
neutron density. The neutron density (n
n
) of

the source was modeled by solving the simul-

taneous linear equations describing s-process

flow with b– decay branching to yield

bsÀNsð Þ186Os

bsÀNsð Þ188Os

0
lbj

lbj þ nTnnbsÀ

� �
185W

� lbj

lbj þ nTnnbsÀ

� �
186Re

� k
A0188

A0185

1 þ 1

t0bsÀAi

� �
ð1Þ

where v
T

is the thermal neutron velocity, l is

the decay constant, N
s

is the s-process abun-

dance, bsÀ is the maxwellian-averaged neutron

capture cross-section, and t
0

is the average

neutron exposure (21). The branching decay of
186Re to 186W by electron capture was ne-

glected for this calculation, because electron

capture is diminished at the higher degree of

ionization prevailing in stellar interiors (22).

Using cross-sections, decay constants, and t
0

typical of the s process (5, 21, 22), we cal-

culated 186Os/188Os ratios as a function of stel-

lar neutron density and temperature (Fig. 4).

The calculated neutron density for solar s pro-

cess is similar to that obtained in (21). The
186Os/188Os È 0.48 in Tagish Lake Os(i) is

matched at stellar neutron densities of 6 � 108

to 10 � 108 n/cm3.

There are two major neutron sources for

the s process produced by helium-burning

stellar reactions (a capture): 13C(a,n)16O

and 22Ne(a,n)25Mg. The 13C-source operates

at T È 1 � 108 K and the 22Ne source

operates at T È 3 � 108 K (8, 23). Coupled

models of stellar evolution and nucleosynthesis

in low-mass asymptotic giant branch stars

indicate that during a double neutron pulse the
22Ne source contributes importantly to the

abundances of nuclides produced at high

neutron densities (up to 1010 n/cm3) (23). This

has been identified with the meteoritic Ne-E(H)

component (23) and may also contribute the

Os(i) component in Tagish Lake. Likely, the

main component of s-process Os (and other

heavy elements) may be resolved to be a mix-

ture of varied neutron density sources operating

in multiple low-mass stars with variable

metallicity. Our technique resolved solar s-

process Os in primitive chondrites into two

components: Os(i) that is likely trapped in SiC

grains, and aqua regia–soluble Os that is hosted

by other phases (magnetite or Fe sulfides),

which provide insights into the galactic chem-

ical evolution of Os. The extractable Os either

condensed into acid-soluble minerals from

stellar outflows with C/O G 1, or it initially

condensed in SiC grains which were then

selectively destroyed in the interstellar medium

(possibly older grains).

This interpretation—that the anomalous

Os isotopic composition in unequilibrated

chondrites results from incomplete access of

up to 50 ppm of the total Os present during

digestion—has important ramifications to

understanding the presence or absence of

isotopic anomalies in bulk meteorites for other

elements, including Zr, Mo, and Ru (4, 24–29).

Because the Os abundance in bulk meteorites

is small (e1 ppm) and because Os is one of

the first elements to condense, mixing within

the solar nebula before condensation into

planetesimals must have been extremely ef-

ficient in order to result in a homogeneous Os

isotopic composition of T0.25 epsilon units

(i.e., T25 ppm) observed in chondrites with

greater metamorphic equilibration.
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The Illusion of Invariant
Quantities in Life Histories

Sean Nee,1* Nick Colegrave,1 Stuart A. West,1 Alan Grafen2

Life-history theory attempts to provide evolutionary explanations for variations
in the ways in which animal species live their lives. Recent analyses have
suggested that the dimensionless ratios of several key life-history parameters are
the same for different species, even across distant taxa. However, we show here
that previous analyses may have given a false picture and created an illusion of
invariants, which do not necessarily exist; essentially, this is because life-history
variables have been regressed against themselves. The following question arises
from our analysis: How do we identify an invariant?

