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A population genetic model of sexual selection is constructed in which, at equi-
librium, males signal their quality by developing costly ornaments, and females pay
costs to use the ornaments in mate choice. It is shown that the form of the equilibrium
is uninfluenced by the Fisher process, that is, by self-reinforcement of female
preferences. This is a working model of the handicap principle applied to sexual
selection, and places Zahavi’s handicap principle on the same logical footing as the
Fisher process, in that each can support sexual selection without the presence of
the other. A way of measuring the relative importance of the two processes is
suggested that can be applied to both theories and facts. A style of modelling that
allows simple genetics and complicated biology to be combined is recommended.

1. Introduction

Many current mathematical models of sexual selection have at their centre Fisher’s
(1915) idea of the self-reinforcement of female preferences (Lande, 1981; Kirk-
patrick, 1982; and many later works). From a genetical point of view Fisher’s process
is manifested in these models as linkage disequilibrium between loci controlling
female preference and loci controlling the preferred male trait. The existence of
these formal genetic models has led to the popularity of the view that the Fisher
process is central to the operation of sexual selection.

In this paper I present genetic models of sexual selection in which Fisher’s process
and linkage disequilibrium play no role. These models produce at their genetic
equilibria all the appearances of sexual selection: males possess costly ornaments,
females choose between males on the basis of those ornaments, and pay costs in
order to do so. This shows that the phenomena for which Darwin (1871) coined
the term “‘sexual selection” can occur without the Fisher process.

The models are genetic models of signalling. Males vary in quality, and signal
that variation by choice of ornament. Females interpret the signals, and treat males
according to their quality. The models provide a formal exposition of Zahavi’s
(1975, 1977, 1987) handicap principle, and demonstrate its logical coherence in the
context of sexual selection. They show that the handicap principle alone, unaided
and uninfluenced by the self-reinforcement of preferences discovered by Fisher
(1915), can account for extravagance of sexual ornaments and all the appearances
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of sexual selection. The companion paper (this phrase will refer to Grafen, 1990)
developed game theory models of the handicap principle in a more general context.

The operation of the handicap principle in sexual selection has been a matter of
some disagreement, with Kirkpatrick (1986) declaring in his intemperate title that
*“The handicap mechanism of sexual selection does not work”, and Pomiankowski
(1987) replying more moderately that “The handicap principle does work—some-
times”. Even where it has been claimed to work (Pomiankowski, 1987; see also a
review and synthesis by Pomiankowski, 1988), the handicap mechanism has been
seen as a modifier of the Fisher process, altering zones of attraction of equilibria
and rates of change. It has not been recognized as a stand-alone force in sexual
selection. The models to be presented in this paper will have no Fisher process,
and show sexual selection flourishing by the handicap principle alone. The reason
for the difference of conclusion and emphasis from previous work is the use of
modelling techniques more appropriate to the strategic nature of the handicap
principle. The differences are not specifically related to sexual selection, and previous
interpretations of the handicap principle are accordingly dealt with in section 9 of
the companion paper.

Fisher’s self-reinforcement of preferences and Zahavi’s handicap principle there-
fore have the same logical standing, as processes which can in theory underlie sexual
selection, and can do so without the presence of the other. One can ask, of a
mathematical model or of an example of sexual selection in nature, how much is
due to Fisher, and how much to Zahavi? I will propose the “Fisher index”" as rough
way of answering this question.

Section 2 presents the population genetic model of sexual selection, along with
results whose proofs are reserved for the appendices. Section 3 gives a conspectus
of the appendices for those with modest mathematical ambition. The general model
has three arbitrary functions, and section 4 makes particular choices for those
functions and presents some graphical results that illustrate the workings of the
model. Section 5 introduces the “Fisher index’’, and explains my own view on the
relative importance of the two processes. Section 6 draws conclusions.

2. A Population Genetic Model of Sexual Selection

This section introduces an adapted version of the game theory model of the
companion paper. The idea is that males should vary continuously in quality, which
must matter to females. Females should have some continuous way of expressing
preference between males, that has a cost related continuously to strength of
preference, and that impinges continuously on the fitness of males. The emphasis
on continuity, which is shared with the game theory models, will ensure that artificial
boundaries do not obscure the close interactions of the advertizing and preference
systems. The first difference from the game theory model is that the model should
be explicit about how females use information about male quality, rather than
relying on the conceptual construct of inferred quality. The second difference is
that the model should be genetic. The game theory model was important as a stencil
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not only for construction of this more complex model, but also for finding some
simple proofs in this more complex setting.

Next I describe the model that fulfils all these requirements, before discussing
the results of the model. In order to have all the required continuity, and a simple
genetics, we need to build all the complexity into the effects of alleles at a single
locus. Consider an infinite sexual haploid population with discrete generations with
one autosomal locus. There are four stages within one generation. In the first stage,
males are randomly assigned a quality independently of their genotype, with a
cumulative frequency distribution G(q). The important facts about quality are that
females have a higher fecundity if they mate with a male of higher g, in a way to
be specified in a moment; and that females cannot directly observe g. The fact
that g is environmentally determined makes the model analytically tractable, but
does not affect the essential workings of the advertizing-preference system. Julee
Greenough and I are currently working on a model by computer simulation in which
quality is determined genetically.

The second stage is that each male receives an advertizing level. The contents of
the one locus specify a function relating quality to advertizing. So a male’s advertizing
level is determined by the function specified by his allele, applied to the quality he
received in the first stage. Advertizing rules will be denoted A(q), A*(q), A,(q) and
so on. One class of possible rules are unconditional, such as do not advertize at all
no matter what quality you are. Other rules can make advertizing an increasing
function of quality, while yet others can make it a decreasing function of quality.
All (integrable) functions are allowed.

The third stage is one of pre-breeding mortality for males. A male survives this
phase with a chance, denoted a (g, a), that depends on his quality and his advertizing
level. Higher quality increases survival, while more advertizing decreases survival.
Further the survival disadvantage of increasing advertizing is greater for lower
quality males. Formally,

a(q, a)) _a(q,,a,)
a(ql,al)<a(q2a ax). M

if a, < a, and q, < g,, then

The benefits of advertizing will be the same for all males in this model. It is because
the costs are decreasing with quality that it will turn out that the balance point
between gains and losses for high quality males involves more advertizing than the
balance point for low quality males. This condition on a is crucial to the operation
of the model.

The fourth stage is of breeding itself. There is a breeding season of finite length,
say from time O to time T. Females start unmated, and encounter surviving males
at random with respect to genotype and quality, in a homogeneous Poisson process.
When a female meets a male, she applies a rule based on the time in the breeding
season and the male’s advertizing level to decide whether to mate with him or not.
Female rules will be denoted D(a, t), D*(a, t), D,(a, t) and so on. Specifically, a
strategy assigns a probability D(a, t) of acceptance of a male advertizing at level a
encountered at time . If she does mate, she leaves the pool of unmated females,
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and does not mate again. If she does not mate, she continues to encounter males
in the same way as before. The rule she applies is specified by her allele.

Note that the same locus therefore specifies the male advertizing rule, when in a
male body, and the female preference rule, when in a female body. Other kinds of
genetic model will be discussed later.

The fecundity of a mated female is the product of two factors. The first, denoted
m(t), depends on the time in the season at which she mates, and the second depends
on the quality of her mate, denoted z(q) for a male of quality g. The idea is that
the seasonal function is zero at the beginning and end of the season, when conditions
are not very good, and better in between, when conditions are better. Formally, we
assume that the seasonal function is zero at the beginning of the season, is continuous,
and declines over some interval at the end. A higher quality male gives a greater
fecundity. It may seem unrealistic to assume that males can mate many times, and
yet they can have a non-genetic effect on fitness. While the combination is largely
assumed for reasons of convenience, it can be achieved if the quality of a male
reflects the fertility of his sperm, and females are constrained to mate once by, for
example, a mating plug.

If the rate of meeting males is high, it will be advantageous for females to wait
until just before the most advantageous time for mating until accepting any males,
so that they will meet and mate with a male while the seasonal function is high.
With a low rate of meeting males, females may be forced to accept males from
earlier, in order to avoid the chance of being unmated at the end of season, or of
having to breed at a disadvantageous time late in the season. Choosing not to mate
with a class of males is costly to the female, because it reduces her ability to mate
at the best time. The choosier she is, the wider a range of mating times she must
accept, or the greater the chance of remaining unmated at the end of the season
she must accept.

The four stages, together with the specification of the rules corresponding to the
alleles, define a complete recursion over genotype frequencies. We can calculate
the frequency of each type of mating, defined by the genotypes of male and
female, the quality of the male, and the time of the mating. This defines the fecundity
of the female, and the genotypes of the offspring, and it defines the numbers of
each genotype contributed by that type of mating to the progeny generation.
Summing up over types of mating yields the genotypic array of the progeny gener-
ation. Details of this one locus genetic model may be found in Appendix 1.

The exact details of the four stage model just described are not important. What
matters for the full operation of the handicap principle is the ‘‘continuity in
everything” explained earlier. The four stage model is the simplest explicit model
of the operation of advertizing and female preference that I could think of, which
satisfied all the continuity requirements.

With the exact recursion derived from our genetic model, there are many routes
that could be taken. The most useful is to seek an uninvasible allele S*, from the
set of all possible advertizing rules and all possible preference rules. S* would have
to specify a pair of strategies such that, once they were common, no allele specifying
any alternative pair of strategies could invade. Some alternative pairs will specify
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the same strategy for one sex while changing the other. It turns out in Appendix 1
that functions ¢, and ¢ can be defined that may conveniently be called fitnesses.
Suppose almost all members of a population are playing A*, D*. An alternative
allele specifying the same female strategy but a variant male strategy A has the
fitness ¢nr(A; A*, D*). An alternative allele specifying the same male strategy but
a variant female strategy D has the fitness ¢(D; A*, D*). These are usefully called
fitnesses because the condition for S* to be uninvasible, derived in Appendix 1, is
that

bu (A% A*, D¥) = by, (A; A*, D*) for all A# A*
ér(D*; A*, D*)= ¢(D; A*, D*) for all D # D*.

In words, no alternative male strategy A has a higher fitness than A* in a population
playing A*, D*; and no alternative female strategy D has a higher fitness than D*
in a population playing A*, D*. This is an ESS-like expression of the condition for
uninvasibility.

The question arises whether any such pairs (A*, D*) exist. Under the assumptions
we have made, and one or two more technical assumptions made explicit in the
appendices, it is shown in Appendix 4 that there are in effect exactly two pairs. The
first is the non-signalling equilibrium, in which males choose to advertize at the
lowest possible level, and females treat all advertizing levels the same. The second
is the signalling equilibrium, in which advertizing level is a continuous and strictly
increasing function of quality, and females pay costs to express graded preferences
for different qualities of male, preferring higher to lower quality. This main result
is summed up in the Theorem of Appendix 4. The route of argument is explained
less technically in section 3.

The signalling equilibrium with one uninvasible allele exhibits all the features of
sexual selection. A male ornament (i.e. with no “real” function, no non-signalling
function) that is costly, is developed as a result of female preference. Further, the
female preference is adaptive because by exercising that preference females obtain
higher quality mates and therefore higher fecundity. Females pay a cost for their
choice, and obtain real benefits.

The equilibrium has two other notable features. First, there is no element of
Fisherian self-reinforcing preferences contributing to the form of the equilibrium.
By looking for an uninvasible allele in a model without local structure, we have
defined away the possibility that the Fisher process is operating in determining the
equilibrium. Despite these definings away we have fully operational sexual selection.
Second, it shows Zahavi’s handicap principle at work. The ornament functions as
a signal only because it is costly—the cost is not incidental. It is reasonable to say
of a high quality male that he is preferred by females because his ornament is costly.
The ornament lowers (one compartment of) his fitness, and the over-compensating
increase in the other component relies on the females’ response to his advertizing
level. Signalling is honest. Honesty can be interpreted in the model as follows.
Females observe a male’s advertizing level, but in their choice of whether to mate
with a male, it is only the male’s quality that is relevant. Because choice of advertizing
reveals quality, females can deal with males according to their quality. Now a mutant
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male that advertizes more, introduced into the equilibrium population, will be treated
by females as if he were of higher quality than he is—and this is dishonest signalling.
But it is not advantageous, as we can tell from the definition of equilibrium as
comprising uninvasible alleles. So dishonesty is disadvantageous, and at the equi-
librium, signalling is honest. This sense of honesty is made more explicit in Appendix
5, where a formal link is made with the game theory models of the companion paper.
One further property is worth mentioning. In the companion paper, one of the
features that was found to be capable of creating unlimited exaggeration of the
male ornament was the presence of males with very deleterious effects on female
fitness. It is interesting to find the same phenomenon confirmed analytically in the
full model of Appendix 4. Thus if the worst males reduce the fitness of their mates
close enough to zero, then advertizing can be exaggerated to any level. This suggests
that the need to avoid males who would provide very low fecundity may be an
important force in bringing about high costs of advertizing in equilibrium.

