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A state-free optimization model for sequences of behaviour

ALAN GRAFEN

Department of Zoology, University of Oxford

(Received 23 February 2001; initial acceptance 11 May 2001;
final acceptance 11 September 2001; MS. number: 6858)

The view of animals as optimizers is extremely important in many parts of biology, and is represented in
a variety of theoretical models. Current developments in animal welfare create a need for a new
theoretical model, which treats the animal as acting optimally in its choice of a sequence of behaviours,
and places as few restrictions as possible on what quantity is being maximized. The intention is to
facilitate the study of what the animal chooses, which will often be relevant in considering animal
welfare. Currently, economic models of the consumer are borrowed in this situation, but they are not well
suited for the increasingly exact analyses being performed. A new alternative model is presented here
analytically in general, and a special case is studied numerically. The model does not attribute internal
states to the individual, which is a simplification with advantages and disadvantages.
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The use of economic analogies has been a major
technique in animal welfare since it was introduced
20 years ago by Dawkins (1981), and recently the appli-
cations have become more and more quantitative (for
example Cooper & Mason 2000; Mason et al. 2001). The
central ideas are that individuals reveal their preferences
by observed choices, including experimentally presented
choices, and that individuals to at least some extent
‘know what is good for them’. Thus, although there is no
question of accepting automatically that whatever
an animal chooses is best for it in welfare terms, it will
often be useful to study what an animal chooses. The
conceptual framework that has been used in this work
has been the economic model of the consumer, as
outlined in standard economics textbooks such as
Mas-Colell et al. (1995). In applied work, this provides a
family of techniques for investigating animal welfare. In
more purely scientific terms it provides the challenge of
understanding sequences of behaviour as the result of an
optimization process.

The need for a new model arises first because the model
of the economic consumer represents rather poorly the
situation of an animal in animal welfare experiments,
and this point is explained more fully below. The second
reason is that existing biological models of sequences of
behaviour (McFarland & Houston 1981; Houston &
McNamara 1999) are constructed to allow an adaptation-
ist analysis of behaviour. The mathematical structures
are consistent with a Darwinian interpretation of the
maximand, and they enforce a kind of Darwinian
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rationality on the animal. All models represent a com-
promise between simplicity and complexity, and these
models usually assume what the animal is meant to be
maximizing, and are designed to enquire whether we
have understood how it is that the animal’s behaviour
succeeds in maximizing the unquestioned maximand.

In contrast, the economic model of the consumer
leaves the utility function (almost completely) unspeci-
fied, with the aim of describing any reasonable behaviour
within the optimization framework. This is the spirit of
the animal welfare work, and this is why a model
designed for that area should aim to allow any ‘reason-
able’ behaviour on the part of the animal. We wish to be
able to infer from an experiment that play, say, is
extremely important to an animal, without having to
have any idea about why the preference for play is
adaptive in a Darwinian sense.

In this paper, we aim to present as simple a model as
possible that allows as wide a range of reasonable behav-
iour as possible in the experimental arrangement used
by Cooper & Mason (2000), and allows us to pose
questions of substitutability, elasticities and demands.
One use for this model is to explore whether the
inexactness of the economic model is important in
its quantitative applications so far. It could also in
principle be used to develop a parallel theory to the
economic model of the consumer, providing the same
facilities but with basic assumptions that are more
closely met by the situation of the experimental
animals. Another use is to apply the logic of the
optimization approach to features of the behaviour that
are elided in the economic analogy, particularly those to
do with sequencing.
 2002 The Association for the Study of Animal Behaviour
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The interpretation of sequences of behaviour as the
outcome of an optimization process does arise in fields
other than animal welfare, and it may be that the model
developed here has correspondingly wider applications.
For example, real human consumers also make choices of
sequences of behaviour.
THE ECONOMIC MODEL OF THE CONSUMER

My aim in this section is to explain which aspects of the
basis of the economic model of the consumer are likely
not to be met in applications in animal welfare.

