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Chapter 3
Natural Selection, Kin Selection
and Group Selection

ALAN GRAFEN

3.1 INTRODUCTION

‘Animals maximize their inclusive fitness.” ‘Animals do not sacrifice
their own fitness for the good of their group.” Such statements can be
read in many of the chapters of this book, as well as in many recent
interesting papers in behavioural ecology and animal behaviour. But
they are not obviously true—there are counterexamples in theory to
both of them—and my main purposes in this chapter are to trace the
logic underlying them, to identify the justification that has been
found for them, and to display the connections between these usable
principles of behavioural ecology and the more fundamental principle
of natural selection.

This chapter will mainly justify what many people already
believe: but this is an important exercise. The central concept of
inclusive fitness is routinely misdefined and occasionally misused.
Some confusion still surrounds the problem of group selection. Only
by concentrating on the logical grounds of our orthodoxy can we
clarify and defend it.

The rest of this chapter is divided into three parts. The first
describes how population genetics is fundamental to behavioural
ecology, but also how we may be able to avoid dealing with its com-
plications in everyday practice. The second traces the logic under-
lying inclusive fitness. The last discusses what natural selection tells
us about the evolution of animals in groups.

3.2 POPULATION GENETICS UNDERLIES
BEHAVIOURAL ECOLOGY

The starting point for much behavioural ecology is that animals are
maximizers of one sort or another—efficient predators or foragers, or
elusive prey. The only ground for believing this is that natural selec-
tion made them so. If not now then at some time in the past (Dawkins
1982a, pp. 20-24), there existed heritable variation in hunting and
foraging techniques and in ploys to escape predators. Changes in
allele frequencies have made animals good at what they do (see also
section 4.1).



The behavioural ecologist, though, does not usually know the
genetics underlying the character he studies. While he would be
interested to know this genetic system, it is not of primary impor-
tance to him. His main aim is to uncover the selective forces that
shape the character. The behavioural ecologist has to hope in his igno-
rance that his method will work almost regardless of which particular
genetic system underlies the character (Lloyd 1977). This hope raises
two questions. First, is it justified? Secondly, is the assumption so
powerful and plausible that a whole research strategy should be based
on it?

3.2.1 The phenotypic gambit

Let us start with a brief caricature, with examples, of an important
method in behavioural ecology. It has two elements.

(i) A strategy set. This is a list or set of (perhaps all) possible states
of the character of interest. Here are three examples of strategy sets.
McGregor, Krebs and Perrins (1981) studied the song of male great
tits, and in particular their repertory size. The strategy set they used
was simply every different repertory size they observed: integers
from one to five. Brockmann, Grafen and Dawkins (1979) studied the
nesting of great golden digger wasps. These wasps sometimes acquire
their nest by digging one, and sometimes by entering an already
existing one. Brockmann and co-workers were interested in the
relative frequency of these two ways of acquiring a nest, and so the
strategy set was simply.all possible proportions of digging rather than
entering: numbers from zero to one. In the hawk—dove game devised
by Maynard Smith and Price (1973), the strategy set consists of the
two strategies, hawk and dove.

(ii) A rule for determining the success of a strategy. The success of a
strategy is the number of offspring left by an animal adopting it, or
alternatively its inclusive fitness (see section 3.3.1). The rule for deter-
mining success may involve the frequency with which strategies are
adopted in the population. We may observe the operation of the rule,
as McGregor, Krebs and Perrins did. They counted how many off-
spring every male fathered in his lifetime, and averaged within all
males sharing the same repertory size. If it is necessary to know how
the successes of strategies change when their frequencies change, then
we may model the rule. Brockmann, Grafen and Dawkins did this,
and used data to estimate parameters in the rule. When the purpose is
to investigate theoretically the consequences of a particular form of
frequency dependence, a rule exhibiting this form is simply assumed:
in the hawk—dove game the rule is represented in the payoff matrix.

The phenotypic gambit is to examine the evolutionary basis of a
character as if the very simplest genetic system controlled it: as if
there were a haploid locus at which each distinct strategy was rep-
resented by a distinct allele, as if the payoff rule gave the number of
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offspring for each allele, and as if enough mutation occured to allow
each strategy the chance to invade.

The gambit implies that all strategies that occur in the population
are equally successful, and that they are at least as successful as any
non-occurring strategy would be if it arose in small numbers. The
application of the gambit to a given strategy set and payoff rule is a
powerful test of the joint hypothesis that the strategy set and payoff
rule have been correctly identified, and that the gambit is true.

In their first model, Brockmann, Grafen and Dawkins rejected this
joint hypothesis when two existing strategies turned out not to be
equally successful. They adopted a new strategy set in their second
model. See Dawkins (1980, 1982a) for a full discussion of what condi-
tions an act must satisfy to be a ‘strategy’.

The joint hypothesis might be false because the genetic system
underlying the character does not produce the same phenotypic
effects as the very simplest genetic system, the one assumed in the
gambit. The mere fact that the prediction of equal success is rejected
does not reveal which element in the joint hypothesis is false. The
research strategy implied by the phenotypic gambit is to treat such
rejection as evidence that the payoff function or strategy set is wrong,
and not that the gambit is wrong. Maynard Smith (1978a) discusses
this more fully.

3.2.2 Is the gambit true?

Taken literally, the gambit is usually false: few species studied by
behavioural ecologists are haploid. But will the genetic system that
does underlie the character produce the same phenotypic effects as
the genetic system the gambit assumes?

Two points are important here. First, an example is known in
which the gambit would be extremely misleading. In some human
populations affected by malaria, there are three distinct phenotypes
corresponding to the three possible genotypes at a diploid locus with
two alleles (Allison 1954). One type almost invariably dies from
sickle-cell anaemia before reproducing. The other two types differ in
their resistance to malaria. The coexistence of these three phenotypes
with markedly different fitnesses would be very puzzling to a behav-
ioural ecologist applying the phenotypic gambit. The mechanics of
Mendelian segregation prevent the whole population from sharing the
optimal phenotype, because it is produced by the heterozygous geno-
type. Here, as undoubtedly elsewhere, it is essential to know the
underlying genetics in order to understand the distribution of pheno-
types observed in the population.