3. A Guide to the Proofs

The main result of section 2 is that the genetic model has exactly two equilibria:
one with no signalling, and one with signalling. The proofs of these are given in
the appendices, but they are rather technical. This section aims to give the gist of
the proofs.

Appendices 1 to 3 present three different genetic models, and the importance of
this will be discussed in section 5. For the moment, it suffices to explain that an
investigation of non-invasible alleles in all three models leads to the same maximiz-
ations, those presented in section 2.

The game theory model of Appendix 4 therefore begins with one maximization
for males, and one for females. Writing stars for the optimal strategies, A for male
and D for female strategies, and ¢,, and ¢ for the male and female maximands,
the maximizations look like this:

bay (A% A*, D¥)= dp(A; A%, D¥) for A= A*
é-(D*; A*, D*)= ¢ (D; A*, D*) for D # D*.

A* is therefore a most successful male strategy for a rare mutant when all other
males play A* and females play D*. D* is a most successful female strategy for a
rare mutant in the same circumstance.

It turns out that ¢, is just the expected number of offspring of a male playing
A in a population playing (A*, D*), and that ¢ is just the expected number of
offspring of a female playing D in a population playing (A*, D*). This means that
even though this is a model of sexual selection, the equilibrium condition is that
each individual maximizes its expected number of offspring. So an ESS model, in
which this would have been the natural assumption, would have been perfectly
satisfactory. One reason this happens is that we are looking for uninvasible alleles
in the genetic model. Any equilibrium therefore has genetic uniformity.
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The fact that number of offspring is maximized shows that the Fisher process is
not at work, because the Fisher process involves choosing a mate so as to increase
the fitness of one’s sons. The fitness of females’ sons is irrelevant to whether a rare
mutant spreads or not against the equilibria in the model of section 2.

At the end of Appendix 1, functional forms are found for the maximands ¢y
and ¢y. The maximizations then define the equilibria—and we now turn our attention
to the questions: are there any equilibria? how many are there? what are they like?
The fundamental result is stated as the Theorem in Appendix 4 and it says there
are, in effect, exactly two equilibria. One, the non-signalling equilibrium, has males
advertizing at the lowest level, and females treating all advertizing levels the same.
The second, the signalling equilibrium, has a male strategy that specifies no advertiz-
ing for the lowest quality of male, and then increasing advertizing for better males.
Every quality advertizes at a different level, so females can distinguish between
qualities of males by basing their mating decisions on advertizing levels. Females
choose whether to mate with a male in a way that is appropriate to the male’s
quality, as revealed by his advertizing. Appropriate means so as to maximize female
fecundity.

The argument proceeds in a series of lemmas. Lemma 1 finds the optimal female
response to any male strategy A, using a dynamic programme. With this characteriz-
ation of the female response, in Lemma 2 we prove that in any optimal pair (A, D),
A must be either constantly zero, or else continuous and strictly increasing. Lemma
3 picks up the first possibility and shows there is indeed an optimal pair (A, D)
with A constantly zero. This establishes the existence of the non-signalling equi-
librium of the theorem.

Our next aim is to follow up the second possibility of Lemma 2, and to show
that there is a unique function A that achieves it. This takes many steps. First, we
set out a system of equations SE(1:10) that must hold at an equilibrium in which
A is strictly increasing. To show that there exists a solution, we aim to apply a fixed
point theorem in function space, to be specific, in L', the space of integrable
functions. As technical preliminaries, we define a subset C of L', and prove in
Lemma 4 that C is non-empty, closed, bounded, convex and compact. From now
on, we consider only functions A that belong to C. Now SE(1:9) takes one function
A as “input”, and produce another function A* as “output”. SE(10) simply states
that the input and output are equal. In Lemma 5, we prove that input of SE(1:9)
uniquely defines the output, and that if the input is in C, then so is the output. This
defines a function f from C to C. Note that the argument and result of this function
are themselves functions. Lemma 6 proves that this function is continuous and
compact, which is another technical preliminary for application of the fixed point
theorem. In Lemma 7, we apply Schauder’s Fixed Point Theorem (Deimling, 1985),
using the technical results of Lemma 4 and Lemma 6, to show that the whole system
of equations SE(1:10) has at least one solution. In addition, Lemma 7 establishes
that any solution has A(gm;») =0, and has A continuous and strictly increasing. The
remaining lemmas show the relationship between this solution to SE(1:10) and
the maximizations. Lemma 8 shows that any solution to SE(1:10) is a solution to
the maximizations. Lemma 9 proves that there is at most one continuous and strictly
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increasing function A that can satisfy the maximizations along with its optimal
female response. Together, Lemmas 7 to 9 prove that there exists exactly one
equilibrium with a strictly increasing A. This fulfils our aim of ‘“making good” the
second possibility in Lemma 2.

Both possibilities of Lemma 2 have therefore been shown to produce their own
unique equilibrium. This is the main content of the Theorem of Appendix 4. The
theorem also states some facts that are evident from SE(1:10) about the signalling
equilibrium. These are that three quantities are strictly increasing in male quality,
namely the mating success of a male [i.e. K(q)], the product of the viability and
the mating success of a male [i.e. a(g, A(q))K(q)], and the net fitness of male [i.e.
a(q, A(q))K(q)z(q)]. The importance of the intermediate result is that net fitness
is expected to increase because z(q) increases; the intermediate result is net fitness
apart from the factor z(q).

Appendix 5 shows how the ESS model of the companion paper can be used as
a “model of the model”. This is a justification for using ESS models even when
they gloss over many details. The ESS model is not a substitute for the full model,
but it tells no lies about it, and many truths.

I now turn to a few remarks about the style of modelling used in the Appendices.
The style may seem unnecessarily rigorous. The first defence is that the conclusion
of the paper, that sexual selection can flourish in the absence of Fisherian self-
reinforcement of preferences, is contrary to widely held beliefs. It is therefore
important to show quite definitively that the equilibria really do exist, and in as
general a setting as possible. The second defence is that this is a complicated type
of model that is not common in biology. As a consequence, it was not clear before
constructing the full argument, what was actually going to turn out to be true. A
third defence, of the length of the exposition, is that if, as I hope, non-Fisherian
models of sexual selection become common, it will be useful to have a range of
techniques of proof available in a worked example.

Much of the complexity is introduced by the use of the fixed point theorem. It
may seem to some readers, as it seemed once to me, that equations SE(1:10) could
be reformulated as differential equations, and then existence and uniqueness proved
from that angle. This would cost a few extra assumptions, but the main objection
is that it doesn’t actually work. The equations are readily transformed into differential
equations over time, from the beginning to the end of the season. The problem is
that some boundary conditions need to be specified at the beginning, and some at
the end of the season. Thus neither existence not uniqueness can be proved by
standard results about differential equations (for example those in Sokolnikoff &
Redheffer, 1966).

I should now mention two complicating factors in the analysis. First, I must say
why there are only in effect exactly two equilibria. The set of possible strategies for
males are integrable functions, and these include some very strange functions. For
example,

A(g9)=1 q={qmin
O q> qmin,



UNHANDICAPPED SEXUAL SELECTION 481

defines an integrable function which equals zero almost everywhere (the area under
the curve is the same as if the function equalled zero everywhere). In effect means
that with each “real” solution (A*, D*) there is a class of solutions for whose
members A equals A* almost everywhere, and for all a, D(a, t) equals D*(a, t) for
almost all . Puzzled readers should ignore this complication, as I have done in this
section. Unfortunately it is not possible to ignore it in the appendices.

The second complicating factor is that I demand of an equilibrium not only that
A¥*, D* satisfy the maximizations, but also that they satisfy “local flat extrapolation”.
This condition is explained and motivated in Appendix 1 of the companion paper,
and expressed technically in Appendix 4 of this paper. Local flat extrapolation
concerns how females behave when they meet an advertizing level that is not played
by any male at equilibrium. This behaviour is not tested at equilibrium, and so is
apparently not subject to selection. Yet it can be very important for whether a
mutant that does play such an advertizing level will spread. Local flat extrapolation
requires that females extrapolate from the closest played level, at least for unplayed
levels very close to played levels.

As a final remark, the genetics in the model turns out to be trivial compared to
the biology. This comes about by deliberate intent. I focussed on uninvasible alleles,
so that at equilibrium, there basically was no genetics. I allowed a single allele to
specify a whole function, or even two whole functions, that specified conditional
behaviour. The advantage of these starting points is that a rich complexity of
behaviour, including variation in behaviour, could be present at a genetically trivial
equilibrium. This means that the ESS approach can be applied even in a fully
genetically rigorous world. The biological problem becomes specifying strategy sets,
in this case very natural ones, and how they interact to affect mating frequencies
and offspring numbers. Finding uninvasible strategies from very large (infinite
dimensional!) strategy sets is not so hard when the genetics is very simple.

Representing variation in behaviour, and complex behaviour, with single alleles
seems to me a worthwhile modelling strategy. Representing them with genetic
variability tangles together genetic complications and complications from, say, the
mating system. Tangling these complications together in our model in the same way
as they are tangled together in the world has obvious advantages. But when, as
always, we are ignorant of the genetics of interesting traits, our models are likely
to supply more understanding if we keep these complications separate. My modelling
strategy is therefore to define such a broad class of allelic effects that any biological
outcome can be supported by a genetically monomorphic equilibrium, and to look
for uninvasible monomorphic equilibria. This is the spirit of the ESS approach, and
I believe that the ESS revolution has some way to go before its consummation. The
appendices of this paper show that ESS theory can be sensibly applied to sexual
selection, by showing explicitly that genetics make no difference.

The general view is summed up in a needless admission by its chief protagonist
(Maynard Smith, 1982: 132) that game theory is insufficient to study sexual selection.
Parker (1983) ignored this advice, and constructed game theory models of advertiz-
ing, and of mate choice based on quality. Although this paper therefore contains
all the ingredients of the handicap principle, they were treated separately and not
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combined. There was no signalling of quality. Hammersetin & Parker (1987) have
also applied game theory to sexual selection. I look forward to further successes of
the strategic approach to evolution.

4. An Example

The results of the model of section 2 were obtained for arbitrary functions z, G,
m and «. The rate of encounter of males by females, u, is also arbitrary. This makes
the results very strong, but perhaps also rather remote and hard to visualize. By
making choices for the functions z, G, m, and «, and for the constant w, the
uninvasible strategies have been calculated for a particular case. The choices for
the functions were:

z2(9)=4q
G(q) =med {0, ¢ — Gmin, 1}, Where “med” means the median value of the set
m(t)=[4(1—-1/2)*=2(1=1/2)’+1/4], 0=t=1
a(q, a)=exp[q—Gmin—1—a(gmn+1+k—q)],

leaving only the parameters k, gmi,» and w undetermined. These choices mean
measuring quality by its effect on female fecundity, assuming a uniform distribution
of quality over the interval [gmin, 1+ qmin], and having the time of the season effect
on female fecundity shown in Fig. 1. The survivorship function o satisfies the
requirements of (1). The computations were based on a discretized version of the
system of equations SE (1:10) in the Appendix, all represented in the time domain.
The closeness of approximation was confirmed by checking that increasing the
number of steps did not alter the solutions very much.

There remain the three parameters u, k and g, to specify. Figure 2 shows what
the solutions look like for u =20, k=0-2, and g = gmin=0-3. Part (a) shows male
advertizing as a function of male quality, and part (b) shows for each time in the
season, the threshold level of advertizing above which a male is acceptable to females.

0-25F

m (1)

0-05+

1 | | I
0-2 0-4 0-6 0-8
!

FiG. 1. This figure shows the time of the season factor, m(t), in determining female fecundity used
in the example described in the text.
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F1G. 2(a). This figure shows advertizing (a) as a function of male quality (g) at the signalling
equilibrium in the example described in the text. (b) This shows the female strategy at the signalling
equilibrium in the example described in the text. Before ¢ = 0-25, no male is accepted. Between t =0-25
and t=0-175, a male is accepted providing he is advertizing at more than the threshold level (a) shown
in the figure. After r=0-715, all males are accepted.

