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Abstract. The formal Darwinism project aims to provide a mathematically rigorous basis
for optimisation thinking in relation to natural selection. This paper deals with the situation in
which individuals in a population belong to classes, such as sexes, or size and/or age classes.
Fisher introduced the concept of reproductive value into biology to help analyse evolutionary
processes of populations divided into classes. Here a rigorously defined and very general
structure justifies, and shows the unity of concept behind, Fisher’s uses of reproductive value
as measuring the significance for evolutionary processes of (i) an individual and (ii) a class;
(iii) recursively, as calculable for a parent as a sum of its shares in the reproductive values of
its offspring; and (iv) as an evolutionary maximand under natural selection. The maximand is
the same for all parental classes, and is a weighted sum of offspring numbers, which implies
that a tradeoff in one aspect of the phenotype can legitimately be studied separately from
other aspects. The Price equation, measure theory, Markov theory and positive operators
contribute to the framework, which is then applied to a number of examples, including a
new and fully rigorous version of Fisher’s sex ratio argument. Classes may be discrete (e.g.
sex), continuous (e.g. weight at fledging) or multidimensional with discrete and continuous
components (e.g. sex and weight at fledging and adult tarsus length).
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1. Introduction

The concept of reproductive value was introduced into biology by Fisher (1930),
and is now used in the study of age-structured populations (Charlesworth, 1994)
and by ecologists in the study of populations with age and other kinds of structure
too (Caswell, 1989; Easterling et al. , 2000). Reproductive value is a quantitative
measure for subsets of a population, including individuals, that indicates their rel-
ative importance in evolutionary processes. In fact this paper will show that the
quantitative measure plays four roles. Some are more familiar to biologists, others
to population geneticists, and the analysis will show that the roles are all tightly
interlinked.

First, each individual in the population has a numerical value attached to it that
is its reproductive value, and when taking an average gene frequency, the repro-
ductive values should be used as individual weights. The sense of ‘should’ is that
if we do so, average gene frequency will behave nicely. For example, if there are
two alleles at a locus and they have identical effects, their average gene frequencies
won’t change. Thus an individual’s reproductive value measures its contribution to
the gene pool of future generations.

Second, subsets of the population, such as males and females, or large and small,
have reproductive values, and when calculating an average gene frequency over the
whole population, they should be used as weights: note that the reproductive value
of a subset, apart from some possible re-scaling for convenience, does equal the
aggregate of the reproductive values of the individuals in the subset. One interest
here is that sometimes it is possible to calculate the reproductive value of a whole
subset, knowing nothing about the individuals, as in Fisher’s famous sex ratio argu-
ment showing that in diploids all males together have the same reproductive value
as all females together. In this sense, we can think of the reproductive value of all
males as the fraction of genes in a future generation whose ancestor is present in
a male in this generation. Hence the reproductive value of a subset measures its
genetic contribution to future generations.

Third, an offspring has a reproductive value, and each parent has a share in it,
depending on the fraction of the offspring’s genes it contributed; the reproductive
value of a parent equals the sum of its shares in the reproductive value of its off-
spring. This reveals reproductive value as a generalisation of counting a parent’s
offspring, and it also becomes possible to ask what the parent’s reproductive value
would have been if different strategies had been followed.

Finally, there is a role as maximand. In simple models without classes, a gene
frequency increases if the gene confers higher number of offspring on its bear-
ers. This can be translated into more formal links showing that natural selection
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tends to lead to maximisation of number of offspring or, more precisely, of ex-
pected relative number of offspring (Grafen, 2002). By using reproductive value
as weights, we will obtain a generalisation to the case with classes: average gene
frequency (when weighted with reproductive value) increases if the gene confers a
higher reproductive value on its bearers. This gives us a maximisation principle for
reproductive value, though it will not made formally explicit until the examples in
Section 8.

It is worth noting that there has been confusion in discussing ‘evolutionary
maximands’ between dynamic concepts such as Lyapunov functions and poten-
tial functions on the one hand, and on the other, the idea that individual organ-
isms will be selected to act as if maximising some function. It is the second that
will be discussed here, and the reader is referred to Grafen (1999) for further
discussion.

There are many significances in establishing such a reproductive value in a wide
range of models. At the most obvious level, it helps to tame complex situations with
classes, and provides results parallel to the simple model with only one class. More
ambitiously, it brings precision to the biologist’s frequent use of ‘reproductive value’
as a more precise version of ‘fitness’. It leads mathematical population geneticists to
see that the first three properties, with which they are familiar in particular contexts,
hold very generally and are linked to maximisation. It extends the range of models
in which an optimisation principle has already been demonstrated (Grafen, 2002,
2006) to include models in which classes exist. Population geneticists have since an
influential paper of Moran (1964) rejected the concept of an optimisation principle
in population genetics, so it is relevant that this paper establishes the nature and
existence of reproductive value in a very general setting with full mathematical
rigour. Finally, the paper shows that the original informal use of reproductive value
(Fisher, 1930) can be fully justified in that very general setting.

When, from a biological point of view, does the concept of reproductive value
of classes become important in applications? Examples include sex ratio, where
offspring may be male or female; parental care, in which offspring receiving more
care must somehow count more than those who receive less; and geography, where
the location of an offspring may matter. A technical example is age-structured pop-
ulations, which can be handled within a non-overlapping generations framework
by treating survival from year t to year t + 1 as the production by an age t adult
of an asexual age t + 1 offspring. It is also possible, for example, to define classes
in the population with respect to one genetic locus while studying changes in gene
frequencies at another.

The current paper builds on the work of Taylor (1990, 1996), who considered
a finite set of classes. Here the analysis is linked explicitly to Fisher’s reproductive
value arguments, showing that Fisher used a very general framework we are only
now coming to understand. By allowing the set of classes to be finite or infinite, and
to include single and multi-dimensional continuous variables, the range is extended
of examples to which reproductive value can be applied. Finally, the treatment here
contributes to the formal Darwinism project (Grafen, 1999, 2000, 2002, 2006),
which aims to represent in as general a way as possible Darwin’s arguments about
the operation of natural selection. The arbitrariness of the set of classes, and the
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fact that the argument handles them all in a single formulation rather than provid-
ing separate cases for different kinds of sets, contributes significantly to the claim
that the project captures Darwinian natural selection in general. It is also important
for the project that some of the results obtained here apply under a more general
genetics than Taylor’s.

The formalism developed in this paper therefore allows new kinds of examples
to be studied using reproductive value methods. One so far hypothetical example
would be of parental care in birds, where the type of care provided by parents affects
the fledging weight and tarsus length of sons and daughters. The reproductive value
weights would provide a maximand that would allow a parent to choose which com-
bination of fledging weight and tarsus length was best for sons, and which was best
for daughters. The optimal balances could be different for parents from different
classes. Suppose tarsus length is used in mate choice. The weights would then
incorporate sex-ratio selection and sexual selection, as well as any differences in
simple viability, to provide a single quantity with important properties under natural
selection that biologists might well be tempted to call ‘fitness’.

There are important restrictions on the analysis. To incorporate classes in the
absence of uncertainty, it has proved necessary to assume the population is infi-
nite. We also assume discrete, non-overlapping generations and that an individual
remains in the same class throughout its life, which excludes important areas of
reproductive value. For example, reproductive value has been used to study sex ratio
under partial bivoltinism (Grafen, 1986), and to study cases in which individuals
can affect their own class from one year to the next (Grafen, 1987). Thus, we deal
here only with classes that are chosen by parents, and that offspring bear for their
lifetime. Defining reproductive value outside these assumptions is an important
task.

There are further restrictions. Individuals are assumed to affect only their own
number of offspring, so that social behaviour as introduced by Hamilton (1964) is
excluded. Grafen (2006) incorporates social behaviour into the formal Darwinism
project, but not in a way that combines it with classes and reproductive value. Fre-
quency-dependent selection is not explicitly modelled, and most forms of it would
require a more elaborate model, and a more complex analysis, than that presented
here. However, sex ratio selection is included.

Some sections are designed to be readable by non-mathematical biologists,
who are prepared to endure some necessary limited notation. Section 2 provides
an overview of the rest of the paper without mathematical technicalities, and then
an account of the mathematical manoeuvres employed in each section. Section 5
gives a reasonably non-technical explanation of how the concept of reproductive
value links to the formal idea of invariant measures, and of the biological signifi-
cance of non-uniqueness. Section 7 discusses Fisher’s uses of reproductive value,
and how the analysis of the current paper justifies the implicit structure, while Sec-
tion 10 briefly concludes. The other sections are quite technical, and require some
mathematical ambition.
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2. Overviews of the paper

A marked feature of this paper is that the mathematics presented is very formal,
and daunting even to the author. This overview section first presents an outline of
the paper, section by section, without technicalities. The following subsection dis-
cusses the mathematical concepts used, explains the need for the formalities, and
justifies the absence of a simple pedagogical example.

2.1. An overview in words

The main purpose is to provide a mathematically rigorous exposition of how optimi-
sation ideas can be applied to the operation of natural selection when the population
is divided into classes. There are a number of steps. First, Section 3 derives the Price
Equation in the presence of classes, and then focusses on how genes flow from class
to class across the generations. The pattern of flow is used to define the reproductive
values of the classes. Section 4 considers whether a pattern of flow always defines
reproductive values, and if so, whether it defines them uniquely. It also establishes
the central property that reproductive value allows an evaluation in one generation
of the asymptotic number of descendants. This is a highly technical section, but
the biological interpretation of these issues is set out as intelligibly as possible
in Section 5. Although no fully general result can be established, it is likely that
reproductive value can be defined in a wide range of biologically useful situations.

The target of selection, which becomes the maximand individuals are selected
to act as if maximising, has two important features. It is the same for parents in all
classes. It is a sum of contributions to offspring, weighted by offspring class, and
so tradeoffs in one aspect of phenotype can legitimately be separated from other
aspects.

Section 6 studies equilibrium concepts of gene dynamics, an essential part of
studying the operation of natural selection. The ‘tracer-allele’ approach (Seger &
Stubblefield, 2002) is adopted, but there is an ambivalence of concepts that requires
some discussion. The first main result is one of the defining properties of repro-
ductive value identified by Fisher (1930) and later authors, that it allows a way to
measure natural selection that has the following desirable property: no matter how
two alleles are distributed across classes, there is no net selection if their phenotypic
effects are identical. If we use any other weights to aggregate the gene frequency
changes across classes, then two alleles with identical effects can undergo selective
change relative to each other. The second result shows how reproductive value pro-
vides a maximand for an optimisation approach to the outcome of natural selection.

Section 7 reviews the uses of ‘reproductive value’ by Fisher (1930), and shows
how they can be formally justified in detail. This section therefore shows that the
elaborate mathematical machinery constructed in earlier sections has considerable
biological significance. In particular, it shows that reproductive value provides a
maximand of natural selection, in the sense that natural selection tends to lead to
individuals who act as if maximising their reproductive value.

The mathematical machinery of earlier sections is put to use in Section 8, in
three examples that are only a sample of the range of possible applications, but
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which do show how the very abstract formulations can be brought to bear on par-
ticular cases. A fully rigorous version of Fisher’s sex ratio argument is given, along
with a development only possible using the results of this paper. Then there is an
example of parental care where the classes belong to an interval on the real line,
and a geographical example where class represents location. These examples are
all small-scale, as a substantial example would require a paper of its own.

In Section 9 the links with the work of Taylor (1990, 1996) are discussed. There
is a small concluding section.

2.2. A mathematical overview

The considerable mathematical machinery is all needed for a purpose. Here, some
of the choices are explained. Section 3 introduces a model beginning with the set
of individuals I , which is assumed infinite. The set of classes X is treated in a very
general way: technically it is assumed to be compact Hausdorff. This means X is a
compact topological space, and for every ordered pair of distinct points there is an
open set that contains the first of the pair but not the second. X is thus permitted
to be any compact subset of R

n, which seems general enough for many biologi-
cal purposes. Infinite-dimensional phenotype spaces have been used (e.g. Grafen,
1990), and so the capacity to handle infinite-dimensional spaces of classes may also
be useful – though note that the space must be compact. Both I and X are treated
as measure spaces, and the distribution of offspring classes produced by each indi-
vidual is treated as a measure over X. The frequency of alleles is studied using the
covariance selection mathematics of Price (1970), but not the later extensions of
Price (1972). The machinery of measure theory is required because of the desire
to present a single argument covering all cases: the simpler notation for finite X

or for densities on the real line would not have covered the other of those cases.
The population I is assumed infinite to allow exact results to be obtained. A finite
I over an infinite X could only adopt an atomic distribution; and finite I would
not ensure that fairness of meiosis on average guaranteed fairness of meiosis in
outcome. Another important reason for using measure theory is that the set of den-
sities does not form a complete space and existence results would fail: a sequence of
densities can converge to a distribution with atoms. It is quite likely in applications
that equilibrium distributions would have atoms, and also that optimal responses
would be atomic distributions.

Once it is decided to use measure theory, it becomes difficult to follow the
very reasonable suggestion of referees of an earlier version, to provide a simple
mathematical example to explain the concepts. The added notation required, and
the different kind of notation required for discrete X or to consider densities on the
real line, would render unwieldy the already considerable mathematical notation of
the paper. Many of the concepts are developed for discrete X, and explained very
well, by Taylor (1990, 1996), who could be read alongside.

