A geometric view of relatedness
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1. Introduction

The first objective of this paper is to introduce a geometric view of
relatedness, as it is relevant to the evolution of social behaviour in the way
pioneered by Hamilton (1963, 1964). The geometric view will suggest a
new definition of relatedness. The exposition of this view will cover a
number of facts about relatedness that have hitherto been available only to
the mathematically competent (or at least adventurous) reader. The
second objective follows on naturally from the first. It is to consider the
status of Hamilton’s rule as an evolutionary principle. There has been a
steady trickle of interesting population genetical theory about the validity
of Hamilton’s rule and this will be briefly reviewed later. My main point
will be that so far as the likely evolution of a character is concerned, this
increasing body of theory confirms Hamilton’s rule in a broad range of
circumstances. The cases where Hamilton’s rule does not apply will be
explained with reference to the geometric view of relatedness.

In pursuit of these two aims, a number of other matters will come to our
attention. An increasingly popular approach to population genetics, the
covariance selection mathematics of Price (1970, 1972), will be explained
and used in a new derivation of Hamilton’s rule. A rough computation will
be made of the frequency of unrelated individuals that happen to be as
genetically similar to an animal as are its relatives of known degree. This is
relevant to the suggestion of Hamilton (1971) and others that individuals
may detect genetic similarity directly. We will also encounter, and
eventually confront and solve, the ‘paradox of inbreeding’ of Seger (1981).
The resolution will lead us to disagree with Jacquard (1974, p. 171), who
suggested that relatedness is a measure of our information and not of
anything real. If this relativism were true, then Hamilton’s rule would be
meaningless.

After that brief summary of my intentions, I wish now to give a fuller
introduction to the paper. The readers for whom this introduction is
intended have met the concept of relatedness and Hamilton’s rule, and find
them so unproblematic that they are surprised that any clarification,
defence, or exposition is necessary. A fair sized literature, to which
reference will be made later, deals with relatedness and Hamilton’s rule,
and its very existence is a good indication that there are problems with
these ideas. However, this literature is mainly mathematical and I aim now
to persuade the confident reader, using words only, that clarification,
defence, and exposition are, after all, necessary for Hamilton’s rule and
the concept of relatedness. I will then give the plan of the rest of the paper,
section by section.
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Firstly, let us take the question whether relatedness is such an easy idea.
A first attempt at showing that full, diploid sibs are related by one-half is to
say that they share half their genes and that they do so because each gene
in their parents has a 50 per cent chance of ending up in each sibling
independently. However, we all share most of our genes, for, at least with
the technology available to us a few years ago, the homozygosity in human
populations was about 80 per cent (Cavalli-Sforza and Bodmer 1971). This
means that two alleles chosen at random from the same locus from random
human beings have an 80 per cent chance of being the same. If we really
meant what we said about relatedness, we would conclude that ‘unrelated’
individuals are, in fact, closely related, with a relatedness of 0.8. The next
step in the argument (Dawkins 1979) is to say that when we said ‘share half
their genes’, we meant not only that the genes had to be identical, but also
that they had to be identical by descent (Malécot 1969). If their parents are
unrelated, then all identity by descent between the siblings must be by
descent from their parents and our conclusion that siblings are related by
one-half is vindicated.

Before proceeding, I should assure the reader that I do not doubt that
the sibs are related by a half, but I am anxious that the argument that gets
us there should be logically impeccable. When we ask if this idea of identity
by descent can be taken seriously for our present purposes, we run straight
into what Seger (1981) discussed under the heading ‘The paradox of
inbreeding’. The paradox is seen by first supposing that in the evolution of
a particular locus, every mutation gives rise to a new allele. It then follows
that any two identical alleles in the population now are descendants of the
same, original, newly mutated allele. Therefore, any two identical alleles
are identical by descent. (This conclusion applies in a weaker, but still
vicious form if mutant alleles are not all unique.) We have come full circle
and are faced again with knowing that sibs are related by one-half, but not
being able to say why.

This problem with the meaning of relatedness is a crucially important
point in trying to prove that Hamilton’s rule is correct. (Hamilton’s rule
states that selection will favour an action by one animal that causes a loss to
itself of ¢ offspring, and a gain of b offspring to another animal to which it
is related by r, provided rb—c>0.) Two approaches have been taken. One
is to show that Hamilton’s rule works for specific kinds of relatives. The
other is to prove that Hamilton’s rule works for any kind of relative, using
some mathematical definition of relatedness. The first method leads to
greater mathematical respectability, while the second is biologically more
general.

The mathematical definitions used in the second method do not refer to
kin connections at all, but only to the fraction of genes shared by
interactants. It follows that these definitions do not in themselves run up
against the paradox of inbreeding, but the paradox will not go away. If we
wish to apply Hamilton’s rule using relatednesses derived from our
knowledge of common ancestry, then we need to be able to make the
connection between common ancestry and the relatedness defined by the
fraction of genes interactants share, and there the paradox creeps in.
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I hope that I have explained why relatedness is a problematic concept.
The confident reader may also be surprised that mathematical models are
built to try to prove or disprove Hamilton’s rule. Its truth may seem
sufficiently obvious, but again this is not so. In the simplest, central case,
there is little doubt that the rule does apply. Equally, there are now many
cases known where there is no doubt that Hamilton’s rule does not apply.
Charlesworth (1978) gave one good example in which Hamilton’s rule fails,
which I shall recount briefly. Nestlings that are full sibs have the
opportunity to commit suicide to increase the survival of their fellow
nestlings. What is the condition for a dominant allele to spread that causes
nestlings to take this opportunity? How large must the increase in survival
of their fellow nestlings be to justify this sacrifice?

The answer is that this allele can never spread. All the bearers of the
altruistic allele commit suicide. It follows that there will be no copies of the
altruistic allele next generation. The point of this example is that a naive
application of Hamilton’s rule would give the wrong answer. We need
principles that tell us when Hamilton’s rule will fail, as it does here. That is
the point of trying to prove Hamilton’s rule. The interest is focussed on
what assumptions we need to make to prove it. A general proof with few
assumptions makes Hamilton’s rule a general rule; if only proofs with
many special assumptions can be found, this means Hamilton’s rule is of
limited applicability. A biologist who applies Hamilton’s rule in the field
should be most worried about its scope of validity, for only if it is true for
all sorts of genetic systems can he hope that it applies to the usually
unknown genetic system that governs the character he is studying.

Relatedness, then, is a concept that needs explaining and Hamilton’s
rule needs proving. The second method of modelling Hamilton’s rule
mentioned above consists of finding the right concept of relatedness to
make Hamilton’s rule work and that is what I shall do here.

Section 2 contains the new derivation of Hamilton’s rule and, on the
way, an exposition of the covariance selection mathematics of Price (1970,
1972). It concludes with a new definition of relatedness, which is the main
point of the section. Section 3 is, by contrast, not at all mathematical and
explains the geometric interpretation of the new definition of relatedness.
It aiso explains how this definition of relatedness is connected to ordinary
notions of kinship and why it is the right definition to make Hamilton’s rule
work. This is the section that contains the first main message of the paper
and readers who are positively afraid of equations should start with it.
Other sections can be viewed as showing that different parts of this
message are true. Section 2 proves that the new definition makes
Hamilton’s rule work. Section 4 proves that the geometric definition of
section 3 is the same as the algebraic one of section 2. Section 5 proves
that the geometric definition of section 3 really is connected to ordinary
notions of kinship under certain assumptions, which it goes on to spell out
and explain.

The last three sections are almost free of mathematics. Section 6
contains the second main message of the paper, that Hamilton’s rule is a
good evolutionary principle. It does this by arguing that the assumptions of
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section 5, while fairly restrictive for the application of Hamilton’s rule to
population genetics questions such as the rate of spread of particular
alleles, are much less restrictive for the application of Hamilton’s rule to
broader evolutionary questions, such as the likely outcome of selection on
a particular character. In the seventh section, I survey previous papers on
Hamilton’s rule and relatedness, and section 8 contains brief conclusions.

I have tried to make the paper intelligible to those to whom equations
appear as a blur and to the extent that I have failed I apologize. As is often
the case, the important conclusions and arguments are not mathematical,
but a few essential points are. I hope that, provided these few essential
points are taken on trust, the non-mathematically inclined reader can
follow the important arguments and understand the important conclusions.

2. A new derivation of Hamilton’s rule

This section contains a new derivation of Hamilton’s rule, using the
covariance selection mathematics of Price (1970, 1972). Price’s method is
also explained in some detail. Some previous derivations have used Price’s
method (Hamilton 1970, 1975; Seger 1981; Uyenoyama et al. 1981) to
varying degrees. Applications of Price’s method will be reviewed later in
this section. Here I give a derivation that allows each individual to have its
own ploidy, and whose formulation covers both single allele and multi-
allele, and single-locus and multi-locus models. These extensions are
natural within Price’s method and their value is that they unify in one
treatment results that would otherwise have to be proved separately. For
the purposes of this paper, they mean that our definition of relatedness will
be appropriate for arbitrary ploidies and any number of alleles. Other
derivations will be discussed in section 7, when ideas to be developed later
will allow more fruitful comments to be made.