The second point is that such cases are probably rare. Only certain
features of genetic systems, such as overdominance in the sickle-cell
case, can sustain dramatic differences in fitness, and these features are
not known to be common. Maynard Smith (1982a) has analysed how



well different genetic systems support the simplification represented
by the gambit, and he concludes that by and large they do so very
well. The sorts of character studied by behavioural ecologists are
likely to be controlled by many loci, and this reduces the scope for
the maintenance of large fitness differences.

Genetic systems are themselves subject to evolution. In its sim-
plest form, this is the creation of a new allele by mutation, but more
substantial changes could occur. In the sickle-cell case, a (functional)
gene duplication of the locus would allow one locus to fixate for each
allele. Every individual in the population could then have the ‘inter-
mediate’ genotype that confers malarial protection without sickle-cell
anaemia. The existence of fitness differences between genotypes
creates selection for evolution of the genetic system itself.

The behavioural ecologist hopes that most genetic systems support
the gambit, and that those that do not are rare or transient. If the
discrepancies produced by different genetic systems are smaller than
the accuracy of data, then field workers can safely ignore them. We
know that this might not be so, and we should be anxious to find out
whether this hope is justified. The dependence of behavioural ecology
on population genetics is such that the soundness of our methods
depends on arguments concerning population genetics, but our
method is designed to avoid doing genetics.

We have seen that the gambit cannot certainly be made with
safety. It is a leap of faith. But should we then refuse to use it in our
research? To answer this, suppose that we did refuse. What would
behavioural ecology be like? It would be very different. Detailed
studies in which the precise nature of a character is examined as an
adaptation would have to be accompanied by a study in which the
genetic mechanism underlying the character was uncovered so pre-
cisely that an explicit genetic model could be constructed. The motto
would be: no decimal points without genetics. The range of charac-
ters that could be studied would be drastically reduced. Genetically
simple and well studied characters are rarely of evolutionary interest.
They are usually straightforwardly disadvantageous mutants main-
tained by judicious artificial selection in strains which have spent
tens of generations in the laboratory. If we had to work out the
genetics of every character chosen for its evolutionary interest, the
size of the study would become very large. In some cases it would be
impossible to complete the study within the lifetime of a scientist.

Another serious point is that if the gambit is generally true, then
the genetics discovered would be almost an irrelevant complication in
understanding the evolutionary significance of the character. The
gambit makes truly phenotypic explanations possible, and the effort
expended in discovering the genetics would be wasted. Better to allo-
cate that effort to studying in an evolutionary way characters of evo-
lutionary interest, and in a genetic way characters of genetic interest.

These are the reasons why the gambit is so attractive—they
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should not be mistaken for reasons why the gambit is true. Neverthe-
less, these advantages seem to me to justify continuing to employ the
gambit, always provided we remember that we may be wrong. We
should also recognize the urgency of the need to provide a proper
justification for employing this convenient simplifying assumption.

3.3 INCLUSIVE FITNESS AND HAMILTON’S RULE

Textbooks on behavioural ecology or animal behaviour usually have
a section on kin selection or inclusive fitness in which the reader is
advised that what animals really maximize is inclusive fitness. They
then either fail to define inclusive fitness, or define it wrongly
(Grafen 1982); this section is intended to set out what inclusive fitness
is. Even in their eulogies the textbooks are not usually right, so this
section will also explain why inclusive fitness and Hamilton's rule are
extremely useful additions to our theoretical armoury, although by no
means a replacement for ‘number of offspring’ as a measure of repro-
ductive success. It also deals briefly with what is currently known
about the scope of their applicability.

3.3.1 What is inclusive fitness exactly?

Inclusive fitness (Hamilton 1964) is a device that simplifies the calcu-
lation of conditions for the spread of certain alleles. These alleles have
an effect, through their bearer’s phenotype, on how many offspring
other animals in the population produce. We can see the simplifica-
tion by comparing the analyses of a very simple model of sib altruism
by standard population genetics and by inclusive fitness. Maynard
Smith (1982b) carries out a similar exercise.

Suppose males in a species disperse little, so that every breeding
male has exactly one brother of the same age breeding nearby. A
single locus controls how a male behaves towards his sib, and the
population is at fixation for an allele a at that locus. We consider
an allele A that alters the behaviour of its (homozygous and
heterozygous) bearers so that each bearer has ¢ fewer offspring, and
the bearer’s sib has b more offspring.

Will A spread when rare? When A is rare, the homozygote AA is
extremely rare and can be neglected. The number of offspring a
mated pair produces depends only on the male’s genotype and that of
the male’s brother. How many offspring will the pair have on average
if the male is aa? If his brother is also aa, then the pair produces the
standard one offspring. If his brother is Aa then on average the pair
produces (1 + b) offspring. The overall average for an aa male there-
fore depends on the chance that his brother is Aa. Let the overall
proportion of Aa be p. Then an aa male has an Aa brother with
chance p/2. The average number of offspring of an aa male is then
(1 + bp/2).



The chance that an Aa male has an Aa brother is (1 + p)/2, and
the Aa male loses ¢ offspring through the effect of the A allele, so the
average number of offspring of an Aa male is 1 — ¢ + (1 + p)b/2.

I digress to explain how the chances p/2 and (1 + p)/2 are calcu-
lated. In the absence of any information, an animal would calculate
the chance that his sib was Aa to be p. If the animal is itself aa, then
it knows that half of the available four parental alleles are not A; and
so the chance of his sib containing A is halved, i.e. it is p/2. If the
animal itself is Aa then a more complex calculation is required. If the
chance that an animal is Aa is p, then the chance that any allele is A
must be p/2. One of the parents of an Aa individual is A? and the
other is a?, where ? means ‘A with chance p/2 and a with chance
1 — p/2’. The sib therefore has a chance 1/2 + p/4 of receiving A from
the A? parent, and a chance p/4 of receiving A from the a? parent.
The total chance of receiving A is therefore (1 + p)/2. Charnov (1977)
uses this method of calculation. It is approximate because it depends
on p being small, and it assumes Hardy—Weinberg equilibrium. Now
let us return to the calculation of the condition for A to spread.

The fraction of Aa males in the next generation goes up if Aa
males have more offspring than aa males. What must be true of our
variables p, c and b for this to be so? Well,

1 —c+b(l+p)2>1+bp/2
reduces to:
b/2 — ¢ > 0.

We have just derived the condition for A to spread by calculating
simply the number of offspring produced by Aa and aa males. How is
the advantage of altruism shown using this approach? Through the
extra probability that the brother of an Aa male is Aa and so
increases the male’s own number of offspring.