There are two points which contradict tempting conjectures about the operation
of sexual selection. The first tempting conjecture is that males of higher quality,
although advertizing more and so reducing their net viability, do not advertize so
much that their net viability falls below that of lower quality males. According to
this conjecture, net viability of males should be monotonically related to quality at
equilibrium. Figure 3 shows this is not true, just as it is not true in the example of
the companion paper.

The second tempting conjecture is that females should be better off with a signalling
system, because it allows them to choose higher quality males. Sexual selection
would then likely benefit the species. This turns out not to be true in this example.
The mean fitness of females in the advertizing equilibrium is 0-183672. The fitness
of a rare non-discriminating female when males and all other females are playing
the advertizing equilibrium is 0-170284. This difference of over 7% means a female
would be prepared to sacrifice a further 7% of her fitness to be choosy rather than
be completely undiscriminating. But the mean fitness of females at the non-signalling
equilibrium is 0-211223. The overall survival of males is reduced by their advertizing
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FiG. 3. This figure shows the net viability (s) of males as a function of their quality (q). If males
varied in quality alone, the curve would decrease. If males varied in advertizing alone, the curve would
increase. The combined effect is that low and high quality males survive better than intermediate males.
The fitness of intermediate males is still higher than that of poor quality males, as their mating success
more than compensates.

to such an extent that females are less able to mate at the best time in the season,
and this reduction in their fitness more than compensates for the increase obtained
through mating with higher quality males.

The properties of sexual selection could be explored by varying the three para-
meters Kk, gmi, and u, and observing the effects on the equilibrium. I do not mention
this to tantalize readers with results not presented here. My point is that speculations
about the effects of meeting rates, variation in quality and the costs of advertizing,
can be investigated in a formal model. This supplies a formal framework for a range
of commonsense biological thinking about sexual selection.

5. The Fisher Index

In this section I discuss the relations between the Fisher process, linkage disequi-
librium and the handicap principle, and go on to introduce the “Fisher index” as
a way of measuring the effect of the Fisher process.

The Fisher process arises when there is independent genetic variability in the
female preferences and the male trait that is the object of female choice. The
operation of the preferences brings about a genetic correlation between the two
characters that is potentially destabilizing. Linkage disequilibrium will be the
manifestation of this genetic correlation if the characters are controlled by separate
loci.

The fact that the genetic model described in section 3 is single locus and haploid
does not prevent the Fisher process from operating. What does prevent it is the
combination of seeking an uninvasible allele, the assumption of no local structure,
and the equivalence of all offspring. An equilibrium with a single uninvasible allele
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has no genetic variability, and hence there can be no correlation between female
preference and male trait at the equilibrium itself. To test if the allele is uninvasible,
a mutant allele is introduced at very low frequency. Without local structure, this
allele never meets itself, and so the interaction between its effect on female preference
and its effect on male trait never occurs. The success of a mutant allele depends
just on its interaction with the common allele. The genetic correlation between
preference and trait is too weak to have any effect.

The reader may be concerned that we have virtually defined away the effect of
the Fisher process, and indeed we have. But if the Fisher process really were an
essential part of sexual selection, we should have at the same time defined away
the possibility of sexual selection. Yet sexual selection manifestly flourishes in the
model of section 2. So the defining away of the Fisher process is perfectly reasonable.

The irrelevance of the Fisher process is explored in two additional genetic systems
besides the single locus model of section 2, formally modelled in Appendix 1. One
is a two locus model, analysed in Appendix 2, with one locus controlling preference
and one locus controlling the trait. Another is presented in Appendix 3, and is a
modification of the two locus model, in which the effects of linkage disequilibrium
are nullified by adding an extra (unrealistic) step into the model. In each generation
just after zygote formation, the zygotes are replaced by a new set with exactly the
same gene frequencies but linkage disequilibrium set to zero. Both genetic systems
have exactly the same uninvasible equilibria as the single locus model of section 2.
This shows that linkage disequilibrium plays no role in the determination of the
equilibrium even when two loci are involved. The widespread belief that linkage
disequilibrium is an essential part of sexual selection explains the apparent overkill
of having three genetic models to hammer home the point.

To explain the perhaps surprising irrelevance of the Fisher process in the model
of section 2, it is convenient to introduce a rough measure called the Fisher index.
This is obtained by partitioning the variance in male advertizing level into two
components. The first component is the dependence of advertizing level on male
quality, the trait in which females have an interest. The second component is the
dependence of advertizing level on the rules males use to relate quality to advertizing.
The Fisher index is the fraction of total variance in advertizing due to this second
rule, component. Figure 4 illustrates two extreme cases. Part (a) shows one low-
advertizing rule with weak dependence on quality and one high-advertizing rule
also with a low dependence on quality. Here most of the variance in advertizing is
the result of differences between males in the rules they apply, and so the Fisher
index is high. Part (b) shows two very similar rules, one slightly higher than the
other, both with a strong dependence on quality. Here most of the variance in
advertizing results from variance in male quality, and only a little is contributed by
differences in male rules. The Fisher index is therefore low.

Models may be placed at points on the continuum between a Fisher index of
zero and one of a hundred. Most sexual selection models have had a high Fisher
index, including those of Lande & Kirkpatrick, and Maynard Smith. In this case
advertizing level is an unreliable guide to male quality. The high Fisher index is
reflected by the important part played by the Fisher process self-reinforcement of
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(a) (b)
Rule | Rule |

_—

Rule 2

Rule 2

=

Quality of male

Advertizing level

FIG. 4. This figure illustrates a case of a high Fisher index (a) and a case of a low Fisher index (b).
In (a), the variation in advertizing is mainly due to variation in the advertizing rules of the males. It
follows that advertizing is a poor guide to quality and females are unlikely to rely on it much in mate
choice. In (b), the variation in advertizing is due mainly to quality, and so advertizing is a good guide
to quality. Females are accordingly more likely to use advertizing in mate choice.

preferences in these models. My model has a Fisher index of zero, because the
criterion of uninvasibility is applied when candidate alleles are fixed, and this
ensures a zero Fisher index. In this case, advertizing is a reliable indicator of quality.
The low Fisher index is reflected in the irrelevance of the Fisher process to the
equilibrium.

Male traits in nature may also be placed on this same continuum. If the Fisher
index is generally high for sexually selected traits, then we would expect the Fisher
process to be important in causing exaggeration of traits; while if it is generally
low, then the handicap theory of Zahavi is likely to be more important. In my view,
then, the empirical values of the Fisher index should be of great interest to students
of sexual selection. The main difficulty in measuring it is knowing what the underlying
quality is in which females are interested. This would make a measurement of the
Fisher index even more interesting, because it would require us to understand
something about sexual selection in nature.

Dr Olof Leimar has pointed out to me that in the case where quality is environ-
mental, the heritability of the male is a measure of the Fisher index. When quality
is genetic, it would be necessary to compute the heritability of the residuals from
the regression of male trait on male quality.

We may consider from a theoretical point of view which forces contribute to
determining the Fisher index, which is itself determined by the variance in advertizing
induced on the one hand by variance in quality, and on the other by variance in
the rules relating quality to advertizing. Variation in quality may be environmental,
or it may be genetic and based on one of the currently fashionable models for
retaining additive genetic variability in fitness. Variation in the rules is likely to be
maintained by mutation-selection balance, as it is, for example, in Lande’s (1981)
model.

My own guess is that the real biological factors causing variation in mate quality
are likely to be much more important than the imperfections of the genetic system
in attaining the optimal rules. For example, it seems likely to me that peahens are
choosing males for real advantages, and that variation between males in the train-
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producing rules contributes little to variation to train length. Of course guesswork
is cheap.

I conclude that, theoretically, the Fisher process is not a necessary part of models
of sexual selection. Empirically, it is an open question whether the Fisher process
should be invoked to account for the extravagance of sexually selected characters.
The “Fisher index” is a useful indicator of the importance of the Fisher process in
models and data.

6. Concluding Remarks

The creative processes of Fisher and Zahavi may be compared. Fisher had very
deep and original ideas, which showed a high degree of internal consistency and
beauty. Zahavi seems to work from facts about animals, and slowly to develop an
understanding of how those facts are inter-related. Fisher solved the sex ratio
problem, and later work on that problem is an embellishment of his solution. On
the other hand, his theory of dominance has turned out to be simply wrong
(Charlesworth, 1979). Zahavi’s method explains how in slowly developing for
himself the idea of a strategic choice handicap, he juggled facts between the
categories of assumed constraints and implied results leading, I believe, to the
condition-dependent handicap and the revealing handicap, as well as to the strategic
choice handicap. As an account of sexual selection, I believe that Zahavi’s upward
struggle from fact will triumph. Fisher’s ingenious idea is too clever by half.

The main biological conclusions of this paper are the same as those of Zahavi’s
original papers on the handicap principle. The extravagance of sexually selected
characters is conventionally viewed as a side-effect of the Fisher-Lande process
(Fisher, 1915; Lande, 1981), in which the costliness to males is merely irrelevant.
According to the handicap principle, the cost is an essential element in the persuasive
power of the sexually selected characters and an inescapable feature of persuasive
signalling systems.

According to the handlcap principle as outlined here, there is nothing to stop
sexual selection occurring under monogamy, as Andersson (1986) showed for the
condition-dependent handicap. It may also occur in both sexes simultaneously
provided each sex has an unobservable quality affecting its suitability as a mate.

According to the handicap principle, then, there is thyme and reason in the
incidence and form of sexual selection. By studying what organisms want to know
about their mates, and how signals impose costs, we could in principle explain the
diversity of sexual selection. This is in contrast to the Fisher-Lande process, in
which the form of the signal is more or less arbitrary and whether a species has
undergone a bout of runaway selection is more or less a matter of chance. To believe
in the Fisher-Lande process as an explanation of sexual selection without abundant
proof is methodologically wicked, and I know of no relevant evidence at all. Such
a belief inhibits the search for patterns which might disprove it. The main implication
of the handicap principle for present purposes is that sexually selected ornaments
have meanings which are worth dlscoverlng, and forms which can be explained;
and that the key to both is their cost.
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Professor J. A. Mirrlees taught me all I know about the mathematics of maximization, and
more. He also directed me to the superb text on functional analysis by Deimling (1985). Sean
Nee heroically worked through an earlier and less clear version of the Appendices, much to
the benefit of the current version. He and Andrew Pomiankowski have consistently, and
ultimately successfully, prevailed upon me to moderate the unreasonableness of my attacks
on previous models of sexual selection. Julee Greenough and Laurence Hurst made helpful
comments on previous versions. Amotz Zahavi explained to me 10 years ago that the handicap
principle could be modelled successfully, but only with mathematical methods not yet
developed. This has turned out to be closer to the truth than I believed at the time. I now
accept that he was basically right, and I was quite wrong. On the same occasion he said that
if only I knew Hebrew, he could explain the handicap principle to me in a way I would
understand. This alternative should be borne in mind by readers who find minor difficulties
in understanding this paper or its companion.
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APPENDIX 1

A Single Locus Genetic Model

The gene frequency recursions are to be given for the genetic model defined in
section 2, and the conditions for an allele specifying the functions (A, D) to be
uninvasible are expressed as maximizations.
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Suppose there are two male strategies, A, and A,, and two female strategies D,
and D,, present in the population, with the common allele determining A, D,, and
a rare mutant determining A,D,. We will calculate whether the mutant can spread.
Let the frequencies at formation of zygotes of the two haploid genotypes (A,D,)
and (A,D,) be denoted 7, and .. Sex is assumed to be determined independently
of the strategies and so the frequencies are equal in the two sexes at the time of
zygote formation. We will study the recursion of 7, and .

Let f} be the number of offspring produced by matings between i-type males and
j-type females. We can write these in terms of the F}, which can be interpreted as
the success of i-males and j-females at producing offspring compared to their
frequencies in the population, as follows:

fy=mimFY.

This is convenient because the F} will turn out to be non-zero to Oth order in m,,
and the stability condition will turn out to be expressed in terms of the F} evaluated
at m,=0.