What exactly, then, is the rule we are setting out to derive? It is a rule
that tells us whether natural selection will favour any social action, where
by a social action we mean an action that has consequences for the number
of offspring of the animal performing it and also for the number of
offspring of some other animal of the same species. According to the rule,
we need to know only three numbers to decide if selection will favour a
social action. Firstly, the effect of the action on the actor’s number of
offspring; because of the special interest in altruistic actions, this is
conventionally measured as the decrease in the actor’s number of
offspring, is called a cost and denoted c. Secondly, the effect of the action
on the recipient’s number of offspring, conventionally measured as an
increase, is called a benefit and denoted b. Thirdly, a quantity known as
the relatedness of the actor to the recipient, denoted r. Hamilton’s rule
states that the social action is favoured by natural selection if

rb — c>0. 1

The rule was first derived by Hamilton (1963, 1964) and it has a very
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simple biological interpretation. The actor values one offspring of the
recipient as a certain fraction of one offspring of its own. That fraction is
the relatedness. The remarkable property of eqn (1) is its simplicity as a
summary of, or prediction about, the results of quite complicated
population genetics models. The dominance of the alleles involved is not
mentioned in eqn (1), nor are the number of loci and the ploidies of actor
and recipient. In many ways it looks too good to be true. Our aim in
deriving Hamilton’s rule, when we are not quite sure how relatedness is to
be defined, is to find a condition that tells us whether a social action is
favoured by natural selection, then to see if we can choose a definition of 7
to make this condition equivalent to eqn (1). This definition is the one we
will adopt. Of course, we must then examine its properties to see what
resemblance it bears to our notions of kinship and common ancestry.

This is a good place to introduce a distinction, made by Crozier (1970),
between relatedness and relationship. We may explain r in eqn (1) in two
ways. The first is to say that it measures the genetic similarity between
donor and recipient, the extent to which they possess the same genes
(Crozier’s ‘relatedness’). The second is to say that r is a measure of
common ancestry and can be computed from a family tree (Crozier’s
‘relationship’). Now genetic similarity has many possible causes, of which
common ancestry is only one. Genetic similarity makes Hamilton’s rule
work, but it is common ancestry that we are likely to know when we wish to
apply it. For this and other reasons we shall come across in due course,
Hamilton’s rule is most useful when the genetic similarity is caused solely
by common ancestry. In section 6, we shall see that common ancestry
causes genetic similarity of a very special kind. The definition of r we
uncover later in this section will be a measure of genetic similarity. Its
connection with common ancestry is the topic of section 5. While the
substance of the distinction is very important, it is confusing to use such
similar words for concepts to be contrasted. In this paper, I have used the
word relatedness for both concepts where confusion is unlikely, and
explicitly refer to genetic similarity or common ancestry where necessary.

In the next subsection, Price’s method is developed and explained and its
uses reviewed. The following subsection uses Price’s equation to derive
Hamilton’s rule.

PRICE’S COVARIANCE SELECTION MATHEMATICS

Now we turn to Price’s method, which is a pleasing way of doing
population genetics (Price 1970, 1972). I give here an account of one fairly
general use of Price’s method which I have found useful. Other accounts of
aspects of Price’s method are given by Hamilton (1975), Seger (1981), and
Wade (1985). Assume discrete generations. We begin by taking all the
individuals in one generation and indexing them, that is to say, giving each
of them a number rather as houses in a street are given numbers for ease of
reference. We then want to measure four things about each individual,
considered as a potential parent. They will be four numbers and every
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potential parent will have its own set of these four numbers. For the ith
individual, they will be denoted:

I; the ith individual’s ploidy;

w; the number of successful gametes of the ith individual, per
haploid set;

Di the ith individual’s ‘p-score’ (see below for definition);

pi + Ap; the average p-score of the ith individual’s successful gametes.

- Let’s take these in turn. An individual’s ploidy is the number of haploid
sets of chromosomes there are in its genome: this is one for a haploid, such
as most male hymenopterans and human gametes; two for a diploid, such
as hymenopteran females and humans; three for a triploid, such as some
plant endosperm, and so on. We will be very general in our approach and
allow each individual to have any ploidy. The usual circumstance is that all
males have one ploidy and all females have another. For problems
concerning other genetic entities, such as gametes or plant endosperm, it is
useful to have a general result.

The number of successful gametes per haploid set is just what it says. A
successful gamete is one that contributes to an offspring in the next
generation at whatever stage we decide to count them. The reason for
dividing by the ploidy of the individual parent is its significance in the
theory. We want to know the average success of a haploid set. The sole
parent of a haploid with two offspring is better represented genetically in
the second generation than is one of the two parents of a diploid with three
offspring.

The third and fourth numbers, p; and p; + Ap;, lie at the heart of Price’s
method, and to explain them I must explain what I mean by a p-score. The
p-score can be anything that an offspring inherits by averaging together the
gametic contributions of the parents. The simplest example is where the
p-score of an entity (individual or gamete, or group of individuals or
gametes), is defined as the frequency within it of one particular allele.
Thus, in a haploid gamete, the p-score is either 0 or 1. In a diploid
individual, the p-score is either 0, 0.5, or 1. In a population of 50 diploids,
the p-score can be any number out of 100. Let us check that this kind of
p-score satisfies our requirements. If the p-score of the gametes that made
you were both 0, then neither had the allele, so neither do you, so your
p-score is 0. If one gametic p-score was 0, and the other was 1, then you are
a heterozygote and your p-score is 0.5. If both p-scores were 1, then you
have two copies of the allele and your p-score is also 1. In every case, your
p-score is the average of the p-scores of the gametes that made you.

A more interesting choice for a p-score involves all the alleles at one
locus. We can give every allele at this locus a separate number, any number
we choose. Then the average of the numbers assigned to the alleles an
entity possesses is a p-score. For example, suppose we have three alleles,
A, B, and C, and we assign them the values 1, 3, and 11, respectively. A B
gamete has a score of 3, an AC diploid has a score of 6, and an AABC
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tetraploid would have a score of 4. The score of an entity is the average of
the scores of the gametes that made it and so this score qualifies as a
p-score.

One final extension will complete our range of p-scores. The genes in the
previous example were alleles at the same locus. This was an unnecessary
assumption, because even if they were genes at different loci, the defining
property of a p-score would have been satisfied. Thus, the most general
kind of p-score for a haploid entity is the sum of arbitrary values attached
to any number of alleles at any number of loci. For other entities, it is the
average p-score of the haploid sets that make it up.

Our derivation will proceed by following the evolutionary change in a
p-score; because we will not specify which p-score, our conclusions will be
true for any p-score. The range of p-scores for which Price’s method works
means that the same equations will serve for a two allele, single-locus
model, when the p-score is interpreted as the frequency of one allele; for a
polygenic model, in which the p-score is interpreted as the summation of
the small allelic effects that combine to produce the polygenic character
and, indeed, for a whole range of intermediate models. The additive
genetic value of any character (Falconer 1981) can be represented as a
p-score. All this is achieved at the same time as allowing each individual to
have its own ploidy.

Having defined what a p-score is, the third and fourth numbers in the list
above can now be explained. p; is the p-score of the ith individual and the
average p-score of its successful gametes is p; + Ap;. We write the p-score
of the ith individual’s successful gametes as p; + Ap;, because there is a
presumption that an individual’s gametes have the same gene frequencies
as the individual has, and so Ap; will, on average, be 0. The randomness of
meiosis will often make it non-zero in a particular case and meiotic drive
(for an explanation see Wright 1968, 1969, 1977, 1978) would make it non-
zero on average. Let us agree to ignore the effects of meiotic drive, and so
assume where necessary that on average Ap; is 0.

There are two more notational devices to mention before we get down to
work. The first is that a symbol without a subscript represents an average
over all the haploid sets that make up the population. Thus, p is the
average p-score of all the haploid sets in the parental population.
Alternatively, we can think of it as the average p-score taken over
individuals, with each individual weighted by its ploidy. The second device
is that a prime (') denotes the value among the offspring, so that p'
represents the average p-score of all the haploid sets that make up the
offspring. p' is also the p-score of the successful gametes of the parents and
it is this equivalence that we now exploit. '

We now go on to derive Price’s basic equation. The number of successful
gametes of the ith individual, and the sum of all the p-scores of those
successful gametes, are

Liw;

and
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Lwilp: + Apy).

So, using the ¥ notation to denote summing over i, that is adding up these
values for all the individuals in the population, we obtain

2lw;
and
2lwip: + Api).

However, if these are the number of successful gametes and the summed
scores, respectively, for all successful gametes, then the average p-score of
the successful gametes must be given by

Zliw,-(p,- + Ap,) (2)
2lw;

’

p =

To produce Price’s equation from this we need to use two statistical
notions, the expectation and the covariance. The expectation is just an
average, but I use the word to explain why I will use the symbol E to
denote an average. It is an average of the sort described above, over
haploid sets. The covariance of two quantities is the average product minus
the product of the averages and will be denoted Cov. Putting these
definitions into symbols gives us

thpi’
p= Epl = =27
2
w = Ewi 4 _ZM’
2
Iw:AD:
Bnidp) = L
2l
Cov(w;,p;) = E(wp) — E(W)E(p)
_ 2lwp; — 2w 2lp;.
2l DYDY

With these definitions we can rewrite eqn (2) as follows, letting Ap=p’—p,
in keeping with our notational conventions,

wAp = Cov(w;, p)) + E(w;Ap). (€)
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This is Price’s equation, and it expresses in a very general and precise way
an obvious truth. The left-hand side, wAp, is the mean fitness of the
parental population multiplied by the change in mean p-score. As the
mean fitness is always positive, eqn (3) says that we can deduce the
direction of evolutionary change by finding the sign of the right-hand side.
The covariance term is positive if an individual’s fitness is positively
correlated with its p-score and negative if that correlation is negative. This
just tells us that if a high p-score is correlated with a high number of
successful gametes, then it will tend to be increased by selection. We could
plot number of successful gametes against p-score, representing each
individual in the population as one point. If the best fitting straight line
(using ploidies as weights) slopes up, then the covariance term is positive;
if the line slopes down, then the covariance term is negative.