Key parameters that determine how species

live their lives are the size at which weaning

and sexual maturity occur, the number of off-

spring produced per year, and life span,

among others (1–3). A recent approach to

understanding the evolution of such life-

history parameters has been to show how

these analyses can be simplified by examining

dimensionless ratios of these parameters, such

as the ratio of offspring weaning weight to

maternal weight (1). This approach has been

stimulated by analyses that suggest that these

dimensionless ratios can be the same for

different species, within and even across taxa

(Table 1) (1, 4–13). These life-history invar-

iants can be extremely striking, with the

regression analyses used to test for them

usually explaining 70 to 97% of the variation

(1)
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in the data. Such strong correlations are ex-

ceptional for evolutionary or ecological studies,

where the average study explains approximate-

ly 5% of the variation in the data (14).

It has been argued that the existence of

these invariants implies Bsymmetry at a deeper

level of causal factors[ molding life-history

evolution (1). Potentially, such invariants, along

with other dimensionless ratios that can be

derived from them, could underpin the form

and shape of the tradeoffs that constrain life-

history evolution. Consequently, invariants pro-

vide the basis of a unified approach to the

study of the evolution of life histories, rather

than a mixed basket of species-specific models.

This potential importance has led not only to a

considerable effort being devoted to measuring

these invariants empirically (Table 1) (1, 4–13)

but also to a substantial body of theory that

attempts to explain their existence and con-

sequences (1, 6, 7, 15–29).

However, we show here that previous

analyses may have given a false picture and

created an illusion of invariants that do not

necessarily exist. We start by considering the

clearest case, where one of the variables being

examined is necessarily a fraction of the other

variable. For example, consider offspring-

weaning weight, w, and maternal weight, m,

measured for a number of species, with the

dimensionless ratio w/m postulated to be an

invariant (24, 25, 30). The standard methodol-

ogy used to test for life-history invariants is to

test whether the regression slope of the

relationship between ln(w) and ln(m) equals

1.0. This is because if the ratio w/m is invariant

and equal to some constant c, then a regression

of ln(w) versus ln(m) would have a slope of

1.0, and an intercept of ln(c). Although this is

true, the converse is not; i.e., a slope of 1.0

does not imply invariance.

Consider the extreme case where the ratio

w/m is not invariant and is actually a random

variable drawn from a uniform distribution

between 0 and 1, which we represent by the

variable c. The model is ln(w) 0 ln(m) þ
ln(c), which is in the form of a simple linear

regression with slope 1.0, y 0 x þ e, where

ln(c) is the non-normally distributed error

term e. A regression analysis of data sim-

ulated according to this model would return

a slope not significantly different from 1.0.

Suppose, for the sake of simplicity, that a

regression analysis returns a slope of exact-

ly 1.0. Then the R2 of the regression, which

is the proportion of the variation (var) in

the dependent variable y, explained by the

variation in the independent variable x, is

given by

An example of an analysis performed on sim-

ulated data is given in Fig. 1A. This analysis

returns a regression slope of 1.0 and an R2 of

0.94. Figure 1B makes clear that the ratio w/m

is far from invariant. Hence, this approach to

identifying invariants is invalid.

For this class of so-called invariants, the

slope of 1.0 arises because we are, in effect,

regressing a variable, X, on X. What accounts

for the high R2? When c is drawn from a uni-

form distribution between 0 and 1, ln(c) has a

variance of 1.0. What accounts for the fact that

varEln(m)^ d 1.0? The short answer is that we

assumed it does; we simulated data with a var-

iance of 9 (Fig. 1). In real studies, a large var-

iance arises when the data vary over several

orders of magnitude; loosely speaking, when

the ratio of the largest to the smallest is high.

The relationship between orders of magnitude

and the variance of a log-normal distribution is

as follows. For reasons of familiarity, we will

discuss this in terms of log
10

transformations. If

two data values differ by a factor of 10, an

order of magnitude, this is their ratio and it is

dimensionless. The value of varEln(m)^ is also

independent of the scale of measurement. If we

plot the logarithmically transformed data, each

unit increment on the log
10

scale corresponds to

a factor of 10. 95% of the data lie between T2

SD (s) of the mean. If on the arithmetic scale,

the bulk of the data span M orders of magni-

tude, then the variance of the data s2 , (M/4)2.

