groups

We begin by assuming a special case of our biological

model that is expected to be particularly conducive to

group adaptation: where social groups comprise geneti-

cally identical individuals. In kin selection terms, the

coefficient of genetic relatedness between individuals

within groups is unity for every trait. Formally, we write

gij = gi and pij = pi for all i 2 I and all j 2 J. This means

that the group’s genotype and phenotype are both fully

specified by the genotype of any individual drawn from

that group, i.e. ci = G(gi) and pi = P[G(gi)]. This allows us

to define a ‘group optimal’ individual genotype g* that

satisfies P[G(g*)] = p*. As genetic variation is a necessary

requirement for a response to selection, the assumption

of genetic homogeneity within groups abolishes within-

group selection. Mathematically, covJðwij; pijÞ ¼ 0 for all

i 2 I and hence, from eqn 3, the action of natural

selection is given by:

EXðDpxÞ ¼ covIðwi; piÞ: ð7Þ

Thus, for the special case of clonal group mates, the

evolutionary dynamics of gene frequency change

depends only upon between-group selection.

With these assumptions in place, we are able to establish

strong mathematical links between the GMA analogy

given by expression 6 and the dynamics of gene

frequency change described by eqn 7. In particular, we

can write the following six correspondences (see Appen-

dix for mathematical details, and Table 2 for a summary):

I. If all agents behave optimally, then there is no scope

for selection (i.e. no expected change in any gene

frequency);

II. If all agents behave optimally, then there is no

potential for positive selection (i.e. no introduced

genetic variant is favoured when rare);

III. If all agents behave suboptimally, but equally so,

then there is no scope for selection;

IV. If all agents behave suboptimally, but equally so,

then there is potential for positive selection (i.e. at least

one introduced genetic variant will be favoured when

rare);

V. If agents vary in their optimality, then there is scope

for selection, and the expected change in all gene

frequencies and in the additive genetic component of

every trait is given by its covariance with the agent’s

relative maximand value; and

VI. If there is no scope for selection and no potential for

positive selection, then every agent behaves optimally.

Correspondences I–V translate the mathematics of

group optimization into the mathematics of selection:

they each begin with a scenario within the GMA

analogy, and use this to recover the dynamics of gene

frequency change. Correspondences I and III collectively

provide an equilibrium condition: there is no expected

change in any gene frequency if all group phenotypes

have the same degree of optimality. Correspondences II

and IV collectively provide a stability condition: the

equilibrium is stable against invasion by rare, intro-

duced genetic variants if (and only if) all group

phenotypes are currently optimal. Correspondence V

describes the out-of-equilibrium dynamics: the expected

direction and magnitude of change in all genetic

characters is correctly predicted by the optimization

view. Finally, correspondence VI translates the mathe-

matics of selection into the mathematics of group

optimization, considering a scenario regarding the gene

frequency dynamics and using this to recover an

optimization interpretation. In particular, if the popula-

tion is at a stable equilibrium, then all group pheno-

types can be said to be optimal.

These six correspondences provide a formal justifica-

tion for using the GMA analogy as a way of thinking

about clonal groups: for this special case of the biological

model, group optimization provides a powerful tool for

making predictions about the dynamics of gene fre-

quency change under the action of natural selection. It

also captures the sense in which, provided the right

genetic variation is available, natural selection acts to

draw the population away from suboptimal states, and

will continue to do so until all group phenotypes are

optimal. This process of group optimization – and here

we do not imply that optimality is actually obtained

(cf. Williams, 1992) – is the process of group adaptation.

Analogous mathematical correspondences between

selection and optimization have been derived by Grafen

(2002, 2006a) for the IMA analogy, which underlies the

theory of individual-level adaptations – i.e. inclusive

fitness theory. In fact, we have found (perhaps unsur-

prisingly) that there is no mathematical difference

between an individual organism and a clonal group, in

this respect. Thus, to the extent that the above six

correspondences between the GMA analogy and the

action of natural selection hold, for any given biological

model, there is formal justification for the view that the

social group is an individual in its own right (superor-

ganism), and that natural selection acts to optimize the

group’s phenotype (group adaptation).