The second term on the right-hand side of eqn (3) is the gametic
discrepancy term, representing the effect of the difference between an
individual’s own p-score and the p-score of its successful gametes. If we
were studying random drift, then this term would be important. We have
already agreed to neglect meiotic drive and so the gametic discrepancy
term is on average 0. We now further assume the population is large
enough for us to be able to ignore random fluctuations in this term. We will
deal only with the covariance term.

The essentials of Price’s method have now been derived and the reader
anxious to use it should skip ahead. The rest of this subsection is an aside
about Price’s method. Firstly, following Price (1972), Hamilton (1975),
and Wade (1985), I show how powerful a tool Price’s method can be in
analysing higher levels of population structure, but expand a point made by
Hamilton (1975) about a complication in interpretation that is sometimes
missed. Secondly, I review the uses to which Price’s method has been put.

The extension to population structure is done simply by changing the
interpretation of the symbols we have used. Suppose the population is
divided into groups and that i indexes groups, not individuals. Then /; is the
number of haploid sets in the ith group, p; is the average p-score of the
haploid sets in the ith group, and p; + Ap; is the average p-score of the
successful gametes of the ith group. Equation (3) is still true, by the same
argument, for this new interpretation of the symbols. The covariance term
now represents the effect of selection on groups and the second term is no
longer gametic discrepancy. Rather, it is the effect of the difference
between the p-score of the groups and the p-score of the successful gametes
of the group. Part of this is the effect of individual selection within groups,
by which individuals with, for example, high p-scores have a higher
fraction of their group’s reproduction than individuals with low p-scores.

This decomposition can be expressed formally, using a second level of
subscripting. Let us use g to index groups, and gi to index the ith individual
within the gth group. The expectation and covariance may also be
subscripted, because we can ask for the average or covariance between
groups, and this is what E and Cov stand for; we can also ask for the
average within the gth group, and this is what E, and Cov, represent. The
decomposition is as follows:
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wAp Cov(wg, py) + E(W,Apy)

COV(Wg, pg) + E{COVg(ng, pgi) + Eg(wgi: pgi)}'

The second line is obtained by noticing that the second term in the first line
is the average over groups of an expression of the form w/Ap and so
substituting for it using eqn (3). This recursive scheme could be repeated
by substituting for the third term in the second line, and so on, as discussed
by Hamilton (1975).

It is tempting to suppose that if the within group covariance is negative,
then individual selection is acting against the trait; and if the between
group covariance is positive, then group selection is acting in favour of the
trait; and that in such a case the trait is altruistic in that it favours the
group, but harms the individual who expresses it. It is important to realize
that this is false, if we interpret altruistic as originally defined by Hamilton
(1964). The reason is that the between groups covariance contains, as
Hamilton (1975) put it, ‘a group selection component which is not 0, but
which is bound in unchanging subordination to the individual selection
component’. The between group covariance must be greater than this
subordinate component for the trait to be altruistic in Hamilton’s sense.

It is not hard to understand the source of this subordinate component.
Suppose a trait affects only the bearer’s fitness and is simply advantageous.
Then the within group covariance is positive, because bearers within the
group have more offspring than non-bearers. However, the between group
covariance is also positive, because the groups with more bearers have
more offspring than groups with fewer bearers. This positive between
group covariance is not the result of any help given by the individual to
other members of the group, but occurs because an individual possessing
the allele is himself a fraction (one over the group size) of the group. This is
Hamilton’s ‘subordinate component’. In cases where there is help given to
fellow group members, its influence could be measured by subtracting the
subordinate component from the between group covariance. Better in my
opinion is to follow Hamilton (1975) in analysing the trait in terms of
Hamilton’s rule.

I now turn to a brief review of the influence of Price’s covariance
selection mathematics. The essence of Price’s method, as he expressed it in
his 1972 paper, is the naming of individuals rather than the naming of
genotypes. This means that a subscript refers to an individual rather than
to a genotype or to a gene. This led naturally, in Price’s hands at least, to
the application of the statistical notions of expectation and covariance in
his population genetics models. The method he devised has not been much
used, but two results he derived from it are sometimes cited.

The first result for which he is often cited is that the change in a
character resulting from selection is equal to the genetic covariance of
that character with fitness. This result was derived in a very different way
by Robertson (1966) and named by him (1968) the ‘secondary theorem of
natural selection’. Crow and Nagylaki (1976) develop this theorem further.
For Robertson, this result was important because it allowed the effect of
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selection on a character to be estimated from known quantities, no matter
what incidental selection might be simultaneously carried out. This incidental
selection could arise either because of a correlation of characters within the
population, or just because there were also other selective forces at work.
Other methods depended on the selective force studied being the only one
at work and on the absence of correlation with gther characters relevant
for fitness. Price values the result for its conceptual clarity and generality of
expression.

The second result for which Price is cited is the hierarchical decomposition
of a population variance in a character, or population covariance between
characters, in the way we have just seen. The variance (or covariance) has
a within individual component, then a within group component, then a
within deme component, and so on, to as many levels as desired. The
decomposition is a general one, allowing individuals to have different
ploidies, groups to have different numbers of individuals, and so on.
Wright (references in Wright 1969) had already suggested this kind of
decomposition for his F-statistics. Price used this second result as an
illustration of the power of the first.

The only papers to my knowledge that use Price’s method at any length,
as opposed to citing one of these two results, are Hamilton (1970, 1975),
Seger (1981), Wade (1985), and this paper. I know from as yet unpublished
work of my own, and from comments of others who have used it, that the
method is extremely useful over and above these two results, and I expect
that there will soon be a number of papers that put the method itself to
good use.

THE DERIVATION OF HAMILTON’S RULE

I now return to the main business of the section, deriving Hamilton’s rule,
and to our standard interpretation of i as indexing individuals. We have
obtained Price’s equation, which describes the evolutionary change in any
character. The next step is to model the social interactions that are the
subject of Hamilton’s rule, and in particular, to say how the fitness of an
individual depends on its phenotype and on the phenotypes of the
individuals with which it interacts. In mathematical terms, we wish to
model w;. Suppose pairwise interactions take place, in such a way that one
individual, the actor, has an opportunity to help another, the potential
recipient. If the act is committed, we suppose that the actor’s number of
offspring is decreased by ¢, while the recipient’s number of offspring is
increased by b. (b and c are more precisely the changes in the number of
haplotypes supplied in successful gametes to offspring. In the usual case, a
parent provides one gamete containing one haplotype for each offspring.)
Let m; be the number of interactions in which the ith individual is the actor
and n; the number in which it is the potential recipient.

In order to know how many offspring an individual has, we need to know
what happens in these interactions. On what fraction of the m; occasions on
which it was the actor did the ith individual commit the social act? Let it be
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h;. On what fraction of occasions on which the ith individual was the
potential recipient did the actor commit the act, and thus the ith individual
receive the benefit? Let it be y;. I will refer to h; as the phenotype of the ith
individual, because h; summarizes its actions. Similarly, y; is the mean
phenotype of the actor on the occasions on which the ith individual is the
potential recipient. The net effect of all these social interactions on the
number of offspring of the ith individual is

(ny)b — (mhy)c.

Now this is the difference made by these social acts, but it is possible that
the baseline fitness, to which this difference must be added, varies from
individual to individual. The most obvious reason is that the baseline
fitness of males and females may be different. If there are different ploidies
within one sex, then the baseline fitness may be different for different
ploidies. Finally, the baseline fitness may vary because selection of other
characters is going on in the population or simply through random
variation in number of offspring. Let the ith individual’s baseline fitness be
f;- Then its number of offspring is

fi + nyb — mhc.

w, is the number of offspring of the ith individual, divided by its ploidy, and
so we arrive at the following:

w; = ll (fi + niyb — mbyc). @)

This is the required model of w;.

The next step is to combine our model of social interactions with Price’s
equation, so that we can look at the effect of social interactions on the
systematic evolutionary changes in a p-score. We do this by using eqn (4)
to substitute for w; in eqn (3) without its last, gametic discrepancy, term.
This gives

wAp = Cov(p;, wy)

= Cov(p,-,ll {f; + nyb — mhc))

= Cov(p,-,lli') + bCov(p,-,-nl'—‘y") - cCov(p,-,ﬂliii). )

1 4

The second step follows because covariances are distributive over addition.
The first of the three covariance terms is between the p-score and
baseline fitness, and represents the effect on evolutionary change in the



40 Alan Grafen

p-score of forces other than the social interactions. It is the remaining two
terms that we will study further. They are to be rearranged. At the moment
they are covariances where each data point is an individual. Hamilton’s
rule is phrased in terms of occasions when help is or is not given, and the
rearrangement is to convert the covariances across individuals into
covariances across occasions. Our focus shifts from a list of individuals to a
list of occasions. Just as each individual had a list of numbers associated
with it, so each occasion has a list of numbers. Let us index occasions by j,
just as we indexed individuals by i. Thus, we will speak of the jth occasion.
We define the total number of occasions as J. The numbers for each
occasion are

D; the p-score of the actor on the jth occasion;
R; the p-score of the potential recipient on the jth occasion;
H; the phenotype of the donor on the jth occasion, that is 1 if the

act is committed and 0 if it is not. (h; is the average of H; for
those occasions on which the donor was the ith individual.)

The expressions I will form from these variables are not strictly
covariances, though they are covariance-like. I use the symbol K to
represent them, and they are defined by:

K(H;,D)) = % 2H{(D; - p)

and

1

K(H},R)) =7 >H{(R; — p)-

Thus, the first K is the average value across occasions of the product of the
donor’s phenotype and the donor’s deviation from the mean p-score of the
population. The second is the average across occasions of the product of
the donor’s phenotype and the recipient’s deviation from the mean p-score
of the population.

The K’s would be covariances if p were the average p-score of actors in
the first expression and the average p-score of potential recipients in the
second. Instead, in both cases it is the average p-score of the population as
a whole. This will be relevant later.

