1: Modelling in behavioural ecology

Alan Grafen

1.1 Introduction

The chapter begins with a general justification for using non-genetic
models to study adaptation. This is extremely important because the gen-
etics of interesting traits is rarely known. The second section discusses
Hamilton’s model of social interactions (Hamilton, 1964; 1967), explaining
it in a new way. The scope of inclusive fitness theory is discussed, and
applications  of Hamilton’s rule are described. Hamilton’s model under-
lies most current research on social interactions, and shows how a model
can become so much part of the framework of our thought that we are un-
aware of it. A model of signalling forms the basis for the third section, in
which the much vilified handicap principle of Zahavi (1975, 1977a) is vin-
dicated. The clarification of Zahavi’s ideas is upheld as an example of a
cardinal virtue of modelling.

1.2 Population genetics underlies behavioural ecology

The starting point for much behavioural ecology is that animals are
maximizers of one sort or another—efficient predators or foragers, or
elusive prey. The usual ground for believing this is the presumption that
natural selection has made them so. If not now then at some time in the past
(Dawkins, 1982, pp. 20-24), there existed heritable variation in hunting
and foraging techniques, and in ploys to escape predators. Changes in
allele frequencies have made animals good at what they do.

The behavioural ecologist, though, does not usually know the genetics
underlying the character she studies. While she would be interested to
know this genetic system, it is not of primary importance. Her main aim is
to uncover the selective forces that shape the character. The behavioural
ecologist has to hope in her ignorance that her method will work almost
regardless of which particular genetic system underlies the character
(Lloyd, 1977). This hope raises two questions. First, is it justified? Second,
is the assumption so powerful and plausible that a whole research strategy
should be based on it?

1.2.1 The phenotypic gambit

Let us start with a brief caricature, with examples, of an important method
in behavioural ecology. It has two elements.
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(i) A strategy set This is a list or set of (perhaps all) possible states of the
character of interest. Here are three examples of strategy sets. McGregor et
al. (1981) studied the song of male great tits, and in particular their reper-
tory size. The strategy set they used was simply every different repertory
size they observed: integers from one to five. Brockmann et al. (1979)
studied the nesting of great golden digger wasps. These wasps sometimes
acquire a nest by digging, and sometimes by entering an already existing
nest. Brockmann and co-workers were interested in the relative frequency
of these two ways of acquiring a nest, and so the strategy set was simply all
possible proportions of digging rather than entering—numbers between
zero and one. In the hawk-dove game devised by Maynard Smith and Price
(1973), the strategy set consists of two strategies, called hawk and dove.

(ii) A rule for determining the success of a strategy The success of a
strategy is the number of offspring left by an animal adopting it, or al-
ternatively its inclusive fitness (see section 1.3 below). The rule for deter-
mining success may involve the frequencies with which strategies are
adopted in the population. One way to determine the rule is to observe it,
as McGregor et al. They counted how many offspring every male fathered
in his lifetime, and averaged across all males sharing the same repertory
size. Another way is to model the rule, which Brockmann et al. did because
they needed to know how the success of the strategies changed as their fre-
quencies changed. They used data to estimate parameters in the rule. When
the purpose is to investigate theoretically the consequences of a particular
form of frequency dependence, then an appropriate rule is simply
assumed: in the hawk-dove game, the rule is represented in the pay-off
matrix. )

The phenotypic gambit is to examine the evolutionary basis of a charac-
ter as if the very simplest genetic system controlled it: as if there were a hap-
loid locus at which each distinct strategy was represented by a distinct
allele, as if the pay-off rule gave the number of offspring for each allele, and
as if enough mutation occurred to allow each strategy the opportunity to
invade.

The gambit implies that all strategies occurring in the population are
equally successful, and that they are at least as successful as any non-occur-
ring strategy would be if it arose in small numbers. The application of the
gambit to a given strategy set and pay-off rule is a powerful way of testing
the joint hypothesis that the strategy set and the pay-off function have been
correctly identified, and that the gambit is true.

In their first model, Brockmann et al. rejected this joint hypothesis
when two existing strategies turned out not to be equally successful. They
adopted a new strategy set in their second model.

The joint hypothesis might be false because the genetic system under-
lying the character does not produce the same phenotypic effects as the
very simplest genetic system, the one assumed in the gambit. The mere fact
that the predictions of equal success of existing strategies and the inferiority
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of unplayed strategies are rejected does not reveal which element in the
joint hypothesis is false. The research strategy implied by the phenotypic
gambit is to treat such rejection as evidence that the pay-off function or
strategy set is wrong, and not that the genetic system is causing the discre-
pancy (see also Chapter 4).

1.2.2 Is it a winning gambit?

Taken literally, the gambit is usually unjustified: few species studied by
behavioural ecologists are haploid. But will the genetic system that does
underlie the character produce the same phenotypic effects as the genetic
system the gambit assumes?

Two points are important here. First, an example is known in which the
gambit would be misleading. In some human populations affected by
malaria, there are three distinct phenotypes corresponding to the three pos-
sible genotypes at a diploid locus with two alleles (Allison, 1954). One type
almost invariably dies before reproducing, of sickle cell anaemia. The other
two types differ in their resistance to malaria. The coexistence of these three
genotypes with markedly different fitnesses would be very puzzling to a be-
havioural ecologist applying the phenotypic gambit. The mechanics of
Mendelian segregation prevent the whole population from sharing the
optimal phenotype, because it is produced by the heterozygous genotype.
Here, as undoubtedly elsewhere, it is essential to know the underlying
genetics in order to understand the distribution of phenotypes observed in
the population. _

The second point is that such cases are probably rare. Only certain
features of genetic systems, such as over-dominance in the sickle cell case,
can sustain dramatic differences in fitness, and these features are not
known to be common. Maynard Smith (1982) has analysed how well
different genetic systems support the simplification represented by the
gambit, and he concludes that by and large they do so very well. The sorts
of character studied by behavioural ecologists are likely to be controlled by
many loci, and this reduces the scope for the maintenance of large fitness
differences.

Genetic systems are themselves subject to evolution. In its simplest
form, this is the creation of a new allele by mutation, but more substantial
changes could occur. In the sickle cell case, a (functional) gene duplication
of the locus would allow one locus to fixate for each allele. Every individual
in the population could then have the ‘intermediate’ genotype that confers
malarial protection without the sickle cell anaemia. That this has not hap-
pened for sickle cell may be because this intermediate genotype would be
disadvantageous where malaria is not a major selective force. The existence
of fitness differences between genotypes at equilibrium creates selection
for evolution of the genetic system itself.
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The behavioural ecologist hopes that genetic systems that do not sup-
port the gambit are rare or transient. If the discrepancies produced by gene-
tic systems are smaller than the accuracy of the data, then field-workers can
safely ignore them. We know this might not be so, and we should be anxi-
ous to find out whether this hope is justified. The soundness of behavioural
ecologists’ methods depends on arguments concerning population gen-
etics, but our methods are actually designed to avoid doing genetics.

We have seen that the gambit cannot be made with perfect safety. Itis a
leap of faith. But what would behavioural ecology be like if we refused to
use it in our research? It would be very different. Detailed studies in which
the precise nature of a character is examined as an adaptation would have
to be accompanied by a study in which the genetic mechanism underlying
the character was uncovered so precisely that an explicit genetic model
could be constructed. There would be no decimal places without genetics.
This would reduce drastically the range of characters we can study. Genet-
ically simple and well-studied characters are usually straightforwardly dis-
advantageous mutants maintained by judicious artificial selection in
strains that have spent tens of generations in the laboratory—and so are
rarely of evolutionary interest. A behavioural ecological study would have
to be very large if genetics were included, and it would be impossible to
complete a study on elephants, say, within the lifetime of a scientist.