Repression of competition

We now consider an alternative special case of our

biological model, in which we allow for genetic variation

within groups, but we now assume that there is no

variation in expected reproductive success within groups

(‘repression of competition’; Frank, 2003). Formally, we

can write wij = wi for all i 2 I and all j 2 J. This special

case is similar to, although more general than, a verbal

model described by Wilson & Sober (1989) in which

there were no differences in realized reproductive success

within groups, and hence reproductive division of labour

was not permitted. By contrast, because it is expected

(and not realized) reproductive success that is con-

strained to be equal within groups in our model, we
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allow for such complexities as sterile workers. Although

there are no differences in expected reproductive success

within groups, the expectation of group reproduc-

tive success is permitted to vary between groups.

Hence, although within-group selection is abolished

(covJðwij; pijÞ ¼ 0 for all i 2 I), there is scope for selection

to operate between groups and the action of natural

selection is again described by eqn 7.

We find that, for this model of competition repression,

only four of the previous six correspondences between

the GMA analogy and the dynamics of gene frequency

change continue to hold (see Appendix for mathematical

details and Table 2 for a summary). Because repression of

competition abolishes within-group selection, simply by

considering fitness effects at the group level, one can

correctly predict the scope for (and response to) natural

selection (correspondences I, III and V hold). Moreover,

because no group can attain higher than average

expected reproductive success in an already optimal

population, in such a scenario there is no potential for

positive selection (no rare genetic variant can invade;

correspondence II holds).

However, at a suboptimal selective equilibrium, there

is no guarantee of a potential for positive selection (i.e.

for some genetic variant to invade from rarity; corre-

spondence IV fails). This is because, although an

improved group phenotype is possible, there is no

guarantee that corresponding genetic variants will

arrange themselves together in groups in such a way as

to give rise to the desired group phenotype. No such

problem exists for clonal groups, because the genetic

composition of the individual determines the group’s

phenotype; so, introducing the appropriate genetic var-

iant into the population is sufficient to ensure that the

desired group phenotype obtains. A consequence of this

failure is that, for competively repressed groups, not all

stable equilibria are optimal (correspondence VI fails).

Thus, for this special case of the biological model, there is

only partial justification for the view that the social group

is an individual in its own right and that natural selection

acts to optimize the group’s phenotype.

General model

We now consider that group mates can vary both

genetically and in their expected reproductive success,

i.e. the most general form of our biological model.

Because selection is free to occur both within and

between groups, the dynamics of gene frequency change

are described by eqn 3, and not by eqn 7.

We find that, for this general scenario, none of the six

correspondences between the GMA analogy and the

gene frequency dynamics continue to hold (see

Appendix for mathematical details and Table 2 for a

summary). Because within-group selection cannot be

ruled out, an analysis based solely upon the group’s

expected reproductive success may fail to correctly

identify selective equilibria (correspondences I and III

fail) can misdiagnose stable states (correspondences II

and IV fail), and is liable to incorrectly predict the

direction and magnitude of genetic change when this

does occur (correspondence V fails). As a consequence of

these failures, there is no guarantee that a given stable

state corresponds to a group optimum (correspondence

VI fails). Hence, for this more general version of the

biological model, we find no formal justification for the

view that the social group is an individual in its own right

or that natural selection acts to optimize the group’s

phenotype.

Discussion

Group adaptationism is the idea that groups of organisms

can be viewed as adaptive units in their own right. In

contrast to the success of the theory of individual-level

adaptation, progress on the issue of group adaptation has

been extremely slow. We suggest that this is due to a

confusion of ‘levels of selection’ with ‘levels of adapta-

tion’ in evolutionary biology, and also due to a difficulty

in providing appropriate definitions for terms such as

‘group adaptation’ and ‘superorganism’. In this article,

we have developed a formal theory of group adaptation,

holding the idea to the high standards set by the theory of

individual-level adaptation (inclusive fitness theory;

Hamilton, 1964, 1970; Grafen, 2006a). In particular, we

have formally separated the issues of levels of selection

and levels of adaptation, framing the former in terms of

dynamics and the latter in terms of optimization. We

have formally captured the function of group adaptation

using an analogy between biology and optimization that

regards the social group as a purposeful agent (superor-

ganism) that is striving to maximize its reproductive

success. Finally, we have established strong links

between the mathematics of group optimization and

the mathematics of gene frequency change, providing

formal justification for group adaptationism, but only for

scenarios in which within-group selection has been

completely abolished. Importantly, we have failed to

find any justification for group adaptationism for scenar-

ios in which within-group selection is permitted.