Inclusive fitness arises from a different accounting procedure
(Abugov & Michod 1981), in which instead of counting the effect of
everybody’s actions on one individual’s number of offspring, we cal-
culate the effect of one individual’s actions on everybody’s numbers
of offspring. The count is weighted by the relatedness (for a precise
definition see section 3.3.4 below). Inclusive fitness was invented and
defined (mathematically) by Hamilton (1964). His paper is devoted to
proving that the alternative accounting procedure that underlies
inclusive fitness gives the same answer as the standard and logically
prior procedure, an example of which we have just worked through.
Hamilton described inclusive fitness as:

‘the animal’s production of adult offspring . . . stripped of all
components ... due to the individual’s social environment,
leaving the fitness he would express if not exposed to any of the
harms or benefits of that environment, . .. and augmented by
certain fractions of the quantities of the harm and benefit the indi-
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Table 3.1. Illustration of the two different accounting procedures implied
by two measures of reproductive success: number of offspring and inclusive
fitness. The ‘advantage to Aa’ is the same in both systems. The genotype that
has more offspring will also have higher inclusive fitness. Number of
offspring counts the effects of everybody’s acts on an individual; inclusive
fitness counts the (weighted) effects of the acts of one individual on
everybody.

Measure of RS  Number of offspring Inclusive fitness
Genotype aa Aa aa Aa
Basic nonsocial fitness 1 1 1 1
Cost of act C c
Benefit of act pb/2 (1 + p)b/2 b/2
Total 1+pb/2 1—c+(1+pb/2 1 1 —c+ b2
Advantage to Aa b/2 — ¢ b/2 — ¢

vidual himself causes to the fitnesses of his neighbours. The frac-

tions in question are simply the coefficients of relationship . . .’

(Hamilton 1964).

Applying this to our example, the aa males have an inclusive
fitness of one, because the extra b they sometimes receive (i.e. when
their brother is Aa) is disregarded as a ‘help from the social
environment’. The Ag males have (1 4+ b/2 — c) because their rela-
tedness to their brother is 1/2, which we use to devalue b. The condi-
tion for Aa males to have a higher inclusive fitness than aa males is
then that

1+b/2—c>1, or b2—c>0,

which of course is the same answer as before. We have just demon-
strated a (simple and) special case of Hamilton’s 1964 result. Table 3.1
illustrates the two accounting procedures. The two methods give the
same answer by different means.

3.3.2 How not to measure inclusive fitness

Them things that you're liable
To read in the Bible
They ain’t necessarily so.

Porgy and Bess

In the example of the last section we saw what inclusive fitness
is. Many textbooks give one of two erroneous definitions, and studies
have calculated inclusive fitness from data using one of these defini-
tions. It is instructive to examine these errors.

Erroneous Definition 1 (from Barash 1980, p. 212): ‘the sum of
individual fitness (reproductive success) and the reproductive success
of an individual’s relatives, with each devalued in proportion as it is
more distantly related.’

Erroneous Definition 2 (from Wilson 1975, p. 586): ‘The sum



of an animal’s own fitness plus all its influence on fitness in its
relatives . . .". T assume it is intended to weight the influences by
relatedness.

The original definition of inclusive fitness, as given in the quota-
tion from Hamilton (1964) in section 3.3.1 above, has a component
from ‘self” and a component from others. ED1 counts all relatives’
offspring, whereas inclusive fitness counts only those the relatives
had because of the actions of ‘self’. ED1 and ED2 count all the off-
spring of ‘self’, whereas inclusive fitness does not include those off-
spring gained through the actions of others (the “harms or benefits of
that environment’ in the above quotation from Hamilton).

The reason such erroneous definitions persist is that in most cases
they are not applied. In a general discussion the definition itself is
never called on with any precision and so the error is in a sense
silent, even unimportant. But as soon as data are used to calculate
inclusive fitness, the precise definition obviously does matter.

Measures of reproductive success must have one essential prop-
erty. If bearers of one allele have a higher (lower) reproductive
success than non-bearers, then the allele must increase (decrease) in
frequency. ED1 and ED2 lack this property. Number of offspring and
inclusive fitness do have this property. See Grafen (1982) for a fuller
discussion.

In the face of the obvious difficulties of calculating the differences
in number of offspring that helping causes, an alternative to inclusive
fitness is to use number of offspring as a measure of reproductive suc-
cess. If these data are available, it will be much simpler to calculate.

When it is desirable to use the inclusive fitness approach in ana-
lysing field data, it is better to aim at using Hamilton’s rule than to
calculate inclusive fitness itself. The next section discusses how to do
that. The inclusive fitness approach allows us to separate the success
of an allele into components of ‘own offspring’ and ‘relatives’ off-
spring’. Also, it may sometimes be the only approach we can use with
certain data. See the discussion of Noonan’s example in the next

section.

3.3.3 Hamilton’s rule and how to use it

Hamilton’s rule is that animals are selected to perform actions for
which rb — ¢ > 0, where r stands for relatedness. Inclusive fitness in
Hamilton’s 1964 paper was just a tool used in the construction of the
rule, and the only reason we have dealt with it at length is that it is
surrounded by so much confusion. Hamilton’s rule is more important
and more illuminating than inclusive fitness; it is also easier to apply
data to it because the form of the rule encourages us to use the correct
logic of differences. The rule has been derived recently by Charles-
worth (1980), using a simple population genetics approach, and by
Hamilton (1975) and Seger (1981) using the selection mathematics of
Price (1970, 1972).
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The first application of Hamilton’s rule to data complete with
decimal points was by Brown (1975). We will come later to his
example of helping at the nest in birds.

The very first step in applying Hamilton’s rule is to choose the
decision we are interested in—being as explicit as possible about the
alternative course of action. To calculate b and ¢ we must think
through all the consequences on lifetime number of offspring that
follow from doing one thing rather than another. The simple differ-
ence in number of offspring will also include the extra b’s contributed
by those relatives, and therefore does not give a proper estimate of c.

A difference of c¢ in the animal’s lifetime number of offspring
results from choosing to do Y rather than X. Any consequences that
would follow from doing Y not X should be taken into account—
decreased longevity, retribution and so on. It may seem at first sight
that a simple way to estimate this from data is to take the difference
in lifetime number of offspring between animals that do X and
animals that do Y. However, this seemingly reasonable procedure may
give the wrong answer. The reason is that animals that do X will have
relatives who tend to do X, and animals that do Y will have relatives
that tend to do Y. The principle is that an animal that helps n times,
and is helped m times, should have mb — nc offspring as a result.