If the gambit is generally justified, therefore, the genetics is an almost
irrelevant complication in understanding the selective forces that shape a
character. The gambit makes truly phenotypic explanations possible, and
the effort expended in discovering the genetics would be wasted. Better to
allocate that effort to studying in an evolutionary ways characters of
evolutionary interest, and in a genetic way characters of genetic interest.

These are the reasons why the gambit is so attractive, whether it is
justified or not. The advantages seem to me to justify continuing to employ
the gambit, always providing we remember that we may be wrong.
Theoretical work by Thomas (1985a,b,c,d) and other studies reviewed by
Hines (1987) tackle the problem of when the evolutionarily stable strategy
approach applied to phenotypes gives the same answer as a more genetical
approach would. They lend strong support to the phenotypic gambit.

1.3 Inclusive fitness and Hamilton’s rule

It is all very well to say that animals are maximizers, but what do they
maximize? Is it number of offspring? This section displays and discusses
one of the most important models in modern evolutionary theory, Hamil-
ton’s social interactions model (Hamilton, 1964), made more elegant by
Hamilton (1970). It is the basis for the powerful principle that animals act
as if maximizing their inclusive fitness.
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Inclusive fitness is a fundamental concept of evolutionary biology. A
widespread misconception is that the point of inclusive fitness is to help us
understand interactions between relatives. The model will make clear that
the scope of inclusive fitness covers all interactions in which the genotype
of one individual affects the fitness of conspecifics. The special role of relat-
ives is a powerful result of the theory, not a restricting assumption. Indeed,
the most important case on which inclusive fitness theory sheds light is
where interactants are unrelated. Here, they should behave so as to
maximize their own number of offspring, and have no regard for the effect
of their actions on the number of offspring of the other individual. This will
be the case in many interactions, perhaps the majority.

1.3.1 Hamilton’s model of social interactions

Inclusive fitness is based on Hamilton’s model of social interactions. We
begin by illustrating in Fig. 1.1 a simpler, conventional model used in
population genetics. Each individual in the population is represented by a
square with a rectangular addition. The combined area represents the indi-
vidual’s number of offspring. The idea is that the square is a standard unit
of fitness, while the rectangular addition represents the effect of the indi-
vidual’s own genotype on its number of offspring. The rectangle will
always be drawn outside the square, but, for convenience of illustration
and for generality, let us agree that its area may count positively or negat-
ively, depending on whether the individual has an advantageous or disad-
vantageous genotype. The sign of the numerical value attached to. the
rectangle will specify where necessary whether an area counts positively or
negatively.

o+
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Fig. 1.1 The figure shows in schematic form the numbers of offspring of six individuals.
The square represents a standard unit of one offspring, and the rectangular sections
represent differences from one caused by the individual’s own genotype. These
differences can be positive or negative. The six individuals therefore have 1.2,1.1,0.7,1.4,
0.9 and 0.8 offspring.
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Consider any locus, say the G locus, and focus on one allele G and amal-
gamate all other alleles at the locus under the name g. The first use for our
model will be to compute the frequency of G in the next generation, on the
assumption of Mendelian segregation. Each individual will have a
genotype at the G locus, which for diploids will be either GG, Gg or gg. The
number of G alleles in offspring is the combined area of all GG individuals
and half the area of Gg individuals. The number of G alleles in offspring is
the combined area of all gg individuals and the remaining half of the area
of Gg individuals. The frequency of G among the offspring is just the
number of G alleles divided by the sum of the number of G and g alleles.

This elementary calculation has an important consequence. G will
increase in frequency if it is associated with larger number of offspring. But
we have not specified which allele G is, nor which locus it is at, and neither
have we made any detailed assumptions about how the fitness effects arise.
Therefore, every allele will increase in frequency if it is associated with a
larger number of offspring. If every allele at every locus is under selection
of this sort, then it is reasonable to say that the organism is under selection
to maximize its number of offspring. This kind of statement about selection
on the organism transcends the picky details of genetics and justifies the
application of ‘selection thinking’ by organismal biologists.

This crucial organismal conclusion from a genetic model for non-social
traits attracted Hamilton to try to devise a parallel model for traits in which
one individual’s genotype was allowed to affect the fitness of others. The
model is altered by introducing two new kinds of areas. An elementary
social interaction is represented by a triangle attached to an actor and a
circle attached to a recipient. The triangle represents the action’s effect on
the actor’s number of offspring, and the circle represents the effect on the
recipient’s number of offspring. A dotted line can be drawn between
corresponding triangles and circles. It is possible to have more than one
recipient, so one triangle may connect to more than one circle. Figure 1.2
therefore represents Hamilton’s model of social interactions.

The next step is to notice that number of offspring will do some things
in the same way as in the simpler model, but fails to provide the organismal
conclusion. The areas of GG, Gg and gg individuals can still be appro-’
priately combined to compute the frequency of G among the offspring. (For
this purpose, the areas of the triangles and circles are simply added to the
individual’s number of offspring; all that matters is how many offspring an
individual has, not why.) It is still true that an allele G will be selected if it
is associated with greater number of offspring, in just the same way as
before. The trouble is that number of offspring is no longer under the ex-
clusive control of the individual. So we cannot say that organisms are
selected to maximize the number of offspring, because one component of
their offspring is not under their genetic control, but someone else’s. Also,
an individual controls the number of offspring other individuals have, and
if social behaviour can be selected, then this effect on others must also be
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Fig. 1.2 The figure illustrates Hamilton’s model of social interactions. In addition to the
square and rectangle of Fig 1.1, there are four social actions represented here, each
requiring a triangle and a circle. The triangle represents the effect on the actor, while the
circle connected by a dashed line represents the effect of the action on the recipient. Each
effect can be positive or negative. The letters W, X, Y and Z name the individuals. The
topmost line, for example, shows X paying a cost of 0.2 offspring with a net gain of 0.1 for
W. In this arrangement, the areas representing offspring are drawn in contact with the
parent of the offspring. Windividual has 1.3 offspring, X has 1.4 offspring, Yhas 1.4, while
Zhas 0.1.

included in any measure that selection might cause organisms to
maximize. In other words, we need a measure based on control, not one
based on results.

Hamilton produced a different accounting system for computing the
frequency of G among the offspring. His measure is illustrated in Fig. 1.3.
It includes the square (the standard unit), the rectangle (effect of own
genotype through non-social traits), the triangles (effect of own genotype
through social traits) and the circles linked to those triangles (effect of own
genotype on the number of offspring of others). Only a fraction of these
circles counts towards the new measure of fitness, and that fraction is the
relatedness to the recipient. In recognition of the fact that the effects on
others are included, Hamilton called this new measure ‘inclusive fitness’.
Also important is the fact that it excludes the effects of others on the
individual’s own offspring (the circles that were directly attached to an
individual in Fig. 1.2).

Now Hamilton proved an important fact about inclusive fitness. We can
calculate the combined inclusive fitness of GG individuals, and half of the
inclusive fitness of Gg individuals, and call this the summed inclusive
fitness of G. We can calculate similarly the summed inclusive fitness of g. If
we then divide the summed inclusive fitness of G by the total summed
inclusive fitnesses of G and g, we might hope to get a frequency of G among
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the offspring. We do not. But the answer we get has a very important prop-
erty. It is in the same direction from the frequency of G among the parents
as the frequency of G among the offspring. It therefore gets the direction of
gene frequency range right, even if the magnitude is wrong. Thus, a gene
will increase in frequency if it is associated with higher inclusive fitness and
decrease if it is associated with a lower inclusive fitness.