Our approach to group adaptation has been strongly

informed by the theory of individual-level adaptation

(inclusive fitness theory; Hamilton, 1964, 1970; Grafen,

2006a). The idea that individual organisms exhibit

adaptation does not imply the perfection of organismal

design nor even that adaptations are optimal within

certain constraints, but rather it is to say that individual

organisms appear contrived as if towards some purpose; a

quality that is evident only because all the adaptations

wielded by the individual appear contrived for the same

purpose (Paley, 1802; Queller, 2000). The conventional

view is that the purpose of individual-level adaptations is

to maximize the inclusive fitness of the individual

(Hamilton, 1964, 1970, 1996). This idea is formally
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captured as an IMA analogy, and is formally justified on

the basis of its strong mathematical correspondence with

the dynamics of gene frequency change: natural selection

acts according to a design principle of inclusive-fitness

maximization (Grafen, 2006a). However, the ultimate

validation of inclusive fitness theory comes from its

overwhelming empirical and experimental support

(Krebs & Davies, 1993; Alcock, 2005).

Our analysis makes a crucial distinction between the

target of selection and the function of adaptation (Gra-

fen, 2006a). Natural selection favours those individuals

with greater personal reproductive success (Darwin,

1859; Fisher, 1930; Price, 1970), but it generates adap-

tations that function to maximize inclusive fitness

(Hamilton, 1964, 1970; Grafen, 2006a). Hence, the

function of adaptation (inclusive fitness maxmization)

is distinct from the target of selection (personal fitness).

Unfortunately, previous theory on group adaptation has

failed to make this distinction, contributing to a confu-

sion between levels of adaptation and levels of selection.

For example, the ‘superorganism continuum’ (SC)

approach to levels of adaptation (Wilson & Sober, 1989;

Sober & Wilson, 1998; Reeve & Hölldobler, 2007)

conflates the levels of selection partition of within-group

fitness versus between-group fitness and the function of

adaptation at the individual vs. group levels. In a

departure from inclusive fitness theory, the SC approach

suggests that the function of individual-level adaptation

is to maximize the individual’s personal fitness relative to

her group mates and, observing that between-group

selection pushes phenotypic characters away from this

‘individual optimum’ and towards the group optimum of

group fitness maximization, Wilson and colleagues have

interpreted a response to between-group selection as

defining group adaptation itself. By contrast, we empha-

size that the function of individual-level adaptation is to

maximize inclusive fitness and that this obtains irrespec-

tive of the relative strength of within-group vs. between-

group selection. Moreover, if we want the term ‘adap-

tation’ to retain its meaning as we move from the

individual to the group level, then group adaptation is

not simply a response to between-group selection, but

instead a rather stronger notion of group optimization –

that only obtains if within-group selection is completely

abolished.

We have found no formal justification for group

adaptationism in any scenario in which within-group

selection is permitted. Obviously, no real-world species

will perfectly embody the ideal of zero within-group

selection. However, we emphasize that this is not

sufficient grounds for abandoning the notion of group

adaptation in evolutionary biology. The theory of indi-

vidual-level adaptation is similarly based upon limiting

assumptions, such as unbiased genetic transmission,

which are not expected to be perfectly realized in any

species (Grafen, 2002, 2006a); yet, it enjoys huge

experimental and empirical success. A more pragmatic

approach is to employ the theory of individual-level

adaptation on the understanding that complications such

as Mendelian outlaws are the exception rather than the

rule, at least insofar as we are interested in understand-

ing phenotypic evolution. Similarly, we suggest that

group adaptationism has validity in scenarios where

within-group selection can be considered to have negli-

gible impact upon phenotypic evolution. This may be

valid for some species; clearly it is not valid for most

species. More generally, the major aim of our study is to

highlight the logical error in the view that multilevel

selection (including within-group selection) leads to the

emergence of group adaptation (e.g. Sober & Wilson,

1998).