In order to assert the algebraic relationship between the covariances
across individuals and the K forms across occasions, let a be the number of
occasions in a generation divided by the number of haploid sets in the
parental population. That is,

_omy_2xn _ J

a==—=="t=—
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The following identities are easily proved by expanding the covariances
and K forms:

Cov(ﬂ;’ﬁ, p) = oK(H,, D))

Cov(n‘y', pi) = oK(Hj, R)).

We can use these equations to substitute in eqn (5), and find that, for a
p-score uncorrelated with baseline fitness,

and so, providing K(H;, D)) # 0,

wAp = aK(H,, D,.){ (( 1)) b - } . (6)

This is the end of the derivation. Equation (6) is the expression we have
been looking for; let us see why. The p-score increases from one
generation to the next if wAp is positive and decreases if it is negative. The
sign of wAp can be found from the signs of the three terms on the right
hand side of eqn (6). a is positive by definition. The second term is positive
for p-scores that are positively associated with committing the social action
when the opportunity arises; let us restrict attention to those p-scores.
Whether the p-score then increases or decreases depends on the sign of the
third, bracketed term and it is to this we now turn.

If we allow ourselves to represent the ratio of K forms by one symbol
and go so far as to use the symbol r, then we can rewrite the condition that
the decisive third term is positive, so that the p-score increases, as

rb —c>0.

However, this is exactly Hamilton’s rule, as stated in eqn (1). We have
proved Hamilton’s rule, given that we are prepared to define r to be the
ratio of K forms in the third term of eqn (6); that is

- ZI-IJ’(R]' _ P) (7)
2H(D; - p)

The problem now is that having defined r in this way, as a measure of
genetic similarity (Crozier’s relatedness), we cannot assume that it has any
connection with kinship (Crozier’s relationship). Equation (7) is a
particular way of measuring genetic similarity and its differences from
previously suggested measures will be discussed in section 7. The most
useful property of relatedness, as usually understood, is that it expresses a
connection between two individuals that can be computed from ancestry.
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Equation (7), on the other hand, looks as if it could be different for
different p-scores and for different characters, which would be a serious
inconvenience in applying Hamilton’s rule. However, all we can do is to
explore the properties of r as defined by eqn (7) and hope for the best; for
that is the definition which makes Hamilton’s rule work and so we are stuck
with it, however inconvenient it may turn out to be. Much of the rest of the
paper is concerned with exploring the consequences of defining relatedness
by eqn (7).

I end this section by reviewing it. We set out to find a definition of
relatedness that would make Hamilton’s rule work and we found one. In
the process, we encountered the very powerful technique of Price’s
method. Our derivation of Hamilton’s rule is valid for populations in which
different members have different ploidies, for asexual, bisexual, and
trisexual populations, for varying numbers of social encounters per
individual, and for cases where the interacting individuals are not
genetically representative of the population. It is true for populations with
any kind of geographical structure and any kind of inbreeding. This
generality will prove to be somewhat illusory, however, owing to
complications in the interpretation of r. Hamilton’s rule is true for any
p-score on which selection acts only through the social behaviour
modelled, but for other p-scores it tells us the effect of the social behaviour
on the direction of selection of the p-score. (Naturally, it cannot predict
changes in p-scores that are the consequence of processes we have not
modelled!) In the next section we start from quite different considerations
to arrive at a way of measuring genetic similarity that turns out to be
intimately connected with the definition of relatedness discovered in this
section. Succeeding sections explore implications of this coincidence.

3. A geometric view of relatedness

Leave aside the newly discovered formula for r, to which we shall return,
and concentrate instead on genetic similarity, which is what we intend
relatedness to be a measure of. There are many senses of similarity, and to
explain the particular kind of genetic similarity I have in mind in this
section, it helps to have a picture. Figure 1 is a very simple picture indeed.
The line represents the frequency of one particular gene, where one end is
0 and the other end is 1. We can represent individual animals on this line
according to the frequency of the gene they possess. A haploid creature
must lie at one end of the line or the other, because it either has the gene or
it doesn’t. A diploid creature must sit at one of the ends if it is a

f —

0 1

Fig. 1. A line representing a gene frequency, on which various entities can be
represented. A haploid either has the gene or doesn’t, and so its gene frequency is 0
or 1, and must lie at one end or the other of the line. A diploid’s gene frequency is
either 0 or 1 for a homozygote, or 0.5 for a heterozygote.
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0 1
U R A
0 1
A R U
0 1
o1
U A
R

Fig. 2. Three examples of possible relationships between the gene frequencies of
the population (p), the actor (A) and the potential recipient (R). The relatednesses
are, in order starting from the vop, 0.5, 0.25, and 0. The population mean is not the
same in each example.

homozygote, or in the middle if it is a heterozygote. We can also use a
point to represent the average gene frequency in a population and, if the
population is large, we can think of the population mean as lying at any
position on the line.

Consider three points on the line. The point designated p. is the
population mean, the point A is the actor, and R is the position of the
average gene frequency of the potential recipients of the actor. This simple
diagram contains all the necessary ingredients for the geometric view of
relatedness, which is as follows. Take the line that runs from u to A. Then
the relatedness of the actor to the potential recipients is the fraction of the
way along the line that R is found. If R is at the beginning of the line, at p,
then the relatedness is 0. If R is half-way in between the two points, then
the relatedness is 0.5. If R is at the same point as A, then the relatedness is
one. Some examples are illustrated in Fig. 2.

This is the geometric view of relatedness. I will develop it in a number of
ways. I shall first explain how it can be extended into more dimensions so
that it becomes a general picture of how whole genomes are related, rather
than just of the presence of one allele at a single locus. I will then say how it
relates to the more obvious ideas of relatedness such as sibship and other
ancestral links, and thirdly why it is the right concept of relatedness to use
in Hamilton’s rule. These points can be seen as the formalization of the
intuition that Hamilton’s rule is obvious (at least in retrospect). In the next
section I will make the connection between this simple picture of
relatedness and the definition of r adopted in the previous section.

First the extra dimensions, to represent more than one allele, and more
than one locus. The essentials of the picture, the points w, R, and A stay
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Fig. 3. The p—R-A line in a triangle representing the allelic frequencies at a locus
with three alleles. The relatedness is the fraction of the way from w to A at which R
is found.

the same: only the background changes. The simplest example is a locus
with three alleles. The genotype at this locus can be represented as a point
inside a triangle such as Fig. 3. The distance from each line represents the
fraction of the corresponding allele. Haploid creatures must sit at one of
the three corners. Diploid homozygotes also sit in a corner, but diploid
heterozygotes sit at the midpoint of one of the sides. A triploid organism
with one of each allele can sit in the middle of the triangle. Again, the
mean of the population can be represented in the diagram and, if the
population is large enough, it can be practically anywhere in the triangle.

Now think of the three points ., R, and A, and in particular of the line
from p to A. Later a whole section is devoted to the possibility that R does
not lie on this line, but assume for the moment that R does lie on the p—-A
line. Again the relatedness is the fraction of the way along the line from p
to A at which R is found. The example can be extended to any number of
alleles at one locus by imagining a tetrahedron for four alleles, then a
tesseract for five, and so on.

Figure 4 shows a different extension to two dimensions. This is a square,

_A
1

0

0 1

Fig. 4. The p—R-A line in a square representing the frequency of one allele at each
of two loci.
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in which each axis corresponds to a different locus, each locus having two
alleles. One point in the square represents the frequency of the alleles at
each of two loci. Again individuals can be represented as points. Haploids
sit at a corner. Diploids sit at a corner if they are double homozygotes, on
the middle of an edge if they are homozygous at one locus and
heterozygous at the other, and right in the middle of the square if they are
double heterozygotes. The population can be represented by a point in the
square, and so once again we can have the three points, p, R, and A. Once
more, the relatedness is the fraction of the way along the line from . to A
at which R is found. This same idea can easily be extended to any number
of alleles at any number of loci. We can imagine a space in which one point
represents the whole genome of an organism and the same three points
could be found, and the same computation of relatedness made. p, R, and
A are what Jacquard (1974) called ‘genic structures’.

Now what does this geometric picture of relatedness, of genetic
similarity, have to do with ordinary notions of common ancestry, such as
being someone’s sister or second cousin? Suppose you are diploid, and you
know your own position in genetic space and the position of the population
mean as well. How can you compute the position of your offspring? Any
particular offspring is at a particular place, of course, but where on average
do you expect an offspring to be? Let’s assume panmixia and an infinitely
large population. One allele at each locus in your offspring comes from you
and one from your mate. So your offspring are on average half-way
between you and your mate in genetic space. Your mate is on average at
the population mean, since this is the meaning of the assumption of
panmixia. It follows that your offspring are, on average, half-way between
you and the population mean. What then, in the geometric view, is your
relatedness from you to your offspring? The answer is a half. Offspring
themselves may have offspring, and their position will, by the same
argument, be half-way between your offspring’s position and the population
mean. They are therefore three-quarters of the way from you to the
population mean, and so they are one-quarter of the way from the
population mean to you. You are therefore related to them by one-
quarter.

A similar argument can be used for a sibling. Each of my two alleles at a
locus came from a different parent, and so each allele had a separate 50 per
cent chance of also being transmitted to my sibling, who shares both
parents. So there’s a 25 per cent chance of each of four possible outcomes:
we share both alleles, only the paternal allele, only the maternal one, or
neither. So the average fraction of alleles shared by copying from parents is
a half and the average position of the shared part is my own position in
genetic space. The unshared fraction of my sibling’s genotype is filled with
genes about which, because of the assumption of panmixia, I can assume
that they are drawn at random from the population. Hence, the unshared
fraction of a half has its average position in genetic space at the population
mean. My sibling is on average half me, half the population mean, and so
my sibling’s average position is half-way between me and the population
mean. So my relatedness to him is one-half.
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Similar arguments can be constructed for other relationships. The point
is not that these methods of computing relatedness are novel, far from it.
Charnov (1977) applied them algebraically in his derivation of Hamilton’s
rule. Rather, the point is how easily the methods fit into the geometric view
of relatedness. The picture is a helpful way of seeing how the arguments
work.