In return for this weakening so far as computing gene frequencies is
concerned, we obtain an enormous strengthening on the organismal side.
All the effects of an individual’s genotype are now included in its inclusive
fitness. G increases in frequency if it is associated with an increased inclusive
fitness. Remember that G can be any allele at any locus. We may conclude
that all alleles are selected to increase the inclusive fitness of the individual
bearing them, and so we may reach another organismal conclusion that
transcends the details of genetics: organisms are under selection to
maximize their inclusive fitness. This was Hamilton’s goal, and it is a result
of fundamental importance in the study of social behaviour.

Two implications can be noted here. First, it is common to specify a
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Fig. 1.3 This figure shows the areas of Fig. 1.2 rearranged. An area is now attached to the
individual whose genotype caused to exist the offspring represented by the area. Each
individual has lost its own circles, but has gained the circles it gave to others. Figure 1.2
showed accounting by results; here we see accounting by control. To calculate inclusive
fitness, we need to add up the areas attached to an individual but diminishing the area of
acircle. Only a fraction of the circles is counted, and that fraction is the relatedness of the
actor to the recipient. Assume that the relatednesses are as follows: Wto X, 0.5; Wto Z, 0.2;
Xto W, 0.5; Zto X, 0.167. The inclusive fitness of W is therefore 1 (square, standard
unit)+0.2 (rectangle, non-social effect of own genotype)+0.1-0.1 (the effects on his own
number of offspring of his social actions)+0.5x0.5—0.3%0.2 (the effects of his social
actions on others (0.5, —0.3) weighted by the appropriate relatednesses (0.5, 0.2), coming
to 1.39 in total. The other inclusive fitnesses are 0.85 for X, 1.4 for Y and 0.4167 for Z.
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social action by saying that it loses the actor one offspring and gains its full
sibling three offspring. Inclusive fitness immediately allows us to calculate
that this action would be favoured by selection. The loss of one to the
actor’s inclusive fitness is outweighed by the gain of a half times three. The
second implication is the powerful idea of a rate of exchange between own
offspring and the offspring of others. An individual acts as if it valued each
other individual’s offspring as worth a fraction of one of its own—and that
fraction is the relatedness between the individuals.

The organismal level of the conclusions reached by inclusive fitness
theory is important first of all because it achieves a radical simplification if
genetics can be passed over. It is also important because in social traits,
even more than in non-social traits, virtually nothing is ever known of the
genetics of evolutionarily interesting characters. We observe organisms
and interesting morphology and behaviour, but we rarely observe interest-
ing genes. Practical applications therefore require a principle at the level of
the organism.

In making use of inclusive fitness, it is often helpful to go back to the
model of social interactions on which it is based. The model has been
examined in some detail because a full understanding of inclusive fitness is
important for students of behavioural ecology. No proof of Hamilton’s
central result has been given, but in the next section a logically parallel
result is proved about what has come to be known as ‘Hamilton’s rule’.

1.3.2 Relatedness defined and Hamilton’s rule deduced

The notion of relatedness was left unexamined in the previous section, with
the hope that the reader had some loose notion that identical twins have a
relatedness of one, full sibs have a relatedness of one half, and cousins have
a relatedness of one eighth. It turns out that relatedness is quite a subtle
notion, and itis convenient here to explain the meaning of relatedness at the
same time as giving a convincing if informal proof of Hamilton’s rule.

The idea of inclusive fitness is that helping relatives is a bit like helping
yourself, because they share your genes. This approach will now be made
more precise, by finding a definition of relatedness with the ‘design
requirement’ that the relatedness of a potential actor A to the potential re-
cipient R measures the extent to which A helping R is like A helping itself.
Relatedness is usually introduced in connection with common ancestry:
full sibs share both parents, half sibs share one parent, and cousins share
two grandparents. But for the moment we are interested only in measuring
genetic similarity, which can be caused by common ancestry but can also
be caused by other processes.

There are many senses of genetic similarity, and correspondingly many
ways to measure it. For example, we could concentrate on only one locus,
and assign a similarity of 1 if two individuals shared both alleles at that
locus, 0.5 if they shared only one allele, and 0 if they shared no allele. Or we
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could ask what fraction of all alleles at all loci are shared between two
individuals. But neither of these suggestions satisfies our design require-
ments.

The measure of genetic similarity that does the trick is illustrated in Fig.
1.4. A line indicates possible gene frequencies, numbers from zero to one.
Three points are marked on it, whose relative positions define relatedness.
We concentrate on just one allele at one locus. The first point, ., is the fre-
quency of that allele in the population whose gene frequencies we are
tracking. The second point, A, is the frequency of that allele in the potential
actor, and the third point, R, is the frequency of that allele in the potential
recipient.

We now trace the consequence for the spread of the special allele of
altruism performed by A to R. In two special cases illustrated in Fig. 1.4, our
design requirement specifies the relatedness right away. If R and p coin-
cide, then the recipient is the same as the population average (Fig. 1.4b).
When A helps R, he adds alleles in the existing proportion, and so does not
help to change the population gene frequency at all. From the point of view
of the allele G that controls the action, A may as well throw his help away,
because that does not change the population gene frequency either. The
relatedness should therefore be zero in the case where R and . coincide. On
the other hand, when A and R coincide, helping R has just the same con-
sequence for the changing gene frequency as if A helped himself to the
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Fig. 1.4 This figure illustrates the meaning of relatedness. The line between zero and one
represents the gene frequency of a particular allele at a particular locus. A represents the
actor’s gene frequency, . represents the population average gene frequency, and R
represents the average position of the recipient. Relatedness is the fraction of distance from
wto A at which R lies—in case (a) about one quarter. In case (b), the recipient has the same
gene frequency as the population average and so A may as well throw his help away on a
random recipient because relatedness is zero. In case (c), R has the same gene frequency as
A, and so A helping R is as good as A helping himself. The relatedness in this case is
therefore one.
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same extent (Fig. 1.4c). When A and R coincide, therefore, the relatedness
must be one.

These two special cases suggest that relatedness be defined more gen-
erally as ‘the fraction of the distance from . to A at which R lies’. This de-
finition corresponds to the regression definition of relatedness first put
forward by Hamilton (1970), and which is now gaining popularity in
modern theory. Regression relatednesses are not always the same as Sewall
Wright’s correlation coefficients of relatedness (Wright, 1969) or as Hamil-
ton’s life-for-life coefficients (Hamilton, 1972). Table 1.1 shows the life-for-
life and regression coefficients for some relationships under haplodiploidy.
All three values are the same under out-breeding diploidy with no selection
in an infinite population.

The terms correlation and regression arise because the definitions can
be formulated to look exactly like statistical formulae for correlation and re-
gression coefficients (see Hamilton, 1975). If we code a ‘score’ for each
individual in the population as the fraction of alleles at the G locus that are
G, then Wright'’s correlation coefficient is simply the correlation between
the scores of potential altruists and potential recipients. It is symmetric, and
can range from —1 to 1. The regression coefficient is the slope in a regres-
sion of the potential recipients’ scores on the potential altruists’. It can in
principle take any value and, as Table 1.1 shows, need not be symmetric.