The same caution applies to measuring b.

The value of r has been assessed in a number of ways. Bertram
(1976) modelled the structure of his lion prides to arrive at related-
nesses; Brown (1975) used simple ancestry; and Metcalf and Whitt
(1977b) used electrophoresis. See section 3.3.4 below for a further
discussion of r.

Finally, before proceeding to examples, Hamilton’s rule in the
form rb — ¢ > 0 has definite advantages over the more popular form
b/c > 1/r for the purposes of statistical testing. For one thing the first
form is correct whatever the signs of r, b and c. Also, if r is known
from a priori grounds, then the mean and variance of the difference
rb — ¢ are calculable simply from the means and variances of b and c.
The ratio b/c on the other hand has mean and variance that depend in
a more complicated way on the distributions of b and c.

Example 1: Brown’s analysis of helping at the nest in the superb blue
wren

Juveniles in many bird species sometimes stay behind at their
parents’ nest and help rear their siblings instead of leaving to try to
raise offspring of their own. Using data on the superb blue wren
(Malurus cyaneus) from Rowley (1955), Brown (1975) knew how many
young a nest produced in a year according to whether or not there
was a helper present that year. He estimated the benefit to the parents
as the difference that the helper made, and estimated the cost to the



juvenile as the average number of offspring produced by an unhelped
pair.

We now examine the assumptions made in assessing b and c in
this way. It is possible that parents survive better if they are helped
by their young, and so produce more offspring themselves in later
years. It is also possible that helpers do not help, but that able parents
have many offspring each year, a fraction of whom stay behind. This
would produce a correlation between number of ‘helpers” and number
of young raised, but b would be correctly assessed as zero. The
general assumption lying behind the measure of b used is that the
number of young produced in a year depends only on the number of
helpers in that year. It is possible that experience of breeding in the
first year is better or worse preparation for breeding in the second
year than helping, or that there is differential mortality in the two
groups. It is probably true that helping rather than breeding alone
affects the chance of being helped in the second year. These would
upset the measure of b, as it is the lifetime number of offspring that
matters. Here the general assumption is that the rest of the juvenile’s
life is unaffected by its decision in the first year.

The point to notice about these assumptions is that although
crucial they are interesting and biological and perfectly amenable to
investigation, as is borne out by many later studies by Brown and his
associates. They discover (among other things) with increasingly
powerful methods whether or not helpers in the gray-crowned
babbler really help (Brown et al. 1978; Brown et al. 1982).

In the example of the superb blue wren, the basic data were that
pairs with helpers produced 2.83 offspring on average and those
without produced only 1.50. The benefit of staying was therefore 1.33
to the parents. For females, the cost of staying was 1.50, as it was for
males who could find mates; while for males who could not find
mates, the cost was zero. The value of r was one, because the choice is
between creating siblings and creating offspring, which are equally
related. (Alternatively, we can say that the helper helps both his
parents increase their number of offspring, and the sum of his rela-
tedness to his parents is one.) The conclusions were that females
should not help because

tb —c=133—-150= —0.17 <0,

and that males who could find mates should not help by the same
calculation. Males who could not find a mate should help because

tb—c=133—-0=1.33>0.

Brown (1975) also discusses the case of the Florida scrub jay, using
data from Woolfenden (1975), in which females should help. Emlen
(1978) discusses at more length the application of Hamilton’s rule to
helping in birds.
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Example 2: Noonan'’s study of joint nesting in Polistes fuscatus

Noonan (1981) studied the founding of nests by females of the social
brown paper wasp Polistes fuscatus. In this species, nests may be
founded by from one to about ten females; one of these females
becomes the queen, who does most of the egg-laying. These females
are almost always closely related. One of the questions Noonan
asked was whether a female who joined a group of relatives as a
worker did better than a female who decided to become a solitary
queen. Specifically, did the fact that she was helping close relatives
swing the balance in favour of social cooperation? We will not follow
Noonan's own analysis.

To apply Hamilton’s rule, it is vital to be precise about the wasp’s
decision. Suppose a female is confronted with a nest of N —1 rela-
tives and she knows that she is the last to decide whether or not to
join it. If she does not join it we will assume, in two separate applica-
tions of the rule, first that she leaves and becomes a single foundress
and second that she leaves and dies.

To estimate the benefit to her relatives, we must calculate how
many young her relatives would produce as a nest of N — 1 females
without her, and then in a nest of N females with her as an extra
worker. The difference is the benefit she confers on her relatives. The
cost to herself is the difference between the eggs of her own she lays
as a worker in a nest of N females, and the young she rears in her
alternative role. This is the number of young reared by a workerless
queen in the first application, and the zero young reared by dying in
the second. Noonan’s paper contains all the necessary information to
carry out these calculations, and the results are shown in Table 3.2.

The main conclusions are as follows.

1. In terms of her own number of offspring, a female is much better
off as a solitary queen than as a worker, and much better off as a
worker than dead.

2. In terms of her contribution to her nest-mates’ number of off-
spring, her effect depends strongly on how many workers there
already are at the nest. If she would be the only worker, then her
effect is strongly positive; if she would not, then she has a negative
effect on their reproduction. She lays more eggs as a worker than the
extra she provides for the nest as a whole.

3. If she would be the only worker, then her relatedness to the queen
may well favour her joining. The condition is that r > 0.48.

4. If she would not be the only worker, then her relatedness to the
members of the nest will act against her joining. She would do better
to join strangers and parasitize them. The value of r can even be high
enough to swing the balance in favour of dying rather than joining
close relatives in a group.

The implications of these conclusions do not matter to us here, but



Table 3.2. A kin selection analysis of the decision of a female Polistes
fuscatus whether to join a nest of relatives and become a worker in a nest
with a total of N females. Two alternatives are considered : becoming a
solitary queen, and dying. Data are from Table 2-2 in Noonan 1981. The
conditions for joining are calculated using ‘rb —c > 0 means join’. We
assume that r is never negative. Nests of sizes 1, 2, 3, and 4 were in fact
common (Noonan 1981).