Turning from how the geometric view accords with the concepts of
common ancestry, we move on to the question of what connection it might
have with the evolution of social behaviour. The mechanism of evolution is
changes in gene frequency. If an individual at p, the population mean,
reproduces, then the gene frequencies are not changed because the
addition to the offspring population has the same gene frequency as the
adult population. On the other hand, if another individual, say the actor at
A, reproduces, then this moves the offspring population slightly from w to
A, perhaps only a little way, but if everyone near A reproduces more than
average, then this will cause the changes in gene frequency that underlie
evolution.

Take A’s view. Reproduction by an individual at ., or equal reproduction
by members of a group whose mean position is at w, is irrelevant.
However, someone else at A reproducing has exactly the same effect on
gene frequencies as if A itself reproduced. If an individual half-way in
between produces two offspring, then this will have the same effect on
gene frequencies as if someone at p had one offspring and someone at A
had the other. Similarly, if an individual whose position in genetic space
was one-eighth of the way from p to A had eight offspring, then this would
have the same effect on gene frequencies as if someone at p. had seven
offspring and someone at A had one. The general drift must now be clear.

A physical analogy can be made. The process is rather like placing
weights on a rod with a fulcrum at w.. To produce the same turning moment
as one offspring at A, we would need two offspring at half the distance
from p to A, or four offspring at a quarter the distance from p to A, and so
on. The same turning moment corresponds to the same strength of effect
on the gene frequency of the next generation. Hamilton (1971) used the
analogy of different concentrations of liquid for the same purpose.

So if an individual reproduces who is a fraction \ of the way from . to A,
we can in our imaginations divide the set of offspring into two parts. The
first, a fraction 1—\ of the offspring, at ., and the second part, a fraction A
of the offspring at A. The combined average position of these two parts of
the set of offspring is the same as the position of the original offspring, and
so the effect on the gene frequency changes will be the same. However, the
existence of the fraction at p will not contribute to changes in the
population gene frequency, because it is equal to the old population mean.
The fraction at A, on the other hand, will change it and will change it to the
same extent as if A had reproduced, but had only a fraction \ times as
many offspring. Hamilton (1964) called the fraction 1—\ the ‘diluting
factor’, because it does not change the direction of evolution, but does slow
it down.

These arguments all show the same thing. That A should value R’s
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reproduction as a certain fraction of its own, because they would have the
same effect on gene frequencies as a certain fraction of its own. Further,
that fraction is the distance along the line from w to A at which R can be
found.

My hope is that the reader is now convinced that the geometric view of
relatedness is simple, is connected in a straightforward way with ordinary
notions of common ancestry and is plausibly the right kind of concept to
make Hamilton’s rule work. Before going on to the next section, though,
there is one complication that should be mentioned because we will not
return to it. It is the possibility of negative relatedness, whose relevance to
the evolution of social behaviour was first explained by Hamilton (1970,
1971).

Negative relatedness means that one individual is genetically less similar
to another than it is to a random member of the population. It has an
obvious geometric interpretation. R is on the line that passes through p
and A, but it is not in between those two points. Rather it is on the other
side of . from A, as in Fig. 5. R deviates from p in the opposite way to that
in which A deviates from p. The consequence of this is simple enough. A
values R’s offspring negatively and will be prepared to give up offspring of
its own to prevent R reproducing. This is what Hamilton called spite
(Hamilton 1964, 1970, 1971; Knowlton and Parker 1979).

We can also say a little about how negative relatedness might arise and
the simplest plausible way involves a small population size. w is the
population mean and A is one of the individual in the population. If we ask
what is the relatedness of A to a random member of the population, the
answer is immediate: it is zero because p is at a fraction zero of the way
from p to A. However, what is the relatedness of A to an individual chosen
randomly from the other members of the population, excluding the
possibility that it might be A itself? The answer is illustrated in Fig. 5. Let
N be the population size. Take R to be the average position of the
members of the population excluding A. p is the mean of R weighted by
N-1, and A weighted by 1. It follows, as Hamilton (1971) first showed,
that the relatedness of A to R is —1/(N—1). This is negligible if the
population is not very small, but is the basis for the models of spite cited
above. The alert reader may have noticed that a small population affects
our calculations of relatedness to relatives as well, for similar reasons, but

— vV
1 : N-1

Fig. 5. The relatedness of an individual to the rest of the population is negative,
because R lies on the other side of . from A. The relative lengths of the line
segments are 1:N-1 because w is the average of R weighted by the N-1 other
members of the population, and A weighted by one. This means that the
relatedness is -1/(N-1) as Hamilton (1971) first showed.
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again this has a negligible effect when the population is large. I have
presented the geometric view of relatedness rather informally in the hope
of being intelligible. The two connections of the geometric view, with
social behaviour and kinship, can be made more rigorously, and this is the
task of the next two sections. By making the connections in a more
mathematical way, we prepare for answering the question of how generally
Hamilton’s rule applies, the topic of section 6.

4. Hamilton’s rule and regression

The connection of the geometric view of relatedness proposed in the
previous section on the one hand, with the definition of r from section 2,
and with the notion of common ancestry, on the other, must be made
within some formal framework. Regression is the framework I shall use. It
is ideally suited because it has an algebraic side, in which to do things, and
a geometric side, in which to think about what to do and how to do it.
Relatedness was first treated as a regression coefficient by Hamilton (1970)
and later by many others. However, in all cases they use only the algebraic
aspect of a regression, as a covariance divided by a variance. The
interpretation of these regressions in geometrical terms is the basis of the
view of relatedness expounded in the previous section.

The first step is to find an algebraic way of saying that the average
position of R, which is the average position of the potential recipients of A,
lies on the line from p to A. If it is a fraction B of the way from p to A, then
we can write

E(R) = (1-B)n + BA,

or, after slight rearrangement,
ER) = p + B(A — p).

The average value of R depends on the position of A and, if we imagine
that A can vary, formally that A is a random variable, then we should write
the average value of R conditional on the value of A as the left-hand side of
this, giving

E(R|A) = p + B(A—p). ®)

This is in statistical terms a regression equation, that is, it gives the
expectation of one variable conditional on the value of another. It is a
linear regression equation. We can compare this to the more familiar form,
often used to represent the model in a simple, univariate regression of y on
x in statistical textbooks:

E(ylx) = a + Bx,
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or
y = a + Bx + error

The differences between these two regressions are as follows. In the first,
the dependent variable is R, and the independent variable is A — ., while in
the second the dependent variable is y and the independent variable is x.
Those are merely notational differences. Usually, o is unknown and needs
to be estimated, while we regard p in eqn (8) as known. Finally, u, A, and
R may be vectors in some large dimensioned space [the ‘genic structures of
Jacquard (1974)], whereas a, x, and y are ordinary numbers. For ease of
explanation, I want to discuss the simple case where n, A, and R are
ordinary numbers, and represent a p-score of the population, actor, and
-potential recipient, respectively. (The case where they must be treated as
vectors is important when we want to estimate relatedness from electro-
phoretic data).

We have now expressed in an algebraic way the statement that R lies at a
certain fraction of the way along the line from p to A. The next step is to
find a connection between this algebraic statement, and the algebraic
definition of r in section 2. To do this, we will pretend we are trying to
estimate B from our regression eqn (8), using the set of occasions in one
generation as data. Of course, we don’t have that data as a set of numbers
in any example, but we can nevertheless find an algebraic expression for
what we would estimate B to be if we did.

What form does this data take? Recall the notation of section 2. On the
jth occasion, the actor’s pscore was D; and the potential recipient’s p-score
was R;. There were J occasions in all. So the (x,y) data points we have with
Wthh to estimate 8 are the J palrs (Dj, R p.) In order to see how to
estimate {3, it is convenient to rewrite eqn (8) in a more convenient form,
as

where ¢; is the deviation of R; from its expected value.
We could rearrange eqn (95 to give

B=R1'—F‘_ &

and this suggests taking the first term on the right-hand side as an estimate
of B. The reasons are that we know all the terms in it, whereas ¢ is
unknown, and that the second term is on average 0 because ¢; is. However,
this would give us a separate estimate of B for each occasion and, as our
biological hypothesis implies that the set of occasions can be taken
together, we want a combined estimate from all J occasions. Accordingly,
we multiply eqn (9) by arbitrarily chosen constants z; giving

Zle' = Zj}L + BZ](D] - p.) + Z]‘Ej,
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and then adding up over all occasions to get
2zR; = Zzjp + BEz(D; — ) + 225
and rearranging as before to give

ZZ]'(R]‘ — P«) _ EZ/E]'
sz(Dj ") sz(Dj - p’

B =
This suggests in the same way as before an estimate b of the form

p = 4R — ) (10)
sz(D;' - W

This is an unbiassed estimate of B provided only that the z; are not
correlated with the €;. Now I introduced the z; as arbitrary constants and
promised to return to them. A standard statistical argument goes on from
eqn (10) to find the most efficient choice for these arbitrary constants, from
the point of view of minimizing the sampling variance of b while
maintaining its property of unbiassedness. However, we part company
with the statistical argument here and choose to compare eqn (10) with our
definition of r in section 2.

Let me repeat the definition, which was eqn (7), and set it alongside
eqn (10).

b =22 — W) , = 2H(R, — p)
2z(D; — w) 2H{(D; - p)

These two equations are very similar. One notational difference is that the
population mean p-score is represented by p on the left and by p on the
right. Apart from that, we can make the two right-hand sides identical by
choosing our arbitrary constants z; to be equal to H;.