With the regression definition of relatedness it is now very easy to pro-
vide a convincing if informal proof of Hamilton’s rule. For the sake of
definiteness, suppose R is one quarter of the way from p to A, perhaps
because A and R are half-sibs. Imagine that A has resources that he can con-
vert into four offspring for R. These are shown at R in Fig. 1.5. These off-
spring will have the same effect on the gene frequency as the combination
of one offspring at A and three offspring at w. This is so because the groups
are the same size and because their gene frequencies are the same. This
shows that A helping R to have four offspring has the same effect as if he
were able to have one offspring himself, and produce three with the popu-
lation gene frequency.

In deciding in what direction the population gene frequency will
change, we can ignore offspring at p. and sum up the effects of the other
offspring produced by all the individuals in the population. But the off-
spring at p. are not altogether irrelevant. The more offspring there are at p.,
the more the next generation will resemble the current generation. Hence
offspring at u slow down the magnitude of the change without affecting its
direction. Hamilton (1964) called this the ‘diluting effect’.

We can say that A’s creation of four children for R has the same effect on
the direction of gene frequency change as producing one offspring for it-
self. This is simply a verbal formulation of Hamilton’s rule. It is easy to see
that the same argument applies for any relatedness, not just for one quarter.

The regression definition of relatedness therefore makes Hamilton’s
rule work, whether the gene in question is rare or common. What, though,
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Table 1.1 The relatednesses under haplodiploidy between some categories of relatives
under two definitions of relatedness: Hamilton’s (1972) life-for-life definition as employed
by Trivers and Hare (1976) and Hamilton’s (1970; 1972) regression definition as used in
this chapter.

Relationship of

Sexofdonor  recipientto donor Life-for-life Regression

Female Mother 0.5 0.5
Father 0.5 1.0
Sister 0.75 0.75
Brother 0.25 0.5
Daughter 0.5 0.5
Son 0.5 1.0

Male Mother 1.0 0.5
‘Father’ (mother’s mate) 0.0 0.0
Sister 0.5 0.25
Brother 0.5 0.5
Daughter 1.0 0.5
‘Son’ (mate’s son) 0.0 0.0

Only outbred relationships are considered. Quick methods of calculating
these values are (i) life-for-life: the fraction of the donor’s genes that are
identical by descent with any of the recipient’s; (ii) regression: the fraction
of the recipient’s genes that are identical by descent with any of the
donor’s. For example, all of a male’s genes are identical by descent with
genes in his mother, so the life-for-life coefficient is 1. On the other hand,
only one half of his mother’s genes are identical by descent with genes in
him, so the regression coefficient is one half. These methods do not work
under inbreeding. Note that within-sex values are the same, and between-
sex values are converted by multiplying by the ratio of ploidies of donor
to recipient. Neither the life-for-life nor regression coefficient is sym-
metric. The regression relatedness of a son to his mother is one half, and
of a mother to her son is one; these values are reversed for life-for-life
coefficients.

does it have to do with common ancestry? An argument used by Charnov
(1977) tells us. Consider the simple case of diploidy and random mating,
with an infinite population at Hardy—Weinberg equilibrium not under-
going selection. Suppose we are concentrating on an allele M, and we agree
to class all other alleles at the locus under the name N. A homozygote has
genotype MM. What is the genotype of a full sib? The parents must have
genotypes M? and M?, where ‘7’ indicates that the allele is unspecified by
knowledge of the focal individual’s genotype. Because we have assumed
random mating, Hardy-Weinberg equilibrium and no selection, the
chance that ‘?” will be any particular allele is proportional to its frequency
in the population. So ‘? equals M with probability p, say, and N with
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Fig. 1.5 The recipient is shown on the upper line as having four offspring. These are
redistributed on the lower line, one to A and three to . The two sets of offspring will have
the same expected effect on the gene frequency because they contain on average the same
number of genes, and the same gene frequency. Any rearrangement that preserves the
number of offspring and their ‘centre of gravity’ would have this property. The special
point about this rearrangement is that offspring that contain the population average gene
frequency do not contribute to a change in that frequency in the next generation. From the
point of view of the direction of the change in gene frequency, therefore, the upper and
lower arrangements have identical effects. Thus four children for R have the same effect as
one child for A. This is Hamilton’s rule. If Ris a fraction A of the distance from p. to A, then
one offspring at R has the same centre of gravity as the combination of 1 -\ offspring at p.,

“and \ offspring at A. Hence, in general, as well as in the special case of one quarter
illustrated here, the factor by which A must discount offspring given to R is the fraction of
the distance from . to A at which R lies. Thus that fraction is the desired measure of
relatedness.

probability 1—p. A sib has a one quarter chance of being MM, half a chance
of being M? (one quarter each from one parent having M and the other hav-
ing ?), and a quarter chance of being ??. The frequency of M on average is
therefore

%x1+%><% [1+p)+%><p = %- (1+p)

The average gene frequency in a sib is therefore R = }(1+p), which is half-
way between the gene frequency of the focus individual (A = 1) and the
population average (1 = p). The same result would apply if we had started
with a heterozygote (R = }(3+p); A = §; » = p) or the opposite homozygote
(B = 3(0+p); A = 0; u = p). The same agreement between common ances-
try and the regression relatedness works for all other relationships under
the assumptions we have made.

This example makes clear an initially puzzling feature of the definition
of relatedness. Under diploidy, every individual’s gene frequency is either
0, } or 1. Yet R is often assumed to take other values. For example, when p
is3and A is 1, a full sib will be taken as having a gene frequency of §, which
it is impossible for any one individual to have. This is because when A
makes his decision, he is assumed to have only certain information avail-
able to him—in this case, of sibship—and this means that A has to assume
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an average position for R. The average position can be anywhere between
0 and 1, in just the same way as the population average can be.

This Charnovian calculation relies on selection being weak at the locus.
To see why, consider an individual of genotype MM, whose parents are in-
ferred to be M?, M?. The interpretation of the ? as M with probability p, N
with probability 1-p depends on an assumption of Hardy-Weinberg
equilibrium. For example, if MN is lethal, then we should infer that MM's
parents are both MM. Even granted the M?, M? parents, selection on the
offspring of those parents may have altered the MM : MN : NN genotypes
among surviving sibs from the 1 : 2 : 1 ratio needed for our computation.

One important point is that common ancestry turns out to cause the

'same relatedness for all alleles, at all autosomal loci, under our assump-
tions of random mating and weak selection in an infinite population. But
under inbreeding, or strong selection, this definition can give different
relatednesses, even for different alleles at the same locus! Causes of genetic
similarity other than common ancestry are likely to bring about different
relatednesses at different loci, even under random mating. Hamilton’s rule
still applies to each allele when relatednesses vary, but to each with its own
appropriate relatedness. The behaviour of individuals may therefore be
selected in different directions by the selection on different alleles.
Different relatednesses are therefore likely to cause intragenomic conflict of
the kind first considered by Hamilton (1967) in the context of sex ratios.

This possibility has an implication for Hamilton’s model of social in-
teractions. When relatednesses are the same for all alleles and loci, then the
inclusive fitness of an individual is uniquely defined, and the organismal
conclusion that individuals are under selection to maximize their inclusive
fitness holds. Once complications arise that cause relatednesses to vary
across alleles and loci, this simple picture breaks down.

The usual form of Hamilton’s rule incorporates the equivalence illus-
trated in Fig. 1.5 into a rule about when a gene is selected for, that causes a
potential actor to incur a cost, c, to itself, while conferring a benefit, b, to a
potential recipient with relatedness r. The direct effect on own offspring is
minus ¢, and the equivalent effect from helping R is rb. Selection favours
the allele if rb—c > 0, which is Hamilton’s rule.