N

2 3 4
Number of eggs of a solitary queen 18.25 18.25 18.25
Number of eggs of a worker in
nest of size N 4.6 4.8 3.6
Cost of joining instead of
becoming a solitary queen 13.65 13.45 14.65
Cost of joining rather than dying —4.6 —4.8 —3.6
Number of eggs by the rest of
the nest if joined (making N) 46.4 40.5 39.1
Number of eggs by the nest if
not joined (making N — 1) 18.25 51.0 45.5
Benefit to rest of nest of being
joined 28.15 —10.5 —6.4
When should a female join rather
than become a solitary queen? r>0.48 Never Never
When should a female join rather
than die? Always r <0.46 r <0.56

one general point does. Why do we apply Hamilton’s rule when
Noonan’s data are good enough to allow us simply to calculate
number of offspring? In the spirit of section 3.3.1, should not the two
methods give us the same answer and would not number of offspring
be easier? One reason to apply Hamilton’s rule is to see whether a
trait is advantageous through an individual’s own reproduction alone,
or whether the effect on relatives’ reproduction swings the balance.
Another reason is that in counting number of offspring we must
average over all animals who would have decided (i.e. had the genes
for deciding) to join and those who would have decided to go it alone.
But we do not know which all these animals are. The problem arises
because not all animals are called on to make the decision, and so not
all the animals’ strategies are laid bare. We do not know who would
have done what. Using the inclusive fitness approach, we can legiti-
mately concentrate on only those animals who faced the decision.
(The ‘work’ of deciding who would have done what is in effect done
for us by the calculation of relatedness.) This is a crucial advantage to
the inclusive fitness/Hamilton’s rule approach when not all animals
are faced with the decision of interest.
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3.3.4 The validity of Hamilton’s rule

Hamilton’s rule holds good only under certain assumptions. There are
different definitions of r, and the scope of the rule depends on the
definition of r employed (Michod & Hamilton 1980; Seger 1981). Here
we are concerned mainly with applications, and so restrict ourselves
to forms of r that can be estimated from data. Charlesworth’s deriva-
tion of Hamilton’s rule (Charlesworth 1980) makes the roles of the
assumptions clearest, and we follow his treatment in what follows.
The latest, but perhaps not the last, word on the validity of inclusive
fitness and Hamilton’s rule is a review by Michod (1982).

Assumption 1: Additivity of costs and benefits

An animal that is helped m times, and helps #n times, should experi-
ence a change of mb — nc in its number of offspring as a result. This
assumes that effects add. Addition will not always be the most plaus-
ible way for costs and benefits to combine. If the trait affects survival,
then multiplication may be more appropriate (Charlesworth 1978). To
see this, consider an animal that is exposed on two separate occasions
to a 75% chance of dying. Each occasion quarters its fitness, and the
overall effect is to reduce its fitness to one-sixteenth of what it would
have been. The assumption of additivity is untroubling if the b and ¢
are small, because then additivity will hold at least approximately.
‘Small’ is relative to average lifetime reproductive output.

In fact the assumption of additivity is really two assumptions in
disguise. Two things go wrong if additivity is broken. First, an animal
that pays one cost and receives one benefit does not have a net gain of
b — c. This is partly just a measurement problem—if we define b and
c as the average effects measured in number of offspring, then we
may avoid it. Secondly, and more seriously, the cost and benefit of an
action will depend on the genotype of the actor and recipient respec-
tively. If two helps are not twice as good as one, then altruists will
tend to lose out; they receive more than their share of helping and so
receive more of the substandard second helps. This would invalidate
the theory on which inclusive fitness is based at a quite fundamental
level (Seger 1981).

Assumption 2: The gene frequency among potential donors and receivers
is the same

A potential donor is an animal that is faced with the decision being
investigated. A possible though unlikely exception is considered by
Charlesworth (1978). Suppose that a dominant altruistic mutant gene
caused all of its bearers to commit suicide for the benefit of their sibs.
The sibs that benefited could certainly not be altruists! The altruistic
allele would be inevitably selected against, indeed would have a




fitness of zero, no matter what the values of b, ¢ and r. In a sense this
assumption says that r has to mean what we think it means—the
extent of genetic similarity at the locus of interest.

Assumption 3: Weak selection

This assumption hinges on r. The essential property of r in Charles-
worth’s derivation of Hamilton’s rule is as follows (Charlesworth
1980). Let the set of animals S be the possible recipients of an act by
an animal 1, and let T be the set of all animals in the population. Let
p(A|Z) be the probability that an allele selected at random from a
given locus in entity Z is allele A. (For example, p(A | T) is the popu-
lation proportion of A.) Then the r that is relevant for the decision is
implicitly defined by:

p(Als)=r-pA[T) + (1 =1 pA[T)

In words, the possible recipients of the act are partly like I and
partly like T; and r measures how like they are to I. The condition
that r = 0 means that the possible recipients are genetically represent-
ative of the population as a whole; r = 1 means that they are geneti-
cally of the same constitution as the potential donor.

A remarkable thing about this definition is that when there is no
selection going on, r is the same for all alleles at all loci with the same
inheritance pattern (e.g. autosomal, X-linked, Y-linked). Furthermore,
it can be calculated from family trees. However, when selection is
occurring, r will not be the same at all loci and will only be calculable
approximately from family trees. Consider an animal and a class of
its relatives at a period in the life cycle when selection is occur-
ring. Selection is a systematic change in the relative proportions of
animals with different genotypes; and so the genetic similarity of
the animal to surviving members of the class of relatives must change
as selection occurs. The assumption of weak selection is necessary
to make ancestry an accurate enough guide to the ‘true’ r as defined
above.

Weak selection should rarely be a problem in practice. If rb — c is
large in magnitude when calculated with an r derived from ancestry,
then the deviation from the true value of r will not affect the sign of
rb — c. Alternatively, if b — ¢ is small in magnitude, then selection is
weak and ancestry is a reasonable guide to the true r. Thus the direc-
tion of selection will be preserved, although it is true that the
strength of selection may be misjudged.

It is interesting that these problems do not disappear if r is mea-
sured by electrophoresis. The deviation of the ancestral from the true
r occurs at loci undergoing selection, and there is no reason to believe
that the loci sampled electrophoretically are undergoing the same sel-
ection as the locus affecting the decision of interest.
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3.4 GROUP SELECTION

Group selection has a bad reputation among many behavioural ecol-
ogists and evolutionists that obfuscates debates on some recent models
that go under the name of group selection. In section 3.4.1 I discuss
that kind of group selection which quite rightly elicits disapproval,
and which is certainly still with us today. Section 3.4.2 deals briefly
with the first generation of models of group selection, and section
3.4.3 deals more extensively with a quite different class of models of
the natural selection of animals in groups.