The use of Radon-Nikodym derivatives should be mentioned. If we have a mea-
sure over a space, and an L1 function on that space, it is a standard result that we can
produce a new measure by integrating the function with respect to the original mea-
sure. The inverse process, of finding the L1 function that will convert one measure
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into another, is Radon-Nikodym differentiation, and it will be needed in various
contexts because I and X are measure spaces.

Another formalism introduced in Section 3 is a Markov process over the state
space X. The Price Equation takes us from parents in one generation to offspring in
the next. Markov theory is used to extrapolate the effects on gene frequencies that
would follow if the class-to-class transition pattern from one generation to the next
were to be repeated indefinitely. This hypothetical repetition allows reproductive
value to be defined in terms of an invariant measure of the Markov process.

The questions of existence and uniqueness of that invariant measure are the
subject of Section 4. The general applicability of the concept of reproductive value
depends on how widely an invariant measure exists for the Markov process of the
preceding section. Theorems are drawn from the literature and are applied in gen-
eral, and in a series of examples that also shows how the mechanics of the Markov
process work. Although an example is found in which none of the general results
guarantee existence, even there an invariant measure is exhibited: the general sense
is that reproductive value exists in most biologically plausible cases with a stable
distribution of the population over classes. The section actually begins by defin-
ing a ‘forwards process’, which follows gene frequencies forwards in time: this
corresponds to the ‘backwards process’ represented by the Markov process, which
follows reproductive value backwards in time. The forwards process is useful in
studying the backwards process, and also in considering equilibrium concepts later
in the paper. The invariant measure is by no means always unique, and the nature
of sets of invariant measures is discussed along with their biological significance
in Section 5.

Section 6 looks at equilibrium under natural selection, finding a very natural
result linking equilibrium in the presence of classes to conditional expectations.
Optimisation results can be obtained very generally in Darwinian models (Grafen,
2002, 2006). One of the main purposes of the project is to set the strategic approach
on an equal footing with the population genetics approach in terms of mathemati-
cal rigour, so that choices between them can be made on the grounds of biological
utility. It is therefore significant, and requires discussion in Section 6, that when
classes are added, there is an ambivalence of equilibrium concept even within the
strategic approach.

Explicit optimisation programs are employed in the examples in Section 8,
where it is easier to do because the need for complete consistency and generality
no longer holds. In previous papers (Grafen 2002, 2006) explicit optimisation was
employed in general, as there was substantial work to do at that level, for example
incorporating uncertainty into the maximand of natural selection. In the current
paper, the additional notational requirements would not have been worthwhile.

Section 9 includes the correspondents in this paper to the left and right eigen-
vector results for the forwards and backwards processes of Taylor (1990, 1996).

3. Price for classes

This section aims to develop the covariance selection mathematics of Price (1970)
as applied to a population whose members and whose members’ offspring each
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belong to a class. The approach chosen employs measure theory rather than the
alternative of generalised functions (Kanwal, 1983), for compatibility with previ-
ous work extending the Price equation to uncertainty (Grafen, 2002). This holds
out the prospect of a combined model developing a rigorous treatment of the case
combining classes and uncertainty.

The Price equation assumes a census point in the parent and offspring genera-
tions. All individuals at the first census point are parents, and each leaves a certain
number of successful gametes, that is, gametes which contribute to an offspring
present at the second census point. We will assume in the words we use that the
contribution of a parent to an offspring is exactly one gamete, which holds for
most situations in diploidy, haploidy and haplo-diploidy. The formalism actually
extends more widely, if we understand counting offspring to be counting successful
gametes. This extension matters because the framework does apply to a model of
mixed sexual and asexual reproduction in diploids, for example, including where
parental survival is formally represented as asexual reproduction; and to the arbi-
trary ploidy models of Grafen (1986), as in Section 8.1. However, it would be too
cumbersome to have to read ‘successful gamete’ in all the necessary places. We
immediately assume, though it is not needed until Section 4.1, that all individuals
in the same class share the same ploidy.

Let the set of parent individuals be represented by a measure space (I, I, µI ),
where the measure µI weights individuals by their ploidy. Let the set of classes be
represented by a compact Hausdorff space X. This allows X to be, for example,
an arbitrary compact subset of R

n. Equipped with its σ -algebra of Borel subsets
X, (X, X) is a measurable space. Let there be a measurable function χ : I → X

denoting the class of a parent.
In order to operate with measures, we introduce M(X), the space of signed

finite measures over X. This is a Banach space (see e.g. Schechter, 1997, 29.29g,
page 803), and so we may integrate and take expectations of measures (Schechter,
1997, 23.16, page 615). M(X) is a measurable space in combination with its Bo-
rel sets derived from the usual topology. We assume that offspring are produced
according to a measurable function w : I → M(X). w(i) is a non-negative measure
belonging to M(X), and represents the measure over offspring classes produced
by parent i. It will be convenient to assume that the total production of offspring by
individuals is uniformly bounded, formally w(i)(X) ≤ wmax . We define the total
offspring production by class, W ∈ M(X), and implicitly the expectation E [·]
over the measure space (I, I, µI ), by

W =
∫

I

w(i)µI (di) = E [w] (1)

Following Grafen (2000), we introduce a p-score, a measurable functionp : I →
R, to represent an allele frequency, or weighted sum of allele frequencies, in indi-
viduals i ∈ I . The p-score for an individual is thus the mean of the p-scores of the
gametes that contribute to its genome. The mean p-score by class among parents is
given in I by the conditional expectation E [p | χ ]: conditioning on a measurable
function will be used throughout as a shorthand for conditioning on the sub-σ -alge-
bra defined by the level sets of that function. Letting µX ∈ M(X) be defined as the
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measure of parent classes over X, formally µX(A) = µI {i : χ(i) ∈ A}, we shall
let π be a µX-measurable function from X to R, also representing the mean p-score
among parents by class, defined by the function composition π ◦ χ = E [p | χ ].
(The reader is reminded that a conditional expectation is a member of the same L1

as the function whose expectation is taken, in this case of L1(µI , R).)
The extension from allele frequency to p-score is possible because both the

left and right hand side of the Price equation are linear in allele frequency, so any
weighted sum of allele frequencies also obeys the Price equation. Because allele fre-
quency is measured as a proportion of the individual’s ploidy, there is no automatic
tendency for individuals with a higher ploidy to have a higher p-score.

The mean p-score among offspring will be denoted π ′ ∈ L1(µX, R), and we
proceed to find a formula for it. Informally, the contribution of individual i to the
offspring at x is w(i)(dx), and because we have assumed perfect transmission and
an infinite population, the p-score contributed by individual i may be taken as p(i).
We will use more general notation, and suppose that some property f (i) is passed
on to the offspring. Thus we could hope to write the average value of f among the
parents of offspring at x as the weighted average

∫
i∈I

f (i)w(i)(dx)µI (di)∫
i∈I

w(i)(dx)µI (di)
(2)

If we move the dx outside the integral sign we obtain
(∫

i∈I
f (i)w(i)µI (di)

)
(dx)(∫

i∈I
w(i)µI (di)

)
(dx)

= E [f w] (dx)

E [w] (dx)
= E [f w] (dx)

W(dx)
(3)

Now this last expression is in fact well-defined. The classic Radon-Nikodym theo-
rem (Schechter, 1997, 29.10, page 790; 29.20, page 796) applies to two real-valued
measures over the same arbitrary measure space, on condition that the numera-
tor measure (which may be signed) is absolutely continuous with respect to the
denominator (which must be positive and finite). In this case we need to establish
that E [w] (A) = 0 implies E [f w] (A) = 0, for all A ∈ X. If E [w] (A) = 0,
then as w(i) is non-negative, it follows that w(i)(A) = 0 for almost all i. So
f (i)w(i)(A) = 0 for almost all i and E [f w] (A) = 0 as required. The conclu-
sion of the theorem is that there exists a function k ∈ L1(W, R) defined W -almost
everywhere such that for every measurable A,

∫
A

k(x)W(dx) =
(∫

f (i)w(i)µI (di)

)
(A) (4)

This formula shows that despite the informality of equation (3), we can define a
function k(x) that gives the average value of f among the parents of offspring at x.

It will be convenient to represent a Radon-Nikodym derivative with respect
to W as DW . Our first application of Radon-Nikodym derivatives is to define π ′,
W -almost everywhere, by

π ′ = DW E [pw] (5)
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Now employing linearity of expectations and the identity p = E [p | χ ]+ (p −
E [p | χ ]

)
yields

E [pw] = E

[
E [p | χ ] w

]
+ E

[(
p − E [p | χ ]

)
w
]

(6)

and the next stage is to link the argument so far to the theory of Markov processes.

3.1. Link to Markov theory

The Price Equation has linked genotype frequencies and reproductive output in one
generation to gene frequency change between that and the subsequent generation. If
each different class continued to produce the same distribution of classes among its
offspring over many generations, there would be important consequences for gene
flow through the classes. To work with these consequences, we introduce Markov
theory, and do this in a very formal way because precise theorems will be applied
in due course.

Rosenblatt (1971, Chapter IV, section 2) deals with a probability transition
function P : Z × Z → R on a compact Hausdorff space Z equipped with its Borel
sets Z and a measure ν. P(x, A) represents the probability that state x will be suc-
ceeded by a state in the subset A of Z. Associated with the process defined by P

is a linear operator T : L1(ν, R) → L1(ν, R). The linear operator T is defined by
(Tf )(x) = ∫

P(x, dy)f (y), and if f ∈ L1(ν, R) represents some function over
Z, then (Tf ) is another function over Z, with (Tf )(x) representing the average
value of f over the successor states of x. (T jf )(x) represents the average of f over
the successor states of x after j transitions. If it happens that T takes continuous
functions to continuous functions, then P(x, A) is not only a measure on (Z, Z)

for almost all x, but also a measurable function of x for fixed A.
The connection we make between the biology and the Markov theory reverses

the direction of time. We will understand P(x, A) to represent the probability that a
random allele of a random individual in class x derives from a parent in a class in the
subset A of X. (Tf )(x) represents the average of f over the parents of individuals in
class x. We note that this reversal introduces into the calculation of P the require-
ment to know the distribution of the population over classes. Thus, the reversed
version lacks the straightforward nature of the original interpretation in which the
mechanics of the Markovian process determine P(x, A), and the distribution over
states can be derived from it.

The Markov process is to be defined over X, and the associated measure we
will take to be W , the distribution of offspring. Then the equations that link the
Price equation development with Rosenblatt’s notation are as follows:

P(x, A) =
(

DW

∫
i : χ(i)∈A

w(i)µI (di)

)
(x) (7)

(Tf ) = DW E
[
(f ◦ χ)w

]
(8)

These equations define a Markov process over X, provided the definition of T does
take L1(W, R) into itself. To ensure this later, we will need to assume that µX, the
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parental distribution over states given by µX(A) = µI {i : χ(i) ∈ A}, is absolutely
continuous with respect to W . The biological interpretation of this condition is that
any subset of states that includes parents must also include offspring: a population
may thus be expanding into new classes, but not abandoning any occupied classes.
This is so that the Markov process can be extrapolated backwards in time on the
basis of the gene flow pattern in this generation.

If we let fA be the indicator function of A and then define the finite measure
uA = ∫

i : χ(i)∈A
w(i)dµI (i), we can also write P as

P(x, A) = (TfA)(x) = uA(dx)

W(dx)
= duA

dW
(x) (9)

Invariant measures for T play a central role in the development of the theory,
defining reproductive value itself for reasons explained verbally in Section 5, and
we now introduce relevant notation and concepts. Let Mσ (X) denote the subspace
of M(X) containing the measures that are absolutely continuous with respect to
σ ∈ M(X). Let the operator Iσ represent the integral of f with respect to a measure
σ ∈ MW(X), as Iσ f .

A measure τ ∈ MW(X) is said to be invariant for T if it possesses the following
property holding for all f ∈ L1(W, R),

Iτ f = Iτ (Tf ) (10)

The restriction to measures absolutely continuous with respect to W is required,
for otherwise the integral is not defined for all f ∈ L1(W, R). An invariant mea-
sure must therefore by definition possess this property, and so we note here that
existence of an invariant measure implies that DW τ is well-defined.

We shall assume for the moment that an invariant measure exists, and work
with an arbitrary choice if there is more than one. Section 4 discusses questions
of existence and uniqueness. We will see that often τ(A) represents the reproduc-
tive value of a subset A of classes. A full biological interpretation of τ is given in
Section 5.