We have also made a crucial distinction between group

adaptation and group optimality, mirroring the more

general idea that adaptation is not synonymous with

optimality (Paley, 1802; Williams, 1992). An adaptation

is a character that, through the action of natural

selection, has become contrived as if for a purpose

(Darwin, 1859). A group adaptation, as conceived in our

analysis, is a group character that has been selected

according to the design principle of group-fitness max-

imization. A character that has not been selected

according to this principle, but which incidentally

improves group reproductive success, can be described

in terms of ‘group optimality’, but does not constitute a

group adaptation. Conversely, a character that has

evolved according to the principle of group optimization,

but which does not achieve optimality (for example,

owing to insufficient time), is nevertheless a group

adaptation. Previous quantitative approaches to group

adaptation have often actually provided measures of

group optimality. For example, Foster’s (2004) approach

to group adaptation is to express the fitness of a focal

group relative to that of an idealized group that is

assumed to have maximal fitness; in terms of our

notation, this measure of group optimality is

W(p) ⁄W(p*). We suggest that it will often be useful to

measure group optimality, but warn that this is not

synonymous with group adaptation. The question of how

group adaptation – or indeed, any form of adaptation – is

to be measured is one that we leave open for the future.

We have defined a superorganism as a group that

wields adaptations in its own right, and have found

formal justification for this idea in scenarios where

within-group selection is completely abolished. It is

unlikely that within-group selection will ever be entirely

absent in any real-world species; however, the ideas of

superorganism and group adaptation might usefully be

employed when thinking about social groups that have

mechanisms that abolish almost all within-group conflict

for the majority of traits. Certain eusocial insect colonies

are obvious candidates. For example, worker policing in

honeybee colonies ensures an almost complete repres-

sion of competition, so that most traits observable at the

group level can be understood in terms of optimization of
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group fitness (Seeley, 1989, 1997). Previous theory has

emphasized a sterile worker caste as a definitive hallmark

of the superorganism (e.g. Wheeler, 1911; Wells et al.,

1929; Buss, 1987; Hölldobler & Wilson, 2009). However,

our analysis suggests that sterile workers are neither

necessary nor sufficient for superorganismality. A clonal

group evolves group adaptations and can be considered a

superorganism even if none of its members are sterile

(sterile caste not necessary), and even sterile workers can

be embroiled in conflicts over such group characters as

the sex ratio (Trivers & Hare, 1976), which cannot be

understood in terms of group optimization (sterile caste

not sufficient). Although a sterile caste remains a useful

diagnostic for identifying potential superorganisms, we

suggest that it is not fundamental. Hence, the evolution

of an extreme reproductive division of labour in a

mathematical model does not equate to the emergence

of a superorganism (e.g. Michod, 2007).

An evolutionary transition in individuality from organ-

ism to social group is the basis for several of the ‘major

transitions’ in evolution (Buss, 1987; Maynard Smith,

1988; Maynard Smith & Szathmáry, 1995; Szathmáry &

Maynard Smith, 1995; Queller, 1997, 2000; Stearns,

2007). Our analysis of groups as fitness maximizing

agents permits a formal definition for when this has

happened – insofar as the GMA analogy mathematically

corresponds to the dynamics of gene frequencies, a major

transition can be said to have occurred – and confirms

that the key step is an abolition of selection operating at

the lower level, leading to the termination of internal

conflicts. The two mechanisms for conflict resolution

highlighted in our analysis have long been recognized in

the literature on major transitions in individuality. First,

clonal relatedness ensures that the interests of social

partners exactly coincide, because their ultimate objective

(inclusive fitness) is necessarily the same (Hamilton,

1964; Maynard Smith & Szathmáry, 1995). The major

transition from protozoan cell to multicellular animal is

crucially founded upon a single-cell bottleneck at the

initialization of development, which ensures (de novo

mutation aside) the clonality of the animal’s tissues

(Maynard Smith & Szathmáry, 1995). Second, a complete

repression of within-group competition ensures that the

only means by which an individual can maximize its

fitness is to pursue the greater good of the social group

(Leigh, 1977; Alexander, 1979, 1987; Frank, 2003).