3.4.1 The bad and dangerous

The reputation of group selection comes not from mathematical
models, nor from deliberate discussion of group selection, but from a
certain naivety practised by laymen and many biologists alike in their
day-to-day thinking about the adaptedness of animals to their
environment. An adaptation is ‘for something’—and that certain
naivety is to propose an adaptive explanation without stopping to
think what that ‘something’ is. It is this lack of thought, not any
deliberate and considered choice of the group as that ‘something’,
which is the target of most accusations of ‘group selectionism’.

This lack of thought is a target deserving of attack—and as sus-
tained and effective an attack as we can muster. However, ‘group
selection’ is a poor name for this lack of thought, because the ‘good of
the species’ and the ‘good of the ecosystem’ are as prominent as the
‘good of the group’ in its effects (to be found in journalistic and aca-
demic publications).

The fundamental case for careful thought is that adaptations arise
only by natural selection, and that natural selection does not normally
promote adaptations for the good of any unit larger than the
organism. Two excellent ‘self-help’ guides in careful thought are
books by G. C. Williams (1966) and R. Dawkins (1976). (The
organismal approach suggested here is not in conflict with the ‘gene
selectionism’ of Dawkins (1982a, b). In his language, we are saying
that the individual is usually a well-adapted vehicle for gene repli-
cation, while groups usually are not.) In the next two sections we will
see possible exceptions to the general rule, but we must not allow
them to distract us from a most important lesson about adaptations: a
very convincing case is needed to explain why an adaptation should
be for anything other than the organism. Lack of thought is the basis
for that group selection which is mad, bad and dangerous to know,
and the exceptions that follow are no licence for that laziness.

3.4.2 The old

The first generation of mathematical models for the exploration of
group selection can be understood by reference to Fig. 3.1, which is



adapted from Maynard Smith (1976b), who gives references to exam-
ples of these models. A composite of those models works as follows.
There are a large number of discrete locations each of which is
capable of supporting one group. Migration between locations is
restricted. There are two alleles, Ay and A, at a given locus. Animals
with A; are more cooperative than those without, but at a cost to
personal fitness. The consequences are that within any group A,
quickly displaces A;, but that groups consisting of A; are better off
than groups of A, . ‘Better off’ means either less likely to go extinct
in a year, or able to produce more migrants to leave and try to colo-
nize empty locations.

There are three kinds of location (neglecting the transient mix-
tures of Ay and A,): E (for empty), Ag and A,. The traffic between
these kinds occurs for a number of reasons. Extinction sends A, and
A, to E. Migration to empty locations sends E to A, or A;. Migration
to occupied locations sends A, to Ay .

The question for any given model is exactly how the cooperation
of A, animals affects extinction and number of migrants produced by
the group, and whether migrants are allowed to join occupied loca-
tions or only empty ones. The factors promoting the spread of A, are
(1) cooperation reducing extinction, (2) cooperation increasing number
of migrants produced by the group, (3) migrants allowed to join only
empty locations, and (4) small number of founders in a group. The last
is important because the more founders there are, the more likely
it is that there is at least one A, among them.

The final consensus on these models was that the conditions for
A, to be successful were too stringent to be realistic. Wynne-
Edwards, whose book Animal Dispersion in Relation to Social Behav-
iour (1962) sparked the whole controversy, wrote in 1978:

‘but in the last 15 years many theoreticians have wrestled with it,

and in particular with the specific problem of the evolution of

altruism. The general consensus of theoretical biologists at present

/N

Fig. 3.1. This shows the possible states of sites in an ‘old” group selection
model. The arrows represent possible transitions. E means empty; Agand A,
refer to groups with only that allele at the locus of interest. Mixtures of A,
and A, are considered too transient to matter. The figure is adapted from
Maynard Smith 1976b.
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is that credible models cannot be devised by which the slow

march of group selection could overtake the much faster spread of

selfish genes that bring gains in individual fitness. I therefore

accept their opinion.” (Wynne-Edwards 1978).

Even before this was written, a new sort of group selection had
been discussed that did not require unreasonable assumptions. The
new group selection of Price (1970, 1972) and Hamilton (1975) is the
topic of the next section.

3.4.3 The new

Many animals live in groups, and these groups may be grouped by
natural features such as rivers or mountains, and even these super-
groups may be grouped by, for example, the ocean. The focus of
attention of the new group selection is on this hierarchy of grouping
and the effect it might have on natural selection. As a preliminary
caution, we must not allow the rhetoric of hierarchies and groups
within groups to intoxicate us. A sober appraisal is required, for as
we shall see it is possible to have hierarchies and groups within
groups that have no effect whatsoever on the workings of natural
selection. The next three parts deal in turn with altruism, the sex
ratio and, briefly, a different approach to explaining the workings of
the following models.

Altruism

The real hero of this section is Hamilton’s rule, and indeed we follow
Hamilton’s treatment closely here (Hamilton 1975). To understand
why grouping might have an effect, we first examine the definition of
r given in section 3.3.2 above. It was that for an animal I, a set of
other animals S, and the total population T, r from the animal to the
set satisfies:

p(AlS)=r-pAlT)+ (1 —r) p(A|T)

In words, the genetic composition of S is a weighted average of the
genetic compositions of the animal I and the population T; r measures
the weight given to the animal I's genotype in that average.

Taking S to be the rest of the group to which an animal belongs,
what factors might cause r to be non-zero? There are only two
(Maynard Smith 1976b). One is common ancestry, and the other is
preferential assortment. Taking common ancestry first, the grouping
of the population may make it difficult for us to ascertain properly all
the relevant kin links. As an example, Hamilton points out that in a
virtually closed group the genetic similarity builds up eventually to
1/(2M + 1), where M is the absolute number of migrants each gener-
ation, independent of the group’s size. The ties in a large group ‘make
up in multiplicity what they lack in close degree’ (Hamilton 1975).