Hence, if m varies over many orders of

magnitude, then varEln(m)^ d1.0, and our R2

is guaranteed to be high. The most notable

invariants are typically taken to be those that

hold over several orders of magnitude of

variation in the value of the biological char-

acters; we now see that it is this wide var-

iability of the characters that inevitably makes

the invariants notable. (The converse also

holds: Data that do not span several orders

of magnitude may be highly likely to dis-

play a slope numerically different from 1.0

and may have a low R2.) The R2 in this

particular example would be even higher if

we chose values of c from more realistic

uniform distributions, such as from the range

0.3 to 1.

The above argument applies to a number of

other proposed life-history invariants, where

one variable is a simple fraction of the other;

for example, size at sex change divided by the

maximum body size, or the body size at

maturity divided by the maximum asymptotic

body size (Table 1).

However, this argument can be readily

generalized to other biological variables that

involve somewhat more complicated relation-

ships. Consider, for example, the relationship

between age at maturity, a, and average adult

life span, A, the ratio of which has been argued

to be invariant within several taxa (Table 1).

Let T be the average total life span of members

of a species. Let p be a uniform random

number between 0 and 1, so that a 0 pT and

A 0 (1 – p)T, giving

a
A

0
p

1 j p
ð2Þ

Clearly the ratio a/A is not an invariant.

However, our model is again of the form

ln(a) 0 ln(A) þ ln(p) – ln(1 – p), so we expect
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R2 0
varElnðwÞ^ j varElnðcÞ^

varElnðwÞ^

0
varElnðmÞ^

varElnðmÞ^ þ varElnðcÞ^ ð1Þ

Table 1. Life-history invariants. Shown are some of the dimensionless ratios that have been shown to be
life-history invariants, with the use of the regression analysis described in the text.

Dimensionless ratio
Taxa within which invariance has
been demonstrated

References

Weaning weight (w)/maternal weight (m) Mammals (1, 8, 9)
Average adult life span (A)/age at maturity (a) Mammals, angiosperms,

snakes, lizards,
shrimps, nematodes

(1, 6, 10, 11)

Mortality rate (M)/growth coefficient (K) Fish, shrimps, snakes,
lizards, sea urchins,
turtles

(1)

Length at maturity (la)/
maximum asymptotic length (l

V
)

Fish, lizards, snakes (1, 35)

Yearly fecundity (b) � age at maturity (a) Mammals (1)
Yearly fecundity (b)/mortality rate (M) Birds, bats (1, 9, 13)
Maximum asymptotic length (l

V
)/

growth coefficient (K)
Fish genera (1)

Size at sex change (L50)/maximum size (Lmax) Animals (fish, crustaceans,
mollusks, echinoderms)

(4, 7)

Age at sex change (t)/age at maturity (a) Fish (5)
Fraction of body mass to reproduction

per unit time (C)/average adult life span (A)
Fish, birds, mammals (29)
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a regression slope of 1.0, because we are

regressing X on X, and we expect an R2 of

R2 0
varElnðAÞ^

varElnðAÞ^ þ varEln p

1 j p

� �
^

ð3Þ

Once again, R2 will be high if A is highly

variable.

Some invariants require a moment_s re-

flection before it is seen how they fit into this

framework. Consider, for example, the rela-

tion between a bird_s yearly clutch size, b, and

adult mortality rate, M. Suppose that a bird

species has E eggs in total over its adult

lifetime of Y years; then its yearly clutch size

b is E/Y and its annual mortality rate M is 1/Y.