3.2. The Price equation with classes

Returning to the mathematical development, these definitions first allow us to take
the Radon-Nikodym derivative of equation (6), and use equation (5) to write

π ′ = (T π) + DW E

[(
p − E [p | χ ]

)
w
]

(11)

The invariant measure allows us to define a scalar average p-score Iτ π . We
integrate over equation (11) with respect to τ(dy), and then subtract Iτ π from
both sides. These integrations are permitted because by definition τ is absolutely
continuous with respect to W . Because τ is invariant, Iτ T π = Iτ π and so we have

Iτ (π
′ − π) = Iτ DW E

[(
p − E [p | χ ]

)
w
]

(12)
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Aiming to move the operators inside the expectation, we rewrite the right hand side
as a double integral

∫ (
DW

∫ (
p(i) − π(χ(i))

)
w(i)µI (di)

)
(x)τ (dx) (13)

Letting h = DW τ , and using the change of variables formula for Radon-Nikodym
derivatives (Schechter, 1997, section 29.13, page 791), we further obtain

∫
h(x)

(∫ (
p(i) − π(χ(i))

)
w(i)µI (di)

)
(dx) (14)

It is now time for a fundamental operation that works out what the class distri-
bution of the parents in the next generation will be. Begin by constructing a measure
ν on the product space I × X, with the product topology and product σ -algebra,
defined by the distribution of parent-offspring pairs, given for rectangular sets A×B

by

ν(A × B) =
(∫

A

w(i)µI (di)

)
(B) (15)

Absolute continuity is automatically satisfied, so we may apply the Radon-Niko-
dym theorem to construct a derivative of ν with respect to the product measure
µI × W , namely a function k ∈ L1(µI × W, R) such that

ν(A × B) =
∫

i∈A,x∈B

k(i, x)(µI × W)(di × dx) (16)

Note that k(i, x) ∈ L∞(µI × W, R), as we assumed w(i)(X) ≤ wmax . Then
formula (14) can be rewritten as

∫
h(x)

(
p(i) − π(χ(i))

)
ν(di × dx) (17)

=
∫∫

h(x)
(
p(i) − π(χ(i))

)
k(i, x)µI (di)W(dx) (18)

It is permitted to change the order of integration as the integrand belongs to L1(µI ×
W, R), and so obtain

∫ (
p(i) − π(χ(i))

) (∫
h(x)k(i, x)W(dx)

)
µI (di) (19)

The inner integral belongs to L1(µI , R) by Fubini’s theorem, and so we may define
the operator F

τ
W : L1(µI , MW(X)) → L1(µI , R) by

F
τ
W : w →

∫
h(x)k(·, x)W(dx) (20)
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Using this ‘fitness operator’, and translating back to expectations from integrals,
we recall equation (12) and rewrite equation (19) as

Iτ (π
′ − π) = E

[(
p − E [p | χ ]

)
F

τ
Ww

]

= E

[
p
(
F

τ
Ww − E

[
F

τ
Ww

∣∣χ])] (21)

where the second equality follows easily from standard results, for example Theo-
rem 5.5.11 of Ash & Doleans-Dade (2000). Covariance forms immediately follow,
using the definition of conditional covariance for some measurable function g,
C [a, b | g] = E [ab | g] − E [a | g] E [b | g],

Iτ (π
′ − π) = E

[
C
[
p, F

τ
Ww

∣∣χ] ] (22)

Iτ (π
′ − π) = C

[
p − E [p | χ ] , F

τ
Ww

]
(23)

The covariances are defined and so finite because we assumed that w(i)(X) is
bounded.

The covariance equations (22) and (23) express the generalisation of the Price
equation to include classes. For simplicity let us agree for this paragraph to use
the term ‘fitness’ to refer to an individual’s sum of its contributions to offspring
weighted by reproductive value, namely

(
F

τ
Ww

)
(i). An appropriately weighted

average change in p-score across classes, on the left hand side, equals the average
over parental classes of the covariance between p-score and fitness; or, alternatively,
equals the covariance over all adults between the deviation of their p-score from
the average of their class, and fitness. These are the fundamental Price equations in
a population with classes.

4. Existence and uniqueness of reproductive value

This section makes the promised return to questions of the existence and uniqueness
of an invariant measure of the operator T , but first we study the ‘forwards’ process,
to find another angle on obtaining reproductive value. The relationship between the
two routes will be discussed, and existence and uniqueness will be considered in
relation to both processes.

4.1. The forwards process

The forwards process describes the population measure of classes next genera-
tion as a function of the population measure this generation, on the assumption
there is a single phenotype in the population. The building block is a function
v : X → M(X), a measurable function that tells us the offspring distribution pro-
duced by an individual in class x. We make the biologically reasonable assumption
that v is uniformly bounded. Define an operator Ũ : M(X) → M(X) by

Ũm =
∫

v(x)m(dx) (24)
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This section relies for standard functional analysis results on Vilenkin et al. (1972).
Ũ is a positive operator, as v(x) is a non-negative finite measure for each x; and it
is continuous under the norm topology as v is bounded. The population distribu-
tion n generations after m is Ũnm. An equilibrium of the class dynamics would be
represented by a non-zero measure m such that λm = Ũm and λ = ||Ũ ||.

Associated with Ũ is its adjoint operator T̃ on a Banach space BM(X) com-
prising the bounded measurable real functionals on X, under the supremum norm.
T̃ defined by the formula

(T̃ f )(x) =
∫

f (y)v(x)(dy) (25)

is continuous as v is bounded. Of primary interest here is the possibility that there
may be a non-negative leading eigenfunction h such that

T̃ h = λh, or
∫

h(y)v(x)(dy) = λh(x) (26)

We will see that such a function will often justify the term ‘per-capita reproductive
value’. Further restrictions on v may allow us to identify narrower cones within
BM(X) than the non-negative functions within which an eigenfunction must lie.

As T̃ and Ũ are adjoint operators, it follows that (T̃ rf, m) equals (f, Ũ rm) for
arbitrary f and m, using the parentheses to represent integrating the function with
respect to the measure. From this flows the central property that

∫
h(x)m2(dx)∫
h(x)m1(dx)

=
∫

h(x)(Ũ rm2)(dx)∫
h(x)(Ũ rm1)(dx)

for r = 1, 2, 3 . . . (27)

The interpretation is that provided we agree to evaluate the number of descendants
by a leading eigenfunction of T̃ , to be called h, we can obtain a comparison between
the asymptotic numbers of descendants of two measures of offspring m1 and m2
by simply integrating them with respect to h. The ‘work’ of computing through the
generations is done by the eigenfunction.

If Ũ is to represent the evolution of a population with phenotype v this carries
the implication that within a class, the reproduction of individuals is proportional
to their ploidy. The only plausible biological version is that all individuals in the
same class share the same ploidy, as assumed in Section 3.

4.2. Links between the forward and backwards processes

The main purpose of introducing the forward process is to allow a sharper definition
of per-capita reproductive value as the eigenfunction of T̃ . The backwards process
defines it only W -almost everywhere, so that it is not defined in regions with no
offspring, and even where there are offspring it is defined only up to W -equiva-
lence. First we show how the definitions of the processes are linked. Note that the
operators Ũ and T̃ associated with the forwards process have tildes to distinguish
them from the operator T of the backwards process.



A theory of Fisher’s reproductive value

As a preliminary, we prepare to define the backwards process using X instead
of I . Suppose there is only one phenotype present in the population, with reproduc-
tion described for all classes by v : X → M(X), and let µX denote the measure of
parents over X and V be the measure of offspring. Then the following equations
link the processes over I and those over X:

v ◦ χ = E [w | χ ] as members of L1(µI , M(X)) (28)

µX(A) = µI ({i : χ(i) ∈ A}) (29)

V = E [v] (30)

where the expectation over the measure space (X, X, µX) is also denoted E, and
it may be noted that E [g] ◦ χ = E [g ◦ χ ]. Then the operator T can be defined
equally by Tf = DV E [f v], and so the invariant measures, if any, are the same.
Note that V = W . Thus v is consistent with what w tells us about the phenotype,
but sharpens it and extends it from χ(I) to the whole of X.

The first important link between forwards and backwards processes applies
when there is a stable distribution of the population over classes, formally when
the population measure µX is an eigenvector of Ũ with eigenvalue λ, and if a cor-
responding eigenfunction h of T̃ exists which is not µX-equivalent to zero. If h

does represent per-capita reproductive value, then when it weights the population
measure µX it should yield the class reproductive values τ . Formally, we will show
that h(x)µX(dx) satisfies the defining feature of an invariant measure, namely that
for arbitrary f ∈ L1(µX, R),

∫
f (x)h(x)µX(dx) =

∫
(Tf )(x)h(x)µX(dx) (31)

It will suffice to consider an indicator function f of a measurable set A. The left
hand side equals

∫
A

h(x)µX(dx) (32)

In the right hand side we substitute using Tf = DV E [f v] and use the change of
variables for Radon-Nikodym derivatives to obtain

∫
(DV µX)(x)h(x)

(∫
A

v(y)µX(dy)

)
(dx) (33)

As V = ŨµX = λµX, it follows that (DV µX)(x) = (dµX/dV )(x) = 1/λ as
members of L1(V , R). Making this substitution, and by the method demonstrated
in Section 3.2 we swap order of integration to obtain

1

λ

∫
A

∫
h(x)v(y)(dx)µX(dy) = 1

λ

∫
A

λh(y)µX(dy) =
∫

A

h(y)µX(dy) (34)

as required. Thus if such a function h exists, then we can obtain an invariant mea-
sure by weighting the population measure µX with h, justifying the interpretation
as per-capita reproductive value.
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A linked result in the opposite direction is to begin with an invariant τ , and to
show that the per-capita reproductive value DV τ satisfies the same relationship as
h, namely that the value for a parent is proportional to the integral of the parental
shares of the offspring’s values, as in equation (26). The definition of invariance
yields

∫
f (y)τ(dy) =

∫ (
DV

∫
f (y)v(y)µX(dy)

)
(x)τ (dx) (35)

By changing variables in the Radon-Nikodym derivative, and then swapping the
order of integration, we can obtain

∫
f (y)τ(dy) =

∫
f (y)

∫
(DV τ)(x)v(y)(dx)µX(dy) (36)

Now by choosing f to be the indicator function of an arbitrary measurable set A,
this condition is effectively the definition of the Radon-Nikodym derivative of τ

with respect to µX (Schechter, 1997, page 790, 29.10), with the inner integral on
the right hand side as the derivative. Thus we may conclude that

(DµX
τ)(x) =

∫
(DV τ)(y)v(x)(dy) (37)

At an equilibrium of class dynamics we have as before that DµX
V = λ, and so

DµX
τ = DµX

V DV τ = λ DV τ , and we obtain

λ(DV τ)(x) =
∫

(DV τ)(y)v(x)(dy) (38)

Hence DV τ satisfies the same relationship (26) as defines h, though only over
supp(V ) and up to V -equivalence. In both cases, the per-capita reproductive value
of a parent is proportional to the sum of its shares of the reproductive values of its
offspring.

We summarise these two links. If an h exists, then there is a τ such that DV τ

and h are equal up to V -equivalence. Similarly, if a τ exists, then there exists a
member of L1(V , R) that satisfies the defining equation for h up to V -equivalence.

4.3. Useful theorems on existence and uniqueness

The conclusions of Section 3 apply whenever an invariant measure for T exists,
justifying the concept of reproductive value up to that point. For further uses, we
will require the existence of an eigenfunction of T̃ to act as per-capita reproductive
values. Here we consider under what conditions reproductive value can be shown
to exist. Three theorems of Krasnosel’skii (1964) relevant to the forwards process
introduced in Section 4.1 are given first, and then two theorems of Rosenblatt (1971)
for the backwards process from Section 3.1. The results are applied to examples in
Section 4.5.

The results of Krasnosel’skii (1964) are on fixed points of linear operators in
cones. The basic object is the function v : X → M(X), and existence will be
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studied in terms of its properties. v(x) represents the offspring production of an
individual parent in class x, and so v(x) is necessarily non-negative, and we have
also assumed that v is uniformly bounded. It follows that Ũ is a norm-continuous
linear operator, which maps the cone of non-negative measures into itself. Theo-
rem 2.6 (Krasnosel’skii, 1964, page 69) asserts that a completely continuous linear
operator that is uniformly positive and has an invariant cone has at least one eigen-
vector in the cone. Complete continuity means that the operator is continuous and
maps bounded sets into relatively compact sets. The extra properties, beyond our
assumptions, we require to apply this result are compactness and uniform positivity.
Compactness of Ũ follows if {v(x) : x ∈ X} is compact, in view of our assumption
that v is bounded. In some later examples, we will ensure this by the finiteness of
the set. Uniform positivity requires that |Ũnm| ≥ α|m| for some n and α > 0, for
all m in the cone, and is satisfied if v(x)(X) > α for some α > 0.

Theorem 2.7 of Krasnosel’skii (1964, page 71) applies to the case where
{v(x) : x ∈ X} is a subset of the set of probability measures. The conditions of
the theorem are a weakly complete space whose unit sphere is weakly compact,
a cone that allows plastering, and a linear operator that leaves the cone invariant;
the conclusion is that such a linear operator has at least one eigenvector in the
cone. Note that a cone generated by a bounded closed convex set allows plastering
(Krasnosel’skii, 1964, section 1.4.4, page 34), and that the unit sphere of M(X)

is weakly compact by the Banach-Alaoglu theorem. Thus if {v(x) : x ∈ X} is a
subset of the probability measures, then this theorem guarantees an eigenvector of
Ũ in the cone.

The operator T̃ is defined on the Banach space BM(X) of bounded measurable
real functionals on X. The natural cone without further assumptions on v is the
non-negative functions. Adjointness of T̃ and Ũ guarantee that if one is compact
then so is the other, and so compactness of {v(x) : x ∈ X} will guarantee com-
pactness of T̃ . Uniform positivity is harder to achieve in BM(X), and Theorem 2.5
of Krasnosel’skii (1964, page 67) will often be more useful. It states that a linear
completely continuous operator A which, for some non-zero element u such that
−u /∈ K , u = v − w with v, w ∈ K , and for some α > 0 and for some natural
number p, satisfies the relation

Apu ≥ αu (39)

has an eigenvector in the cone with eigenvalue greater than or equal to p
√

α.
There are two possible routes to stronger eigenvector results by applying the the-

orems to smaller cones. First, if v is continuous in the weak-star topology induced
by C(X), then the subcone of continuous functions is invariant under T̃ , and we
may be able to prove the existence of a continuous eigenvector. Second, if instead
we assume that v(x) for each x is absolutely continuous with respect to v0, then T̃

maps L∞(v0, R) into itself, and we could establish an eigenvector in L∞(v0, R).
But note that by switching from BM(X) in this way we lose adjointness of T̃ and
Ũ , and so compactness would need to be shown separately.