Matings between i-type males and j-type females are between genotypes i and j,
and the offspring produced are half of type i and half of type j. Hence

Cmi=fi+3(f3+17)
Cry=fi+3(f1+1D),

where C is determined by 7} + 75 =1. Substituting F’s for fs, evaluating C and
substituting for it, and linearizing around , =0, we obtain

Fl+ F?
2F)

Th= T

The stability of the system can be studied by considering the 7, subsystem because
the two variables satisfy the linear constraint m;+ 7, =1. The eigenvalue of this
“system” is just the factor

Fl+ F?
2F!}

The common allele will be invaded if this is greater than one, and will not be
invaded if this is less than 1. To ensure that no possible rare allele can invade, it
must be the case that Fi=< F! and F3 = F| for any possible alternative strategies A,
and D,. This conclusion supplies maximization conditions for the uninvasibility of
the rules A, and D, that will be familiar to students of ESS theory. F > has a simple
interpretation as the number of offspring produced by a rare D, individual in a
population playing A, D, and F7 is the same for a rare A, individual. The maximi-
zations therefore state that for A, and D, to be uninvasible, there must be no
alternative strategy, for males or females, that when rare produces more offspring
than A, and D, do for the individuals playing them.

If we let ¢p(A; A*, D*) represent the number of offspring produced by a male
playing A in a population playing (A*, D*), and ¢r(D; A*, D*) represent the
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number of offspring produced by a female playing D in a population playing
(A*, D*), then we can express necessary conditions for uninvasibility of an allele
specifying (A*, D*) formally as

b (A; A* D¥) < ¢y (A*; A*, D*) for all A# A*
6r(D; A%, D*) < ¢(D*; A*, D¥) for all D # D*.

With strict inequalities, these conditions would be sufficient for uninvasibility. This
is important because it shows how well the maximizations represent uninvasibility,
even though it will turn out that these sufficient conditions can never be met owing
to the existence of strategies (A, D) that differ from (A*, D*) in trivial ways. The
exact genetic recursion has therefore led us formally to a game, with maximands
¢ and ¢r. The existence, enumeration and characterization of solutions to these
maximizations is the topic of Appendix 4.

These maximizations show the strong connection between ESS models and popu-
lation genetic models of the strategic handicap. Had we made an ESS model, its
ESS strategies would have been the same as the uninvasible strategies of the
population genetics model. Offspring number is the natural maximand to choose
in an ESS model, even of sexual selection, provided that offspring are all of equal
value at equilibrium. When offspring are not of equal value, for example, in sex
ratio models, the maximand is a weighted sum of the numbers of the different kinds
of offspring.

Functional forms can be found for the maximands as follows. The general form
for a female strategy is a function D(a, t) which is the probability with which a
female accepts a male advertizing at level a encountered at time ¢ It will turn out
that for the optimal policy this probability is usually zero or one. We will use Di(a, t)
for the strategy function of a j-type female.

To ensure compatibility of notation with later appendices, which have more
complex genetic models, let IT' be the fraction of males that are i-types, and let II;
be the fraction of females that are j-types. In the single locus genetic model just
developed, they are given simply by II'= 7 and I, = m;.

Females begin unmated at time r=0. The hazard rate (see e.g. Kalbfleisch &
Prentice, 1980 for a general introduction to survivorship theory) of a j-type female
leaving the unmated class at time ¢ is given by the rate of meeting acceptable males,
which is

I J % [T*a(q, Ac(9)) D;(Aw(q), )1dG(q).

Let Uj(t) be the chance of a j-type female being unmated at time . Then by standard
survivorship theory U is given by integrating the hazard as follows:

Uj(1) = exp {“‘F« J %[Hka(q, A(9))Di(Ak(g), )] dG(q)}.

The rate at which unmated j-type females meet i-type males of quality g at time 1 is
uIl'alq, A(@)1U;(1) dG(q),
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and so the total number of offspring produced by j-type females and i-type males is
II; J nIl'alg, Ai(q)]2(q) <J Uj(t)ym(t) D,[ Ai(q), t] dt) dG(q),
q t

where z(q) and m(t) are determinants of female fecundity relating to male quality
and time in the season. They are discussed in section 2. Hence

F}=j unalqg, Ai(q)]Z(q)(j U(t)m(t) D;[ Ac(q), t]dt) dG(q).

Evaluated at [T1>=1II,=0, these are the required maximands. Let U(t; A, D) be
defined by

U(t; A, D) =exp {—J alq, A(q)] I wD[A(q), 7] dr dG(q)}-
q 7=0
Then U,(t) = U(t; A,, D,) and U,(t) = U(t; A,, D,). Hence the linearized F} and
F? can be finally expressed as;

Fi= J nalg, Az(q)]Z(q)(J U(t; Ay, D))m(1)D\[Ax(q), 1] dt) dG(q).

APPENDIX 2
A Two Locus Genetic Model

In this Appendix, we repeat the exercise of Appendix 1, except that we suppose
that male and female strategies are determined at separate unlinked loci. Our purpose
is to find a pair of strategies (A*, D*) such that a pair of alleles specifying these
functions at their respective loci would be uninvasible by alleles specifying any
other strategies.

Suppose there are two male types, A, and A,, and two female types D, and D,,
segregating in the population. Let the frequencies at formation of zygotes of the
four haploid genotypes A,D,, A,D,, A,D, and A,D, be denoted 7y, T2, 72,
7. Sex is assumed to be determined independently of the A and D loci so the
frequencies are equal in the two sexes at the time of zygote formation. We will study
the recursion not of the m; but of (8, ¢, k) defined by

&= 7721+7T22
E= '7T|2+ T2

K =123,
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which represent the fraction of A,, the fraction of D, and the fraction of A,D,
respectively.

Let IT' = m;, + m;», the fraction of males that are i-type.

Let I1; = ), + m,;, the fraction of females that are j-type.

Let o = 7/ IT, the fraction of i-type males that are of genotype ij.

Let 7, = m;/I1;, the fraction of j-type females that are of genotype ij.

As before, let f; be the number of offspring produced by matings between i-type
males and j-type females. Again, we can write these in terms of F 1 as follows:

fi=TIT,F.

F} will turn out to be non-zero to Oth order in §, ¢, k, and the relevant eigenvalues
will turn out to be expressed in terms of the F; evaluated at § =& =« =0.

Matings between i-type males and j-type females can be of four types genetically.
The type of an individual fixes the strategy determined for its own sex by its genotype,
but not the strategy determined for the other sex. The frequencies with which ixj
matings are of genotypes im X nj is 0;,,7,;. An im X nj mating in the two locus system
produces with equal probabilities offspring of genotypes im, ij, nm, nj. The frequen-
cies of these genotypes produce the m; of the next generation, which can be used
to compute (8, ¢, k, x) for the next generation too. x denotes 1—8—¢+«, the
frequency of the A,;D, genotype. Using primes to denote the values in the next
generation, and C for the mean fitness, a few pages of tedious but straightforward
algebra lead to the recursion:

5\’ 2(1—-686)(6—k) 2x(1-196)
4C e _ 2(1—¢)(e —«) 2e(1+e—-86—«)
K (e —k)(6—k) k(1-6+¢e—«)
x (2—e-28+k)(2-2e—-8+k) (1—e—-5+«k)(2e—«k)
26(1—e+86—«) 26(e+«k) F)
2k(1—¢) 2¢(8+k) F}

K(1—8+5—-K) (6+K)(8+K) F% N (A21)

(1-e-8+k)(26—k) (6—«k)(e—«k)| \F3
which is well defined because C can be evaluated using x+dé+e—«k=

x'+8'+¢&'—k'=1. When C is solved and the system is linearized in §, ¢, k around
8 = ¢ = k =0 the equation yields:

, F,
8 2(6—k) 2« 28 0 F
4F| € | =| 2(e—=«) 2¢ 2« O F§
K 0 k k O F%
2(F'+F?) 0 2(F)—F)\ /6
= 0 2(Fi+Fj) 2(Fi-F))

0 0 Fi+ F? K
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The stability of the system can be investigated by considering this (8, €, k) subsystem,
as the four variables satisfy the linear constraint x + 8+ ¢ —« = 1. Because of the
positioning of zeros in the transition matrix, the eigenvalues A,, A, and A5 are simply
given by the diagonal elements of the matrix divided by F]. If any eigenvalue is
greater than one, then some allele or alleles can invade the fixed point (0, 0, 0).
A necessary condition for uninvasibility is therefore that for any alternative
strategies A,, D,, we have

Fi=F) and F}=Fl,

as before. Again strict inequalities would make a sufficient condition. The two locus
model has exactly the same conditions for uninvasibility as the one locus system.
The eigenvectors of the first two eigenvalues are (1,0, 0) and (0, 1, 0), representing
the frequency of A, and D,, respectively. This shows that whether each strategy
spreads is determined by its own success, and is not affected by the presence of the
other strategy.

APPENDIX 3
The Strange Genetics

The “strange genetics” is a modification of the two locus model of Appendix 2
that enforces linkage disequilibrium in every generation at zygote formation. The
transition eqn (A2.1) needs to be modified, omitting the equation for «', and
substituting in the right hand side for x using « = 8e. The modified transition
equation is

5\’ 2(1—-8)(8 - 8¢) 28e(1-9)
4Cl e | = 2(1—€)(e—8¢) 2¢e(1+e—86—06¢)
x (2—e—26+6e)(2—2e—-8+8e) (1—e—6+8¢e)(2e—8¢)
1
28(1—¢+8—8¢) 25(e + 8¢) i}
28e(1—¢) 2e(8+ 8¢) F; ,
(1—e—56+06¢)(26—8¢e) (8—6¢)(e—S¢) F%

in which the constant C is evaluated using 1 =x+ 8+ ¢ — 8. When linearized in &
and € around 8 = £ =0 the reduced equation for § and ¢ alone is

F'+ F3?

(8)’_ 2F! 0 (5)
€ 0 Fi+Fy|\e/’

2F!

The eigenvalues are just the diagonal elements, leading to exactly the same conditions
as in Appendices 1 and 2 for the spread of the alleles A, and D,. It follows that
eliminating linkage disequilibrium from the model of Appendix 2 has no effect on
which strategies must be specified to ensure uninvasibility.
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APPENDIX 4
Solving the Maximizations

The genetic models of Appendices 1, 2 and 3 provide us with the following jointly
necessary conditions for A* and D* to be strategy functions specified by an
uninvasible allele or alleles:

oM (A; A*, D*) < ¢\, (A*; A*, D*) for all A# A* (Ad.1a)
¢r(D; A*, D*) =< ¢ (D*; A*, D*) for all D # D*. (A4.1b)

Male strategies A must satisfy A(q)=0, as zero is the minimum advertizing level.
Female strategies must satisfy 0= D(aq, t)=1, as D is a probability of acceptance
of a male. As shown in Appendix 1, the model described in section 2 provides the
following functional forms for ¢, and ¢, for rare invaders A and D in a population
playing A* and D*:

dm(A; A%, D*) = J unalq, A(q)]z(q)

q

X <J U(t; D*, A*)m(t)D*[A(q), t] dt) dG(q) (A4.2a)
¢r(D; A*, D¥) = J' walq, A*(q)]z(q)

x(J U(t; D, A*)m(1) D[A*(q), t]dt) dG(q), (A4.2b)

where,

t

alg, A(q)]J

=

U(t; A, D)=eXp{—J’ uD[A(q), 7]dr dG(q)}-

q
In this Appendix it will be proved under certain assumptions that there exist exactly
two solutions to this joint maximization that satisfy the local flat extrapolation
condition given in Appendix 1 of the companion paper. This condition may be
formally expressed as:

Local flat extrapolation criterion. Given a male and female strategy (A, D). Let
S.={a|A(q) = aforsome g}. Then (A, D) is said to satisfy the local flat extrapolation
criterion if for every a €4S, and ¢, there exists a constant D such that;
(i) thereis sequence N* k=1,2, ..., of neighbourhoods of a such that N = N*
for k<m, [y+da’~>0 as k>, and

INA-(_\SA D(a', t) da'_) )
INkmSA da’ ’

(ii) there exists a neighbourhood N of a such that D(a’, t) = Dfora'e N,a'¢S,.
If ae S4, and A(q) is continuous at all points g’ such that a = A(q’), then this is
equivalent to the simpler condition that there exists a neighbourhood N of a such
that D(a’, t)=D(a,t) for a’e N,a’' € S,4.
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Less formally, local flat extrapolation means that the female decision rule treats
unplayed advertizing levels the same as the closest level that is played by A, provided
that closest level is close enough.

As there are a multitude of definitions and lemmas, the theorem will be stated
shortly for accessibility. We must first define SE(1:10), a system of equations
mentioned in the statement of the theorem. The functions not defined by the system
will all be defined formally later, as will the sets Q of male qualities. T of times in
the season, and R the real line.