It will suffice to consider the model with two commodi-
ties, quantities of which will be represented by x and y.
The utility of the consumer is represented by the function
u(x,y). The prices of the two goods will be denoted p and
q, and the consumer’s budget will be b. The theory states
that the consumer chooses x and y, subject to the con-
straints x�0, y≥0 and px+qy≤b, to maximize the value of
u(x,y). The hope is that any reasonable behaviour on the
part of the consumer can be represented by a suitable
choice of the function u. (Quite a lot of effort in econ-
omics has been spent considering much more precisely
what ‘reasonable’ might and should mean, and in what
conditions the hope is justified. These refinements are
not needed here.)

In one application, Cooper & Mason (2000) studied
mink, Mustela vison, in a closed economy arena based on
commercial practice but with some added activity areas
reached by wire corridors. They varied the cost of an
activity by changing the weight on the door through
which access was gained. Cooper & Mason (2000) dis-
cussed thoroughly the fact that this is not a cost per unit
of activity, but resembles more closely an entry fee.

We now explore what would have to be true for the
simple consumer model to apply, with the analogy of
door weighting to price. One possibility is to identify x
and y as the time spent in the activities. One constraint
on x and y is the time constraint, that there is only a finite
amount of time in the day. For this constraint, the prices
must be equal, as a minute on one activity reduces the
time budget by the same amount as a minute on the
other. But then there is no role in the model for door
weighting as a price. We could instead ignore the time
constraint, and analogize p and q to the door weightings.
This constraint on x and y does not work well, because we
multiply the cost per visit by the total duration of all
visits, making a nonsensical product. This point led
Cooper & Mason (2000) to a second way of constructing
the analogy.

This other possibility is to identify x and y as the
numbers of visits to the locations for the two activities.
This is an improvement so far as the constraint is
concerned, as the door-weight per visit is multiplied by
the number of visits. We would have to make strong
assumptions of additivity of door-pushes: why not take
the logarithm or the square root of the door-weight as the
price? Let us note that assumption and carry on. There is
a problem now with the utility function, which has to
be a function of the number of visits, and not of
the duration, as the variables must have the same
interpretation in the utility function as in the constraint.
If visit duration varies a lot during the experiment as the
door weightings change, then we would expect this
problem to present a serious concern. There remain two
difficulties with the constraint in this interpretation.
First, the time constraint is again missing from the model.
Second, is the budget really constrained? It is reasonable
to expect the mink to indulge less frequently in activities
with a heavier door weighting, but if the constraint is well
analogized to a budget, then the mink should act as
though constrained by the sum of the door weightings
they endure. In terms of the economic notation, we must
in that case expect px+qy to remain constant as p is
varied. It would be useful if reports on experiments using
the analogy considered this point, and provided the
relevant information. There seems no reason in general to
expect px+qy to remain constant as the door weightings
are changed.

How much do these potential failures in the analogy
matter? Elasticities can be calculated as an indication of
sensitivity of demand to environmental changes, and
may serve this purpose well even though further tech-
nical properties of elasticities that hold within the con-
sumer model (such as reconstructing utilities from them)
would not hold. For other analyses, however, the con-
stancy of px+qy does matter. The calculation of ‘con-
sumer surplus’ as reported by Mason et al. (2001) is
intended as a measure of the difference to utility made by
a change in price; but the analogy on which this calcu-
lation depends is brought into doubt if px+qy is not
constant.