Turning now to the backwards process, two main results will be employed. The
first is from Rosenblatt (1971, Theorem 1, p101), and states that existence of an
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invariant measure (which in addition is regular) is guaranteed if X is compact, and T

maps continuous functions into continuous functions. Recall that T : L1(V , R) →
L1(V , R) is defined as Tf = DV (E [f v]).

A general result about this condition is now derived. Begin by constructing a
measure θ on the product space X × X, with the product topology and product σ -
algebra. Define θ as the distribution of parent-offspring pairs, which for rectangular
sets A × B is given by

θ(A × B) =
∫

A

v(x)(B)µX(dx) (40)

We apply the Radon-Nikodym theorem to construct a derivative of θ with respect
to the product measure µX × V , namely a function k ∈ L1(µX × V, R) such that

θ(A × B) =
∫

x∈A,y∈B

k(x, y)(µX × V )(dx × dy) (41)

and then define a probability measure on X as a function of X, β : X → M(X),
V -almost everywhere, by (an informal version is given in the brackets)

β(y)(A) =
∫
A

k(x, y)µX(dx)∫
X

k(x, y)µX(dx)

(
=
∫
x∈A

v(x)(dy)µX(dx)∫
x∈X

v(x)(dy)µX(dx)

)
(42)

We then have

(Tf )(x) =
∫

f (y)β(x)(dy) (43)

If this is to be continuous, then we need to have f (y) = 0 at points of discontinuity
of β. Thus for Tf to be continuous for all continuous f , we require that β(y) is
continuous in y in the weak-star topology induced by C(X).

The following are special cases of this general result, and so provide the exis-
tence of an invariant measure.

1. X is a finite set. For then all functions from X to R and from X to M(X) are
continuous.

2. Each offspring class x is made by one parental class z(x) with z continuous.
Then we have (Tf )(x) = f (z(x)).

3. Each offspring class x is made by k parental classes zj (x) in per-capita amounts
qj (x), with zj and qj /

∑
j qj continuous, for j ∈ 1(1)k. Let there be a density

of population m(x), which we also assume continuous, such that µX(dx) =
m(x)dx. Then we have

(Tf )(x) =
∑
j

m(zj (x))qj (x)∑
j m(zj (x))qj (x)

f (zj (x)) (44)

4. The density case. Suppose µX and v(x) can be represented as

v(x)(dy)µX(dx) = t (x)σ (x, y) dx dy (45)
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where t (x) is the density of x as parents, and σ(x, y) is the density of offspring
of class y produced by one parent of class x. Then we have

(Tf )(y) =
∫

f (x)t (x)σ (x, y)dx∫
t (x)σ (x, y)dx

(46)

This quotient is continuous in y provided σ(x, y) is continuous in y for almost
all x (whether or not f is continuous). This would be implied by the biological
assumption that a parent cannot make offspring precisely in a class, but instead
‘smears’ offspring around ‘intended’ classes.

The second result is attributed by Rosenblatt (1971, Page 117) to Doob. An
invariant measure is guaranteed if, in our notation, there exists a probability mea-
sure φ over X, an integer m and an ε > 0 such that

φ(A) ≤ ε ⇒ Pm(x, A) ≤ 1 − ε ∀x ∈ X (47)

where Pm(x, A) is the m-th iterated probability transition function. In the original
Markov chain interpretation, this means that after long enough, there is no small
set that is acquisitive for some x. In particular it must be the case that no set of
φ-measure zero ‘captures’all the descendants of an x. Capturing points are allowed,
but they must be few enough that we can afford to assign an atom in φ so they are
not of measure zero. Further, in a populated region of X there must be no point x

which is the focus of nested sets, each of which directs descendant states in towards
x, for then the innermost sets have smaller and smaller measure, and continue to
capture all of their own offspring. Essentially, Doob’s is a ‘blurring condition’. In
the biological interpretation, this means that as we trace back the ancestors of the
individuals in a given class x, they must not become concentrated in a single class.
Sexual reproduction, with mating across classes, will be helpful in meeting Doob’s
condition. Implications of meeting Doob’s condition are discussed in Section 4.4.

Doob’s condition ensures existence with finite X, for then we can choose the
measure φ to attribute at least α > 0 to each point. Then choosing m = 1 and
selecting ε < α renders the condition trivially true.

In the original forwards interpretation of the Markov process, it is easy to show
that we could guarantee meeting Doob’s condition by assuming that with some
non-zero probability the next state is chosen independently of x and from a mea-
sure that is absolutely continuous with respect to the base measure. However, the
biological interpretation looks backwards, and it is not meaningful to insist that
a certain fraction of the population has its parent determined in such a way. It
would be interesting to know of a biologically meaningful way of meeting Doob’s
condition in the case of infinite X.

The results of this section will be applied in Section 4.5.

4.4. Uniqueness

We now consider uniqueness of reproductive value, and begin with the invariant
measure of the backwards process. Throughout this discussion, it will be assumed
that the population under discussion is at a stable equilibrium of the distribution
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over classes. Uniqueness is connected with notions of irreducibility of matrices.
Essentially we will find we can define subsets of X over which there are unique
invariant measures (up to multiplication by a scalar), and that we can characterise
the set of invariant measures as linear combinations of those unique measures. I
have not found a satisfactory discussion of the general case, perhaps because it is
difficult. Here I will discuss the implications explained by Rosenblatt (1971, page
117) for the case where Doob’s condition (equation 47) has been met. No doubt
many features are shared by the general case.

The set of classes is divided into a conservative and a dissipative part. In the
usual interpretation of the Markov process, a class in the dissipative subset has all
of its successor states eventually in the conservative part, so the dissipative sub-
set is eventually empty. In the biological, backwards, interpretation, a class in the
dissipative subset has all its ancestors eventually in the conservative part, so that
while there may be population in the dissipative part, its progeny eventually die
out. An example of a dissipative subset would be sterile hymenopteran workers:
they continue to exist each generation, but leave no progeny.

The conservative part of X is divided into a finite number of minimal ergodic
subsets. An ‘ergodic set’ A ⊂ X in this context is one for which the following
condition holds for states in the conservative part of X:

P(x, A) =
{

1 x ∈ A

0 x /∈ A
(48)

Such a set is minimal ergodic if no proper subset is also ergodic. An individual x

in a minimal ergodic set A has an ancestry that never leaves A, and no individ-
ual in a conservative class outside A has any ancestry in A. They are therefore
reproductively isolated subsets of the species. Even if there were no genetic differ-
ences initially, they would arise through drift, and probably also through genetic
adaptations appropriate to each minimal ergodic set of classes separately.

While multiple ergodic sets are unlikely to be important in nature (unless one
counts different species as different ergodic sets) they are important because they
are likely to arise in models of adaptive evolution. For example, if there were ten
classes, and each class produced offspring only of its own kind, then there would be
ten ergodic sets. This could easily result if it was cheaper to make such offspring.
Some of the examples applying uniqueness conditions in Section 4.5 have multiple
ergodic sets.

It is an important result that a minimal ergodic set always has a unique invariant
measure, up to multiplication by a scalar. This measure describes the reproductive
value of all its subsets. The intermingling of all its subsets over the generations
ensures uniqueness of reproductive value within a minimal ergodic subset.

A further complication is that it is possible for a minimal ergodic set B to be
divided into a finite number of subsets {B1, B2 . . . Br} such that the ancestor of
x ∈ B1 is in B2, the ancestor of x ∈ B2 is in B3, and so on, and finally that the
ancestor of x ∈ Br is in B1. These sets thus move cyclically through the gener-
ations, and there are r distinct sets of ancestral paths which never intersect, each
rotating through the r different sets of classes. One full treatment in the current
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framework has classes defined by both age and phase, making r2 classes in all. An
extreme case in which only one set is populated is embodied in periodic cicadas,
which appear as adults every so many years. The exact period is 13 or 17 depending
on the species, and the phase differs within a species between geographical regions.
See Williams & Simon (1995) for periodic cicadas. So-called ‘annual cicadas’have
shorter periods of 2–8 years, but usually all the possible phases are present, so there
are no adult-free years even in one location.

Returning to the minimal ergodic sets themselves, each has a unique invariant
measure defined on it, which extends to an invariant measure on the whole space
that is zero elsewhere. But we can construct further invariant measures by taking any
linear combination of those extended unique measures. For example, if the measure
for Ai is τi , then τ1 + τ3 is also an invariant measure, and so is 2τ1 + τ2 + 5τ3.
All such linear combinations make up the invariant measures, and this family has
a simple interpretation, which is deferred to Section 5.

The discussion of this subsection so far has been based on meeting Doob’s con-
dition. It would be useful to have parallel results for the more general case, which
would presumably employ Choquet theory (Phelps, 2001).

Turning to the forwards process, the same general patterns arise in the ergodic
sets for per-capita reproductive value, as they must owing to the links with the total
reproductive value outlined in Section 4.2. Theorem 2.11 of Krasnosel’skii (1964,
page 78) can help establish uniqueness. Note that for elements of general cones K ,
the inequality f ≤ g is to be understood as g − f ∈ K (this coincides with the
elementwise meaning when the cone of non-negative elements is considered). The
first condition is that a linear operator A possesses the property of ‘u0-positiveness’,
namely that there exists a vector u0 ∈ K such that for each non-zero x ∈ K , there
exist positive scalars α and β and integer n such that

αu0 ≤ Anx ≤ βu0 (49)

The second condition is that K is reproducing, that is, every element in the space
must equal the difference between some pair of elements in K . The third condi-
tion is that A has an eigenvector in K . If all three conditions are satisfied, then K

contains a unique eigenvector of A, up to multiplication by a positive scalar. This
result can be used for both Ũ in relation to population distributions, and for T̃ in
relation to per-capita reproductive values.

4.5. Examples

We now turn to three examples to show how the criteria for existence and uniqueness
can work. The forwards and backwards processes are defined and then attempts,
usually but not always successful, are made to apply existence theorems. Even
where none of the results can show existence, reproductive values are exhibited.
Uniqueness is also studied, but less often holds. The reader’s attention is drawn to
the fact that the results of Krasnosel’skii (1964) and Rosenblatt (1971) employed
through these examples are given in Section 4.3 for existence and in Section 4.4
for uniqueness.
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As well as exhibiting application of the existence and uniqueness theorems, the
examples show how the mathematical machinery introduced in the paper can be
put to work. More biologically motivated examples are given in Section 8.

4.5.1. Triangular offspring distributions
Suppose X = [0, 1], and classes x ≤ 1

2 each produce an upwards triangular distri-
bution m1 of offspring, while classes x > 1

2 each produce a downwards triangular
distribution m2, formally

v(x) =
{

m1 x ≤ 1
2

m2 x > 1
2

where
m1([0, y]) = y2

m2([y, 1]) = (1 − y)2 (50)

We begin with defining the backwards process. Suppose the population distri-
bution measure is µX. Then letting p1 = µX([0, 1

2 ]), p2 = µX(( 1
2 , 1]), f̄1 =∫

y∈[0, 1
2 ] f (y)µX(dy), and f̄2 = ∫

y∈( 1
2 ,1] f (y)µX(dy), we have

(Tf )(x) = xp1f̄1 + (1 − x)p2f̄2

xp1 + (1 − x)p2
(51)

This leads to continuity of (Tf ) and so by Rosenblatt’s condition to the existence
of an invariant measure of the backwards process.

Doob’s condition in equation (47) gives the same result. If necessary, replace
µX with ŨµX, to ensure it is positive on each half. Then write P as

P(x, A) = xµX(A ∩ [0, 1
2 ]) + (1 − x)µX(A ∩ ( 1

2 , 1])

xµX([0, 1
2 ]) + (1 − x)µX(( 1

2 , 1])
(52)

from which we know, as µX is positive on both halves of the interval, that

P(x, A) ≤ max

{
µX(A ∩ [0, 1

2 ])

µX([0, 1
2 ])

,
µX(A ∩ ( 1

2 , 1])

µX(( 1
2 , 1])

}
(53)

If we define φ in Doob’s condition by

φ(A) = 1

2

(
µX(A ∩ [0, 1

2 ])

µX([0, 1
2 ])

+ µX(A ∩ ( 1
2 , 1])

µX(( 1
2 , 1])

)
(54)

then we conclude that

φ(A) ≤ ε ⇒ P(x, A) ≤ 2ε (55)

Thus Doob’s condition is satisfied with the remaining choices m = 1, and ε = 1/4.
Turning to the forwards process, {v(x) : x ∈ X} contains only two points, and

so is certainly compact. v(x)(X) is bounded away from zero, giving uniform posi-
tivity. Thus Ũ has an eigenvector, by Theorem 2.6 of Krasnosel’skii (1964), which
is the equilibrium distribution of the population over classes. This is the measure
with equal density across [0, 1].
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T̃ is continuous, but uniform positivity is impossible to achieve in the cone
of non-negative bounded measurable functions, so instead we apply Theorem 2.5.
This requires to find a positive power n of the completely continuous operator A

and a suitable element u and a positive number α such that Anu ≥ αu. We choose
for simplicity the indicator function f of a non-trivial interval [a, b] ⊂ (0, 1

2 ].
Calculation shows that

(T̃ f )(x) =
{

b2 − a2 x ≤ 1
2

(b − a)(2 − a − b) x > 1
2

(56)

and so T̃ f ≥ (b2 − a2)f . This satisfies Krasnosel’skii’s theorem and shows exis-
tence of an eigenfunction. Hence per-capita reproductive value also exists, and turns
out to be the constant function h(x) = 1.