Relatedness can help us to glimpse something of the more complicated
world in which relatednesses vary between alleles and loci. For any given
social action, for example helping a nest-mate, suppose we know the be-
nefit to a recipient, b, and the cost to the actor, ¢. Then the critical related-
ness above which the action will be favoured, that is, rb—c¢ > 0,is ¢/b. Now
if a large majority of alleles have a relatedness greater then c¢/b, we can
expect the action to be favoured by selection; while if the large majority of
relatednesses are less than ¢/b, then it will be selected out. So in an impor-
tant class of social actions, the variability in relatedness will not matter. In
intermediate cases, the results will be a complicated mess. The conclusion
to be stressed is that the organismal level conclusions justified by inclusive
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fitness theory are threatened only for these intermediate cases. Most social
actions will be unequivocally favoured or disfavoured: only a few will
bring about genomic conflict.

The main purpose of this section was to provide a demonstration of
Hamilton’s rule. It was necessary at the same time to give an account of
relatedness as a measure of genetic similarity that has peculiar significance
for social behaviour, and to discuss the possibility that relatedness might
vary between alleles and loci.

1.3.3 How not to measure inclusive fitness

Hamilton’s (1964) verbal definition of inclusive fitness is:
‘the animal’s production of adult offspring . . . stripped of all
components . . . due to the individual’s social environment, leaving
the fitness he would express if not exposed to any of the harms or
benefits of that environment, . . . and augmented by certain fractions
of the harm and benefit the individual himself causes to the fitnesses
of his neighbours. The fractions in question are simply the
coefficients of relationship . . .’

The picture of social interactions shown in Fig. 1.2 shows immediately that

measuring inclusive fitness is a subtle business. It is not enough to measure

how many offspring an individual produces, it is also necessary to be able

to partition them. How many are the result of actions by others, and how

many were the results of actions taken towards others?

There have been in the past various flawed attempts to measure inclu-
sive fitness in nature that have ignored the partitioning of an individual’s
number of offspring. This leads to an exaggeration of the ‘own offspring’
component, by inclusion of help from others (the individual’s own circles
in Fig. 1.2), and it can also lead to a gross distortion of the ‘others’ offspring’
component of inclusive fitness if all of the offspring of a relative are in-
cluded instead of only the additional help the focal individual supplied (i.e.
only the other individual’s circles in Fig. 1.2 should be included, and only
those caused by the focal individual).

Some readers may be now tempted to despair—it is hard enough to
measure the number of offspring of an individual in the field, without man-
aging the almost metaphysical task of deciding who was really responsible
for them (the ‘causal parent’). Part of this feeling is justified. Measuring the
inclusive fitness of an individual is indeed a tall order, if it is even possible.
Remember that the scheme of Fig. 1.2 has a mainly conceptual purpose.
The right way to apply inclusive fitness theory to data is to apply Hamilton’s
rule, and this has been achieved to good effect with real data. For examples
and references see Grafen (1984, section 3.3.3).
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1.3.4 How to use Hamilton’s rule

Hamilton’s rule was derived in section 1.3.2. The purpose of applying it is
to ask: would a given social action be favoured by selection? Hamilton’s
rule implies that only three quantities need be known to answer the ques-
tion: the benefit to the recipient, the cost to the actor, and the relatedness.
Under the assumption that the only cause of genetic similarity is recent
common ancestry, the regression coefficients of relatedness from Table 1.1
are the right ones to use to make Hamilton’s rule work.

There have been various quibbles about the validity of Hamilton’s rule
based on misunderstandings of the meaning of cost and benefit. The con-
ceptual scheme of Fig. 1.2 can help here. Cost is the area of the triangle, the
number of offspring the actor loses through performing the action. One
way to estimate this from data would be to consider otherwise similar
individuals, one of which performs the act and the other of which does not.
Then the difference between their total number of offspring will represent
the effect of the action. This method will be used below. More generally it
is important to realize that the theory says the cost is a difference in num-
bers of offspring and is not, for example, a ratio. Inclusive fitness theory is
a strong theory, in the sense that it dictates how its terms should be mea-
sured. It is not just a casually thrown together collection of symbols.

The same considerations can be applied to the benefit to the recipient,
which could therefore be estimated by considering two otherwise identical
individuals, one of which had the action performed to it while the other had
not. Of course, in any application of this method, serious attention will
need to be paid to the phrase ‘otherwise identical’.

Having established what all three terms in Hamilton’s rule mean, we
move on to the first step in applying it in practice. This is to choose the
decision we are interested in, being as explicit as possible about the altern-
ative courses of action. Let us call performing the action Y, and not perform-
ing it X. To calculate b and ¢, we will need to estimate the difference it
makes to lifetime number of offspring to do Y rather than X. If the actions
are only vaguely defined, then we cannot estimate those differences.

A difference of c¢ in the animal’s lifetime number of offspring results
from doing Y rather than X. Any consequences that would follow from
doing Y and not X should be taken into account—decreased longevity,
retribution and so on. It may seem at first sight that a simple way to estimate
¢ from data is to take the difference in lifetime number of offspring between
animals that do X and animals that do Y. However, this seemingly reason-
able procedure may give the wrong answer. The reason is that animals that
do X will have relatives who tend to do X, and animals that do Y will have
relatives that tend to do Y. The simple difference in number of offspring be-
tween X-doers and Y-doers will therefore include the extra bs thata Y-doer
can expect to receive from his Y-performing relatives, and therefore does
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not give a proper estimate of c. Of course, the same caution applies to
measuring b.

The value of r has been assessed in various ways. Bertram (1976) model-
led the structure of lion prides to arrive at relatednesses; Brown (1975) used
simple ancestry; and Metcalf and Whitt (1977) used electrophoresis. These
are all approximations to what r must be in principle, which is discussed in
section 1.3.2.

Finally, Hamilton’s rule in the form rb—c > 0 has definite advantages
over the more popular form b/c > 1/r. For one thing, the second form is
wrong if ¢ or r is negative (though correct if both are). For another, in the
common case that r is known on a priori grounds, then the sampling
variance of rb— c is calculable simply from the sampling variances of b and
¢, allowing confiderice intervals to be constructed. In contrast, the ratio b/c
has a sampling variance that depends in a more complicated way on the
sampling distributions of b and ¢. Examples of applying Hamilton'’s rule
are given in Chapters 10 and 11.

1.3.5 The validity of Hamilton’s rule

The scope of inclusive fitness theory depends on the validity of the model
of Fig. 1.2. We shall first look at an example of Charlesworth (1978a) and
then draw some general conclusions.

In Charlesworth’s example, a dominant allele causes its bearer to kill
itself and feed itself to its sibs. An application of Hamilton’s rule implies
that this will be advantageous provided the sib gains more than twice as
many offspring from the extra food as the bearer would itself have had. Yet
a moment’s reflection shows that if all bearers of the dominant allele kill
themselves, then the allele will be extinguished immediately, no matter
what advantage may be gained by the sibs of suicidal nest-mates. No
bearers of the allele will survive to reproduce.

Hamilton’s model of social interactions assumes that because the re-
cipient is a sib, it has a relatedness of one half to the actor, and in effect com-
putes the gene frequency of the created offspring on that basis. But because
of the nature of its action, the suicidal allele cannot be presentin a receiving
sib. Hamilton’s model fails to represent the social interactions correctly,
and so the inclusive fitness principle does not apply.