Definition of SE(1), SE(2) etc. Let SE denote the following system of equations for
A:Q->R,v:T>R,Y:T>R,u:T>R,K:Q~>R, A*:Q~R, SE(i) denote the ith
equation, and SE(i:j) denote the i through jth equations. Let a' denote the
logarithmic derivative of a with respect to its first argument.

v(T)=0 SE(1)
v(T)=0 SE(2)
v'(£) = —ui{m(1) J 2(g)alg, A(q)]1dG(q)
z(gq)>v(t)/m(1) .
~ (1) J alg, A(@]dG(q)) 0<i<T SEQ)
z(g)>v(1)/ m(t)
Y(T)=0 SE(4)
_v(@)
Y(t)_m(t) 0<t<T SE(5)
u(t)=exp {—u J J alq, A(q)1dG(q) d-r} SE(6)
=0 Jz(g)>Y(7)
K(q) =I u(r)m(7)dr SE(7)
z(q)>Y(7)
A*(gmin) =0 SE(8)
Jq o', A*(q)]— a'[q', A*(g)] dg’ = —In 2 SE(9)
9min ’ K(qmin)
A(q)=A*(g) Vaq SE(10)

This system of equations is designed to represent the equilibrium conditions at a
“splitting equilibrium” (i.e. each quality of male advertizes at a different level, so
that a female can treat each quality differently by treating each advertizing level
differently) with a strictly increasing advertizing function A. v(¢) is the future
fecundity of a female, unmated at time ¢, that plays the optimal response to A. Y(¢)
represents the female strategy, and is a threshold value of z. If z(q)> Y(¢), then a
female playing the optimal response to A will accept males of quality g at time ¢,
but reject them if the inequality is reversed. u(t) is the probability that a female
playing Y is unmated at time . K(q) is the expected number of offspring of a male
advertizing at level A(q), divided by z(q). A* is a strategy that will equal A if A
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is the optimal response of a rare male in a population playing (A, D). If A= A*,
then A, D is uninvasible.

Theorem: Let a function A* be called a “full solution” if there exists a D* for which
(i) (A*, D*) satisfies local flat extrapolation (ii) ¢y, (A; A*, D*) < ¢ (A*; A*, D¥)
for all A and (iii) ¢(D; A*, D*)=< ¢(D*; A*, D*) for all D. Then,;

(1) there exist two full solutions. The non-signalling equilibrium, say A,,,, has
Anon(q) =0. The signalling equilibrium, say A, is uniquely defined by the
property of satisfying SE(1:10) for A, and has the following properties:

(1) Asig(gmin) =0, and A, (q) is continuous and strictly increasing
(ii) K(q) and a[gq, A,(q)1K(q) and a[g, A(q)]z(q)K(q) all strictly
increase in g,

(2) any other full solution A* satisfies either A*(q) = A,on(g) for almost all g,
or A*(q) = A, (q) for almost all q.

The proof of this result is unfortunately long and complicated. First the assump-
tions and notation must be laid out formally, and then nine lemmas need to be
proved before the proof of the theorem can be given. The strategy of the whole
argument is described in section 3 of the text of the paper.

Definition of R, 1. These have their usual meanings of the real line and the unit
interval [0, 1] of the real line, respectively.

Definition of w. Let w € R, u>0. u represents the rate at which females encounter
males.

Deﬁnition of Q’ qmin’ qmax- Let qmms qmaxeR, qmax>qmm>09 and let QCR be
[@min> Gmax]- Q represents the range of male qualities present in the population.

Definition of T, T. Let TeR, T>0, and T<R be [0, T]. T represents the times in
the breeding season.

Definition of m. Let m:T—->R, be continuous with M >m(1)>0 for 0<t<T,
m(0) =0, for some M and such that

min {¢t|m(t) is non-increasing on [, T} < T.

Let there exist no strictly positive constants k,, k, such that m(t) =k, exp (—kt)
over any interval of T with positive length. This restriction is necessary because of
a clash with the local flat extrapolation criterion, as will be explained in a remark
at the end of this appendix.

Definition of z(q). Let z: Q - R be a continuous and strictly increasing function with
2(gmin) > 0. z is a factor in the product determining female fecundity, and represents
the effect of male quality.

Definition of t'. Let k, =[a(q,0)dG(q) and k,=[z(q)a(q,0) dG(q). Then let '
equal

1 k
max {min {t|m(t) is non-increasing on [, T1}, T+Fln [1 —F' z(qmm)]},
1 2
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¢ will be shown to be a time so late that females are bound to be accepting any
male at that stage. That ' < T is ensured because the first element in the set is less
than T by definition of m, and the second is less than T because the argument of
“In” is less than one. Notice that we here rely on z(gmi,) > 0. The argument of “In”
cannot be less than zero, because k,/ k, is the average z of all surviving males, which
cannot be less than the minimum value of z.

Definition of Koin, Kmax- Let Kpin=], exp {—u7tm(7) d7, and Kpnax =, m(r)dr.
It is clear that K. > Kmin > 0. These will be shown to be a lower bound to K (gmin)
and an upper bound to K(gmax)-

Definition of a. Let a:Qx[0, )~ I satisfy (i) a(g,-) and a( -, a) are absolutely
continuous (see, e.g. Weir, 1973: 67) for all g, a, (ii) a@(gmax, 0) =1 (iii) g, < g, implies
a(q, a)<a(q,, a) (iv) a,<a, implies a(qg, a,)> a(q, a), ()

a(q,, a,) < a(q, a,)
a(q,, a;) a(qs, a,)’

9:<q, and a,<a, imply

and (vi) Lim 4.0 @(gmax, @) < Knin/ Knax- @(g, a) represents the pre-breeding sur-
vival of a male of quality g with advertizing level a, relative to a male of quality
gmax advertizing at 0. Note that (iv) implies o > 0.

Definition of o', a®. As a is absolutely continuous, there exist integrable functions
a' and o’ representing the partial derivatives with respect to the first and second
arguments of the logarithm of a. Condition (v) of the definition of a implies the
important facts that a'(q, a) is strictly increasing in a for almost all g, and that
a’(g, a) is strictly increasing in g for almost all a.

Definition of B. Let B be defined by a(qmax, B) = Kmin/ Kmax- B exists by the
assumptions on a. B will be shown to be an upper bound to the advertizing levels
played by males.

Definition of G. Let G:R-1 be continuous, and strictly increasing on Q, with
G(gmin) =0, G(gmax) = 1. G represents the probability distribution function of male
quality.

Definition of L'. Let L' as usual (see, e.g. Weir, 1973) be the space of integrable
functions. We will mainly be concerned with L'(Q), the set of integral functions
from Q to R, considered as a linear space with norm

|A|= J‘Q |A(q)| dG(q).

L'(Q) is a real Banach space (Weir, 1973: 166, 221). We will use briefly the space
L'(T), as a linear space with norm

o= lowld-
T
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Definition of C. Let C = L'(Q), be {A|A non-decreasing a.e., 0= A(g)< B a.e.}

Definition of Z(a), G,(q), H(q; y) and U(t; D). Given a male strategy A, a female
strategy D, and a € A(Q). Let G,(q) be defined by

dG,(q)xdG(q) A(q)=a
0 otherwise
Go(Gmin) =0
Go(gmar) = 1.
Let Z(a) be defined by

I, alq, A(9)1z(q) dG.(q)
Z =
(@) = 4 A@)]dG(q)

and H(q; y) by
dfd(q; y)=dG(q) Z[A(q)]l=y

0 otherwise
H(qmin; J’)'—'O for all Y-
Let ¢(t; D) be defined by
1
t: D S —
W(t; D)=t j j ualg, A(¢))z(q)U(r, A, Dym(r)

x D[A(q), 7]1dG(q) d~.

G.(q) is the probability distribution of males that play a. Z (a) is the average of
z(q) for males that play a. H(g; y) is the incomplete probability distribution of
quality among those males whose advertizing level is played by males with an
average z(q) of greater than or equal to y. ¢(t; D) is the expected future fecundity
of a female playing D conditional on being unmated at time .

Lemma 1: Given a male strategy A. Let D*(a, t) satisfy
¢ (D*; A, D*)= ¢r(D; A, D*) for all D.
Then ¢(t; D*) equals ¢*(t), a continuous and non-increasing function defined by;

g1 =-n («lf*(t) j alq, A*(q)] dH(q; '/’_(_‘)>

m(t)

—m(1) L alq, A*(9)]1z(q) dH(‘l; «/’:‘((tt))» o=t=t

Yy*(T)=0.
D*(a, t) satisfies (for almost all a, t)
D*(a,t)=1 Z(a)m(t)>¢*(1)
0 Z(a)ym(r)<yg*(2).
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Proof: By definition, ¢(0; D) = ¢(D; A, D'), the female maximand, but note that
¢r does not in fact depend on D’. We will differentiate ¢(0; D) with respect to
D(a, s), and so obtain the marginal effect on the maximand of increasing D at

(a, s). Using
dln U(t; A, D) 1 aU(t;A,D)OC_
dD(a,s) U(t; A, D) dD(a,s)

MI alg, A(q)]1dG.(q) t>s

0 otherwise

and U(0; A, D) =1, we obtain after some manipulation that

W0 D) yu(s: 4, D) |l A1 4GL(@Z(@Im(s) ~u(s: DL
aD(a, s) q

The factors except the last must be positive, and this bracketed difference has a
simple interpretation. The left hand term is the expected fecundity of a female
mating with a male advertizing at level a at time s. The right hand term is the
expected future reproductive success conditional on being unmated at time 5. A
female has maximized her expected fecundity if D(a, s) =1 where the derivative is
positive, and D(a, s) =0 where the derivative is negative. That is, she should accept
a male if the fecundity she would gain immediately [namely Z(a)m(s)] is greater
than her expected fecundity if she does not [namely ¢(s; D)], and reject him if it
is the other way round. If D* is an optimal strategy, therefore, it must satisfy almost
everywhere

D*(a,t)=1 Z(a)m(t)> y(t; D*)
0 Z(a)m(t)<y(t, D*).

The optimal policy has now been characterized sufficiently to allow a dynamic
program to be written that establishes it exactly. Suppose ¢*(¢) is ¢(t; D*) for
some optimal D*. The idea is that knowing ¢*(¢) for ¢ > s, the optimal policy at s
is known. We can therefore work backwards from t= T, as ¢*(T) is known to be
zero from its definition, working out D*(-, t) and *(¢) simultaneously. The trick
is to transform integrals using our incomplete characterization of D* in terms of
¢*. D* is removed from integrands, but the region of integration is altered to include
all those points where D* is known to be 1, and to exclude those points where D*
is known to be 0. It turns out that whether regions where D* is unspecified are
included or not does not affect the final differential equation. This is natural, as D*
is unspecified only where in some sense it does not matter what value it takes. The
derivative of ¢/(t; D) with respect to ¢,

U'(t; A, D)

UL, A, D) ¥(t; D)

¥'(t; D)=~
1

"U(1; A, D) L palg, A(@lz(q)U(1; A, D)m(1)D[A(q), 1]1dG(q),
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can, on the assumption of the optimality of D, thus be transformed into

¥t D)]

—y(t; D)J alq, A(q)Iun dH[q; (D)

o(t; D)]
m(t) 1’

This, with the replacement of (t; D) by ¢*(t), is one of the defining equations
for ¢* in the statement of the lemma.

I now show that the equations defining ¢* in the statement of the lemma define
a unique solution. Bounding functions can be obtained by solving altered versions
of the equation. A lower bound is found by setting ¢*(¢) =0 in the r.h.s. of the
differential equation, and this altered equation has a solution because the r.h.s. is
then bounded. An upper bound is found by setting ¢*(¢)/m(t) in the argument of
H to below g, in the left hand integral and setting the right hand integral to zero.
This equation is of the form ¢* = ky™, and has a solution. The bounding solutions
provide bounds to ¢*' as well as ¢*, so a unique solution ¢* exists and is continuous.

I remark that the elements of the differential equation have simple interpretations
in the form

—J nalq, A(g)]z(q)m(t) dH [q;

N * ,«lr*(t))
Pyr(t)= ujqa[q,A (q)]dH(q, ()

Py*(t)
[, alg, A*(9)1z(q) dH( (t))

d;;“((:)))

The decline in expected future fecundity is proportional to the first factor, which
is the rate at which acceptable males arrive at time t. The first term in the bracket
represents the possibility that no acceptable male is found at time . The loss is
Y*(1) because that is the expected future fecundity at 7, and so is the rate at which
fecundity is lost by not finding a male. The second term represents the possibility
that a male is found. m(¢) is the time in the season factor for fecundity, and the
ratio of integrals is the average quality of males that are acceptable at time 1.