Theorem 2.11 of Krasnosel’skii (1964) can be used to prove uniqueness. The
condition of existence of an eigenvector is satisfied for T̃ and Ũ , as we have just
seen. For Ũ , the cone of non-negative measures will be used, which is reproducing
as required. We will consider T̃ as mapping L∞(µ, R) to itself, where µ represents
Lebesgue measure on the interval, and consider the cone of non-negative elements,
which is again reproducing. We now show u0-positivity. Let f̃1 = ∫

2yf (y)dy and
f̃2 = ∫

2(1 − y)f (y)dy, and let 1X ∈ BM(X) denote the function taking the value
one everywhere. It is straightforward to show that

Ũ2m = p1+3p3
4 m1 + 3p1+p2

4 m2 (57)

T̃ 2f =
{

1
4 f̃1 + 3

4 f̃2 x ≤ 1
2

3
4 f̃1 + 1

4 f̃2 x > 1
2

(58)

and so, that

1
4 (m1 + m2) ≤ Ũ2m ≤ 3

4 (m1 + m2) (59)

min{ 1
4 f̃1 + 3

4 f̃2,
3
4 f̃1 + 1

4 f̃2}1X ≤ T̃ 2f ≤ max{ 1
4 f̃1 + 3

4 f̃2,
3
4 f̃1 + 1

4 f̃2}1X

(60)

The minimum is greater than zero because we deal only with non-zero f in showing
u0-positivity. Thus we obtain uniqueness in both cases. For Ũ , this suffices. How-
ever, we had to consider T̃ acting on L∞(µ, R) to obtain u0-positivity – all functions
that are µ-equivalent to zero would have failed the test in BM(X) as the minimum
would equal zero. We extend the uniqueness on L∞(µ, R) to uniqueness on BM(X)

by noting that T̃ carries BM(X) into L∞(µ, R), and so all eigenvectors in the larger
space must lie within the smaller. Thus we conclude establishing uniqueness for
both operators.

4.5.2. Half-shift
Assume there is a measure µX over classes X = [0, 1], and that class x makes x+ 1

2
or x − 1

2 , whichever is in [0, 1). Considering the backwards process, a continuous
f gives discontinuous Tf unless f (0) = f (1), so that Rosenblatt’s condition fails.
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Doob’s condition also fails, as (employing the biological interpretation and looking
backwards) each class’s path of ancestors remains contained in a single point (apart
from x = 0 and x = 1

2 whose ancestry may also be shared with a second point,
x = 1). Each such point would require an atom in φ to allow Doob’s condition to
be met, but every point in the interval would therefore require an atom, which is
impossible.

In the forwards process, {v(x) : x ∈ X} is a subset of the probability measures,
and so we turn to Theorem 2.7 of Krasnosel’skii (1964). The cone of non-negative
finite measures allows plastering, as it is generated by the bounded closed convex
set of the probability measures, and so Ũ has an eigenvector in the cone. The eigen-
vectors of Ũ are measures m satisfying m(A) = m( 1

2 + A) for some measurable
A ⊂ [0, 1

2 ) and also satisfying m({1}) = 0. On the other hand, Krasnosel’skii
(1964) offers little hope for T̃ as it is not compact (ruling out Theorems 2.5, 2.6
and 2.9), and as the unit ball in the space on which it is defined (namely BM([0, 1])
is not weakly compact (ruling out Theorems 2.7 and 2.8). Eigenfunctions of T̃

exist despite the failure to prove it, and are all functions h in BM([0, 1]) such that
h(x) = h(x + 1

2 ) for x < 1
2 , and h(1) = 0. These correspond to the fact that the

population is simply swapped in two chunks, with each alternate generation being
the same, with the exception of x = 1.

If we identify x = 0 and x = 1 to make X represent a circle, then Rosenblatt’s
condition now holds while Doob’s continues to fail to hold for the backwards oper-
ator T . So far as the forwards process is concerned, Theorem 2.7 of Krasnosel’skii
continues to ensure an eigenvector of Ũ . As v is now continuous in the weak-star
topology on M(X) induced by C(X), T̃ becomes invariant on the subcone of con-
tinuous non-negative functions, but non-compactness remains a barrier. All of the
eigenvectors persist into the circle, despite the problems in proving their existence
on general grounds (which probably arise because the half-shift does not engage
with the topology in a substantial way).

4.5.3. Split halves
Suppose the population is distributed as µX over X = [0, 1]. Suppose classes
x ≤ 1

2 produce a uniform distribution over [0, 1
2 ] while classes x > 1

2 produce a
uniform distribution over ( 1

2 , 1]. We suppose µX is positive on both halves of the
interval, for otherwise the example reduces to a simpler case. Then

(Tf )(x) =


∫ 1

2
0 f (y)µX(dy)/µX([0, 1

2 ]) x ≤ 1
2∫ 1

1
2 + f (y)µX(dy)/µX(( 1

2 , 1]) x > 1
2

(61)

and so is not in general continuous, causing Rosenblatt’s condition to fail. Doob
does give us this, however, as we may choose m = 1 and φ = µX. First defining
p1(A) = µX([0, 1

2 ] ∩ A) and p2(A) = µX(( 1
2 , 1] ∩ A), and noting that

P(x, A) = (TfA)(x) =
{

p1(A) x ≤ 1
2

p2(A) x > 1
2

(62)
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then we find

µX(A) < ε ⇒ pi(A) <
ε

min{µX([0, 1
2 ], µX(( 1

2 , 1])} (63)

hence we will have the required P(x, A) ≤ ε provided

ε <

(
1 + 1

min{µX([0, 1
2 ], µX(( 1

2 , 1])}

)−1

(64)

Thus Doob gives us an invariant measure. There is a whole continuum of asymptotic
population distributions, in which the distribution in each half is uniform while the
weight in each half depends on the initial allocations.

Turning to the forwards process, {v(x) : x ∈ X} consists of only two non-zero
points, so Ũ is completely continuous and uniformly positive: hence Theorem 2.6
of Krasnosel’skii (1964) shows that an equilibrium distribution of classes exists.
Indeed, we could apply the result to each of the narrower cones of measures

K1 = {m : m ≥ 0, supp m ⊂ [0, 1
2 ]} (65)

K2 = {m : m ≥ 0, supp m ⊂ [ 1
2 , 1], m({ 1

2 }) = 0} (66)

to show the existence of an equilibrium distribution of classes within each cone.
Note that under the norm topology, both sets are convex and closed, as required
of cones. Uniqueness within each cone is trivial, as all measures in Ki are carried
by Ũ immediately to the eigenvector in Ki . Within the larger cone of non-negative
measures, every positive linear combination of these two eigenvectors is also an
eigenvector.

The adjoint operator T̃ has two invariant cones

L1 = {h ∈ BM(X) : h(( 1
2 , 1]) = {0}} (67)

L2 = {h ∈ BM(X) : h([0, 1
2 ]) = {0}} (68)

Again, this shows existence within each cone. Uniqueness again follows trivially,
as T̃ carries every function in Li immediately to the eigenfunction in Li . Within the
larger cone of non-negative bounded measurable functions, every positive linear
combination of these two eigenfunctions is also an eigenfunction.

5. Interpretation of reproductive value

We first turn to the interpretation of total reproductive value, as embodied in an
invariant measure of the backwards process, and go on to consider the interpre-
tation of per-capita reproductive measure, as embodied in an eigenfunction of the
operator T̃ . We learnt in Section 3.1 that the mathematical development frequently
defines the invariant measure τ within a single generation, provided all subsets
of classes with no offspring also have no parents. While reproductive value has a
biological interpretation over one generation, its most important biological inter-
pretation relies on an assumption that the same measure is invariant over a number
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of generations. Essentially we will assume in this discussion that the population we
are discussing maintains the same relative distribution of classes over time.

We defined an ‘ergodic set’ in Section 4.4 as a set A of classes such that all
ancestry of A belongs to A, and no other ancestry belongs to A (except perhaps
from classes that have no descendants themselves in the long term, the ‘dissipa-
tive’ classes). A minimal ergodic set has no proper subsets that are also ergodic.
We saw that a minimal ergodic set has a unique invariant measure. The biological
interpretation is to pick an individual, and then one allele within that individual,
in one generation, and find the distribution of the allele’s ancestors over classes
in a large set of consecutive distant generations. If the generations are sufficiently
numerous and sufficiently distant, then the distribution of the ancestors across clas-
ses can be represented as a probability distribution or measure over the classes.
Two alleles picked from the same minimal ergodic set will give rise to the same
ancestral measure.

If the whole of X is a minimal ergodic set, then this unique measure therefore
establishes completely the relative values of all the different classes as ancestors
of distant generations. Some subsets of classes, such as sterile workers, may even
have measure zero. This justifies the name ‘reproductive value’, and shows the
importance of the concept in natural selection. The Price equation (22) shows that
what happens to a class of individuals has a significance for natural selection that
is proportional to its reproductive value, and that individuals are selected to value
offspring according to their per-capita reproductive value.

Now suppose there is more than one minimal ergodic set. We modify our
thought-experiment by choosing the individual and one of its alleles through some
random process. If by this process the chosen allele might come from more than
one ergodic set, then the distribution of the ancestral state will be some mixture of
the invariant measures for each minimal ergodic set, and by choosing the probabil-
ities appropriately, we can obtain any convex combination of the unique invariant
measures. Thus the family of invariant measures are all those measures which can
provide the distribution of distant ancestry from some given process of random
choice of an allele in an individual in this generation.

The non-uniqueness arises because ancestry provides no way to establish the
relative importance of two subsets of classes whose ancestry never intersects. Thus
all distinct relative importances produce distinct invariant measures. Such subsets
are as separate as different species, because there is no gene flow among them.
An extreme caste system, or complete geographical separation, could in principle
produce such subsets within a species.

However, not all of these invariant measures will fulfil the fourth and crucial role
of reproductive value, namely as a maximand of adaptive evolution. Explicit links
to optimisation programs are made in parallel papers (Grafen, 2002, 2006), where
there is enough work to do with them to justify introducing the notation. Explicit
optimisation is also shown in the examples in Section 8, where less general results
are required. Here, an example will show why not all invariant measures produce
a maximand. Suppose there are two classes x and y, and an individual produces
exactly one offspring of its own class and none of the other. The two classes per-
petuate themselves and remain in equilibrium. Then the invariant measure τ can
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place an arbitrary weighting on x and the remainder on y, for whatever chances we
place on choosing classes in the offspring will be the chance that the parent is of
those classes. But further suppose that a class x parent has the option of producing
0.7 class y offspring, and that a class y parent could produce 0.9 class x offspring,
but that neither of these options is taken up at equilibrium. Then τ({x}) and τ({y})
are the class reproductive values, and µX({x}) and µX({y}) are the masses of
individuals in the classes. It follows that the per-capita reproductive values are

h(x) = τ({x})
µX({x}) and h(y) = τ({y})

µX({y}) (69)

The two classes of parents are acting optimally in continuing to produce their own
kind only if these conditions hold

h(x) ≥ 0.7h(y) (70)

0.9h(x) ≤ h(y) (71)

This would limit the ratio of per-capita reproductive values to lie between 7/10 and
10/9. In general, all options not taken up will place restrictions on which of the
invariant measures produce maximands.

Is it possible that this kind of argument might rule out all of the invariant mea-
sures? Indeed it is, and will occur when the behaviour is not optimal. Let us amend
the previous example, and suppose that an individual in class x could have made
2.5 offspring in class y, while an individual in class y could still make 0.9 offspring
in class x. Then the optimal behaviour would be for each class to make the other,
producing a higher rate of increase for each lineage, growing by a ratio of 1.5
each generation compared to the static population of the original phenotype. It is
appropriate that none of the invariant measures will produce a maximand.

We now turn to the interpretation of per-capita reproductive values as repre-
sented by a solution h to equation (26), and restrict ourselves initially to the case
where there is only one minimal ergodic set in X. In populated regions of X, h(x)

is just the total reproductive value of class x, divided by the population size at x.
This ratio is however undefined in unpopulated regions, and yet h has a crucial
interpretation there. Suppose we begin with an individual at x. Then we know from
the invariant measure what the class-distribution of its descendants will eventually
be, and h(x) represents how many of those descendants there will be.As individuals
in every class x produce the same eventual class-distribution, h(x) represents the
ratio of the numbers of descendants produced by adults at each x. The significance
of this extension beyond populated regions arises when considering the fate of
mutants with low penetrance. A mutant may cause an individual to place offspring
outside the populated regions, but because of the low penetrance, the descendants
of those ‘outsiders’ will have regained the populated regions before the deviant
behaviour occurs again. The value of h(x) for those outsider offspring evaluates
their descendants, as shown formally in equation (27). Thus the wider definition
of per-capita reproductive value is essential when dealing with mutants that place
offspring outside the regions populated by the common phenotype.
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It is important to stress that total reproductive value and per-capita reproductive
value depend on different information. Total reproductive value, embodied in the
invariant measure τ , is obtained from information on w(i) alone, that is, from infor-
mation about the classes that are occupied. By contrast, the per-capita reproductive
value h depends on knowing v(x) for all x, which includes what would be done by
individuals in unoccupied classes. The per-capita reproductive value in unoccupied
classes must be calculated from assumption, as ‘observation’ can produce only the
undefined quotient zero divided by zero.