Although social partners may differ in their ultimate

objectives, here the strategy set is constrained in such a

way as to bring them into more proximate agreement for

action. Repression of competition is exemplified in the

rules of fair meiosis and worker policing in insect societies

(Leigh, 1971; Wenseleers et al., 2004a; Wenseleers &

Ratnieks, 2006).

We have confirmed the role for mechanisms of conflict

resolution in the evolution of higher level individuality.

However, the concept of the superorganism cannot itself

account for the evolution of such mechanisms – the

superorganism comes into existence after these mecha-

nisms are already established – and hence it provides

only limited illumination of the process of such transi-

tions (Maynard Smith & Szathmáry, 1995). In other

words, mechanisms of conflict resolution are a cause,

rather than a consequence, of group adaptation. This

suggests that phenomena, such as punishment, policing

and high genetic relatedness, cannot be understood as

group adaptations (contra Wilson & Sober, 1989; Wilson

& Hölldobler, 2005; Wilson & Wilson, 2007). Conversely,

insights into the evolution of mechanisms of conflict

resolution may be provided by inclusive fitness theory.

For example, worker policing in honeybees may be

understood in terms of adaptation at the level of the

individual worker, motivated by nepotistic interests that

need not coincide with the best interests of the colony

(Ratnieks, 1988; Ratnieks & Visscher, 1989; Wenseleers

& Ratnieks, 2006).

Our analysis of group adaptation offers a potential

resolution to the controversy over the correct definition

of ‘group selection’. Perhaps the most popular approach

follows from the levels of selection partition of Price’s

equation, so that group selection is synonymous with

what we have termed ‘between-group selection’ (Price,

1972a; Hamilton, 1975; Okasha, 2006). However, a

potential problem of this definition is that it may

diagnose the operation of group selection even in

nonsocial contexts; for example, if some groups contain

more individuals with better eyesight, then some com-

ponent of selection operating upon eyesight will be at the

between-group level (Hamilton, 1975). It has been

argued that this is an undesirable feature for any theory

of group selection (Sober & Wilson, 1998; Wilson &

Wilson, 2007) and other definitions have been consid-

ered. An alternative is the ‘contextual analysis’ approach

of Heisler & Damuth (1987) (see also Damuth & Heisler,

1988; Goodnight et al., 1992), which identifies the impact

of group phenotype on an individual’s fitness, once all

the effects of the individual’s phenotype has been

stripped away. However, this suffers from problems such

as identifying group selection in operation even when all

groups have the same fitness (soft selection; reviewed by

Okasha, 2006; West et al., 2008). Hence, the proper

definition of group selection remains elusive (Wilson &

Wilson, 2007). Following Williams (1966) (see also Sober

& Wilson, 1998; Wilson & Wilson, 2007), we suggest that

a useful approach is to define group selection as that part

of gene frequency change that is responsible for group

adaptation. Our analysis has identified Price’s (1972a)

between-group selection as the driver of group adapta-

tion, and hence we suggest that this provides the most

useful definition for group selection. In our biological

model, it is defined as covI(wi,pi). We hope that a

concrete definition, that demystifies this straightforward

evolutionary process by showing that it has no special

connection to social behaviour, will allow semantic

debate to give way to scientific progress on this topic.
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Our intention has not been to develop a general

theory of group adaptation, but rather to clarify

concepts and to provide an illustration of what a formal

theory of group adaptation should look like. Thus, there

are several crucial directions in which our basic analysis

could be extended. First, our biological model lacks

class structure – at the time of census, there is no

separation of individuals into male vs. female, or

juvenile vs. adult, and mixed ploidy is disallowed. By

contrast, the best examples of putative group adaptation

and superindividuality come from the eusocial insects

(Wheeler, 1911; Marais, 1925; Wells et al., 1929;