The reason for the relevance of variation in px+qy to
consumer surplus involves a small excursion into econ-
omic theory. Mas-Colell et al. (1995) derived and dis-
cussed the calculation of consumer surplus in their
Section 3.I and illustrated it in their Figure 3.I.3, of which
a version is reproduced here as Fig. 1. They distinguished
two kinds of demand curves. Uncompensated (or
Walrasian or market) demand curves show how the
quantity consumed (or ‘demand’) for one commodity
changes as its price changes, assuming there is no simul-
taneous change in other prices or in the consumer’s
budget. Compensated (or Hicksian) demand curves show
how demand for one commodity changes as its price
changes, and no other prices change, but the budget is
changed in parallel with the price, and by exactly the
amount necessary to keep the consumer at the same level
of utility. Mathematical arguments prove that the area to
the left of the compensated demand curve between two
prices can be interpreted as the difference that would be
made to the utility of the consumer by that change in
price if it were not compensated. The hedging phrase ‘can
be interpreted as’ is necessary, because the area does not
correspond to the difference in the consumer’s actual
utility function (which is usually considered unobserv-
able in economics), but only to a money-metric equiva-
lent to that utility function. The area to the left of the
uncompensated demand curve is sometimes used by
economists as a surrogate for the area to the left of the
compensated demand curve, which is much harder to
observe. This use is an approximation that assumes the
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wealth effects of the change in price are small enough to
ignore. However, it seems quite likely that when the
analogy is made between price and door weightings,
px+qy varies as p varies. Variation in px+qy between
different points on a demand curve creates additional
wealth effects. If px+qy varies little, then the demand
curve will approximate an uncompensated demand
curve; if it varies so as to maintain utility, then it will
approximate a compensated demand curve. Variation in
px+qy could cause the slope of the observed demand
curve to be much greater or much less than the slopes of
the compensated and uncompensated demand curves.
This could lead to a substantial under- or overestimate of
the utility change.

Even if one study found that px+qy remained roughly
constant, this would still leave unsettled whether the
same would hold good in future studies. The economic
model is clearly designed for a situation in which the
structure of the problem forces px+qy to remain constant.
In economics, you cannot spend money you do not have.
A robust model for the welfare case would not contain
this biologically unnatural requirement.

Thus, the importance of how tightly the analogy with
economics can be drawn increases as more sophisticated
parts of the economic methodology are borrowed for
application in biology. The motivation for the model,
presented below, is that, while the application of such
sophisticated techniques is an important advance, they
will require modification and rejustification in a model
constructed more specifically for the biological situation.
The drive towards experimental precision and conceptual
clarity requires, and deserves, the support of a custom
theoretical apparatus.
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Figure 1. The figure shows the effect of reducing the price of one
good (p) from p0 to p1 on the quantity of that good purchased by an
individual (x). The dashed and dotted lines are the compensated
demand curve when the price is p0 and p1, respectively. The solid
line is the uncompensated demand curve. (a) The shaded area is the
equivalent variation (how much money would need to be given to
the individual when the price is p0 to obtain the same level of utility
as would be brought about by reducing the price to p1). (b) The
shaded area is the compensating variation (how much money would
need to be given to the individual when the price had been reduced
to p1 to restore the same level of utility that had been attained when
the price was p0). Only if the compensated curves are close together
is the area to the left of the uncompensated demand curve a
measure of the change in utility.
THE MODEL

The main discrepancy between the economic consumer
and the captive animal is in the dynamic nature of the
choices facing the animal. A sequence of behaviours is
produced, each with a duration. Furthermore, the timing
of the behaviours is important. Eating for half an hour
each day is not the same as eating for 2 years and then
fasting for 46 years. Furthermore, some manipulations
affect each bout of a behaviour in the same way, no
matter what its duration. Half an hour spent eating might
incur the penalty of opening one heavy door if under-
taken in a single session, but the penalty of opening a
heavy door three times if undertaken in 10-min bouts.