The identity of these two formulae means that our algebraic definition of
r from section 2 is an estimate of a regression coefficient. Further, it is an
estimate of the regression coefficient that says how far R lies along the line
from p to A. Hence, our geometric picture of relatedness is the same as our
algebraic formula, which was derived so as to make Hamilton’s rule work.
This is the formal version of the purely verbal argument made in section 3
that the geometric view of relatedness was also right for making Hamilton’s
rule work.

The main work of the section is now completed, but there is one
important matter to discuss. We saw that r can be regarded as a special case
of b, an estimate of the regression coefficient that expresses how far R lies
along the line from p. to A. However, what if R does not lie on that line? In
section 3 we assumed that it did, and now we return to look again at that
assumption. The next section considers under what circumstances we
expect the assumption to be fulfilled: here I want to explain the meaning
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Fig. 6. When R lies off the p—A line, the relatedness is different for different loci.
In this example, the relatedness at the locus represented on the vertical axis is 0.5,
while the relatedness at the locus represented on the horizontal axis is 0.

and consequences of its being false. The meaning is clear enough, and is
illustrated in Fig. 6. R falls to one side of the line that joins p. and A. The
immediate consequence is also illustrated in Fig. 6. We can compute r for
any p-score. If we choose first the gene frequency at the locus represented
on the horizontal axis, then we find that r=0, while if we choose the p-score
to be the gene frequency at the other locus, then r=0.5. So, if R lies off the
p—A line, then r between the same sets of individuals is different for
different p-scores, and therefore for different alleles and different loci.

One consequence of this is extremely important, and it is that we cannot
expect to apply Hamilton’s rule simply and usefully. Hamilton’s rule is
most simply applied when we know a group of individuals and some part of
their genealogies. We then expect closer kin to be more co-operative and
altruistic towards each other. This is because we hope to know r from
common ancestry. However, if R lies off the p—-A line, then the r that
makes Hamilton’s rule work varies from locus to locus, and p-score to
p-score, and so cannot depend on ancestry alone. The p-scores that are of
special interest are those that control social behaviour, but it is beyond our
current abilities to discover which loci are involved in those p-scores, to
assess the influence of each allele at each locus, and to measure the
presence of each allele in each individual. Even if we could do this, much
of the value of Hamilton’s rule would be lost. It is the rule’s simplicity and
range of applicability that make it so useful.

Another consequence is subtler. In the formula for b, our estimate of a
regression coefficient, we have a set of arbitrarily chosen constants, namely
the z;. Consider to what extent the value of b depends on which set of
arbitrary constants we choose. If R lies on the p—A line, then the value of b
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Fig. 7. The arbitrary constants determine the slope of the projection of R onto the
u~A line which is used in the computation of relatedness. If R lies on the p-A line,
then a projection with any slope will simply leave R where it is. However, when R
lies off the u—A line, as in the diagram, different projections take R to different
points on the line, leading to different relatednesses.

does not depend at all on which constants we choose. If it lies close to the
line, then the value of b depends weakly on the choice of arbitrary
constants; and if R lies far from the p—A line, then b will depend strongly
on the choice. The reason for this is illustrated in Fig. 7. The regression
involves projecting the position of R onto the u—A line, and the choice of
arbitrary constants determines the slope of the lines used in the projection.

Our definition of r from section 2 is, as we have seen, equivalent to a
choice that the arbitrary constants should be chosen to be H;. The H; are
the phenotypes of the actor on the jth occasion: H; equals 0 if the actor
does not perform the act and 1 if it does. It is the only item in the definition
of r that contains information about dominance or about the way in which
the p-score is related to phenotype at all. It follows that if R lies on the p—A
line, then dominance can have no effect on the direction of change of a
p-score from one generation to the next. However, if R lies off the p-A
line, then dominance can affect the direction of the change. Queller
(1984a) discusses a kin selection model where dominance has an effect and
I will discuss briefly how this can be interpreted in terms of the geometric
view of relatedness.

The example involves triploid endosperm in plants. This is a tissue that
acts as an intermediary in the flow of resources between the parent plant
and a seed. In the simplest of the genetic arrangements, the endosperm
receives the same genetic contributions from each parent as the seed does,
but it receives the maternal contribution in double dose. The endosperm is
therefore triploid. The kin selection question is how the endosperm will be
selected to act in its crucial role. Will it have the same interests as the
parent, or as the seed, or somewhere in between?

This problem is the subject of a number of papers and this paper is not
one of them. I want to concentrate on only one aspect of it and that is what



Geometric view of relatedness 53

p-score of .-1 full sibs
recipient
..{ cousins
unrelated

ol
0 p-score of actor |

Fig. 8. The lines of best fit to regressions of recipient’s p-score on actor’s p-score,
for sibs, cousins, and unrelated individuals.

is the relatedness of endosperm to seed? Let us use the simplest kind of
p-score, the frequency of one allele. Figure 8 is helpful here and shows
another side to the geometric view of relatedness. It has the actor’s p-score
on the x-axis, and the potential recipient’s p-score on the y-axis. The large
point marked P is on the 45° line, and is the point corresponding to the
population mean on both axes. Imagine each occasion plotted on this
graph, using the p-scores of the actor and the potential recipient, and
calculating the line of best fit, on the condition that the line goes through
the point P. (This is the same as redrawing the figure with P as the origin,
and calculating the best fitting line that goes through the origin.) The slope
of this line is the relatedness. Figure 8 shows lines of best fit (to imaginary
data) for diploid siblings, cousins, and unrelated individuals. This graph is
the basis of a method of estimating relatedness from electrophoretic data
(Pamilo and Crozier 1982). Figure 8 is similar to Fig. 1 of Orlove (1975).

The statement that R lies on the p—A line can be interpreted in terms of
Fig. 9. For diploids, we can summarize the data that would appear in Fig. 8
as three points, each with its own weight: the mean p-score of potential
recipients when the actor’s p-score is 0, the mean p-score of the potential
recipient when the actor’s p-score is 0.5, and the mean p-score of the
potential recipient when the actor’s p-score is 1. The weights are the
number of occasions contributing to each point. Now there always is a line
of best fit, whether these three points are in a straight line or not. If R lies
on the p-A line, as in Fig. 9a, then these three points do lie on a straight
line that passes through the point P. The consequence of this is that no
matter how we weight the different points, the best fitting straight line is
the same.

If, on the other hand, the three points do not lie on the same line, as in
Fig. 9b, then how we weight them will affect which is the best fitting
straight line and so its slope, and so will affect r according to our definition
of section 2. Two factors determine the weights given to these three points.



54

Mean p —score of recipient

Alan Grafen

0
p —score of actor

1

0

1
p —score of actor

Fig. 9.(a) The points occupied by squares represent the average p-score of
recipients when the actor’s p-score is 0, 0.5, and 1. When they lie in a straight line,
that line is the best fitting straight line. Therefore, the slope of the best fitting
straight line does not depend on the weights given to the points in the regression.
(b) Here the three squares do not lie on a straight line, and the slope of the best
fitting straight line varies between the two lines illustrated. In this case, the slope of
the best fitting straight line does depend on the weights given to the three points in
the regression.

The number of occasions on which the actor has each of the three
genotypes is one factor, and the other is the weights H; which enter into the
definition of r.

The case of the triploid endosperm is illustrated in Fig. 10. If the
endosperm is homozygous, then the seed is also homozygous. If the
endosperm is heterozygous, then the seed is too. However, both kinds of
heterozygosity in the endosperm (one-third and two-thirds of an allele) are

1 -

p —score of seed

.

0 1
p —score of endosperm

Fig. 10. A plot of the genotype of the seed (vertical axis) against the genotype of
the endosperm (horizontal axis). The points do not lie on a straight line, so the best
fitting straight line depends on how the points are weighted in the regression.
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associated with the same kind of heterozygosity in the seed (one-half of the
allele). Hence, the points do not fall on a straight line. Suppose that the
frequency of an allele determines whether the endosperm transfers extra
resources from the parent to the seed. Then H; equals 1 if the endosperm
does transfer extra resources, and equals 0 if it does not. H; is a weight in
finding the best fitting line and so the best fitting line depends on the
dominance rule. This helps us to understand why, as Queller (1984a) and
Bulmer (1985) show, whether such an allele spreads or not depends on its
dominance. I am very grateful to Dr M. G. Bulmer for drawing my
attention to this example.

The first lesson from this example is that it is important to know when R
lies on the p—A line. When it doesn’t, as in the case of the triploid
endosperm, it is not possible to predict the direction of selection of a
character without knowing its genetics. This makes it much harder to
see how natural selection will have acted on a character of whose genetics
we are ignorant (which is to say nearly all characters). The second lesson is
that our example is rather peculiar, and we may hope that this kind of
difficulty is uncommon generally. We shall see that this example falls
within the category of inbreeding, which turns out to be an important and
general exception. The commonness of this difficulty is the topic of the
next section.

5. When does R fall on the p-A line?

To answer this question, we need a universe of possibilities. This will be
provided by the mathematical machinery of identity by descent (Malécot
1969; Jacquard 1974). Within this set of possibilities, we will distinguish
between those cases where R does and those in which R does not fall on the
p-A line. As we saw in the previous section, this is an important point in
the usefulness of Hamilton’s rule. To the extent that R does fall on the line,
r between the same sets of individuals is the same for all loci and all alleles.