6. Equilibrium under natural selection with classes

The existence of classes creates a question about how evolutionary equilibrium is
to be defined. Two possibilities are described in this section, and then using the
second, two important results are proved about natural selection in the presence of
classes.

6.1. Clonal growth

The simplest approach is based on the idea of a completely dominant allele, which
brings about a new phenotype in every bearer. The bearers thus grow as a clone
would, and the complication of classes means keeping track of the distribution of
the clone over the classes, and finding its intrinsic growth rate. The key point is that
when averaging across the new strategy’s success in the different classes, the aver-
age is weighted by the distribution of classes brought about by the new strategy’s
own behaviour.

We therefore define a Markov operator Ũa : M(X) → M(X) to represent the
evolution over one generation of the distribution over X of a clone of a-strategists
whose distribution of offspring classes is given by va . Formally,

Ũa(m) =
∫

va(x)m(dx) (72)

The spectral radius of the operator will be denoted ρ(Ũa). In fact this operator is
the operator Ũ of the forwards process, but recognising the dependence on a given
phenotype a.

If we assume that the population as a whole is at a putative equilibrium and has
reached a stable population density with monomorphic strategy a, then a condition
for equilibrium is that no strategy could spread, formally that ρ(Ub) ≤ ρ(Ua) for
all feasible strategies b. This inequality can be used as the basis for an optimisation
program with the spectral radius as maximand. See Grafen (1998) for an example
of such an optimisation program, but in a simpler case with finite X.

Reproductive value plays no obvious role in this equilibrium concept.

6.2. Stubblefield’s ‘tracer-allele’ method

The alternative approach (Seger & Stubblefield, 2002) is to consider a mutant that
has very low penetrance. Thus, it plays the existing strategy most of the time, and
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occasionally plays a new strategy. The difference this makes is that the new strat-
egy is played in a distribution of classes that corresponds to the distribution of the
population as a whole, rather than the distribution that would come about through
the actions of the new strategy itself.

As the mutant is played in the same distribution of classes as the population, a
p-score is selected according to the sign of Iτ (π

′ − π). Recall from equation (21)
that

Iτ (π
′ − π) = E

[
p
(
F

τ
Ww − E

[
F

τ
Ww

∣∣χ])] (73)

If a population is such that no p-score would spread, it follows that the right hand
factor in the expectation must equal zero as a member of L1(µI , R), and the con-
verse also holds. Formally,

F
τ
Ww = E

[
F

τ
Ww

∣∣χ] ⇔ no p-score can spread (74)

The interpretation is simple: there is no natural selection exactly when each individ-
ual has the same scalar evaluation of its reproductive output as the other individuals
in the same class (apart from a possible set of individuals of measure zero). This is
the formal statement for an arbitrary set of classes as was noticed for finite classes
by Fisher (1930), Taylor (1990) and others, to the effect that if fitness differences
are related to class but not to phenotype, then weighting by reproductive value
gives no net selection. With any other weighting, two alleles with identical pheno-
typic effects could be differentially selected simply as a result of being distributed
differently over the classes.

Equation (74) is the condition that all extant phenotypes should be in selective
equilibrium, which in the parallel analysis without classes Grafen (2002) calls ‘no
scope for selection’. The ‘potential for selection’ is measured by the success of a
non-extant phenotype a that usually produces the same offspring distribution v as
the population as a whole, but with very low probability produces the distribution
va . Assuming that the descendants return to the population distribution before the
mutant is expressed again, we can use equation (27) to write the condition that no
such mutant could spread:

for all feasible mutants a∫∫
h(y)va(x)(dy)µX(dx) ≤

∫∫
h(y)v(x)(dy)µX(dx)

(75)

The implications depend very much on the set of possible mutants. The general
expression allows arbitrary constraints that link behavior in different classes; but if
behaviour in all classes can evolve separately, then we have the simpler

for all feasible mutants a and classes x∫
h(y)va(x)(dy) ≤

∫
h(y)v(x)(dy)

(76)

These are the two basic results for selection in the presence of classes.
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6.3. Comparison of the concepts

The logical basis of the difference between the clonal growth and tracer-allele
equilibrium concepts is how they weight the classes when averaging the effects of
phenotypes across the different classes. Clonal growth assumes the mutant allele
has the distribution over phenotypes produced by a clone showing the mutant strat-
egy, whereas a mutant allele will usually have a more complex relationship to the
mutant strategy: to give only two simple examples from diploid genetics, it could
be a recessive allele or it could show partial penetrance. Even a dominant allele
would deviate from the clonal case once it was frequent enough for homozygotes
to arise. Tracer-alleles assume that the mutant allele’s distribution over classes is
identical to the population’s existing distribution. While this would follow from
extremely low penetrance, or from a simple constant factor of advantage in repro-
duction in all circumstances per copy of the allele, it is otherwise most unlikely.
Other distributions of the mutant allele over classes are highly likely to be relevant
in real cases. However, these are two natural possibilities that have been used in the
literature (Seger & Stubblefield, 2002). In the rest of the paper, it is the tracer-allele
method that will be employed.

There are reconciliatory conditions in which these conditions are the same for
mutants close to the incumbent, and Grafen (1998) gives an example in which the
two conditions are equivalent for all mutants when a population is at a selective
equilibrium.

The tracer-allele approach is more convenient to apply in evolutionary models
because once reproductive values h(x) have been worked out under the incumbent
phenotype, a simple weighting of offspring classes allows the evaluation of the suc-
cess of any mutant phenotype, so long as we are willing to assume low penetrance.
This implies a simple trade-off between offspring classes that is the same for adults
in every class, and that can be applied in one aspect of the phenotype independently
of choices in other aspects.

There is a general biological defence of using the tracer-allele equilibrium con-
cept to investigate the effects of selection on phenotypic traits. This concept uses
little information about genetics, but nevertheless allows results to be obtained.
Full population genetic models use more information, and clearly some full genetic
model must be right in any particular situation. The main difficulty with full models
is that the extra genetic information will usually be unknown in any particular case,
and furthermore will also be different in every particular case. For example, a model
about sex ratio using the tracer-allele concept provides admittedly tentative results,
but they apply to a wide variety of species. A full model would require informa-
tion that was different for each species, and even if the information were available,
would produce predictions that were different. Thus the approximate applicability
of the tracer-allele concept is close to a necessary condition for general biological
explanations. If genetic details are truly required, then such general explanations
do not exist. The optimisation programs attached to the phenotypic concepts also
provide an interpretation of the conclusions that makes sense of the biology.

The argument between game theorists and population geneticists over the rel-
ative value of strategic models and explicit genetic models cannot be reviewed
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here, and will certainly continue. A major purpose of the formal Darwinism project
(Grafen, 2002, 2006, and the present paper) is to put the strategic models on an
equal footing in terms of mathematical rigour, so that choices can be made on the
grounds of biological utility.

The next two sections apply the tracer-allele approach, first to expound Fisher’s
use of reproductive value, and then to apply the mathematical machinery developed
in this paper to some examples.

7. Fisher’s four uses of reproductive value

One principle aim of the paper is to make explicit Fisher’s concept of reproduc-
tive value as an evolutionary maximand. In this section, which is intended to be
accessible to biologists with only a little mathematical notation, Fisher’s uses of
reproductive value in his 1930 book are reviewed. Page numbers are taken from the
Variorum edition published in 2000. Then the links are made to the formalism estab-
lished in earlier sections. The reader is reminded that reproductive value assigns a
numerical value to individuals and to subsets of the population, representing their
importance in evolutionary processes.

Fisher first employs the concept on pages 27 to 29 in relation to the Euler equa-
tion and age-structured populations (for a more recent treatment see Charlesworth,
1994). On page 29, he makes the point, in the same context, that using reproductive
value appropriately over one generation is the equivalent of looking an indefinite
number of generations ahead in order to obtain an asymptotic measure of fitness.
In deriving the fundamental theorem of natural selection, he asserts on page 35 that
individuals should be weighted by their reproductive value when gene frequencies
are measured. On page 73, Fisher declares in comparing the strength of natural
selection in larvae and adults first that one should count not number of bearers but
rather their summed reproductive value, and second that weighting by reproductive
value in this way brings about comparability between the two groups.

The only explicit use as a maximand comes in pages 141 to 143 in the famous
sex ratio argument, but here many logical steps are taken. The total reproductive
values of all males and of all females are calculated, and then the per-capita repro-
ductive values. These are attributed as the value of a son and a daughter, and the
sum of the shares of a parent in the reproductive values of its offspring is identified
with the reproductive value of the parent itself. It is then assumed that selection will
cause this reproductive value to be maximised within the actions available to the
individual. Further, uncertainty is taken into account when the probability-weighted
arithmetic average is taken over possible reproductive values.

The various manipulations exhibit a sophisticated if implicit structure. It is now
shown how the machinery of the present paper provide formal justifications for
most of these manipulations, and in a very general setting. The exception is aver-
aging over uncertainty, which must be deferred. Reproductive value is thus shown
to be a central concept in natural selection in the presence of classes.

Fisher (1930) used reproductive value in four formal ways that are illustrated by
the roles played by reproductive value in the Price equation with classes. Equations
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(22) and (23) are expressed in terms of h as follows:

∫
h(x)

(
π ′(x) − π(x)

)
µX(dx) = E

[
C
[
p,

∫
h(x)w(·)(dx)

∣∣ χ]
]

(77)

∫
h(x)

(
π ′(x) − π(x)

)
µX(dx) = C

[
p − E [p | χ ] ,

∫
h(x)w(·)(dx)

]
(78)

The equations need to be explained for readers who have skipped the mathe-
matical sections, who can understand ‘p-score’ to mean ‘gene frequency’. h(x) is
the per-capita reproductive value of an individual in class x. π ′(x) and π(x) are
the mean p-score next generation and this generation among individuals in class
x, and µX represents the population distribution over classes in the parental gen-
eration. Thus the left hand side represents a population-wide average change in
p-score from this generation to the next, weighting by reproductive value. On the
right hand side, the integral represents the reproductive-value-weighted evaluation
of one individual’s production of offspring – or more accurately, of her appropriate
share of them, according to the fraction of each offspring’s genes she contributed.
The first right hand side is the average over classes of the covariance across indi-
viduals within a class between p-score and that integral. The second right hand side
is the covariance over all individuals between the deviation of p-score from class
mean p-score, and that integral.

Fisher’s first and second uses are that reproductive value provides the weights
in aggregating gene frequencies into a single gene frequency, either by individual
weight or by class weight. The use of h is in the left hand side of equations (77) and
(78), where h(x) is the weight of an individual in class x and h(x)µX(dx) is the
total weight of class x. These weights have the special property that when there is
no selection within classes, indicated by the covariances in the right hand sides all
taking the value zero, there is no change in the mean gene frequency. Aggregating
gene frequencies must be done with very special weights to have this property, and
this is one of the important properties of per-capita reproductive values (this result
is shown formally in Section 6.2).

The third use is in the construction of an individual’s reproductive value, when
reproductive values are used to weight the sum of shares of offspring produced of
each class. This is shown in the right hand sides of equations (77) and (78), where
h(x) is used to weight the gametic contributions by an individual to offspring of
type x.

The fourth use of reproductive value is as a maximand, a function individuals
are selected to maximise. This use can be seen in the position of the individual’s
weighted sum of its shares in the reproductive values of its offspring, as the tar-
get of selection in the Price equation (77 and 78). This corresponds to the role
of number of offspring in the standard Price equation (Price, 1970), to expected
relative number of offspring in the Price equation with uncertainty (Grafen, 2002),
and to expected relative inclusive fitness in the Price equation with uncertainty and
effects on relatives (Grafen, 2006). Once there are various classes of offspring,
then aggregation is required to find a single maximand. It is the combination of
weighting gene frequencies by reproductive value, and summing offspring number
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weighted by reproductive value, that allows the conclusion that a p-score positively
correlated with aggregated offspring number will increase.

So far the target of selection has been the sum of the parent’s shares in its off-
spring’s reproductive value. In view of equation (26), which defines reproductive
value in a uniform population as the sum of its shares in the reproductive value of
its offspring, we can understand the parent’s own reproductive value as the target
of selection, and regard it as a generalisation of counting offspring, giving weights
according to class.

The second major result can also be interpreted in Fisherian terms. This is the
condition for a strategy with reproductive output v to be proof against invasion: for
all feasible mutants a∫∫

h(y)va(x)(dy)µX(dx) ≤
∫∫

h(y)v(x)(dy)µX(dx) (75, repeated)

Each side is a double integral that first adds up the reproductive value of offspring
of an individual in class x, and then adds those up weighting by the distribution of
adults in the different classes, yielding a total reproductive value for va on the left,
and for v on the right. This clearly shows that to be uninvasible, v must attain the
maximum of that double integral, over feasible possibilities. The optimisation of
reproductive value as a condition for evolutionary equilibrium, used by Fisher in
his sex ratio argument, is thus exhibited formally.