So unsuspected kin links may increase r above initial expecta-
tions. An example of how to estimate relatedness in a grouped popu-
lation is provided by Bertram (1976). By modelling the way lion
prides are formed, he calculated the genetic similarity between the
different kinds of animals in a pride—the females, the males and the
young. Just using the observed kin relations in a pride would have
underestimated the genetic similarities. Bertram’s work is a good
example of the new group selection applied to data, although it is
expressed entirely in terms of kin selection. An important message
from it is that animals in groups may not all be equally related, and
the distinctions are very interesting.

The other way for r to be raised in groups besides common
ancestry is preferential assortment. If altruists share a preference for
certain habitats or microhabitats, then altruists will tend to be in
groups with other altruists and that is all that is required to make r
positive according to the definition above. There are a number of
reasons why preferential assortment is not a plausible source of
genetic similarity in nature. They are based on the fact that while
ancestry provides relatedness that is the same for all loci, preferential
assortment only causes relatedness at the loci that cause it, and at
linked loci. It is unlikely that the locus for altruism is closely linked
to the loci for habitat preference. Even if it were, there would be
selection at unlinked loci to suppress the altruism; for while the r at
the altruism locus may be positive, the r at unlinked loci is zero and
Hamilton’s rule applies equally to both sorts of loci. Finally, there
would be selection for a ‘free-rider” allele (if one arose) at a locus
unlinked to the altruism locus. It would have the effect of creating
the same habitat preference as that of altruists, whether or not its
bearer was an altruist.

For all these reasons the only plausible cause of genetic similarity
among group members is common ancestry. Furthermore, the only
moving force in the new group selection is genetic similarity.

Hamilton (1975) discusses a model of towns, with low migration,
in which relatedness and altruism build up together; he suggests this
as a possible genetic basis for xenophobia. The model would apply
equally well to non-human groups. It is the most considered attempt
so far to show how the new group selection might be important in
nature. I wish now to discuss two important caveats in interpreting
this model. The model itself works because, as noted above, the
relatedness in a community that receives M migrants each generation
builds up to 1/(2M + 1).

The first caveat is that the migration rates must be low to achieve
a noticeable relatedness. One migrant every two generations produces
sibling level relatedness; eight per generation produces second cousin
level relatedness. In animal groups in which all of one sex disperses
we expect very little effect.

The second caveat is more fundamental. When we say in the ordi-
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nary, ungrouped, model of kin selection, that an act has effects b and
¢, do we really mean that there are b — ¢ extra offspring in the popu-
lation as a whole surviving to maturity and breeding? Perhaps, but
probably not. Normally we would expect that a winter bottle-neck or
some other factor would limit total population size in a way un-
affected by the act of altruism. We probably mean to say that the
donor loses c, the recipient gains b, and then because the total popu-
lation number remains the same the population as a whole loses
b — c. If we let d represent the general decrement associated with the
act (and d will equal b — ¢ if the act does not increase carrying
capacity), and let r, be the average relatedness of the potential donor
to those suffering the general decrement, then we can write Ham-
ilton’s rule more fully as:

tb—c—rd>0

Formally this is just expanding b to include all the effects of the act.
The subscript ‘e’ means economic, describing the forces that
regulate population size. Hamilton (1964) discussed this near conser-
vation of fitness in the population as a whole.

If the population as a whole suffers the general decrement, then
the expansion of Hamilton’s rule is unnecessary. By the definition of r
above, the relatedness to the population as a whole is zero and so the
extra term falls out. However, in the case of grouped populations the
extra term will often be very important. The most important factor in
creating intra-group relatedness, isolation, will also cause the general
decrement of an act to be felt by those with whom an animal is iso-
lated. This means that r, will tend to be proportional to the intra-
group relatedness. In the extreme case where all the general
decrement falls on the group, and the act does not increase carrying
capacity, there will be no selection for intra-group altruism; for what
the animal gives in bulk to one member, he takes away in dribs and
drabs from all the others.

There are then two parallel factors at work in the new group sel-
ection. One is the pattern of relatedness among groups, and the other
is the pattern of joint dependence of offspring of group members on
the same resources. The resolution of these two, through the expan-
sion of Hamilton’s rule above, determines how grouping affects the
workings of natural selection on altruism.

There remains one loose end to tie. It is obvious from this dis-
cussion that with random grouping there is no selection for altruism.
In this case r = 0, and the spread of an allele is determined by the
selfish criterion ¢ < 0. Matessi and Jayakar (1976), Cohen and Eshel
(1976) and Wilson (1975, 1980 and references therein) have claimed
that there is selection for altruism in this case. This arises because
they all defined altruism not in terms of absolute fitness as Hamilton
(1964, 1972) did before them, but in terms of relative fitness within
the group. This is discussed further at the end of this section.



Sex ratio

In Chapter 8, Maynard Smith explains the basic Fisherian model
(Fisher 1958) and the idea of local mate competition. The first model
showing an effect of grouping on sex ratio was constructed by
Hamilton (1967). In this model, 7 inseminated females arrive at a site
and lay their eggs, which develop and then mate among themselves.
The males die, the inseminated females disperse and the next genera-
tion begins. The unbeatable sex ratio (for a diploid species) is that a
fraction (1/2)((n — 1)/n) of resources should be allocated to producing
sons.

This female bias can be seen as the result of two factors acting
against the Fisherian force towards equality of investment. The first is
diminishing returns to producing sons—that is, each additional son
creates fewer and fewer additional grandoffspring for his mother.
The second is that making a daughter increases the number of grand-
offspring males produce for their mother, through increasing the
available number of mates; creating sons does not affect daughters’
success. This asymmetry arises because it is assumed that males con-
tribute nothing to the care of offspring. We can add a third factor by
supposing the n females to be related. Making a daughter would than
have the additional benefit of increasing the mating success of sons of
relatives. The sex ratio would therefore be even more female biased if
the n females were related to each other.

These three factors are at work in a recent model of the sex ratio
in grouped populations, by Bulmer and Taylor (1980). It is designed
to account for female-biased sex ratios in the wood lemming. In the
model, n foundresses arrive at a site, and g generations take place
within the site before population-wide dispersal occurs and again
groups of n foundresses form. Bulmer and Taylor consider separately
the case where females of the dispersal generation mate within their
own group before dispersal, and where they mate at random in the
population. They sought that sex ratio which, once an allele produc-
ing it was common in the population, would not allow a dominant
allele coding for any other sex ratio to invade. This stable sex ratio
depended on the parameters n and g of the model. It was always
female biased. As the number of foundresses n increased, the bias
diminished, corresponding to a relaxation in the diminishing returns
of producing sons. The bias increased as g, the number of genera-
tions between dispersals, increased. How can this be explained ?