The plan of the section is to introduce the concept of identity by descent,
to explain how this concept is used to describe in a precise way the genetic
consequences of shared ancestry, and then to set out the assumptions
needed to establish that for any non-inbred pattern of shared ancestry
between actor and potential recipient, R will fall on the p~A line. The
plausibility of these assumptions in various circumstances will be discussed.
We will then turn to the way in which genetic similarity between members
of the same local population can be dealt with. The reason why inbreeding
causes difficulties will be treated briefly. Then, as we have been using the
machinery of identity by descent, we must confront the paradox of
inbreeding of Seger (1981). The whole point of this section is concerned to
avoid the conclusion that r varies between alleles and loci, and so at the
end I explain briefly what would be the evolutionary consequences if it did.

Falconer (1981) defines identity by descent relative to a base population
which existed at some time in the past. Two genes are said to be identical
by descent if they are both descended from the same gene in that base
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population. If we allow the base population to be two generations ago,
then we can calculate how many genes at one locus are shared identically
by descent by two outbred diploid sibs. There is a 50 per cent chance that
they receive a copy of the same gene copy from their father. Even if their
father is a homozygote at that locus, the two alleles he passes to his
offspring are not identical by descent if one is a copy of his paternal allele
and the other is a copy of his maternal allele. There is an independent 50
per cent chance that they receive a copy of the same gene copy from their
mother. We can therefore assign an equal probability of 25 per cent to each
of four possibilities: the sibs share no genes identically by descent at that
locus, they share only the paternal gene, only the maternal gene, or both.

The genetic consequences of genealogical relationships are summarized
by numbers of this sort. For non-inbred diploid relationships, a set of
numbers called Cotterman’s coefficients are used. They are the probabilities
that the two individuals share exactly none, exactly one, or exactly two
alleles identically by descent. For possibly inbred diploid relationships, a
set of eight numbers is needed if the distinction between the individuals’
maternal and paternal alleles is not kept. The details of these fascinating
mathematical constructions can best be pursued by consulting Jacquard
(1974), but only two points are essential to us here. They are that any
specified genealogical relationship has a representation of this sort, that
can be written down, and that one quantity of particular interest can be
computed from this representation. That quantity is what Crozier (1970)
called G, and is the average fraction of alleles in one individual (in our case
the recipient) that are identical by descent with any of the alleles in the
other (the actor). A proviso that will be important is that the probabilities
which characterize a genealogical relationship are correct only in the
absence of selection.

Let us denote by ¢ the average fraction of the potential recipient’s
genotype that is identical by descent with any of the alleles in the actor.
Now in principle, ¢ could be different for different actors’ genotypes, and
this is indeed the case in relationships that involve inbreeding, as we shall
see later. For the present, let us confine ourselves to non-inbred
relationships and assume that ¢ is the same for all genotypes. We can think
of two separate parts of the recipient’s genotype, the IBD part and the
non-IBD part, and in particular of the gene frequencies of those fractions.
How do they compare with the population mean gene frequency and with
the actor’s gene frequency? Our route will be to assume that the IBD part
of the recipient’s genotype has on average the same gene frequency as the
actor does and that the non-IBD part has on average the population mean
gene frequency. Let us look at the consequences of these assumptions and
then ask when we might expect them to be true.

If both these assumptions are true, then we can write the average gene
frequency of the recipient as

E(R | A) = ¢ (average gene frequency of IBD part of genotype)
+ (1 — ¢) (average gene frequency of non-IBD part
of genotype)

=¢A + (1 - o
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ER[A) =p+od-n (11)

This equation is similar to one of Jacquard (1974, p. 118) with notational
differences and it is also familiar to us from above. It is the same as eqn (8)
eqn (8) of section 4 except that here ¢ has taken the place of B.
Furthermore, ¢ is determined by the genealogical relationship of the two
individuals, and so is the same for all alleles and for all loci. Here we find a
justification for assuming that R lies on the p—A line. Equation (11) is true
for any outbred genealogical relationship and also for mixtures of outbred
genealogical relationships. If half of the potential recipients were sibs, a
quarter were cousins and a quarter were unrelated, then the probabilistic
statements of gene identities could be made for this mixture, and ¢
calculated in the same way as for ‘pure’ relatives.

Hence, it seems to be a general conclusion that if the genetic connection
between the actor and the recipient arises through common ancestry with
no inbreeding then R will lie on the p—A line, but we must not forget the
two assumptions we made to arrive at this conclusion. The first was that the
IBD part of the recipient’s genotype had the same gene frequencies as the
actor did, and the second was that the non-IBD part of the recipient’s
genotype had the same gene frequencies as the population mean. Nor must
we forget the proviso that the calculation of ¢ from the pattern of common
ancestry assumes the absence of selection. Let us take the two assumptions
in turn, and see why they should be true, and then decompose them into
more fundamental assumptions. The justification of these more fundamental
assumptions and of the proviso about the calculation of ¢ will be the task of
the next section.

Why should the IBD part of the recipient’s genotype have the same gene
frequencies as the actor? If the actor is a homozygote at a locus, then the
IBD part must be identical unless a mutation has occurred in the path
through the genealogical tree that connects the recipient and the actor.
After all, if it is identical by descent, then it is surely identical. If the actor
is a heterozygote, then the recipient’s IBD part must be identical (again,
barring mutations) to one of the actor’s alleles, but to which? If we can
assume that it is equally likely to be to any of the actor’s alleles, then it
would again follow that the recipient’s IBD part was the same on average,
though not necessarily the same in any particular case, as the actor. We can
sum up the assumptions needed to justify this in the statement that the only
force at work is the random segregation of Mendelian genetics. Specifically,
we need to assume no mutation and no selection.

Why does selection disturb our conclusion that the IBD part of the
recipient’s genotype is on average the same as the actor’s genotype?
Imagine tracing back along a diploid genealogical tree from the actor to a
common ancestor and then forward again to the recipient, computing at
each stage the chance that an allele in the actor was present. The rule we
use is that there is a 50 per cent chance that a gene in a parent is passed on
to an offspring, and that there is a 50 per cent chance that a gene in an
offspring came from each parent. However, we know that each individual
in the path survived to reproduce and if survival to reproduce is different
for different genotypes, then this means that certain alleles had more than
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a 50 per cent chance of being passed on, while others had less. The
presence of selection means that Mendel’s rules are not enough.
Furthermore, the effect of selection will be different for different alleles
and for different loci.

Noting that the first assumption has decomposed into the more
fundamental assumptions of no mutation and no selection, we turn to the
second assumption, which is that the non-IBD part of the recipient’s
genotype has the same gene frequencies as the population mean. This
means that from the actor’s point of view, the non-IBD part of the
recipient’s genotype is of equal importance to the genotype of a randomly
chosen member of the population. This can fail in two ways. It may be that
some genotypes are particularly prone to find themselves in the role of
recipient. Alternatively, it may be that the population is not homogeneous,
and that different parts of the population have different mean gene
frequencies. For heterogeneous populations it may be that the non-IBD
part of the recipient’s genotype has the same gene frequencies as the local
mean, not the global population mean. The actor is also likely to be
genetically more similar to the local population, and so this is an additional
source of genetic similarity between the actor and recipient, besides their
common ancestry. Let us then add two more to our list of more
fundamental assumptions: that the tendency to be a recipient is not
affected by genotype and that the population is homogeneous.

While the strict truth of eqn (11) depends on no mutation and no
selection, it will be approximately true provided the mutation or selection
is small. What does small mean? The error in eqn (11) that is caused by a
given mutation or selection pressure depends on the length of the
genealogical routes connecting the recipient and the actor, because the
opportunity for mutation and selection to act is proportional to the length
of those paths. Only very strong selection could materially alter the
conclusion that an offspring is equally likely to have either of its mother’s
alleles. Suppose, on the other hand, that an individual is known to have
one gene identical by descent with a heterozygote ancestor a thousand
generations ago. The accumulation of a thousand generations’ worth of
selection could easily make it much more likely that one rather than the
other of the ancestor’s genes is the one that is shared. Incidentally, we can
also see how selection can affect the calculation of probabilities of identity
by descent. Of all the individuals’ ancestors a thousand generation’s ago, it
is more likely that the individual shares genes at a locus with those
ancestors that possessed the selectively advantageous genes rather than the
selectively disadvantageous ones. Which ancestors those are will be
different for different loci.

Hence, both for the assumption that the IBD part of the recipient’s gene
frequencies is the same on average as the actor’s gene frequencies, and for
the calculation of probabilities of identity by descent, the mutation rates
and selection pressures must be small in comparison with the lengths of the
genealogical paths that connect the actor and the recipient. The justification
for making this assumption about selection and mutation, in an argument
that is intended to show how selection works on social behaviour, is one of
the purposes of the next section.
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Now the other fundamental assumption, of homogeneity, is also
important and I want to consider two different ways of dealing with a
structured population in the framework of the chapter. The first way is to
assume that the non-IBD part of a recipient’s gene frequencies is the same
as the local population mean. Formally, we can let u,, represent the mean
of the local population to which the interactants belong and rewrite
eqn (11) as

ER|A) = p + ¢(A — pr) (12)

Now eqn (12) is no longer of the same form as eqn (8), and so we cannot
identify ¢ and r so easily. The vital difference is that ¢, is no longer the
same for every actor A. The derivation of r was valid for a population
subdivided in any way: it does not change in parallel with the change in ¢.
Hence, this way of dealing with a subdivided population is analytically
possible, but would imply a more complicated connection between r and ¢,
involving the correlation between A and pp. It would be different for
different alleles and different loci, and so would lose the most attractive
features of the simpler model.

The approach taken by Hamilton (1975) is equivalent to the introduction
of a regression that says how p, varies with A, as follows:

E(p. | A) = p +3(A — p),
leading to
ER|A)=p+ {8+ (1 -de}A — ).

The problem with this is that 3, the regression coefficient that says how
diverse groups are, may well differ from allele to allele and locus to locus,
for the same reasons as we shall encounter below that impede the second
way by which we might try to deal with local groups.