The link between Darwinism and optimization by
animals can operate at many different levels. One cur-
rently conventional view is that animals are designed by
natural selection to be efficient optimizers in the en-
vironment in which their ancestors lived for many
generations, but that, while their behaviour in artificial
environments can also be interpreted in terms of
optimization, the quantity optimized may show little
resemblance to Darwinian fitness. The discrepancy is very
acute in many applications of animal welfare, in which
reproduction is strictly controlled or prevented by the
farmer. A further complication is that we do not wish to
give an artificial priority to activities whose contribution
to fitness is currently understood (e.g. feeding) over
activities that are less well understood (e.g. swimming,
grooming, playing). The approach adopted in the rest of
the paper will therefore be the same as that adopted by
economists studying humans. We assume that the animal
acts according to an optimization principle, but we aim to
leave open what the maximized quantity is. In principle,
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we would discover the nature of the maximand from
observing behaviour. We are studying what the animal
chooses to do, and placing as few constraints as possible
on what those choices might be. This method has been
discussed and described in a biological context as the
‘inverse optimality approach’ (McFarland & Houston
1981).

A notable feature of the model presented here is that it
does not use the concept of the state of an animal, and
this omission requires justification. Other models of
sequences of behaviour such as those of McFarland &
Houston (1981) and Houston & McNamara (1999) do use
states. In the case of hunger, the state can be clearly
defined (at least in retrospect over short periods) as the
size of the deficit, roughly measurable as how much the
animal would eat now if offered food ad libitum. It is
natural to link the strength of hunger and thirst to
disutility. But for play and sleep, it is much harder to
define the state. Trade-offs between different kinds of
activities are exactly at issue in welfare debates, and this
model treats the activities as equal a priori. The omission
of states means that activities with easily defined states
are not privileged over activities without, and this is one
advantage. This omission can be justified on two further
grounds. A practical issue is that information about states,
even where those states are in principle definable, will
often not be available in an experiment; or would be
expensive to collect. Furthermore, a major purpose of the
model is to represent more formally ideas about what
different experiments on sequences of behaviour tell us
about the animal. When such ideas do not involve
internal states, there is a role for a theory that simplifies
by abstracting from them.

The model can be outlined as follows. The animal
chooses a sequence of behaviours that is considered to be
repeated indefinitely. There are n activities, which will be
indexed by a. Each activity a is considered to give rise to
a ‘benefit’ that depends on the periods for which it is and
is not performed. The benefit of performing activity a for
duration t>0 will be denoted fa(t), and the benefit of not
performing activity a for duration t>0 will be denoted
ga(t). The benefit is the sum of the fs for all the bouts of
the activity and of the gs for all the gaps between bouts.
An activity like feeding would be considered to produce a
positive benefit while being performed, but a negative
benefit (through use of the food, emptying of the
stomach) while not being performed. Each activity pro-
duces a ‘benefit rate’ which is the rate through time at
which benefit is accrued. Finally, the utility rate of the
animal is a function of all the benefit rates. The animal is
presumed to choose its behaviour to maximize the utility
rate.

More formally, a strategy is a finite sequence of activi-
ties S=(S1,S2,S3 . . . SN) and a corresponding sequence of
durations T=(T1,T2,T3 . . . TN). It will sometimes be help-
ful to avoid certain kinds of degenerate sequences, in two
ways. First, no two succeeding activities can be the same.
That is, Si�Si+1 and, because the sequence is thought of
as repeating indefinitely, we also require S1�SN. Second,
none of the durations can be zero, i.e. Ti>0. In any given
application, some further criteria may be relevant in
limiting the set of possible sequences we permit. For
example, if an animal is placed in an experimental
apparatus that enforces certain orders on activities, such
as the need to open a door before feeding, then sequences
that broke this requirement would simply be excluded
from the set of permitted strategies.

It is helpful to introduce for each bout the duration
afterwards for which that activity is not performed, say
Ui. For the last bout of a given activity, the duration is, in
accordance with the idea of indefinite repetition of the
whole sequence, ‘wrapped round’ to the beginning of the
first bout. A strategy has nonunique representations, as it
can be chosen to start on any one of its elements.
Furthermore, a strategy with N bouts can be repeated k
times to form a strategy with kN bouts, and these are also
alternative representations of the same strategy.