It remains to prove that ¢*(¢) is non-increasing. Suppose that ¢*(¢) increases
from t, to t,. A female unmated at f, could accept no males between ¢, and t,, and
let us call the optimal policy with this exception D [i.e. D(a, t)= D*(a,t) except
that D(a, t)=0 for all a and t;<t<1t,], and this ensures that ¢(¢,; D)= y*(t,).
But D* is the optimal policy, so ¢*(t,)=¢(t,; D)= ¢*(,) contradicting the sup-
position. Hence ¢*(¢) is non-increasing. This completes the proof of Lemma 1.

x| g*(t) —m(t)

§, alg, A*(q)]dH (q;

Lemma 2: Suppose (A, D) satisfies the local flat extrapolation criterion and the
maximizations (A4.1). Then either A(q) differs only on a set of measure zero from
a function A such that A(g) =0 for all g; or A differs only on a set of measure zero
from a strictly increasing and continuous function A with A(qm,,,) 0.
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Proof: Let L(a) be defined by
L(a)= J U(t; A, D)m(t)D(a, t) dt.

L(a) represents the mating success of a male playing a in a population playing
A, D. If A(q) is an optimal strategy, then inspection of the functional forms of the
maximand ¢, in (A4.2) shows that for almost all g,

a(q, a)L(a)

must be maximized by a = A(q). Suppose A is not a non-decreasing function of q.
Then there must exist q,, ¢, such that g, <g,, and such that an optimal a for q,,
say a,, is strictly greater than an optimal a for g,, say a,. This implies that

a(q,,a,)L(a;)=a(q,, a;)L(a;) and a(qs, a,)L(a,) = a(q2, a)) L(ay).

L(a) must be positive for some a (otherwise females playing D are accepting no
males, which is contrary to the hypothesis of the lemma that D is optimal). Hence
L(a,)> 0, as a, is optimal for some g, and we also have that a > 0. From the previous
inequalities we therefore have

a(q,, a1) - L(a,) - a(qs, a)
a(qlsaZ) L(al) a(‘]z,az)'
But the inequality between the ratio of a’s contradicts a defining assumption of a.
Hence A is non-decreasing almost everywhere.
We now show that A must, apart from a set of measure zero, ‘‘start at zero”.
Formally, we will show that if N*= Q, k=1,2...,is a sequence of neighbourhoods
of g = gmin such that N**'<= N* and [« dG 0 as k> o, then

[n* Alg) dG(q)

I Nk dG(q)
Let the ratio of integrals be denoted I,. Then I is a decreasing non-negative
sequence, because A(q) is non-negative, and is non-decreasing except on a set

of measure zero. Hence I, approaches a limit, say a'=0. Suppose a'>0. Then
a'€3A(Q), and so by local flat extrapolation there exists a point a”<a’ such that

{n* D(a, t)da
ij da '

>0 as k->o0.

D(a", t)= lim
This implies that

L(a" = tim 122 E(@) da.
k-0 .[Nk da

We can therefore choose a value of k such that

[~ L(a) da
fnrda

a(g, a")

<M g @)

for all g,
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and so,

fn* L(a) da

[orda <L(a")a(g,a") forall g.

a(q, a)

It follows that there is a subset M = N* of strictly positive measure in which
a(q, a)L(a)<L(a")a(g,a") for all q.
But this means there exists a strategy A that is strictly better than A, defined by
A(q)=A(q) A(q)eM
0 A(q)e M.

This contradicts the optimality for A hypothesized in the statement of the lemma,
thus showing that a’=0.

A parallel argument shows that there can be no gaps elsewhere in A(Q). Formally,
consider a point a such that {a'|a’> a, a’ = A(q) for some q} and {a'|a’<a,a'=
A(q) for some g} are sets with strictly positive measure. Then if N k and N¥,
k=1,2,...,are right and left neighbourhoods of a, such that N“"'< N k for each
sequence separately, and | ~+da-0and | ~tda—0as koo, the parallel argument
shows that the two sequences

IntAg)dG(g)  , In: Alg) dG(a)
JntdG(a) Jn1dGlg)

converge to the same value. The idea is that if there is a gap, then some advertizing
level in the gap will be strictly better for a range of qualities than advertizing just
above the top of the gap.

We have now established that A is non-decreasing almost everywhere, and that
the right and left limiting integral ratios are equal everywhere. This implies that the
integral of A is concave up and is continuously differentiable. This shows that there
exists a continuous non-decreasing function A, namely the derivative of that integral,
that differs from A on only a set of measure zero. Further, if (A, D) satisfies the
maximizations (A4.1), then so does (A, D).

To complete the proof of the lemma, it remains to show that either A is identically
zero or A is strictly increasing. We do this by showing that if there is any interval
of positive length over which A is constant, then A is constant over the whole of
Q. Suppose A(q) =a’ over the interval [go, 4,1, 90 < 4:, but for no other values of
g The closedness of the interval loses no generality because we have already
established that A(q) is continuous. Then we will show that, by the optimality of
D, L(a) is discontinuous at a’ from above if guin < go, and from below if q; < gmax-

If Gumin < qo, then Z(a’'") is the limit of an average of values of z(q) for g strictly
less than qo. Z(a) is the average of z(q) for values of q between g, and q,. Hence
Z(a")<Z(a). Lemma 1 says that females playing the optimal response to A, which
is also an optimal response to A, will accept males advertizing at a’ if Z(a")m(t)>
y*(¢t) (for almost all ¢), and that ¢*(¢) is a continuous function. m(t) is continuous
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by assumption. Hence there is an interval of positive length, say [t,, ;], over which
Z(a'ym(t)>y*(1)>Z(a"")m(1),

for almost all . Now for a non-decreasing and continuous A and an optimal response
D to A, L(a) equals:

I U(t; A, D)m(t) dt.
Z(a)ym(1)>¢*(1)
Hence,

L(a’)-—L(a'“)=J U(t; A, D)m(1) dt,
Z(aym(1)>¢*(1)>Z(a'")m(t)

which is greater than zero because U and m are both greater than zero, and the
interval of integration has positive length. Thus L(a) is discontinuous from the left
at @’ if gmin<4go. A parallel argument shows that L(a) is discontinuous from the
right at a’ if g, <(gmax. Hence L(a) is discontinuous at a' unless o= qmin and
g1 = Gmax- We will now show that a discontinuity in L(a) contradicts the simultaneous
continuity and optimality of A

According to the optimality of A(q),

alg, A(q)1L[A(q)]1= (g, a)L(a)) and alq,, A(q)1L[A(q)]=a(q;,a’)L(a’)
and so,

ale A@]__L@) . algpAl@]__La)

a(g,a’) ~ L[A(g)] a(qn,a’)  LIA(Q)T

for almost all g€ Q. Then taking limits as q approaches g, [which by definition is
sup {q'|a'= A(q')}] from the left and as q approaches g, [by definition sup {q'|a'=
A~(q’)}] from the right, on the assumptions that go> gmin and ¢; < gmax. respectively,
we obtain

olge. A@)]__L@) . _ala,a) _ LIA(g))]
a(qge,a’)  L[A(q0)] alq,,A(g)] L(a)

Because A is continuous at goand q;, A~(q6) = /((qo) and /i(q,*) = /i(ql), respectively,
and, as a is continuous, the left hand sides of the inequalities equal one. If 90> Gmin >
then L is discontinuous from the left at a’, and the right hand side of the first
inequality is strictly greater than one. If g, < gmayx, then L is discontinuous from the
right at a’, and the right hand side of the second inequality is strictly greater than
one. In either case a contradiction would result. Thus we can escape both contradic-
tions only if go= Gmin and ¢, = gmax. We have therefore proved that if A is constant
in any interval [go, q,] of positive length, then A is constant in the whole of Q.

We have therefore that A= A for almost all g, and that either A~gq) =0 for all g,
or A is a continuous and strictly increasing function of ¢ with A(gmin) =0. This
completes the proof of Lemma 2.
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Lemma 3: Let A*(q)=0 for all g, and let Z= I z(q)a(g,0)dG(q)/ I a(q,0)dG(q).
Then a continuous and non-increasing function ¢*: T > R is defined by

¢*'(t)=—#(¢*(t)J a(q,O)dG(q)—m(t)J a(q,O)Z(q)dG(q)> Y1) <m(1)z
q q

0 y¥(t)=m(t)z
Y*(T)=0.
Let D*(a, t) be defined by
D*(a,t)=1 ¢*(1t)<m(1)z
0 y*(t)=m(1)z
Then (A*, D*) satisfies local flat extrapolation and the maximizations (A4.1).

Proof: The dynamic program defining ¢* is just a special case of that in Lemma 1,
where A(q)=0. Hence, D* satisfies the maximizations. It remains to show that A*
satisfies the maximizations and that (A*, D¥*) satisfies local flat extrapolation. As
females treat all levels of advertizing in the same way under D*, there is no advantage
to advertizing above zero, and there is a cost. So A*(q) =0 solves the maximizations
strictly. As D*(a, t) does not vary with a, (A*, D*) satisfies local flat extrapolation.
This completes the proof of Lemma 3.

Lemma 4: The set C ={A|A non-decreasing a.e., 0= A(g)< B a.e.}= L'(Q) is non-
empty, closed, bounded, convex and compact.

Proof: Non-empty. C contains the function

A(q) — B q Gmin .

max — min
Closed. Suppose a sequence A*, k=1,2...,all elements of C, converge to a limit
A not in C. Then either (i) there is a set S< Q of non-zero measure over which
A(q) <0 or (ii) there is a set S < Q of non-zero measure over which A(q)> B or
(iii) there are sets S,, S, < Q of non-zero measure such that sup (S;) <inf (S,) and,

“'=<J dG)_ j A(q)dG>(j dG>_ J A(g)dG = a,.
S, S, S Sz

In the first case, [;|A—A|dG is minimized for Ae C by A(q)=0, and is by
hypothesis strictly positive. The integral over S is part of the integral over Q, which
is the norm, and therefore the norm cannot approach zero for any sequence A* in
C. Hence the first case is impossible. A parallel argument choosing A(g) = B shows
that the second case is impossible. In the remaining third case, let S= S, U S,. Then
fs|A—A|dG is minimized for Ae C by A(q)=k, a constant, for g€ S. By the
triangular inequality, the contributions to the norm of A—k from S, and S, are
bounded below by |k —a,| f5 dG and |k —a,| |5, dG, respectively. The sum of these
lower bounds is greater than zero unless k = a, = a, which is contrary to hypothesis.
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But if the norm of A— A for Ae C is bounded below above zero, then no sequence
A* in C can converge to A. This completes the proof that C is closed.

Bounded. Under the defined norm, a function whose values are bounded between
0 and B is itself bounded by the closed ball of radius B+1.

Convex. The inequalities in this section should be understood to hold for almost
all q,, ¢», q;. If A;, A,€ C, and A € I, then let A;€ L'(Q) be a convex combination
of them thus:

As(q) =[AA +(1-2)A]1(q) = AA(q) + (1 - 1) Ax(g).
The bounding conditions for membership of C are satisfied because;
min {A,(q), A>(q)} =AA,(g) +(1-1)Ax(q) =max {A,(q), Ax(q)}.
The non-decreasing condition is satisfied because;
$>q = Alg)=Adlq) i=1,2

= AA(q) +(1-21)Ax(g2) = 2A(q1) + (1 - 1) Ax(qy)

=  As(q)=As(q).
Hence A;€ C. C is therefore convex.

Compact. This condition requires rather more work. In accordance with Deimling’s
(1985: 43) definition of a base for a Banach space, it is required to define a sequence
(e)i=0,1,2...o0f elements of L'(Q). The idea is that linear combinations of the
first n elements can be found to converge in n to any element of L'(Q). The sequence
to be chosen derives from a sequence (f;) that approximates the integral A of any
element A of L'(Q) by a continuous piecewise linear function, which agrees with
A at certain values of g. Let f;, be defined by

folg)=1.