For both results, weighting by per-capita reproductive value reduces the pos-
sible complexity of classes considerably. Offspring classes each have a weight,
and the quantity to be maximised is the sum of those weights over the offspring
produced. Thus there is a simple tradeoff between all pairs of offspring classes,
and furthermore that tradeoff is the same for all parental classes. The formalism
therefore shows how the assumption of low penetrance, and the assumption of one
common type faced with possible rare mutants, together simplify the operation of
natural selection in the presence of classes and permit a simple optimisation view.

Fisher nowhere gives a formal argument for employing reproductive value as
a maximand when there are classes present in the population. The Price equation,
however, provides a framework in which reproductive value plays a central role,
and which unites and fully justifies Fisher’s various uses of the concept in a very
general setting.

8. Examples

The examples in this section show the theory at work. The first example is Fisher’s
sex ratio argument. We follow Taylor (1990) in providing a treatment in which the
derivation and application of reproductive value are fully included in the formal
arguments. The power of the theory is shown by various extensions. The second
model is of parental care, in which resources are distributed to individuals on the
basis of size. A technical point here is a further result of Rosenblatt (1971), extend-
ing his condition to non-compact X. The third example is geographical.

In the examples, we shall assume in the notation of Section 4 that the population
measure over classes is µX, and that the aggregate production of offspring over X

is V .
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Optimisation programs are introduced explicitly here. It is convenient to state
here without proof two very simple results about linear programming in infinite
dimensions. The literature (e.g. Luenberger, 1997; Anderson & Nash, 1987) seems
to provide no simple and suitable general results, as it is concerned with more
complicated problems.

For the first result, we assume Y is compact Hausdorff which with its Borel sets
forms a measurable set, K > 0, and f, g are measurable functions from Y to R

satisfying f ≥ 0, f �= 0 and g(x) > 0 for all x. Consider the optimisation program
for non-negative finite real measures over Y ,

µ max
∫

f (x)µ(dx),

∫
g(x)µ(dx) ≤ K (79)

Let λ = sup{f (x)
g(x)

} ∈ (0, ∞]. Then we claim that

µ

({
x :

f (x)

g(x)
= λ

})
=µ(Y )⇔Lµ solves program (79) for some scalar L > 0

(80)

Note that this result requires measurable functions f and g defined everywhere,
and not merely belonging to some L1; and I am grateful to Dr Matthew Daws for
the observation that the set of maximising values is measurable as it is the inverse
image of a measurable set under a measurable function.

For the second result, we assume Y is compact Hausdorff which with its Borel
sets forms a measurable set, µ is a positive real finite measure on Y , f ∈ L1(µ, R),
f ≥ 0, f �= 0, and K > 0. Consider the optimisation program for instruments
k ∈ L∞(µ, R)

k max
∫

f (x)k(x)µ(dx),

k(x) ≥ 0

k(x) ≤ 1∫
k(x)µ(dx) ≤ K (81)

Then let Q(c) = {x : f (x) > c} and R(c) = {x : f (x) = c} . Then µ(Q(c))

and µ(Q(c) ∪ R(c)) are non-increasing functions of c. Suppose µ(Q(0)) ≥ K .
Let c∗ = inf{c : µ(Q(c)) < K}. Then we claim that a necessary and sufficient
condition for k to be a solution to the program (8.1) is

∫
k(x)µ(dx) = K and µ-a.e.




k(x) = 1 x ∈ Q(c∗)
0 ≤ k(x) ≤ 1 x ∈ R(c∗)
k(x) = 0 x /∈ Q(c∗) ∪ R(c∗)

(82)

Armed with these results, we now tackle three examples.
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8.1. A sex ratio model

The only model in which Fisher explicitly used reproductive value as a maximand
was his sex ratio argument. Edwards (1998) claims that the argument was not
original with Fisher. The reproductive value aspects to be brought out in the present
treatment show a central part of the rigorous argument which I do not believe was
made before Fisher in 1930. In particular, the need to show that the reproductive
value of all males equalled the reproductive value of all females, and indeed the
conceptual framework in which such a statement can even be formulated, were not
to my knowledge appreciated by earlier authors. Until Mendel’s results became
widely known, biologists did not know the crucial fact for this argument that the
two parents contribute equally to each offspring, and indeed this is not true for
sex chromosomes in diploids, or at all for haplodiploids. It is at least possible that
Darwin (1871) withdrew his sex ratio argument in making the second edition of
the Descent of Man because he saw this lacuna in the argument of the first edition.

It is fitting to begin by making Fisher’s argument of equal total reproductive
values. The situation is one in which the sexes are distinct and parents choose the
sex of offspring. Class therefore determines sex, and so we may write the sets of
male and female classes as M and F , with M ∪ F = X and M ∩ F = ∅.

Making the same assumption as Fisher that each offspring receives equal con-
tributions from a father and a mother, it follows that the total reproductive output of
males equals the total output of females, where the equality holds for the whole dis-
tribution across classes. We require to show that this equality of total reproductive
output implies equality under the invariant measure τ , or formally

∫
M

v(x)µX(dx) =
∫

F

v(x)µX(dx) ⇒ τ(M) = τ(F ) (83)

We will prove that this must be true on the supposition that τ is an invariant measure,
without proving that one exists. By definition an invariant measure satisfies

Iτ f = Iτ Tf ∀f ∈ L1(V , R) (84)

By definition, Tf = DV E [f v]. Let us choose f to be in turn fM and fF , the
indicator functions of M and F . Then we have

τ(M) = Iτ fM = Iτ DV E [fMv] = Iτ DV

∫
M

v(x)µX(dx) (85)

τ(F ) = Iτ fF = Iτ DV E [fF v] = Iτ DV

∫
F

v(x)µX(dx) (86)

But the final term in each line is equal by the hypothesis of equation (83), and so
we have as required that τ(M) = τ(F ). Thus Fisher’s equality result is true in an
extremely general setting.

The equality result just obtained will be used below, but first we show how
the argument can be generalised beyond simple diploidy, and study the ‘arbitrary
ploidy’ model of Grafen (1986), which includes diploidy, haplodiploidy and hap-
loidy as special cases. Assume that all males share the same ploidy and all females
share the same ploidy, but these may be different. Females contribute γFF -ploid
gametes to daughters and γFM -ploid gametes to sons. Males contribute γMF -ploid



A. Grafen

gametes to daughters and γMM -ploid gametes to sons. We aim to find the class
reproductive values of females and males, still retaining the assumption of discrete
non-overlapping generations.

Define k ∈ L1(V , R) by k = DV

∫
F

v(x)µX(dx). Then k(y) equals the frac-
tion of successful gametes in type y offspring that come from females. The ploidy
assumptions show we must have

k(y) =
{

γFF

γFF +γMF
y ∈ F

γFM

γFM+γMM
y ∈ M

(87)

We apply the definition of invariance for τ to the indicator function fF , to obtain

τ(F ) = Iτ DV

∫
F

v(y)µX(dy) = Iτ k (88)

= γFF

γFF + γMF

τ(F ) + γFM

γFM + γMM

τ(M) (89)

showing that

τ(F )

τ(M)
=

γFM

γFM+γMM

γMF

γFF +γMF

(90)

which has a nice interpretation in words as

reproductive value of all females

reproductive value of all males
= fraction of male genome from mother

fraction of female genome from father
(91)

This argument includes haplodiploidy with γFF = γFM = γMF = 1 and
γMM = 0. Note that, as with the simple diploidy result, the results hold even if
there are subclasses within F and M with their own further subdivisions of repro-
ductive value. This result confirms that of Grafen (1986), obtained with informal
methods.

8.1.1. Fisher’s original argument
In Fisher’s original argument, X = M ∪ F and M and F have one element each.
A parent’s production of male and female offspring, g(M) and g(F ), was limited
by the investment required according to a linear constraint of the form cMg(M) +
cF g(F ) ≤ K , where the per-capita costs are cM and cF . The total reproductive
values of males and females are equal to each other, as we have just seen, and so
equal to 1

2 . We make explicit Fisher’s implicit assumption that we are considering
a rare mutant in a very large population whose incumbent strategy is not changing
from one generation to the next. The per-capita reproductive values are therefore

1

2µX(M)
and

1

2µX(F)
(92)
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The optimisation program for an individual choosing offspring numbers is therefore

g(M), g(F ) max
g(M)

2µ(M)
+ g(F )

2µ(F)
,

g(M) ≥ 0

g(F ) ≥ 0

cMg(M) + cF g(F ) ≤ K (93)

We introduce Lagrangean multipliers λ, γM and γF , and the Lagrangean itself as

L = g(M)

2µ(M)
+ g(F )

2µ(F)
+ γMg(M) + γF g(F ) − λ(cMg(M) + cF g(F ) − K)

(94)

The Lagrangean is unconstrainedly maximised by the instruments, and the resource
constraint will always be met with equality. Thus we write the conditions for a con-
strained optimum as

1

2µ(M)
− λcM + γM = 0 C.S.

{
γM ≥ 0

g(M) ≥ 0
(95)

1

2µ(F)
− λcF + γF = 0 C.S.

{
γF ≥ 0

g(F ) ≥ 0

where C.S. denotes complementary slackness (i.e. at least one inequality holds with
equality).

As is typical in ESS and optimality arguments, we are going to use properties
of the maximisation to draw conclusions not about the maximising response, but
about the population values µX(M) and µX(F). If all individuals have the same
costs, then their solution to this optimisation program will be the same. If γM > 0,
then by complementary slackness no males are made by optimising agents, which
precludes an equilibrium. Thus at an equilibrium we must have γM = 0 and by a
parallel argument γF = 0. Then the equality conditions can be used to eliminate λ

and obtain

µ(M)

µ(F)
= cF

cM

or
cMµ(M)

cF µ(F )
= 1 (96)

The first version states that the sex ratio in numbers is the ratio of costs, and the
second that the sex ratio in investment is equal.

This is one of the most famous arguments in evolutionary biology, and there
have been many formal and informal versions with the same conclusion. The argu-
ments are reviewed by Edwards (1998) and Seger & Stubblefield (2002), and see
also Edwards (2000) for a fascinating historical discovery. Most authors have made
only informal links between reproductive value methods and rigorous population
genetics in sex ratio arguments, and Seger & Stubblefield (2002) present them as
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distinct and complementary. However, the two approaches were explicitly and for-
mally bridged by Taylor (1996, uncited by Seger and Stubblefield), who therefore
provided the first rigorous version of the reproductive value argument. The present
paper extends this by permitting a further class structure within each of the sexes,
which we proceed to exploit.

One more sex ratio model needs to be mentioned here. Leimar (1996) presented
a formal version of the verbal model of Trivers & Willard (1973), and solved in
that case many of the technical problems being encountered here. The Trivers-Wil-
lard model is perhaps the most prominent evolutionary idea which requires such a
careful handling of reproductive value, and Leimar’s work shows the importance
of taking the formal approach.

8.1.2. An extension
Now suppose class is the Cartesian product of {M, F } and [a, b], with 0 < a < b,
and that the population of females on [a, b] is represented by the finite measure φf

and of males by the finite measure φm. We first discuss the monomorphic popula-
tion against which mutants will be tested. Suppose females choose the sex of their
offspring and all make the same relative distribution of classes within each sex,
which must therefore be proportional to φf and φm, but may vary in their magni-
tudes. We will come back to the question of whether it might be advantageous for
females of different classes to make different relative distributions. We also assume
that females are constrained in offspring production measures gf and gm by their
own parental class x such that∫

ygf (dy) +
∫

ygm(dy) ≤ Kx (97)

so that it costs y to make an individual of class y, and class is advantageous to a
female in allowing her to make more offspring. Suppose that male classes mate
independently with female classes, and that the mating success of males in class y

is proportional to y2. Then as individuals of each sex make offspring in sex-spe-
cific proportions across the classes, but differ only in the absolute numbers, we can
straight away define the invariant measure τ = τf + τm in its two components for
females and males, respectively, by

τf (A) = 1

2

∫
A

yφf (dy)∫
yφf (dy)

τm(A) = 1

2

∫
A

y2φm(dy)∫
y2φm(dy)

(98)

and the per-capita reproductive values by

hf (y) = 1

2

y∫
yφf (dy)

hm(y) = 1

2

y2∫
y2φm(dy)

(99)

The evolutionary maximand is therefore incarnated, neglecting for convenience
the fixed factor of 1

2 , as
∫

ygf (dy)∫
yφf (dy)

+
∫

y2gm(dy)∫
y2φm(dy)

(100)

with the constraint for an individual female in class x represented by equation (97).
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We now employ the result (80), in whose terms for the males, we have f (x) =
y2/

∫
y2φm(dy) and g(x) = y. The ratio f (x)/g(x) is therefore y/

∫
y2φm(dy).

As y is positive, only the highest value of y can attain a maximum, and so if males
are made at all in the optimal solution, then we must have gm place all its measure on
y = b, so that the value of λ is b/(b2φ({b}) which equals 1/(bφ({b}). The female
ratio is 1/(

∫
y2φf (dy)) and thus independent of y, so either all female classes or

no female classes may be produced at the optimum. We are interested in values of
φf and φm that might be optimal, so we require that both females and males are
made. Thus the ratio for females must equal the ratio for the only permitted male
class, showing that ∫

yφf (dy) = bφm({b}) (101)

These terms are respectively the total investment in female and male offspring, and
so we have established from first principles Fisher’s equal investment result in this
context. It is a necessary and sufficient condition for optimality that only b-males
be produced and that the investment in both sexes be equal.