Let supp(S) denote the set of activities contained in S.
Before defining the utility rate, we need to consider
activities that are never performed. Although it may be
difficult in practice to identify this potentially infinite set,
it will be important to include in one experimental
regime activities that are performed in another. In a
period of time t, such an activity produces a benefit of
g ′a(t). As t grows larger, the rate of accrual of benefit is the
limit of g ′a(t), which we shall assume exists (but may be
minus infinity) and notate as g′

a(∞).
The benefit rate over the sequence for activity a can be

written as

and the utility rate can be written as

r(S,T)=u(b1(S,T),b2(S,T) . . . bn(S,T))

We can write a formal optimization program as

(S,T) max r(S,T),

(S,T)∈C

where C is a constraint set limiting the permissible values
of (S,T). In words, we consider the choice of (S,T) to
maximize r(S,T) over the set C of permitted sequences.

The function u plays the same role as the utility
function in economic theory, and can represent substitut-
ability between benefits (and so indirectly of their activi-
ties). The functions ba, through their dependence on the
fa and ga, capture the effects of timing of activities.
Theoretical Results

This section, for theoretical readers, develops a
notation that allows the model to be manipulated
analytically. For a given strategy (S,T), first-order con-
ditions based on optimality of T can be derived. Let II(k)
denote the set of i that Ui is increased if Tk is increased:
that is, the set of gaps that include the k-th bout. Let U�

k
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denote the gap for Sk preceding bout k. We also introduce
the notation u(a) to mean the partial derivative of u with
respect to ba, and so u(Sk)

is the partial derivative of u with
respect to the benefit rate of whichever activity is under-
taken in the k-th bout of the sequence. In taking these
partial derivatives, the other Ti are held constant, and so
the total duration of the cycle of activities changes in
line with the changes in Tk. Then differentiating the
expression for u with respect to Tk yields

These all equal zero at an internal equilibrium, from
which it follows that

independently of k. This provides a way to search for an
optimum. Values of k for which the RHS is less than
(more than) the LHS should have Tk increased
(decreased).

By subtracting the values for k and k+1 we obtain

(f ′
Sk

(Tk)�g ′
Sk

(Uk))u(Sk)
=(f ′

Sk+1
(Tk+1)�g ′

Sk+1
(U�

k+1))u(Sk+1)

This final set of first-order conditions has lost complete-
ness, as it does not reflect on the possibility of changing
the total duration of the cycle. However, it has an appeal-
ing intuitive interpretation in terms of altering the dur-
ations of two neighbouring activities without altering the
sum of those durations.
A Simple Example

We construct here a simple example with benefit func-
tions and a utility function, with the aim of displaying a
few features of the model in a simplified theoretical
version of the experiment of Cooper & Mason (2000). The
more realistic situation of inferring the nature of these
functions from data is beyond the scope of the present
paper. The example has three activities, feeding, drinking
and resting, for which we use the subscripts 1, 2 and 3.
Once the behaviour of this very simple case has been
explored a little in this section, the next will look at
adding doors between the compartments. The doors will
be allowed to vary in the force required to open them,
and the mink will be assumed not to like opening
weighty doors.
Feeding
We must define f, g and a fragment of a utility function

relating to feeding. After feeding for tmin
1 , an animal is

assumed to take in food at a rate with diminishing returns
and ultimately with no further intake. The amount of
food taken in for t≥tmin

1 will be assumed to be

K1(1�exp(��1(t�tmin
1 )))
where K1 is the maximum amount that can be taken in
one bout, and �1 represents how fast the asymptote is
reached. If we assume that the need for food grows at a
constant rate �1 while feeding or not, then we can define