Let the sequences n;, d; be defined fori=1, 2. .. as the numerators and denominators
respectively of the following sequence

Let f;(q) for i=1 be defined by
fi(g) = max {O,I—d,»‘(

Let the coefficients x; be defined by

9= Gmin__ ﬁ)
9max — 9min di

Xo= A( Gmin)
N; g~ Q4min il n; 9~ gmin .
R VIR =
1 di Gmax ~ 9min j§0 di Gmax — 9min
This sequence proceeds by recursive binary sectioning of the interval [gmin, Gmax]-
The value at g, is fixed by x,. The value at g, is fixed by x,. Succeeding
coefficients fix the value of the function at the centre of increasingly finely divided
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intervals. The partial sums ¥ |_, x.f; are continuous increasing piecewise linear
functions agreeing with A at the sequence of points gm;, and the first n —1 elements

of the sequence
. +__q:q_) i=1,2....
(qmm di Gmax ~ dmin ’ 1’

This infinite sequence is dense in the interval [gmin, gmax), and integrals of members
of L'(Q) are (absolutely) continuous (Weir, 1973: 67). Hence the expansion Y xifi
converges pointwise to A. Let the sequence (e;) be the derivatives of corresponding
elements of (f;). According to Weir (1973: 66), A will have a derivative almost
everywhere (because it is increasing), which will equal A almost everywhere. Hence,
Y. xiei converges pointwise to A almost everywhere, and so converges to A under
the norm of L'(Q). The (e;) therefore constitutes a base of L'(Q), according to
Deimling (1985: 43). Proposition 7.4 of Deimling (1985) is: “Let X be a Banach
space with a base. Then B< X is relatively compact iff B is bounded and
sup {|R,x|: xe B} >0 as n—>00.” R,x is the remainder function x — Yoo X

For a closed set, relative compactness and compactness are equivalent (Deimling,
1985: 40). If we can only show that sup {|R,A|: Ae C}~> 0 as n—> oo, therefore, the
compactness of C will have been established. This we proceed to do.

Consider the subsequence (P;) of (¥|_, x.¢;) indexed by ke {2/|j=1,2...}. Then
P, agrees with A at the k+1 equally spaced values q" = Gumint (r/ k)(gmax — Gmin);
r=0,1..., k. The norm of R,A equals:

Imax
J I(A—P,)|dG(q),
9min

and this equals:
k

£ [ 1a-rlsci.

Consider values of A— P, for ge[q"™", q"], for 1=r=<k. As A is increasing and P,
is constant over the interval, [¢" ', ¢"] may be divided into two intervals S, and S,
such that A—P,<0 over S, and A—P,=0 over S,. Hence

r

q
j |A—P,,]dG(q)=—J’ A-P, dG+J A-P,dG,
q

S, S,
but because the integrals of A and P agree at "' and q” we know that the two
integrals on the right hand side sum to zero. Further, as A is increasing, A is bounded
on [q"7", "] between its values at ¢"' and q". P, must be intermediate between
these values or its integral could not equal the integral of A over the interval. Hence

o
j |A—P,,|dG(q)=2I A-P,dG
q

Sz
=2 I A(q")-A(g"™ ") dG
S;

=2[A(q")-A(g" )IG(g")-G(g"™ "]
=2[A(q")-A(g" )Imax{G(q")-G(q" ") |1=r=k},
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and summing over r yields an upper bound to the whole norm of
2L A(gmax) — A(gmin) I max {G(g") = G(q" ) [1=r=k}
=Bmax{G(qg")-G(qg" H|1=r=k}.

This upper bound holds uniformly for all A€ C, and tends to zero because G is
continuous and the sequence of points (¢") becomes dense in [ Gmin, gmax] as k goes
to infinity. We have therefore found an upper bound to sup {|R,A|: A€ C} that
converges to zero as n tends to infinity, thus completing the proof of the compactness
of C. This completes the proof of Lemma 4.

Lemma 5: For any A€ C, SE(1:9) defines a unique A*€ C. Further, A* is strictly
increasing.

Proof: SE(1:3) defines v from A, as a special case of the dynamic program of
Lemma 1. SE(4:5) defines Y(t) from v. SE(6) defines u from A and Y. SE(7)
defines K from Y and w. K is a strictly increasing function, as the integrand is
strictly positive, and the regions of integration are strictly nested. Owing to the
continuity of Y(t), and the fact that m(¢)->0 as ¢t~ 0 implies Y(#)> as t->0,
regions of integration for lower values of g fall strictly within those for higher
values. As the region of integration is defined with a strong inequality, K(q) is
continuous from the left. Further, we now establish that K(gmin)= Knin and
K(qmax) = Kmax'
Now,

K(qmax):"‘J’ u(r)m(r) dr

2(qmax)> Y (1)
= J u(T)m(T) dTSJ m(7) dr= KmaXs

as u(t) <1, establishing K., as an upper bound to K (gmax)- For a lower bound to
K (gumin) We first show that after t', already defined, all females must accept all males.
The differential equation SE(3) can be re-written over an interval in which Y(#) <

z(qmin) as
Y()=—p {J [2(q) - Y(1)]alg, A(g)] dG(q)} _y(n™),
2(q)=Y (D) m(t)

Let t,, =min {t|m(¢) is non-increasing on [, T1}. Now t, < T by definition of m.
A function Y can be defined which over the interval [t,,, T] is an upper bound to
Y (1), by finding a lower bound for Y'(¢), thus:

Y(t)=-n j [z(q) - Y()]a(g,0) dG(9g).
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Letting k, = u [ @(q,0) dG(q) and k,=p Iz(q)a(q, 0) dG(q), this equation has the
unique solution

— k
(1) =2 [1=exp {ki(1 = T)}]
1
and takes the value z(gm,) at the unique time
k, ]
+_ -5 min/ |«
tmin=T k In [1 K, 2(Gmin)

Y is a decreasing function, and so for t> t;,, Y lies below z(gmin). This proves
that for t>max {fmin, tm}, Y(t) =< z(gmin)- But by definition ¢’ = max {tmis, tm}, and
we have shown that after t’, optimal females will accept any male. This shows that

u(7)m(r) dTEJ u(r)ym(r)dr

7=t

K(qmin) = J'

(Gmin)=Y(7)
EI m(T) €xXp {'—/-LT} d"“—__I(min,
=t

establishing K,,;, as a lower bound to K(gpi,). Summarizing, K is continuous from
the left and strictly increasing, K(gmin) = Kmnin and K(gmax) = Kmax-

It remains only to show that SE(8:9) defines a unique function A*e C. Any
solution to SE(8:9) inherits various properties of continuity from K. It must be
continuous from the left, and have points of discontinuity at exactly those places
where K has. At points of continuity and differentiability of K(q), SE(9) can be
differentiated to yield

d 1 _K(q)
K( mm)

which defines A*' almost everywhere, omitting points where a’=0 or K'(g) =0
or K is discontinuous or not differentiable. Note that therefore A*'>0 almost
everywhere. At points of discontinuity SE(9) provides

a[q, A(g")]_K(q)
alg, A(g7)] K(q")

which not only implies that A(q")> A(q"), but also determines A(g") in terms of
K and A(g7). A solution is therefore strictly increasing.

SE(9) therefore specifies a derivative almost everywhere, and the exact size of
jumps at points of discontinuity. This implies the existence of a solution A(q)
passing through any point (g, a), g € Q, a =0, in some neighbourhood of q. We now
prove that the solution passing through (qm,n, 0) remains bounded for g€ Q, and
that it is unique. We introduce a function A(q) defined by A(qm,n) 0 and,

d In K(q)
dg " K(Gumin)’

A*(q)a’(q, A¥(q)) = (A4.3)

A(q) [ Gmax> A(g)] =~
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at points of continuity of K, and by,
alg, Alg)]_ K(q))
alq,A(q7)] K(q")
at points of discontinuity. A solution exists here as before, but this time we can
integrate to obtain

K(qmin)
K(q) ’

which defines the function A near (qmin, 0) in view of the monotonicity of a(q, a)
in a, which also implies that Ais strictly increasing. A remains bounded because,
in view of the fact that K(q) is increasing, assumption (iv) about a implies that
A(qmax)< B. Now we show that a solution A(q) passing through (gmin,0) never
exceeds A. Ina nelghbourhood of any value of g where the two functions are equal
the fact that a’(q, a) is strictly increasing in g almost everywhere (hence |a?| is
decreasing) shows that A'(q) <A (q) almost everywhere. The jumps maintain the
direction of the inequality between the two functions. Hence A(q)<A(q) for
g > qmin. It follows that any solution A(q) passing through (gm,0) is bounded
above for all g, and so the solution exists over the whole of Q. Further, the solution
is bounded above by B, and therefore any solution is a member of C.

It remains to prove uniqueness, which is necessary as the expression for the
derivative of the solution, (A4.3), may not be bounded. Suppose A, and A, are two
distinct solutions to SE(8:9). Rewrite SE(9) for A; as

a[q’ A(Q)] = a(qmin, 0)

K(q)
K(qmin) '

Then we may assume without loss of generality that for some g, A,(q) < Ay(q). It
is A;(q) not A;(q’) that appears in the integral, and a'(q, a) is increasing in a.
Hence the right hand side is an increasing function of A;(q). But the left hand side
is a strictly decreasing function of A;(g). The equation therefore cannot hold for
both A, and A,, contradicting the supposition that they are both solutions.

Summarizing, SE(8:9) defines a unique function A*(q) satisfying A*(Gmin) =0,
0= A*(g)= B, and A* is non-decreasing. Therefore A*e C. We have also proved
that A* is strictly increasing. This completes the proof of Lemma 5.

Lemma 6: There exists a mapping f: C > C defined from SE(1:9) by f(A) = A* f
is continuous and compact.

In a[q, Ai(q)]= J a'lq’, Ai(g)]dg'~In

min

Proof: The compactness of f means the compactness of f(C). As C itself is compact,
by Lemma 4, and Lemma 5 shows that f: C > C, f is indeed compact. It remains
to show continuity. Continuity in this sense is in the appropriate function spaces.
It follows because each step in the creation of A* from A is continuous, namely
(i) v is a continuous function of A (ii) Y is a continuous function of v (iii) u is a
continuous function of A and Y (iv) K is a continuous function of u and finally
(v) A* is a continuous function of K. The proof of only step (iii) will be given, as
the others are simpler and very similar in style.



510 A. GRAFEN

Let L,< L'(Q) be {A|A(q)=0}, and let U:L,x L'(T)~> L'(T) be the mapping
implied by SE(6) that delivers u as a function of A and Y. To show continuity,
consider perturbations A, € L'(Q) and Y, € L'(T) satisfying

1A, =, |Ys|r=é.

Pointwise exponentiation is a continuous mapping in L', so it will suffice to show
that In u is continuous. Hence we study the perturbation in the logarithm of u
induced by the perturbations in A and Y. Define

u,=ln U(A+A,, Y+Y;)-InU(A, Y).

Then;

ue(t)=J I alq, A(9)+A,(9)]1dG(q) dr
=0 Jz(q)>Y(7)+ Ys(7)

T

-J ) J( - )a[q, A(q)]1dG(q) dr

T

=f U e, ola Al + A (@] - alg, A(9)] dG(g)

T=

—I alg, A(q)+Ay(q)]dG(q)] dr. (A4.4)
Y(7)+Ys(7)>2z(q)> Y (1)

The right hand inner integral is bounded by |G[z7'(Y(7)+ Y5(7))]1 - G[z ' (Y(7))]],
as values of a lie in I. Because « is continuous, there exists a continuous function
E(q, a, w) such that E(q, a, w)>0 as w >0, and

lalg, a+E(q, a,0)]—a(q, a)|< .

Divide the left hand inner integral of (A4.4) into:

J B [a(q, A(q)+A,(q))—a(q, A(q))]1dG(q)
qe{qlElg,a,A,(q)]1=V¥,2(q)> Y (7)}
[a(q, A(q)+A,(q))—a(qg, A(q))]dG(q).