This example lies at the intersection of three distinct general classes of
exception, and can be looked at in three illuminating ways. We can look at
Charlesworth’s example as a case of multiplicative interactions of fitness, in
place of the additive interactions the model requires. The action multiplies
the actor’s fitness by zero, and the recipients fitness by, say, three. Then
multiplying a recipient’s fitness by three when he is himself about to multi-
ply it by zero is not a very effective way to help him.

The second general class of exception is where the benefits are genotype
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specific. In this case, the benefit to the non-suicidal genotypes is much
greater than the benefit to suicidal genotypes. Hamilton’s rule, on the other

"hand, assumes that the benefit is not systematically different for different
recipient genotypes.

We move on to a third way in which Charlesworth’s versatile example
can be understood, as the result of strong selection at the controlling loci.
The suicidal genotype helps its sibs, but owing to strong selection on the
sibs (namely some of them have killed or are about to kill themselves), the
relatedness to the recipients is less than common ancestry alone would
predict.

What should we conclude from these three kinds of exception? Take,
first, non-additivity of fitness interactions. During rapid change in a charac-
ter there may well be favourable alleles with large effects. But during
periods of equilibrium, when the character is close to its optimum, we can
expect that evolution is slow, perhaps mainly stabilizing. In these cir-
cumstances, the relevant alleles have small effects because alleles of large
effect are strongly disadvantageous. For alleles of small effect, fitness
interactions will be additive to a sufficient approximation.

Let us see how this might work. The effects of different costs and
benefits may not add up. For example, the first donated food item may save
an animal’s life; the second may enable it to have five offspring; and the
third, even though of the same size, may raise the number of offspring only
to six. This is a prima facie contradiction of the model. However, things
look different when we consider an allele of small effect that tinkers with
this system. Suppose the first and second donations are always made, and
that the variability under selection is the third. Then the model will reflect
correctly the existing variation, and so make the correct predictions about
selection. Hamilton’s rule works even for alleles of large effect if the deci-
sion to give the first, second or third donation is distinguished and sepa-
rately subject to natural selection.

Thus we must admit that circumstances can be imagined in which the
inclusive fitness principle breaks down because of non-additive fitness
interactions. But if we accept that for most characters the relevant allelic
effects are small most of the time, then the inclusive fitness principle will be
upheld in the circumstances that matter most to us.

True genotype specificity of the magnitudes of benefits is hard to
imagine if the action simply supplies food, or saves from a predator. If the
benefit were a blood transfusion between vertebrates, on the other hand,
then the benefit would be very different depending on the compatibility be-
tween donor and recipient. Accepting this as an exception in principle, it is
probably fair to assume that genotype specificity will rarely be a problem
in practice.

The last type of exception arose from strong selection, and indeed we
noted in section 1.3.2 that the calculations linking relatedness to common
ancestry break down then. The assumption of weak selection is therefore
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necessary to make Hamilton’s rule work with ancestral relatednesses. But,
as with additivity, even if sometimes strong selection does occur, it is
reasonable to suppose that a character is perfected by natural selection
under conditions of weak selection. The assumption of weak selection is
therefore acceptable.

These three classes of exception are important in principle, particularly
if you want to use Hamilton’s rule to predict gene frequency changes in
models with strong fitness effects, but do not threaten the practical value of
Hamilton’s rule. That value is to allow us to find organismal accounts of
adaptations in social behaviour without doing genetics. If in any case we
did need to do genetics, the study would almost certainly be too costly in
time and effort to be worthwhile.

A good example of the value of inclusive fitness in modelling is
provided by the disagreement between O’Connor (1978) and Stinson
(1979) about the evolution of siblicide in birds. O’Connor used a naive
inclusive fitness argument and came to one set of conclusions, while
Stinson used a population genetics model and came to another. Godfray
and Harper (1990) present a more sophisticated population genetics model
than Stinson’s, incorporating the assumption of small genetic effects, and
obtain O’Connor’s ‘naive’ results. This gives confidence that inclusive
fitness arguments should be treated seriously, even when the actions in
question involve large effects, and even when biologically naive popula-
tion genetics models cast doubt on them.

1.3.6 Conclusions on Hamilton’s model of social interactions

Hamilton’s model of social interactions has been outstandingly successful.
Hamilton’s rule has provided a practical tool with which social behaviour
can be studied. The exchange rate concept of valuing others’ offspring
against one’s own according to relatedness is invaluable in thinking about
social traits. It is unrivalled in its scope as a model of social behaviour
because it captures the biological essentials. At one time, it was a favourite
pastime of theoretical biologists to prove Hamilton’s rule incorrect, by
setting up a model that broke one of the assumptions discussed above
(reviewed by Grafen, 1985). Now, however, the value of Hamilton’s model
of social interactions is widely recognized.

1.4 A model of biological signals

One of the great virtues of evolutionarily stable strategy (ESS) modelling
(see Maynard Smith, 1982) is that it helps to clarify muddy verbal argu-
ments. Of the many topics discussed in previous editions of this book
(Krebs & Davies, 1978; 1984), one in particular has since benefited from ESS
modelling. This section describes the application of the phenotypic gambit
of section 1.2.1 to biological signalling. Previous approaches will be dis-
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cussed once the new ESS model has been described. (Handicap models of
signalling are also discussed in section 7.3 and in sections 12.3 and 12.4.)

We will consider a simple imaginary species of beetle. Males vary in
how much food they happen to find as larvae. For energetic and nutritional
reasons, this affects various aspects of their ability to function as adults. In
particular, better-fed males have more viable sperm. Males block the
female reproductive tract with a plug after mating, and so females mate
only once. Females therefore have a great interest in mating with a male
with more viable sperm.

If females could perceive directly the viability of a male’s sperm, there
would be no signalling problem. Females would ‘see’ the sperm viability
and choose a mate accordingly. Instead, let us make the reasonable
assumption that females cannot perceive sperm viability.

Does a male know his own sperm viability? Translated out of metaphor,
can there exist developmental rules that are flexibly expressed in male
bodies, such that some other character can be made to co-vary with the
viability of a male’s sperm? We shall assume the answer is yes. This is
reasonable because we have assumed that differences in sperm viability are
caused by differences in larval nutrition. It is easy to imagine that some
structures will be more fully developed in adults that were well fed as
larvae than in those that were ill fed.

We have a set of females all wanting to know the sperm viabilities of the
males they encounter, and a set of males each of whom knows his own
sperm viability. The evolutionary signalling problem is this: is there an
evolutionarily stable way in which males can convey the information
females would like to have?

This might seem straightforward: the males have the information; the
females want it. The problem is that each mate benefits if he is judged to
have more viable sperm, and so, considered loosely, all want to signal that
they are the best male. If all males do make the same signal, then females
cannot distinguish between males at all, and so will not attend to it. At first
sight, therefore, stable signalling cannot evolve. But our argument has been
rather rough and ready. This is the kind of verbal impasse at which we
should turn to ESS modelling. Here we will deliberately exclude
mathematical symbols—but they were necessary for rigour in the papers
on which the discussion is based (Grafen, 1990a,b).