The utility fragment must also be chosen. We will
shortly define the overall utility as the product of the
separate fragments, so that if the feeding fragment is zero,
then the whole utility is also zero. To have a continuing
deficit of food is lethal, and so will be allocated a utility of
zero. To have too large a surplus is not advantageous. It
would be possible to insist on an exact balance, but it is
analytically more convenient, and probably more realis-
tic, to assume that animals like to run a small surplus.
This will allow them not to be continually monitoring
food levels, and the potential energy surplus can be
burnt off by slight metabolic inefficiency, or responsive
digestive inefficiency could ensure it was never acquired.
Recall that b1 is the net rate at which food value is
accrued, adding up over the cycle the f1 value for each
feeding bout and the g1 value for nonfeeding periods, and
dividing by the cycle length. The following function
makes the optimal value of b1 equal to a parameter �1.
Negative values of b1 are effectively outlawed by assigning
a utility of zero to them, in conjunction with a conven-
tion that utilities are always non-negative. The parameter
�1 controls how strong the preference is that b1 should
be close to �1. A high �1 means that even a small
deviation from �1 results in a large reduction in utility.
The function is

In the absence of time constraints, therefore, the
animal would choose its feeding bouts to ensure b1=�1.
The maximum value of u1 is attained in that case, and is
equal to 1.
Drinking

The structures for drinking will be assumed to be
identical to those for feeding, except that all the
parameters may be different. Thus,
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Resting
Animals do not usually spend all their time feeding and

drinking. ‘Resting’ is now introduced, as a ‘default’
activity. Assumptions about default activities may have
important implications for how other activities are
patterned, as the marginal value of a unit of time is
affected by them. In this example, we assume that the
animal has a preference for spending half of its time
resting. We achieve that by the following definitions:

f3(t)=t

g3(t)=0

u3(b3)=4b3(1�b3)

We have again ensured that if the animal chose without
constraints, the value of its utility fragment would be 1.
Joining three activities together
The final formal structure is the choice of the function

u, which combines the utility fragments together into a
single overall utility function. The simple assumption to
be adopted for the sake of the example is that the total
utility is the product of the utility fragments for each
activity, formally

u(b1,b2,b3)=u1(b1)u2(b2)u3(b3)

The fragments are all non-negative by definition, and the
formula implies that if any one fragment equals zero,
then the overall utility equals zero. Thus we expect all
three activities to be present in the optimal sequence if a
positive utility is feasible.

The utility also has a maximum possible value of 1,
inherited from each of its components.

This choice of utility function ensures a particular
pattern of preferences across the three activities, as the
effect on utility of trading off between two of them is
quite unaffected by the value of the third. This enforces
‘quasilinear preferences’, and in particular there are no
substitution or complement effects. This is of course quite
unrealistic, as eating and drinking in many animals are
tightly linked physiologically. The numerical simulation
is nevertheless of interest, as it helps us to uncover what
kinds of behaviour can be explained without recourse to
ideas of substitution and complementarity. These could
be further explored by adopting a different function for u.
Numerical simulations
A complete analysis of the model is not attempted here.

A numerical investigation is presented that centres on the
following parameter values, which should be assumed
except where otherwise stated:

�1=�2=1

�1=�2=0.01

tmin
1 =tmin

2 =0.2

�1=�2=0.1

�1=�2=10

�1=�2=1

Both feeding and drinking have an optimal net rate of
0.1, with quite a sharp decrease in utility for rates above
and below. Both feeding and drinking have a requirement
that grows constantly at rate 0.01.

Figure 2 shows a schedule of optimal responses as the �i

are increased, corresponding to increasing the optimal
net intake rate. Before �i=0.13, the mink has no marginal
value for time. It can attain the optimal benefit rates for
feeding and drinking and resting, and must obtain food
and water in a time-inefficient manner. Otherwise, it
would gain either too much food or water over time, or
would have to rest for more than the optimal fraction of
time. The mink has time on its hands, as life is very easy.
This is reflected in the attained utility of 1.0. Note
that feeding is suboptimal so far as feeding efficiency
is concerned, but optimal from the point of view of
utility.