Emerson, 1932; Wilson & Sober, 1989; Hölldobler &

Wilson, 1990, 2009; Sober & Wilson, 1998; Reeve &

Hölldobler, 2007; Wilson & Wilson, 2007), which

present complexities such as age-structured societies

with haploid males and diploid females. In general,

class structure has been relatively neglected by group

selection theory (West et al., 2008; but see Wenseleers

et al., 2003, 2004b), whereas it has been properly

integrated into individual selection theory (Fisher,

1930; Hamilton, 1972; Price & Smith, 1972; Taylor,

1990, 1996; Charlesworth, 1994; Grafen, 2006b) and is

very amenable to kin selection analysis (Taylor, 1996;

Taylor & Frank, 1996; Frank, 1997, 1998; Taylor et al.,

2007) – see Gardner et al. (2007b) for a recent worked

example. Second, because optimization programs are

rather alien to biologists, we made expression 6 as

simple as possible, focusing on hard-wired phenotypes

and disallowing flexible behaviours. However, reaction

norms are readily incorporated into this formalism – see

Grafen (2002) for further treatment.

Third, in line with the common assumption employed

in the literature, we have assumed that the function of

group adaptation is to maximize the (expected) repro-

ductive success of the group (e.g. Wilson & Sober, 1989;

Sober & Wilson, 1998). This approach to group adap-

tation is formally justified for groups in which there is

no internal conflict, but is not formally justified in any

other scenario. However, in forming the GMA analogy,

we were free to choose any objective function, and we

raise the interesting possibility that some other objective

function might support group adaptationism in a wider

class of models. By analogy, the discovery that indirect

fitness effects could lead to the evolution of altruistic

behaviour delivered a devastating blow to the tradi-

tional Darwinian view of individuals striving to maxi-

mize their reproductive success, yet the theory of

individual-level adaptation was salvaged owing to the

development of a new objective function – inclusive

fitness (Hamilton, 1963, 1964, 1970, 1996). An ana-

logue to inclusive fitness, that similarly rescues group

adaptationism from the problems imposed by within-

group selection, might await development. The search

for such an ‘inclusive fitness for groups’ (Dawkins,

1982) should be at the forefront of the group adapta-

tionist research programme.

Conclusions

We have developed the first formal theory of group

adaptation. This has: (1) clarified the distinction between

levels of selection and levels of adaptation; (2) formed

mathematical links between population genetics theory

and optimization theory via a GMA analogy; (3) dem-

onstrated that between-group selection can lead to group

adaptation, but only in rather special circumstances; (4)

provided formal support for the view that between-group

selection is the best definition for ‘group selection’; (5)

revealed that mechanisms of conflict resolution such as

policing cannot be regarded as group adaptations and (6)

pointed out key directions for future group adaptation

research. Our emphasis has been on formality and not

generality – there is much work to be carried out to

establish whether other scenarios will admit a group

adaptationist view of social evolution. In the meantime,

we suggest that it is safer to view social adaptations as

occurring at the level of the individual organism, where

they function to maximize inclusive fitness.
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Appendix

Here, we use the GMA analogy to prove the six mathe-

matical correspondences (I–VI, see Table 2) between the

optimization program and the action of natural selection

for the clonal groups model. We also note when and why

each correspondence holds or fails for the repression of

competition model and the general model.

I. If all agents behave optimally, then there
is no scope for selection

All agents solve the optimization program; so,W(pi) = �W
for all i 2 I. From eqn 7, the expected change in all gene

frequencies is given by EW(Dpx) = covI(wi,pi) and substi-

tuting wi = W(pi) ⁄ �W ¼ 1 for all i 2 I, this is zero. Thus,

there is no expected change in any gene frequency, i.e.

no scope for selection.

Correspondence I also holds for the repression of

competition model, by noting that eqn 7 also applies

when groups are competitively repressed. Correspon-

dence I is not proven for the general model because eqn

7 has not been shown to apply.

II. If all agents behave optimally, then there is no
potential for positive selection

We introduce variant individual genotypes into the

population at vanishingly low frequency, and assign

each individual a special p-score pV
ij to describe whether

they are variant (pV
ij ¼ 1) or resident (pV

ij ¼ 0) genotypes.