We begin constructing the ESS model by assuming, for concreteness,
that males have horns and that any communication about sperm viability
takes place through the size of the male horns (although of course any other
trait would have done if females could perceive it). We can now follow the
phenotypic gambit of section 1.2.1. What is the strategy set for males? Let
us assume that developmental rules exist that can establish any relation-
ship between sperm viability and horn size. This means that, in terms of
Fig. 1.6, a male strategy is any rule that specifies for each sperm viability a
particular horn size.
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Fig. 1.6 (a) shows three possible rules relating sperm viability to horn size in males. One
rule slopes downwards throughout, while another goes upwards overall but with a central
downwards section. The third rule has a discontinuity half-way along the horizontal axis.
Any rule is allowed in the model. (b) illustrates the non-signalling equilibrium. Males
produce the minimum cost horn size, whatever their sperm viability. Females assess
males, whatever their horn size, as having average sperm viability. No deviator can gain in
this situation. (c) illustrates a signalling equilibrium. Males with greater sperm viabilities
produce larger horns. Females assess males with larger horns as having greater sperm
viabilities. Each rule is the reverse of the other. Start with any sperm viability, and look up
the horn size from the male rule; then look up from the female rule what sperm viability is
inferred from that horn size. The inferred sperm viability is the same as the orginal sperm
viability, so that females make the correct assessment of sperm viability. Zahavi’s
handicap theory is developed from the supposition that an equilibrium like this exists.
Grafen (1990a,b) shows that in a wide class of signalling models, an equilibrium like this
does indeed exist.
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Now what about the female strategies? A female has to infer from a
male’s horn size what his sperm viability is. Thus we can represent a female
strategy as a rule specifying for each horn size an inferred sperm viability.

With the strategy sets in place, the next step is to consider the pay-off
functions for males and females. For present purposes, we do not need to
be precise. Assume that the size of a male’s horns affects his fitness in some
way, by using energy and so reducing survival from larval to adult stages,
or by increasing the risk of predation as an adult. How the cost relates to
horn size and sperm viability will turn out to be of the highest importance,
but for the moment we leave it unspecified. So far as the signalling con-
sequences of their horns are concerned, it will be enough to specify that a
male is fitter, the higher his sperm viability is inferred to be. A female is
assumed to be fitter the more accurately she infers males’ sperm viabilities.

With these rather vague assumptions, we cannot prove that an equi-
librium exists, which is anyway a rather technical affair. But we can ask:
suppose there was an equilibrium, what would it be like?

The simplest equilibrium is the non-signalling one, illustrated in Fig.
1.6b. A male produces the same, cheapest, horn size irrespective of sperm
viability. Females, with no information to go on, assess males as having the
average sperm viability. Crucially, in the figure, the female rule assesses
any rare mutant males as having the same average sperm viability.

It is an equilibrium because no rare mutant male or female can spread.
A male that produces any other horn size will still be assessed as having
average sperm viability, and so will gain no mating advantage. But other
males are producing the cheapest horn size, and so the mutant must lose
out in that respect, and so lose out overall. (Notice that a situation in which
all males produce a horn size that is not the cheapest could not be an
equilibrium.)

A female whose rule differs from the common rule in its assessment of
the cheapest horn size will suffer, because she will think all males are better
than they are, and so be too ready to mate; or think they are worse than they
really are, and be too reluctant. We can imagine the female taking risks to
mate, or mating at a suboptimal time because she assesses an encountered
male as above average. Female mutants cannot gain either.

This discussion of the non-signalling equilibrium has shown the kinds
of conclusion we can draw from the supposition of equilibrium. What can
be inferred about a signalling equilibrium in which horn size increases
with sperm viability?

We may immediately conclude what the female rule must be. As each
horn size is produced only by males of a particular sperm viability, the best
female rule is to draw the correct inferences and assess a given horn size as
the sperm viability of the males that actually produce it. The equilibrium
female rule must therefore be just the reverse of the equilibrium male rule,
as illustrated in Fig. 1.6c. This is the first conclusion we reach on the
supposition of equilibrium.
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Now we turn to the males. Why does a male not have a uniformly high
horn size, at the level played by the best males, no matter what his sperm
viability? This would certainly be more advantageous from the point of
view of obtaining matings. If the rule illustrated in Fig. 1.6c¢ really is an
equilibrium, then the other costs of having a higher horn size must out-
weigh the mating advantage. It must therefore be more costly in fitness to
have larger horns. Perhaps the horns make the male clumsy, rendering him
at a disadvantage in fighting, or less able to avoid predators. The theory
cannot say what the disadvantage is, but it does say that there must be one.
Otherwise there can be no signalling equilibrium.

There is an additional conclusion that we can draw about the cost of
horns. The differential cost of having larger horns must be greater for worse
males. This follows because the assumption of equilibrium tells us that
each quality of male produces its own optimal horn size. We have assumed
that horn size alone signals quality. A male of any quality will therefore
gain the same mating advantage from the same horn size. If good males and
poor males have different optimal horn sizes, then it must be because the
other relevant component of male fitness, the cost of the horns, is different
for good and poor males. And if good males have a larger optimal horn size
than poor males, it must be because the cost of having larger horns is less
for good males.

These arguments are all based on the assumption that a signalling
equilibrium exists, and are therefore worthless if such equilibria are im-
possible. In fact, I have shown (Grafen, 1990a,b) that signalling equilibria
doindeed exist in a wide range of models. Unfortunately, the arguments are
too technical to give here, and we shall simply assume that signalling
equilibria exist. From the supposition of a signalling equilibrium, we have
therefore concluded that: (i) females make the correct deductions about
male sperm viability from horn size; (ii) larger horns are costlier to males
than smaller horns; and (iii) the differential cost of larger horns is greater for
worse males than for good males.

These conclusions are the same as those of Zahavi (1975; 1977a). Zahavi
claimed that signals were honest, our conclusion (i), that signals must be
costly (ii), and that they were more costly for worse males (iii). We have just
followed through, therefore, a vindication and clarification of Zahavi’s
handicap theory.

The discussion was made in terms of horns and sperm viability, to make
it easier to follow. But the arguments hold more generally and are not
restricted to mate choice. For example, consider a fight in red deer between
a harem-holder and a challenger. Harem-holders eat very little and so lose
strength. We can view the remaining strength of the harem-master as qual-
ity, known to the harem-master and unknown but of great interest to the
challenger. In the early stages of a fight, we can expect signals to convey
information from the harem-master to the challenger about his strength.
We could reach the analogous conclusions about these signals, assuming
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them to be in evolutionary equilibrium, as we did about the hypothetical
insects’ horn size. The signal will be correctly interpreted by the
challenger; the signal must be costly; and the signal must be more costly to
harem-masters with lower remaining strength. A signal requiring strength
or stamina might well satisfy the second two conditions. There are com-
plications in assessing the cost of a signal in cases of this sort (Grafen,
1990a), but the principle is just the same.

1.4.1 A comparison with previous approaches

How does this ESS model advance our understanding of signalling
compared with previous approaches? The first comparison to be made
must be made with Zahavi’s work (Zahavi, 1975; 1977a; 1978). Here the
advance is one of clarification. The ESS model takes Zahavi’s ideas and, by
placing them in a more formal context, makes explicit the assumptions and
arguments. The conclusions remain the same.

The second comparison is with the work of Dawkins and Krebs (1978)
and Krebs and Dawkins (1984). Krebs and Dawkins provide a general view
of signalling that is very congenial, and in effect forms the background for
the model given above. Their view about how signals involved in assess-
ment can be stable is that the signals must be ‘reliable indicators of RHP’
(resource holding potentional), which must be ‘too costly to fake’. Zahavi’s
handicap principle is one way of making signals reliable, by making
them too costly to be worth faking. The ESS models of Grafen (1990a,b) are
fairly general models of signalling, and lend support to the view that the
handicap principle may be the only way of making signals reliable. (It
should be noted that this strong conclusion relies on what is meant by the
term ‘signal’, which is also discussed in those papers.)