After �i=0.13, the situation for the mink changes. It
cannot optimize separately for all three activities. Rest
drops from the isolatedly optimal fraction of one half as
the food and drink requirements increase. Feeding and
drinking now have to be done efficiently, as time has a
marginal value. Utility drops below 1.0 once simul-
taneous unconstrained optimization of all activities
becomes impossible.
Figure 2. Effect of varying both resource requirements (ωi) on optimal behaviour. Resting occupies half of the whole sequence while the ωi are
low enough, but less than half once the requirements have increased beyond ωi=0.13. The utility starts to fall at this same point.

Figure 3. Effect of varying rate of water use (µ2) on optimal behaviour. (a) As the rate of water use increases, drinking increases at the expense
of the other two activities. In (b) there are two rest periods. The utilities and durations of eating and drinking bouts are the same as in (a), and
the duration of each rest bout is half that of the single rest bout in (a).

Figure 4. Effect of varying both door weightings (βi) on optimal behaviour. The bout lengths increase, so as to reduce the frequency with
which doors must be opened.

Figure 5. (a) Effect of varying door weighting for drinking (β2) on optimal bout durations within a fixed cycle of activities. The sequence of activities
is constrained to have equal numbers of the three activities. The durations all increase, and feeding and drinking durations remain equal. (b) Effect
of varying door weighting for drinking (β2) on optimal behaviour with 12 bouts per sequence available for feeding or drinking. ‘ndrinks’ is the
number out of the 12 bouts that are used for drinking. The curves have all been interrupted at values where ndrinks has changed.
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Choosing the values �i=0.2, at which time has a
marginal value, the value of �2 is now varied. As �2

increases, the rate of water use increases, and so the
requirement for drinking increases. We expect to see the
mink reallocate time from both feeding and resting to
drinking as �2 increases, and Fig. 3 shows this happen-
ing. Utility declines as �2 increases. Note the expected
symmetry between feeding and drinking at �2=�1=0.01.

The mink could choose to rest after both feeding and
drinking, rather than just once in the sequence. The
optimal times within such a sequence have been calcu-
lated for the same parameter values as in Fig. 3a. As
expected from the linearity of the effect of rest, the
drinking and feeding times are unaffected, and the sum of
the two resting times equals the length of the single
original resting times, over the whole schedule of values
of �2. These results are shown in Fig. 3b. However, this
linearity of the effect of rest is a very special case, and
we would not expect the same result in general. The
maximizations were performed using the FindMinimum
command in Mathematica 4.0 (Wolfram 1999).

These results may give some feeling for how the
model works. The next stage is to add doors of varying
weight.
Figure 4 shows the effect on the mink’s optimal
sequence of having the same value of � for both doors, for
a range of values of �. The heavier the door, the longer the
duration of all bouts. This is because the doors must be
opened once each per cycle, and extending the duration
of the cycle reduces the frequency with which they need
to be opened. Note that utility decreases as �i decreases.

Figure 5a has �1=0 but varies �2, and shows the effect
on the lengths of bouts in the fixed sequence (feeding,
drinking, resting). Note that durations of feeding and
drinking bouts are the same here. Although the drinking
door is weighted, it must be opened exactly once in each
sequence and so does not produce a difference between
feeding and drinking. To reduce the rate of disutility from
opening the door, the durations of all three activities
increase as the door weighting increases. Utility,
unsurprisingly, falls as the door becomes heavier. One
technical point is reassuring. The durations for �1=0,
�2= �2.8 shown in Fig. 5a are the same as for
�1=�2= �1.4 in Fig. 4. The sum of �s over the cycle is
the same, and as they combine linearly the effect on
durations should be, and is, the same.