We denote the set of groups containing at least one

variant individual by H � I, and we denote the number

of groups in this set by L. From eqn 7, the expected

change in the population frequency of the variant p-score

is EXðDpVxÞ ¼ covIðwi; p
V
i Þ ¼ pVð1� pVÞð�wV � �wRÞ, where

�wV ¼ �W V= �W and �wR ¼ �W R= �W are the expected repro-

ductive successes obtained by averaging over variant and

resident groups respectively, i.e. �W V ¼
P

HWðphÞ=L and
�W R = W*. Because WðphÞ � W � for all ph 2 P, then

�wV � �wR � 0 and hence EW(DpVx) £ 0. Thus, no intro-

duced genetic variant can be favoured when rare, i.e.

there is no potential for positive selection.

Correspondence II also holds for the repression of

competition model, by noting that eqn 7 also applies

when groups are competitively repressed. Correspon-

dence II is not proven for the general model because

eqn 7 has not been shown to apply.

III. If all agents behave suboptimally, but equally so,
then there is no scope for selection

All agents attain the same maximand value; so,

W(pi) = �W for all i 2 I. From eqn 7, the expected change

in all gene frequencies is given by EW(Dpx) = covI(wi,pi),

and substituting wi = W(pi) ⁄ �W = 1 for all i 2 I, this is

zero. Thus, there is no expected change in any gene

frequency, i.e. no scope for selection.

Correspondence III also holds for the repression of

competition model, by noting that eqn 7 also applies

when groups are competitively repressed. Correspon-

dence III is not proven for the general model because

eqn 7 has not been shown to apply.
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IV. If all agents behave suboptimally, but equally so,
then there is potential for positive selection

Denote the maximand value corresponding to each

resident’s suboptimal behaviour WðpiÞ = Wº for all

i 2 I. We introduce a variant individual genotype g*,

defined by P[G(g*)] = p* for the clonal groups model,

into the population at a vanishingly low frequency, and

assign each individual a special p-score pV
ij to describe

whether they have variant (pV
ij = 1) or resident (pV

ij = 0)

genotypes. From eqn 7, the expected change in

the population frequency of the variant p-score

is EW(DpVx) = covI(wi,p
V
i ) = pVð1� pVÞð�wV � �wRÞ; where

�wV ¼ �W V= �W and �wR ¼ �W R= �W are the expected repro-

ductive successes obtained by averaging over variant

and resident groups, respectively, i.e. �W V ¼ W � and
�W R = W o. Because W* > W o then �wV � �wR>0 and hence

EW(DpVx) > 0. Thus, at least one introduced genetic

variant can be favoured when rare, i.e. there is potential

for positive selection.

Correspondence IV is not proven for the repression of

competition model, because it has not been demon-

strated that any g* satisfies P[G(g*)] = p*. Correspon-

dence IV is not proven for the general model for the same

reason, and also because eqn 7 has not been shown to

apply.

V. If agents vary in their optimality, then there is
scope for selection, and the change in every gene
frequency is given by its covariance with the agent’s
relative maximand value

From eqn 7, the expected change in all gene frequencies

is given by EW(Dpx) = covI(wi,pi) and, making the

substitution wi = W(pi) ⁄ �W , this obtains EW(Dpx) =

covIðWðpiÞ= �W ; piÞ.
Correspondence V also holds for the repression of

competition model, by noting that eqn 7 also applies

when groups are competitively repressed. Correspon-

dence V is not proven for the general model because

eqn 7 has not been shown to apply.

VI. If there is no scope for selection and no potential
for positive selection, then every agent behaves
optimally

If agents vary in their optimality, then there is scope for

selection (correspondence V). Hence, if there is no scope

for selection, agents cannot vary in their optimality –

they must all be optimal or else they must all be equally

suboptimal. If all agents are equally suboptimal, then

there is potential for positive selection (correspondence

IV). Hence, if there is no scope for selection and no

potential for positive selection, all agents must be

optimal.

For correspondence VI to hold, we require that

correspondences IV and V both hold. As correspondence

IV fails for the repression of competition model and

correspondences IV and V fail for the general model,

correspondence VI fails for both the repression of

competition and general models.
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