This implies that the ratio of different classes as shown in the relative values
of φf is irrelevant to female reproductive value, so φf may contain atoms and
gaps. The optimisation result shows there is no selection to deviate from the given
allocation by females to different classes. This is not surprising, as the only advan-
tage to a class for females is its ability to invest, and that ability is proportional
to the investment in it. Thus there are equal per-investment returns and the size of
the unit is immaterial. This answers in the negative the question posed earlier of
whether it might be advantageous for females in different classes to choose a differ-
ent distribution of offspring. (This does leave open the possibility that if females
were polymorphic for φf , there would be a different outcome of selection, but we
neglect that here.)

This treatment of a sex ratio problem has illustrated how Fisher’s argument can
be extended using the formalism developed in the paper. We have both indifference
between investment classes for the females, and an atom showing all males are
produced into the same class. These are useful kinds of outcomes to be able to
handle.

The tools used here might well with mild extensions allow the development of
a complete justification of the reproductive value approach to sex ratio problems
frequently used in biology, and as formalised for example by Boomsma & Grafen
(1991).

8.2. Rank order for resources, and a non-compact X

We now turn to a parental investment model, in which an amount x is invested to
place an offspring in class x ∈ [a, ∞) with a > 0. Resources among the offspring
are awarded on a competitive basis, such that only the rank of the offspring by class
matters. Specifically, per-capita resources for class x, r(x), are determined so that

∫ ∞

x

r(x′)m(dx′) =
√∫ ∞

x

m(dx′) (102)
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where the total resources are therefore 1. We differentiate with respect to x to obtain

r(x) = 1/(2
√

m({[x, ∞)}) (103)

The minimum per-capita resource is therefore 1
2 for the lowest class, but it rises to

∞ for the highest class.
Consider an individual in class x who has resources r(x) and produces a mea-

sure g across offspring classes, and so is subject to the constraint
∫

yg(dy) ≤ r(x).
As the maximand and constraint are proportional, it is clear that the per-capita
reproductive value must be proportional to r(x) so the invariant measure τ will
satisfy τ(dx)/m(dx) = κr(x) for some κ > 0. Thus we can write the maximand
as
∫

r(y)g(dy), and the program is

g max
∫

r(y)g(dy),

∫
yg(dy) ≤ K (104)

It follows from result (80) that for classes y produced in an optimal solution,
we must have λ = r(y)/y. Standard arguments (e.g. Bishop & Cannings, 1978)
show gaps cannot be optimal if they have an upper bound (the same resources are
available at a lower cost), and the infinite per-capita resource shows that the support
of an optimal solution cannot have an upper bound. Thus we find the population
measure that ensures λ = r(y)/y for the whole interval [a, ∞), which is

m(dy) = 2a2

y3 dy (105)

The space of classes X is not compact, but nevertheless, the existence of τ is
not in doubt in this example. However, a further result of Rosenblatt (1971, page
104), beyond that discussed in Section 4.3, is worth mentioning in this context for
a measure space based on a metric space X, its Borel sets X and a measure µ. In
place of compact X, and T taking continuous functions to continuous functions,
we may instead have locally compact X, and T taking bounded continuous func-
tions to bounded continuous functions. An additional requirement is that there is a
compact subset of X through which the trajectory of each point x ∈ X passes with
probability one. Then the theorem tells us that there exists an invariant measure
which is sigma-finite. This means there is an at most countable subset of X whose
union covers X, and over each element of which the measure is finite.

The condition of trajectories passing through a compact subset refers to a tra-
jectory of ancestors in the biological case. It states that there must be a compact
set such that for every individual lying outside that set, the probability that their
ancestral path at no point intersects the compact set is zero. In this example, each
individual has an equal finite chance that its immediate ancestor lies in [a, a + 1],
so the probability that at least one ancestor lies in [a, a + 1] is indeed one.



A theory of Fisher’s reproductive value

8.3. A geographical example

Suppose X represents geographical space, which may be a compact subset in one,
two or three-dimensional space, that µ represents the Borel measure, and that there
is another measure p over X representing the rate at which a region can produce
offspring. The total productivity of a region A is fixed by p(A), and shared among
the µX(A) individuals present there. The offspring produced may be distributed
in space, and we suppose that the common strategy is represented by a function
s(x, y) which equals 1 if parents at x produce offspring at y, and 0 otherwise. We
define sets of the parents that produce given offspring and the offspring produced
by given parents as follows:

P(y) = {z : s(z, y) = 1} O(x) = {z : s(x, z) = 1} (106)

We make two further assumptions about reproduction. We assume that parents at
x produce offspring evenly over O(x), and that offspring are spread over a region
whose Borel measure (area in two dimensions) is a constant β−1 for all parents.
Thus

v(x)(dy) =
{

β
p(dx)

µX(dx)
µ(dy) y ∈ O(x)

0 y /∈ O(x)
(107)

β−1 = µ(O(x)) =
∫

s(x, y)µ(dy) > 0 (108)

This allows us to write (Tf )(y) as

(Tf )(y) = (DV E [f v]) (y) = β

∫
P(y)

f (x)p(dx)∫
P(y)

p(dx)
(109)

If the population reaches an equilibrium of class dynamics, then as each parent
produces a density there can be no atoms of population. We proceed on the basis
that there exists a function h representing the per-capita reproductive value of off-
spring. We aim to find the optimisation program based on the choices of a particular
individual. Let e(y) be the indicator function of the set of locations within which
that individual is free to place offspring, and let the strategy function be f . We can
represent the program as

f max
∫

e(y)f (y)h(y)dy,

∫
f (y)dy ≤ K

f (x) ≤ 1

f (x) ≥ 0 (110)

This program can be solved using result (82). Thus an area Q with the highest
values of e(y)h(y) is fully occupied, and an area R with the unique marginal value
c∗ of e(y)h(y) is occupied to the extent required to ‘use up’ the area an individual
can place offspring into.



A. Grafen

If e(y) is uniformly 1, so there are no restrictions on where individuals can place
offspring, then this shows that the area of ‘super-normal profits’ is small enough
to be less than the area of one individual’s offspring. This provides what is very
close to an ‘ideal free distribution’ (Fretwell, 1972), in which the distribution of
organisms matches the distribution of resources, and the per-capita reproductive
values are equal. There is only a small exceptional area caused by the restriction
that individuals cannot fully concentrate their offspring.

If e(y) differs between individuals, perhaps so that individuals can place off-
spring only near to their own location, then the whole argument would become more
complicated as the value of c∗ could vary from place to place. This example has
shown how the reproductive value methods developed in this paper can in outline
be applied to geographical questions.

9. Comparison with Taylor

Taylor (1990) provided a theory of reproductive value for finite X. Here a compar-
ison is made between Taylor’s theory and that of the current paper. There is one
important difference in emphasis. Taylor does not particularly link his results to
the work of Fisher (1930), whereas the whole of Section 7 shows how the results
provide a formal justification of an underlying structure in Fisher’s evolutionary
analyses.

The formal differences will be discussed using the notation of the present paper.
The first difference is that Taylor’s X is finite while here it is compact Hausdorff,
which implies it can have continuous and discrete components and can be multi-
dimensional. One advantage of this generality is that some examples, such as paren-
tal care or location, might be more naturally modelled with continuous components.
Even some infinite-dimensional sets could be handled, perhaps representing shape.
Another advantage is that reproductive value is shown in a wider context to play an
essential role in natural selection.

The second difference is that Taylor assumes a very simple diploid genetics,
with a single locus with two alleles, one of which is a rare mutant; and restricts
attention to a one-dimensional space of phenotypes. Here initially a general genet-
ics is permitted with arbitrary ploidy, in which the change in an arbitrary p-score
is discussed, and the set of phenotypes is arbitrary. This allows multiple alleles at
multiple loci, and arbitrary epistasis and linkage. The main Price equation derived
by Taylor has the same form as here, in being an average over classes of a covariance
within each class, but his equation (16) holds only to second order in the mutant
frequency, while here the main Price equation (equations 22 and 23) is exact in
expectation with arbitrary genetics. For some parts, notably Section 6 in discussing
equilibrium, the present paper does move much closer to Taylor, assuming genetic
uniformity apart from a rare mutant, and restricting attention to just two phenotypes.

Taylor does not discuss the ambivalence of equilibrium concepts discussed in
Section 6, as he considers only the reproductive-value-weighted gene-frequency
as indicating success of an allele. In the 1990 paper, he permits the rare mutant
to have an arbitrary phenotype, and states his results to first order in the mutant
frequency. This position neglects the possibility that the new phenotype might alter
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its own class distribution so that the reproductive-value-weighted gene-frequency
is no longer a good measure of the success of an allele. In our terms, such a strategy
might spread under the clonal growth condition but not under the tracer-allele con-
dition. In 1996, Taylor makes the additional assumption that the mutant phenotype
is very close to the common phenotype, and so resolves this difficulty.

Taylor (1996) does however have a different distinction to draw, between mutant
stability (whether a fixed population is stable against a small population of mutants)
and population stability (whether a population slightly displaced as a whole from
an equilibrium induces selection pressures that tend to restore the original state).
From a formal point of view, even the definition of population stability is phrased
in terms of a very simple strategy set, namely the real line, and for that reason does
not fit in to the level of generality of the present paper. On the other hand, the Price
equation (in equations 22 and 23) applies to situations of genetic variability, and so
has information about out-of-equilibrium behaviour.

Taylor’s finite X means he has no problems with existence of reproductive val-
ues, which here has Section 4.4 devoted to it, but neither does he discuss uniqueness.
Here, the issue of uniqueness is given a biological interpretation in Section 5.

Taylor analyses the forwards process of changing gene frequencies as well as
the backwards process of reproductive value, and obtains very appealing results.
See Taylor (1990, page 98–99) and Taylor (1996, page 664). Here, I bring together
the analogous results in the present paper. The left and right eigenvectors of Taylor’s
forward process are represented here by the eigenvectors of T̃ and Ũ , respectively,
and satisfy

λh = T̃ h λµX = ŨµX (111)

λh(x) =
∫

h(y)v(x)(dy) λµX =
∫

v(x)µX(dx) (112)

Existence is discussed in Section 4, but where they do exist, h gives the per-capita
reproductive value of each class, and µX is the equilibrium population distribution
over classes.

The results for the backwards process, including the left and right eigenvectors,
are more complicated to express in terms of v. We assume an equilibrium of class
dynamics so that µX is an eigenvector of Ũ and ŨµX = V = λµX. We will use
fA to represent the indicator function of a set A. The left eigenvector is a measure
representing the class reproductive values, and the right eigenvector is the function
always taking the value 1, which will be written fX. These results derive from the
definitions of the Markov process in Section 3.1:

τ(A) =
∫

P(y, A)τ(dy) fX(x) =
∫

fX(y)P (x, dy) (113)

τ(A) =
∫

(DV E [fAv])(x)τ (dx) fX = DV E [fXv] (114)

A major extra feature in Taylor’s analysis is that he allows social interactions,
and states inclusive fitness results. Interestingly, one main point seems to be to
discuss an individual optimisation framework: the simpler example of Fisher’s
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Fundamental Theorem was not taken seriously at the time. Taylor’s 1990 appen-
dix is the only serious elaboration of the somewhat cryptic argument of Hamilton
(1970, in which inclusive fitness is derived from the Price equation for the first
time), but is only fully presented for an example. The complete inclusive fitness
result in the present framework is beyond the scope of this paper, but the formal
Darwinism project is extended to inclusive fitness by Grafen (2006).

Thus the present paper is in some ways an advance on Taylor and in others
lags behind, but the general thrust of justifying and defining reproductive value is
fully shared. The most unfortunate relationship lies in notation. As he has a finite
number of classes, Taylor worked with matrices and it was natural to use i to index
the classes; then to index individuals, he used x and y. It is, however, more conven-
tional in work on the Price equation to use i to index the individuals; and the more
abstract nature here made it natural to use X for the space of classes and so x and
y for elements of that set, namely for classes themselves. Thus for understandable
reasons, Taylor writes the number of class i offspring of individual x as wix , while
here I would write the number of class x offspring of individual i (with a differential
element because w(i) is a measure) as w(i)(dx). This conflict of notation should
not disguise the commonality of intent.

10. Conclusions

Fisher’s uses of reproductive value are illuminated and explained by a combination
of the Price equation, and the theories of Markov processes and positive opera-
tors. A wide range of kinds of biological classes are shown to support reproductive
values. The formal mathematics shows how generally the concept of reproductive
value applies in biology, and also provides a framework within which particular
problems can be worked out.

The main conclusion from the paper is that adaptive arguments along the lines
of Fisher’s sex ratio argument, in which the organism is viewed as an optimising
agent, can be made fully rigorous in population genetic terms in the presence of
classes. It also extends the Price equation to allow classes.

With the advance of molecular genetics and bioinformatics, more disciplines are
encountering questions about the operation of natural selection. Population genet-
icists have a mathematically rigorous tradition and are already prepared, but there
are other important areas of Darwinian biology, notably those relying (sometimes
implicitly) on optimisation principles. To make the accumulated understanding of
Darwinian biologists available to other disciplines, it must be translated into the
universal scientific language of mathematics.
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