However, the fixed sequence (feeding, drinking, rest-
ing) does not remain optimal as �2 changes. As the cost
increases, there is a tendency for the optimal sequence to
contain relatively fewer but longer bouts of drinking.
Figure 5b shows the properties of the optimal sequences
out of those with exactly 12 bouts shared between feed-
ing and drinking, for a range of �2 values. The balance is
six of each activity with equal costs (�1=�2=0), but a
decreasing number of longer drinking bouts as �2

increases. In theory, there would be a continuous shift in
the fraction of bouts that were drinking bouts, and a
continuous increase in their duration, and Fig. 5b shows
an approximation to that continuous response. During a
sequence of �2 values for which the number of drinking
bouts remains constant, all the durations increase, to
dilute the fixed penalty of opening doors over a longer
cycle. When the number of drinking bouts decreases at a
particular value of �2, this produces a reduction in that
penalty, and the duration of resting bouts springs back.
The durations of feeding and drinking bouts change at
these boundaries for that reason, but also in response to
the change in the number of feeding and drinking bouts
in the cycle.
DISCUSSION

The model presented in this paper has a very wide range
of application in principle, but has so far been applied in
only one, very special, hypothetical case. One general
conclusion that can be drawn so far is the importance of
assumptions made about the default activity and the
possibility of ‘deliberate inefficiency’ when the animal is
easily attaining the maximum possible utility.

The results shown in the figures formalize some of the
intuitions of Cooper & Mason (2000), which are them-
selves borne out by the data they present, about the effect
of altering door weights, and hold out the prospect of
quantitative predictions of experimental results. The
model is much more appropriate in its assumptions to
Doors of Varying Weight

At this stage we introduce into the model a represen-
tation of the door weighting that Cooper & Mason (2000)
studied experimentally. Assume that the feeding and
drinking compartments each have a door through which
they must be entered, and that by loading these doors, it
can be made more or less aversive for the mink to enter
the compartments. To make the results of the model
easier to interpret, we shall assume that it takes no time to
open a door, but that the necessity to open doors affects
the utility function. Suppose we measure the cost of
opening the feeding and drinking doors as ‘negative
benefits’ �1�0 and �2�0, respectively, and the total cost
of opening doors over a behaviour sequence is the sum of
the costs. So the ‘benefit rate’ for door opening, bD, would
be the sum of all the � values over the sequence
divided by the duration of the sequence. Then the utility
fragment uD for door opening will be

uD(bD)=exp(bD)

which multiplies with the others to form the whole
utility function.

To complete the formalities according to which this
new model fits into the optimization program given
earlier, we introduce two new activities numbered 4 and 5
to represent opening the feeding and drinking door,
respectively; we define f4(t)=�1, and f5(t)=�2, and
g4(t)=g5(t)=0; we choose the constraint set C so that
activities 4 and 5 have a duration of zero; and that
activities must be chosen by sampling repeatedly from
the sequences (4, 1), (5, 2) and (3). In further discussion,
we will not mention the door openings as activities, but it
is important that all of these models fall within the same
formal optimization program.
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experiments of this kind than the standard economic
model of the consumer.

Adapting the model to analyse experimental results
could involve estimating parameters of the model. Thus,
the values of the utility decrement from opening a door
of varying weights could be discovered by testing differ-
ent weights in turn, and inferring a value of � for each
weight, from the resulting behaviour. The most useful
level of behaviour to quantify in this case might be the
frequency of bouts of each type of behaviour, and the
average duration of each type of bout. This very simple
example suggests that the general approach could have a
role in designing, analysing and interpreting experiments
on sequences of behaviour.

The main limitation of the model is that it ignores the
state of the animal, and that may at some stage require
the construction of a more complex model. However,
there does seem to be scope for representing current ideas
about behaviour sequences in this simpler framework. For
example, the question of whether deficits build up for
certain kinds of behaviour should be solvable.

A neighbouring literature to that on animal welfare is
the psychological literature on reinforcement schedules,
and I am grateful to Professor Alex Kacelnik for suggesting
the possibility of applying this kind of model to those
experiments.

In general terms, even human economic consumers
make decisions about sequences of behaviour, and the
micro-economic model of the consumer is probably
inadequate to account for all consumer behaviour, just as
it is inadequate to account for mink behaviour.
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