Krebs and Dawkins correctly identify selective forces. Signallers do
wish to mislead receivers. Receivers do not wish to be tricked by signallers.
Each party is concerned only about its own fitness. This inherent conflict of
interest leads Krebs and Dawkins to expect continuing change and spiral-
ling strategies. Pre-ESS thinking leads to similar expectations in other
games (well discussed for the hawk—dove game, for example, by Dawkins
(1989)). An ESS approach leads to meaningful and interesting conditions
that emerge at equilibrium. The model of the previous section complies
with all the requirements of Krebs and Dawkins’ discussion, but when we
insist on asking about what must be true in an equilibrium, we find the
emergence of Zahavi’s handicap principle. I believe that had Zahavi’s prin-
ciple been properly understood at the time, it would have taken a central
part in Krebs and Dawkins’ discussion.

Let us take apparently conflicting conclusions of the two approaches. At
equilibrium, there is honesty. Why do males not lie as recommended by
Krebs and Dawkins? One answer is that if they did lie, we could not be at
equilibrium: females would have learned not to believe the signal. This just
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pushes the question one stage further back: how can it not be advantageous
for males to lie? Because the signal they would have to make in order to lie
would cost more than the mating benefit they would receive. If signals can-
not be costly, then there can be no equilibrium. But the extravagance of sig-
nals is one of the facts that all the theories under consideration set out to
explain, and the ESS approach brings out the vital conclusion about
honesty at equilibrium.

There are other differences of emphasis between the approaches. The
ESS model allows females not to use the information from signalling if it is
unreliable, and takes this reluctance into account in studying the evolution
of signals. Krebs and Dawkins assume that the females’ only defence is to
require even stronger signals. Simply ignoring signals is an option that
would tend to defuse arms races. The signals must continue to convey
important information if females are to be selected to continue to attend to
them. What drives the ESS model is always the variability between males
that matters to females, and signals are selected only according to relevant
correlations. The pure arms race, sales resistance phenomenon that Daw-
kins and Krebs particularly stressed relies on the next difference we note
between the approaches.

This lies in how signals acquire meaning. In the ESS model, a signal
acquires a meaning only when receivers learn empirically (and possibly
only over evolutionary time) that a certain signal is given by signallers of a
certain quality. The signals have no inherent meaning. Female response to
a 2 cm horn is determined only by previous experience of males with 2 cm
horns. Krebs and Dawkins sometimes seem to assume that signals already
possess a meaning before they are used. For example, if a man asserts that
he is entirely free of parasites, this has meaning to a female even if she (or
her ancestors) have never encountered such an assertion before, and even
if there has never been a parasite-free man. This difference is in a way quite
fundamental. Humans can continue to lie in some situations because their
statements are given meaning by the context of language. It seems likely
that peacocks are less likely to have meanings pre-assigned to different tail
lengths or styles. Where signals are inherently meaningless, that is, they
acquire meaning only empirically through the experiences of receivers,
this too is likely to limit the scope for spiralling arms races. This difference
may arise because Krebs and Dawkins focus on signals about intentions,
while the model above concerns signals of quality.

The handicap principle does not assert that any possible signalling
system is honest, costly, and has greater costs for poorer quality signallers.
It merely asserts that any stable signalling system must have these proper-
ties. What happens to a signalling system without them? The system may
cycle endlessly, with booms and busts, in a way that resembles an arms
race much of the time, leading to a world like that envisaged by Krebs and
Dawkins in which ‘in actor-reactor coevolution both sides may gain the
upper hand’. On the other hand it is also possible, and in view of earlier
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paragraphs I think more likely, that such a system would collapse. Females
would be selected not to attend to the males’ signals. The outcome could be
settled for any hypothesized signalling system only with a model.

The model of the previous section is not intended as a template for every
example of signalling, but to illustrate that the handicap principle can
work. Even in our hypothetical example, we can see one omitted com-
plication. We assumed that females gain information about male quality
only through horn size. But if quality is dictated by success at larval feed-
ing, then good males are likely to be simply bigger than worse males. Good
and bad males will differ in many ways, and not just in horn size. Females
will have many possible traits to detect that may correlate with quality. This
would complicate our model of the handicap principle, as it would any
model of female choice. The idea that quality shows through in many ways
is the basis of the argument in the second paragraph of Zahavi (1975), that
when real mate choice is going on, Fisher’s runaway process is unlikely to
occur. He argued that females probably use multiple cues to detect im-
portant variation in male quality, so if any one trait gets out of step it is
likely to be ignored (see Chapters 7 and 12).

This discussion is based on models of Grafen (1990a,b) as these claim to
provide a full and explicit justification of Zahavi’s handicap principle.
Previous relevant work on signals includes the first model of biological
signals, by Enquist (1985), who refuted the still popular notion that animals
cannot be selected to signal their intentions; a graphical exposition of the
handicap principle by Nur and Hasson (1984) very close in spirit to
Grafen’s model; and Andersson’s (1986) model of conditional handicaps.

1.4.2 Conclusion

The ESS signalling model clarifies Zahavi’s original arguments and makes
explicit a number of assumptions about how signals operate. The require-
ment of equilibrium made in the ESS model turns the deceit recommended
by Dawkins and Krebs into the honesty of Zahavi. We can expect similar
transmutations, counter-intuitive at first hearing but in reality quite reason-
able, to arise from the application of ESS models in other areas, particularly
other topics in signalling.

The model has various artificial restrictions, made to simplify the argu-
ment. The chief restriction is that the variation in male quality is assumed
to be purely environmental. Greenough and Grafen (in preparation)
present a model in which male quality is genetic, and study it by computer
simulation. They show that advertising and preference work in the same
way as when male quality is environmental. Other simplifications are
discussed by Grafen (1990a,b).

The ESS signalling model described here is fairly complicated. A
strategy is a function, loosely any curve drawn from left to right on the
plane, allowing vertical jumps. The strategy set therefore has an infinite
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number of dimensions, a rather daunting fact that requires careful
technique. Further, there are two sets of players, males and females, with
different pay-off structures. These complications may help account for the
delay between Zahavi's verbal proposal and an analytical justification.

I do not see these complexities as marking the boundary of the useful-
ness of ESS theory. Quite the reverse. The long arguments over the handi-
cap principle show that verbal reasoning is even more adversely affected
than analytical reasoning in complicated cases. If we are to understand
communication, and other sophisticated games played by organisms, then
we will need to become familiar with this kind of ESS model, grapple with
its complexities and welcome its illuminations.

In broader terms, the modelling exercise shows that it is necessary to be
wary of failures to model an idea. The handicap principle has been con-
fidently refuted many times by modellers who did not understand it. The
model described here shows that, as Zahavi maintains, the handicap prin-
ciple is about the strategy of communication. It applies to human com-
munication between governments and to interspecific communication in
just the same way as it applies to sexual selection. It has therefore nothing
to do with genetics. Zahavi (1987) goes so far as to claim that the distinction
Darwin drew between natural and sexual selection is properly understood
as a distinction between the selection of ordinary traits on the one hand and
the selection of signalling traits on the other. Ordinary traits are selected for
efficiency, while an essential part of the selection of signalling traits is that
they are wasteful, the waste being the self-inflicted costs of the signallers.
The model of the handicap principle offered above implies that Zahavi’s
far-reaching claim deserves serious attention.