+ 4[
qe{q|E[q.a,A,(9)]>V¥.2(q)> Y (1)}
(A4.5)

The sets are measurable because A, is integrable and E is continuous. The first
integral in (A4.5) is bounded above by

VydG(q)

qu(qlAy<q>s¢§.z(q)> Y(7)}
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and so by v'y. The second integral of (A4.5) is bounded above because

J ~ [[a(q, A(q9)+A,(q))—a(q, A(g))]| dG(q)
qe{q|lE[4,a,A,(9)]1>V,2(q)> Y (7)}

<<

J 1dG(q)
q<{q|E[q,a,A,(q)]>V7}

I g|ELqaa,@1=vy 4G(q)
VY1 getqan,@1-vy 4G(q)
0

~

o Av(q)I{qIE[q,a,Ay(q)]%/;} dG(q)

A

IA

A,(q) dG(q)
Q

IA

e T e e

We now return to the second inner integral of (A4.4). G[z~'(y)] is a continuous
bounded function of y, and so there exists a continuous increasing bounded function
g(d) such that g(d)->0 as d >0, and |G[z"'(y+d)]- G[z7'(y)]| < g(d) for all y.
Let an upper bound to g(d) be g. Hence the integral is no greater than

t T
J gl Ys(7)] dTSJ glYs(7)]ldr
0 0
Playing the same trick as before, divide this into;
J g[Ya(T)]dt+J' gdt
re{rlgl Ys(r)1=g(V/3)} re{rlgl Ys()1>g(v3)}

The left hand side is bounded above by IOT g(v/8) dt = Tg(¥/8). Now g is strictly
increasing, so the right hand side equals

g

por=t |
J'te{rlYa(r)>~/3} V8 re{r| Ys(7)>V8}

= T
sjg_g L Ys(t) dt<T—g\/_
The right hand inner integral of (A4.4) is therefore bounded above by,
Tg '(V8)+8gvs,
and so the whole of the integrand in (A4.4) by,
2Wy+Tg ' (Vo) +gVvs.

V8 dt
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It follows that the integral (A4.4) is bounded above by
T

J’ Wy+Tg (V) +8Ve dTSJ Wy+Tg '(Vé)+gJ/ddr

=T[2Vy+ Tg '(V8)+8V3s].

This upper bound to |u, ()| implies that the norm of u,

j lu.(7)| dr;

is bounded above by;
= T[2vy+ Tg '(V8)+ V3]

As g7'(0)=0 and g is continuous, it follows that the norm of u, can be made as
small as desired by making y and & small enough. This establishes the continuity
of U. Continuity in the other steps can be established in a similar way.

This completes the proof of Lemma 6.

Lemma 7: The system of eqns SE(1:10) has at least one solution, and any solution
has A(gmi») =0 and A continuous and strictly increasing.

Proof: We will apply Schauder’s Fixed Point Theorem to show that the mapping f
has a fixed point in C, which therefore satisfies SE(10) and so satisfies the whole
of SE.

Lemma 4 shows that C is non-empty, closed, bounded and convex, and Lemma 6
shows that f: C - C is compact. Thus we can apply;

Theorem 8.8 of Deimling (Schauder’s Fixed Point Theorem). “Let X be a real
Banach space, C = X non-empty closed bounded and convex, F:C - C compact.
Then F has a fixed point.”

A solution to SE(1:10) therefore exists. Lemma 5 shows that any solution A* to
SE(1:9) has A strictly increasing, and therefore any solution to SE(1:10) is strictly
increasing. SE(8) states that A*(gm,) =0, and therefore the solution satisfies this
condition.

It remains to show continuity. Suppose a solution A to SE(1:10) is discontinuous.
As A inherits continuity from the left from K, there must be a g < gmax such that
A(q)<A(q"). Then by SE(9), this implies that K(q)<K(q"), and in turn that
Y(t) = z(q) = 2o, say, over some interval, say [1,, t,]. Hence Y'(¢)=0in [#, t,], and
using SE(5) and SE(9) we obtain

m'(t)

Dmax Amax
0=—u{j Z(q’)a[q’,A(q')]dG(q')—ZOJ a[q’,A(q')]dG(q')}-zom(t),

q q

which can be solved for m(t) to obtain

m(t) =k, exp [—tﬁf " [2(g)) - z20]alq’, A(g)] dG(q')],

20
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for some strictly positive constant k, . The integral is also strictly positive, as g # gmax-
Hence a discontinuity in A can arise only if there is an interval of ¢ with positive
length in which m(t) = k, exp {—k,t} for some strictly positive constants k,, k,. But
this is contrary to a defining assumption of m.

This completes the proof of Lemma 7.

Lemma 8: Suppose A is a solution to SE(1:10). Then there exists a D such that
(A, D) satisfies local flat extrapolation and (A, D) solves the maximizations (A4.1).
Further for all g, A(q) attains the unique local maximum of

al(q, a) J U(t; A, D)m(t)D(a,t) dt,

for ae A(Q).
Proof: SE(8:9) yields, in terms of the inverse function A7l of A,

a

K[A '(a)]<exp {—J a’[A7Y(a), a] da}.

0
It follows from the construction of SE(1:7) that the part of the male maximand,
én of (A4.2a), relating to males of quality g is proportional to a(qg, a)K[A™(a)],
and hence to,

a(q, a) exp {—Ja a’[A7Y(a), a] da},

0
whose logarithm is differentiable with respect to a as follows:
a’(q, a)—a’[A7'(a), al.

This derivative equals zero at g = A”'(a), as it should. But &’ is strictly increasing
in g for almost all a, so the derivative is positive for all larger values of g, and
negative for all lower values. This implies that the derivative is positive for a < A(q),
and negative for a > A(q), for almost all a. It follows that A(q) is the unique local
maximum, as claimed in the lemma, and this implies that A(q) attains a strict global
maximum for male fitness for a € A(Q).

Letting @ denote min {a, A(gma.,)}, define D by

D(a,t)=1 v(t)<m(t)z[A'(a)]
0 otherwise.

Notice that SE(1:3) is a special case of the dynamic program of Lemma 1, with v
taking the role of ¢, in which it can be assumed that A is strictly increasing. Hence
D satisfies the maximization (A4.1b) by Lemma 1. Further, D(a, t) = D[ A(gmax), t]
for a > A(qmax) and so local flat extrapolation is satisfied too.

This completes the proof of Lemma 8.

Lemma 9: Suppose A, and A, are continuous and strictly increasing functions, that
A1(Gmin) = A5(gmin) =0, and that (A,, D,) and (A,, D,) satisfy the maximizations
(A4.1). Then A, =A,.
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Proof: Define the mating success of a male L;(a),i=1,2, by
Li(a)= J U(t; A;, Di)m(t)D(a, t) dt.

Then a(q, a)L;(a) is the part of the male maximand, ¢, in (A4.2a), relating to a
male of quality g. By hypothesis

alq, Ai(q)I1Li[Ai(g)]1= a(qg,a)L(a) for i=1,2, for all a.

As A, is continuous and increasing, this implies that the derivative of a(q, a)L;(a)
with respect to a is zero where it is defined. L; must be continuous and increasing
as the optimal response A; is continuous and increasing. Hence the derivative exists
almost everywhere. Taking logs before differentiating, we obtain

Li(a)

Li(a)=a (g, a),

and integrating with respect to a we obtain
L.(a)x<exp {—J a’[A7Y(a"), a'] da’}.
0
Let n;(a, t) be the derivative with respect to a of In[a(q, a)L:(a)] for i=1,2, then
ni(g, a) = a’(q, a)+a*(Ay" a,a)
ny(q, a)=a’(q, a)+a’*(A;'a, a).
Consider some value of g where, without loss of generality, A,(q) < A,(q). Because

the A, are strictly increasing and continuous, it follows that A;7'A,(q)> A;'A,(q).
We also know that a’(g, a) is increasing in g, so that

a’[AT'A(q), a]> @’[A3'A(q), a).
It follows that

mlq, Ai(q)1<nilq, Ai(q)],
and by definition n,[g, A;(q)]=0. Hence

ny[q, Ai(q)]<0.

The same argument as in the proof of Lemma 8 ensures that A;(q) is the unique
local maximum over a € A;(Q) of a(q, a)L;(a). So if the marginal value of advertiz-
ing is negative at A,(q), then by the unique local maximum property of Lemma 8,
the optimal value of a must be less than A,(q). Hence A,(q) <A;(q). This is a
contradiction, showing that there can be no g for which A,(q) # A,(q), and hence
A, = A,. This completes the proof of Lemma 9.

At last it is possible to present the;

Proof of Theorem: Lemma 3 shows that A,.,(q) is a full solution. Lemma 7 and
Lemma 8 show that there exists a strictly increasing and continuous function which
is a full solution. Let this function be A;(q). We have now established the existences
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of the theorem. It remains to show that SE(1:10) uniquely determine A,;,, and that
any other function equals one of these two almost everywhere. Lemma 2 shows that
any full solution A either equals zero almost everywhere, in which case it equals
A,.. almost everywhere; or A differs only on a set of measure zero from a strictly
increasing and continuous function A. But in this second case, Lemma 9 shows that
A= A, for all g, so that A(q) = Ag,(q) for almost all g. This completes the proof
of the theorem.

Remarks on the operation of local flat extrapolation. Use of local flat extrapolation
has enabled a very neat result to be obtained, that there are effectively exactly two
solutions to the maximizations. Without the criterion, there would have been “par-
tially splitting” equilibria, in which some intervals of males signalled at the same
level, and some intervals of males were split with increasing advertizing. I conjecture
that any partition of Q into intervals, with arbitrary allocation of each interval to
“flat” and “rising” would support a solution to the maximizations. There would be
a discontinuity in A around each boundary between flat and rising, and between
flat and flat intervals. D would have to be chosen to make the unplayed advertizing
levels less good for all males than the played levels.

Local flat extrapolation has led to one restriction on the result, namely the
assumption that there should be no interval in which m(t) = k, exp {—k,t} for strictly
positive constants k,, k,. The reason is that this can lead to a discontinuity in the
middle of a “rising” interval. The full signalling equilibrium exists, with a discon-
tinuity in A, and the only thing wrong with it is that there is nothing to determine
the females’ response to the unplayed values of a. The restriction is in a sense
artificial. When it is not met, in most cases the two equilibria of the theorem will
still exist and be effectively unique. When the constants are just right (or wrong!),
the fully splitting equilibrium will have discontinuous A, and only the non-signalling
equilibrium will exist, and it will be effectively unique.

This comparison of the gains and losses in convenience from using local flat
extrapolation is irrelevant to its logical justification. The idea is that the response
of females to unplayed advertizing will not in fact be arbitrary. Instead it evolves
under the influence of a small amount of perceptual error, so that unplayed advertiz-
ing levels close to played levels are actually perceived. In a fuller model, this
perceptual error would be incorporated into the model. I conjecture that ¢his would
play the same role in eliminating partially splitting equilibria. Moreover, it would
“smooth out” infinite slopes to A(g), and so presumably make the restriction on
m unnecessary. The logical part played by local flat extrapolation is to mimic the
effect of adding this complexity to the model, and so its ultimate justification depends
on guesswork.

APPENDIX 5

Modelling the Model

The purpose of this Appendix is to show how results of the ESS model of the
companion paper may be applied to the results of this model, thus demonstrating
the utility of the ESS model. At the splitting equilibrium, the maximand for males



516 A. GRAFEN

in the model of Appendix 2 is
a(q,a)K(A 'a).

A7'a is the quality which a female “presumes” a male to be when she interprets
his advertizing. We can write a mapping from the full model to the ESS model as:

a(q, a)K(p)->w(a,p,q).

The mapping onto w(a, p, q) shows how to construct a fitness function w in the
ESS model to model the population genetic model. The conditions that w must
fulfil in the ESS model are easily verified from properties w, is negative because a,
is negative, and w, is positive because K'(p) is positive. The equilibrium male
strategy according to the ESS model satisfies;
_wi(a,p,q)

Wz(a, p’ ‘1) ’
and A'(t) is the inverse of this. This would correctly predict the male equilibrium
strategy of the population genetic model, because w,/w, equals

a’(g, a)
dln K(p)
dp

P'(a)=

and SE(9) can be put in the form
din K(q)

__da
a’[g, A¥(q)]
The condition on costs in the ESS model is that

wl(aa P, ‘1)
w2(a9 ps Q) ’
is strictly increasing in g, and this translates into

A¥(q)=-

a’(g, a)
dln K(p)
dp

being strictly increasing in g. The fact that a’(q, a) is strictly increasing in ¢ is a
necessary assumption for stability in the genetic model as shown in Appendix 4.
Thus if the maximand function a(gq, a) K (p) were measured at equilibrium, the ESS
model would give both the optimal male strategy and the appropriate stability
condition. This shows the importance of the arbitrariness of the functions in the
ESS modelling in the companion paper, and also that applying the ESS approach
to signalling problems including sexual selection is perfectly sensible. The fact that
there are extra complications in the full model does not vitiate the application of
the ESS model. From an empirical point of view, it is the ESS model that is easier
to apply, and it is essential to realize that it is perfectly satisfactory to apply it. We
can understand something without understanding everything.