Therefore, b 0 ME, a regression of ln(b)

against ln(M) is expected to have a slope of

1.0, and

R2 0
varElnðMÞ^

varElnðMÞ^ þ varElnðEÞ^ ð4Þ

Charnov Etable 1.1 and fig. 1.2 in (1)^ carries

out this regression analysis on data on b and M

and finds a slope not significantly different

from 1.0. When we compute E 0 b/M from his

tabulated data, we can use the above formula

to calculate that the R2 should be 0.84, which is

what Charnov found it to be. More generally,

it can be shown that all of the other so-called

invariants listed in Table 1 are amenable to

the same treatment we have illustrated here.

The studies in Table 1 all explicitly use the

regression analysis we have described to

demonstrate that a ratio is invariant. From

the time of the introduction of invariants,

many other studies and discussions have ac-

cepted their existence on the basis of these

sorts of demonstrations and attempted to

explain them theoretically or infer their con-

sequences (6, 15–23, 26, 27). For example, in

his review of the canonical monograph on life-

history invariants (1), Maynard Smith refers to

the M/b data we have just discussed and says

BM/b is approximately constant (,0.2) for

species as different as the tree sparrow and

wandering albatross[ (31). This is in spite of

the fact that the data to which he is referring

show the ratio varying between 0.1 and 0.5.

Maynard Smith was not the only reviewer to

accept that this ratio is constant (32), and the

status of these life-history invariants is such

that they have now found their way into the

popular physics literature (33). In fact, in a

population of constant size, the ratio M/b is,

essentially, the probability of surviving from

egg to breeding age and therefore is con-

strained to be between 0 and 1.

Given the clear invalidity of using the

regression analysis described, a major un-

resolved problem is how we should search

for invariants. One approach that has been

suggested is to continue using such analyses,

but to compare the R2 generated by an explicit

null model, similar to that used to produce

Fig. 1, with that generated by the actual data.

Invariance is then accepted if the real data

produce an unusually high R2 (24, 25, 30).

However, there is an obvious difficulty with

this approach. How does one choose the null

model for comparison (25)? In Fig. 1, we used

a uniform distribution between 0 and 1, but we

could have equally argued for a uniform

distribution between, say, 0.5 and 0.9. In addi-

tion, the uniformity of the data is not relevant

to the question of invariance, because non-

uniform distributions can be highly variable,

whereas a uniform distribution may have tight

bounds. An alternative approach is to examine

the covariation between the proposed invariant

and other traits considered to be of general

importance to life history, such as body size. If

covariance is found, the candidate invariant

can be rejected (34). However, the lack of any

systematic variation in a trait, although it is

potentially interesting, is very different from a

lack of any variation.

We believe that the best way forward in

addressing the existence and importance of

invariants is to develop procedures to compare

the relative variation in the proposed invariant

across species to variation in other scale-free,

but not necessarily invariant, measures. If pro-

posed invariants can be expressed in terms of

other scale-free measurements, randomization

procedures can be used to determine whether

the observed values of the invariant are a par-

ticularly constrained subset of those that are

obtained when the scale-free measurements

are allowed to vary independently. Further-

more, this emphasizes that although life-history

invariants are often seen as the flagship of the

dimensionless approach, the two are in fact

separate, and there is no doubt that the di-

mensionless approach is useful for organizing

life histories and looking for general differences

across taxa (1, 6, 29). There may even be a

benefit to generalizing the study of dimension-

less quantities beyond simple ratios to other

homogenous functions of degree zero. Al-

though the dimensionless numbers being exam-

ined may not be invariant, the mean values

may still differ in interesting ways across taxa.

For example, the relationship between the age at

maturity, a, and the average adult life span, A,

groups taxa into poikilothermic indeterminate

growers (fish, nematodes, and shrimp), mam-

mals, and birds (1, 10). Such analyses suggest

differences that are likely to reflect major

differences in the forms of the underlying

tradeoffs and open up an array of questions that

are more specific (6).
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Multiple Causes of High Extinction
Risk in Large Mammal Species
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Jon Bielby,2 Olaf R. P. Bininda-Emonds,5 Wes Sechrest,4-

C. David L. Orme,1 Andy Purvis1,3

Many large animal species have a high risk of extinction. This is usually thought
to result simply from the way that species traits associated with vulnerability,
such as low reproductive rates, scale with body size. In a broad-scale analysis of
extinction risk in mammals, we find two additional patterns in the size
selectivity of extinction risk. First, impacts of both intrinsic and environmental
factors increase sharply above a threshold body mass around 3 kilograms.
Second, whereas extinction risk in smaller species is driven by environmental
factors, in larger species it is driven by a combination of environmental factors
and intrinsic traits. Thus, the disadvantages of large size are greater than
generally recognized, and future loss of large mammal biodiversity could be far
more rapid than expected.