During the g generations between dispersals, the number of
animals in each site grows exponentially at a rate determined by the
sex ratio produced by the females. This creates increasing returns to
scale for producing daughters when measured in number of eventual
dispersers. It also causes relatedness to increase as the g generations
proceed. If each of n unrelated foundresses has two daughters and one
son, then each member of the next generation has as sibs a fraction
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2/(3n — 1) of the rest of the population. Now the exponential growth
of the group means that producing daughters benefits all members of
the group, and of course a female only cares about the effect on the
reproduction of the others to the extent that she is related to them.

This view of the model suggests two predictions about the model’s
behaviour. First, the sex ratio bias should be more extreme if varia-
tion in reproductive success among males or females exists, since this
also increases the relatedness between group members. (In an extreme
case where all offspring have the same parent of either sex, group
members are at least half-siblings.) Secondly, the sex ratio bias should
increase as the g generations proceed because the relatedness between
group members increases. Bulmer and Taylor do not allow the females
to choose their sex ratio according to the generation to which they
belong, nor do they vary variance in reproductive success.

In a similar model, however, Wilson and Colwell (1981) do vary
variance in reproductive success. Their model is haplodiploid, and
their equilibrial sex ratio is a genetic polymorphism between an allele
producing a 1:1 sex ratio, and an allele producing a sex ratio of
varying degrees of female bias. They confirm the results of Bulmer
and Taylor, and also show that the result of increasing the variance in
male reproductive success is indeed to increase the female bias of the
sex ratio.

So we see that the female bias in sex ratios that can occur in
grouped populations can be attributed to diminishing returns or
increasing returns to one sex, producing females being a source of
reproductive success for sons, and producing females being a source
of reproductive success for the sons of relatives.

Didactics

The most vocal proponents of the new group selection have been
Wilson and Colwell. (Wilson 1980, and references therein; Wilson
& Colwell 1981; Colwell 1981.) They have scandalized many by
speaking positively of ‘group selection’. The purpose of this section is
to reconcile their chosen way of explaining why grouping has the
effect it does with that of the previous sections. They concentrate on
dividing selection into two parts: within-group selection, which is the
local change in gene frequency within each group, and between-
group selection which is the result of differential fecundity of groups.
This difference of approach is purely didactic—there is no disagree-
ment about matters of substance.

The different approach has, however, led to misunderstanding.
Wilson and Colwell identify within-group selection with ‘individual
selection’, and between-group selection with ‘group selection’. Now
individual selection already has a meaning which is quite different,
and one I think is very valuable. An act is said to be favoured by
individual selection when it spreads through its effect on the actor’s



number of offspring alone. In terms of Hamilton’s rule, this occurs
when there is a negative cost, i.e. a simple gain, in terms of number of
offspring to the actor. As r and b also enter into Hamilton’s rule, this
definition does not make individual selection synonymous with
‘natural selection’. See the discussion of Noonan’s study in section
3.3.3 above as an example.

Another source of misunderstanding arises from the use of the
word ‘altruism’. As we noted earlier, altruism will not evolve in
simple, one-generation groups that are formed at random from the
population. Matessi and Jayakar (1976) and Cohen and Eshel (1976),
as well as Wilson (1975, 1980 and references therein), redefined
altruism to refer to relative success within the group rather than
absolute success. Relative success is the individual’s number of off-
spring divided by the average number of offspring of members of his
group. Absolute success is number of children (or number of children
relative to the whole population). Under the ‘relative’ definition,
‘altruism’ can spread. Wilson calls the acts that are altruistic under
the ‘relative’ definition, but not under the ‘absolute’ definition,
‘weakly altruistic’. An alternative I prefer is ‘a self-interested refusal
to be spiteful’.

Wilson and Colwell’s ‘between-group variance’ is very closely
connected to relatedness to other group members, and the same points
can be made using both concepts. In a haploid model with constant
group size, they are connected by the following formulae:

1 v
v=uvy(l + (n— 1)) r= |:——l:|

n—1] v,

where vy, is the variance that would arise from a binomial distribution
of the same overall proportion of genotypes. Several differences may
be noted between r and v. The expected degree of altruism depends
on r by Hamilton’s rule, and not on n. Knowing that r = 0.22 gives
many biologists an understanding of the genetic closeness described;
the knowledge that n = 10 and v/v, = 2.98 is (at least for the present)
less illuminating. When there is no effect of grouping, that is the
grouping is random, r = 0; and when spite is expected (Hamilton
1975), r is negative. The value of v itself gives little indication of the
effect of grouping; v/v, = 1 for random grouping and <1 when spite
is expected. I think it will be admitted that r is the more useful and
familiar measure of genetic similarity. Familiarity is important for
clarifying the connections between the new group selection and what
is already known about kin selection.

The connections are certainly there. Bertram (1976) correctly
described his study as one in kin selection, and yet I used it as an
example of the new group selection applied to data. Once the basis of
the new group selection is understood (namely, genetic similarity due
to kinship but where groups are clearly in evidence) most kin selec-
tionists should realize they have been new group selectionists all their
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lives. It is vital to remember, of course, that when the population is
grouped there may be unsuspected kin links; and that in groups that
last for a number of generations, relatedness builds up as the gener-
ations proceed.

3.5 CONCLUSIONS

1. The methods of behavioural ecology depend for their correctness
on various genetic assumptions.

2. Number of offspring and inclusive fitness are two different valid
measures of reproductive success.

3. Inclusive fitness has often been misdefined. It includes relatives’
offspring only if the animal’s help is responsible for their existence. It
excludes those among the animal’s own offspring that exist because of
help received from others.

4. Hamilton’s rule in the form ‘rb — ¢ > 0’ should be used in applica-
tions of the inclusive fitness approach to data. As a general rule,
inclusive fitness is applied wrongly to data but Hamilton’s rule is
applied correctly. This is because Hamilton’s rule encourages use of
the correct logic of differences.

5. New group selection models are most readily understood using
Hamilton's rule. Genetic similarity as expressed in relatedness is the
driving force towards altruism. The forces affecting sex ratio are
increasing or decreasing returns to scale for one sex or the other, and
the increase in male relatives’ mating success that follows from pro-
ducing a daughter.