A major challenge for conservation biology is

to explain why some species are more likely to

be threatened with extinction than others (1).

One of the traits associated most often with

high extinction risk among animal species is

large body size (2). In mammals, for example,

declining species considered threatened with

extinction are an order of magnitude heavier

(1374 T 1.43 g), on average, than nonthreat-

ened species (139 T 1.13 g) (3). Futhermore,

the size selectivity of the current extinction

crisis echoes past extinction events such as that

of the late Pleistocene, which dispropor-

tionately affected larger species (4, 5). How-

ever, it is not clear which mechanisms are

primarily responsible for the association be-

tween body size and extinction risk (5–9), and

a thorough investigation requires large com-

parative data sets for sizable groups of species

spanning a wide range of body sizes. Here, we

investigate the association between size and

risk with the use of a data set including nearly

4000 species of nonmarine mammals, a group

spanning eight orders of magnitude in body

mass, from the 2-g least woolly bat to the

4000-kg African elephant.

We used multiple linear regression on phy-

logenetically independent contrasts (10) to test

associations between extinction risk and a

range of predictor variables. As our measure

of extinction risk, we followed previous studies

in the use of classifications based on criterion

A of the IUCN Red List (3), converted to a

numerical index from 0 to 5 (11–13). This

corresponds to a coarse but quantitative mea-

sure of the rate of recent and ongoing decline

and excludes those threatened species listed

simply on the basis of small geographic distri-

bution or population size (3). Potential pre-

dictors of extinction risk can be grouped into

three broad types: (i) environmental factors,

where the size and location of a species_

geographic range determines the environmen-

tal features and human impact to which it is

exposed; (ii) species_ ecological traits, such as

population density; and (iii) species_ life-

history traits, such as gestation length. To

represent each of these types, we selected six

key predictors Egeographic range size, human

population density, an index of external threat

level, population density, gestation length, and

weaning age; see (10) for justification^.
Extinction risk shows a positive association

with adult body mass Et 0 3.86, degrees of

freedom (d.f.) 0 1530, P 0 0.0001, controlling

for geographic range size^. In separate regres-

sion models, each key predictor except wean-

ing age is also significantly associated with

extinction risk (Table 1). When a term de-

scribing the interaction between body mass

and the key predictor is added to each model, a

significant interaction is found in every case

except in the model for geographic range size

(Table 1). In every model, the sign of the

interaction term indicates that the slope of

extinction risk against the key predictor

becomes steeper with increasing body mass.

The effects of risk-promoting factors on ex-

tinction risk, therefore, become stronger as

body mass increases.

To visualize the effects of these interactions

between body mass and the key predictors on

extinction risk, we fitted models within a slid-

ing window with a width of 2 units on the

scale of ln(body mass) and moved the window

along the body-mass axis at increments of 0.5

units (Fig. 1). For all predictors, slopes of

extinction risk varied substantially along the

body-mass axis, confirming the significant

body-mass interactions in the regression mod-

els. In all cases, there was a sharp increase in

slope toward the upper end of the body-mass

scale, with steepest slopes found in or near the

largest body-mass interval. For weaning age,

population density, and external threat, this

sharp increase in slope occurs at around 3 kg;

for gestation length and geographic range size,

it occurs above 20 kg. The slope of extinction

risk against human population density in-

creases steadily at smaller body sizes, then

drops sharply at around 3 kg, although the

steepest positive slope is nevertheless found in

the largest body-mass interval (Fig. 1).
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