This second way is to view the extra similarity between group members
as arising because of extra kinship ties between them. If a group is small,
then random mating within the group must often be incestuous within the
wider context of the population as a whole. Mating between relatives is one
cause of extra genetic similarity between group members (another is
adaptation to local conditions). Can we then not deal with social
interactions between group members by calculating ¢ taking these extra
kinship ties into account? The extra kinship ties are no doubt hard to
specify in any particular case, but might this allow us in principle at least to
rescue the identity between r and ¢ in the case of local groups?

Unfortunately not. The reason is that we fall foul of the fundamental
assumption of no selection in a serious way. The paths that make fellow
group members genetically more similar to each other than they are to
members of other groups are likely to be long. The reason that selection
influences the paths of descent is that it changes gene frequencies. It
follows that random drift can have the same effect. Although random drift
does not influence these paths averaged over all possible present universes,
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we are interested in predicting selection in this particular present universe.
Therefore, to apply in a simple way the machinery of identity by descent to
model the effects of local grouping would be triple folly: the paths are long,
significant drift and selection are very likely to have occurred, and
inbreeding is almost certainly involved. An additional complication is that
to the extent that groups are genetically isolated, the members of a group
are likely to be competing particularly with each other for genetic
representation in future generations. To that extent, the relevant relatedness
will be relative to the local group and not to the whole population. I have
discussed this at more length elsewhere (Grafen 1984). The application of
the geometric view here is therefore rather complex, and I will pursue it no
further here. The case of subdivided populations is nonetheless an
important problem.

Now we tackle the problem of inbreeding, namely why ¢ should be
different for different genotypes, that is the recipient lies at a different
fraction of way from p to A for different positions of A. Figure 11

illustrates the possibility.
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Fig. 11. Under inbreeding, the relatedness may depend on the genotype of the
actor. Here the homozygotes have a higher relatedness than the heterozygote has
to their respective recipients. It is likely in these circumstances that an actor will be
differently related to the recipient at different loci.

Each actor represented there has a different value of ¢, and if we
considered more than one locus of one actor, we would find that it would
have different values of ¢ at different loci. (As we saw in section 3, this
implies that in the genetic space representing all the loci, R would not fall
on the p-A line.) The reason can be seen in Fig. 12a, which shows the
various patterns of identity by descent associated with outbred sibship, and
Fig. 12b, which shows the patterns for sibship when the parents were
themselves outbred sibs. Each pattern has a value of ¢ associated with it,
which is the fraction of the recipient’s genotype that is identical by descent
with any part of the actor’s genotype at that locus. Each pattern also has a
probability of occurring in a given genealogical relationship. The average
value for the sibship is some weighted average of these ¢s. Now the three
patterns for outbred sibship make no connections between the actor’s two
alleles and so place no restrictions on the actor’s genotype. It follows,
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conversely, that knowing the actor’s genotype tells us nothing to make any
one of the three patterns more likely than another.

Some of the inbred patterns, on the other hand, imply that the actor’s
two alleles are identical by descent and therefore that the actor must be a
homozygote. Arguing backwards, if we know that the actor is a
heterozygote, it follows that those patterns of identity by descent are not
possible. Therefore, to find the average ¢ for an individual known to be a
heterozygote, we must average over the patterns in which the actor’s
alleles are not identical by descent. A homozygote may or may not have its
two alleles identical by descent, and so any of the patterns may occur.
However, the knowledge that the actor is a homozygote makes it more
likely that they are identical by descent. The balance of likelihoods
depends on the frequency of the allele the homozygote possesses and so
the relatedness will be different for the different types of homozygote. At a
locus with three alleles, for example, there will therefore be four different
degrees of relatedness: one for all heterozygotes and one each for the three
different homozygotes (Elston and Lange 1976).

The difference between homozygotes and heterozygotes is important
because dominant alleles are expressed in heterozygotes, while recessive
alleles are expressed only in homozygotes. The spread of a recessive allele
will therefore be determined by the homozygotic relatedness, while the
spread of a dominant allele will be determined by some average of the
homozygotic and heterozygotic relatednesses. The dominance of an allele
may therefore affect whether it spreads or not. The relatedness of
homozygotes depends on allele frequency, so whether an allele spreads or
not may depend on its frequency. All these complications mean that alleles
with the same phenotypic effect may be selected in opposite directions
because they differ in dominance or frequency. Michod (1979) and Michod
and Anderson (1979) have particularly clear discussions of this effect of
inbreeding. The difficulties in applying Hamilton’s rule to cases with
inbreeding is discussed by Michod (1982), and a number of examples are
worked through by Uyenoyama (1984). The appropriate definition of
relatedness in terms of the nine identity coefficients of Fig. 12b, gene
frequency and dominance, is given by Michod and Hamilton (1980,
formula 3). :

Our next topic is the paradox of inbreeding (Seger 1981). In the
introduction, we dismissed the concept of identity by descent because we
saw that if we look back far enough, most gene identity will be identity by
descent. Yet for the whole of this section, we have been using identity by
descent quite freely, refusing to see the paradox by looking no further back
in time than some base population. This device serves the purposes of
population geneticists well and involves no trickery, for they have a base
population with respect to which they wish to measure identity by descent
(Falconer 1981). We, on the other hand, have no such natural base
population.

Our ‘natural base’ is not a population at all, but rather the behavioural
rules that the population can adopt. If a nestling behaves in a particular
way towards others in the same nest, but cannot discriminate between
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Fig. 12.(a) The top dots in each square represent the genotype of the actor, and
the bottom two represent the genotype of the recipient. A line connects each pair
of alleles that are identical by descent. Depicted here are the three patterns that are
possible between outbred sibs and P is the probability with which they arise. ¢ is
the fraction of alleles in the recipient that are identical by descent with any allele in
the actor. With outbreeding, each genotype is distributed between the patterns in
the same proportions. This allows us to calculate the relatedness between actor and
recipient by averaging the ¢s weighted by the P’s. (b) The nine possible patterns of
identity by descent between diploids are illustrated, following Jacquard (1974). The
s represent the probability with which each pattern occurs and are his condensed
identity coefficients (‘condensed’ because no distinction is made between an
individual’s maternal and paternal alleles). Two examples of the 8s are given (Pa:
the actor’s two parents are parent and sibling of the recipient; Pg: the actor and
recipient are sibs whose parents are outbred sibs). The top row contains those
patterns in which the actor’s two alleles are identical by descent, that is to say, the
actor is inbred. The probability of this is therefore 8,+8,+8;+3,. The bottom row
contains the patterns in which the actor is not inbred. ¢ is the fraction of genes in
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them in its actions, then the category of ‘fellow nestling’ is a natural one.
For any particular nestling and fellow nestling, there will be a complex
history of gene identities, but we shall divide it into two parts. One part will
be correlated, in the sense that fellow nestlings are more likely to share it
with each other than they are with nestlings from another nest; while the
other part is uncorrelated, because fellow nestlings are no more likely to
share it with each other than they are with those from another nest.

Take the simplest case, where all nestlings are full sibs, and there is
random mating in a finite population. The correlated part of the
relationship between nestlings is only sibship, because random mating
destroys all other correlations. It does this in two steps. The random
mating last generation prevents correlation between the alleles of one
parent (that is, inbreeding of the parents), and the random mating this
generation prevents any correlation arising from common ancestry
between the parents, taking the set of sibships in the population as a whole.
It may be that in a particular case, the mates are sibs, but this occasional
event with a high positive correlation between the mates will be balanced
by the much commoner slight negative correlation between the genotypes
of mates guaranteed not to be sibs.

Of course, if nestlings can sense whether their parents are sibs or not,
and can behave differently accordingly, then the systematic part of the
relationship becomes more complex, but the same principles apply. The
fact that parents are sibs, for example, would be a correlated part of the
category ‘Fellow nestling in a nest of mated sibs’. Any relationship that is
uncorrelated with the distinctions that nestlings can make in their
behaviour will cancel out when averaged over the population.

The resolution of the paradox of inbreeding is that relatedness is a
property of ‘action categories’, and this has interesting implications. It does
not make much sense to compute from their common ancestry the
relatedness between two particular individuals. They will be related in very
many ways, by distant routes, and the conclusion from adding them all
together would probably be that the relatedness was one (Jacquard 1974,
p. 171)! It makes more sense to ask how categories of individuals are
related, such as nestlings or playmates or locals. Their relatedness can be
assessed from common ancestry by knowing the paths that are correlated
with the distinctions that individuals can make in their behaviour. It is

the recipient that are identical by descent with any allele in the actor. The average
value of ¢ for inbred actors is therefore (3;+83/2)/(8;+8,+8;+8,). The average
value for outbred actors is (35+87+9g/2)/(35+3¢+d;+83+dy). Heterozygotes
cannot be inbred, so are restricted to the bottom row, and therefore have the
outbred relatedness. Homozygotes may be inbred or outbred, with a probability
that depends on the frequency of the allele they bear. All the standard measures of
relatedness can be defined in terms of the ds. Inbreeding coefficients for actor and
recipient are f5 = 8;+3,+83+93,, and fr = 8;+3,+35+8¢. Malecot’s ‘coefficient de
parente’ is far = 61+(83+825+87)/2+88/4. Wright’s coefficient of relationship is
ra = 2far/{(1+£fa)(1+fr)}"%. Hamilton’s regression coefficient of relatedness is

bra = 2far/(1+fA)-
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important to stress that the centrality of those distinctions is quite natural.
Our purpose in using relatedness is to analyse social behaviour, whose
evolution must depend on the powers of discrimination animals possess.
Jacquard (1974, p. 171) stated that ‘It is obvious that, from this point of
view, an inbreeding coefficient cannot be regarded as an estimate of a real
quantity, but is simply a measure of information’, and relatedness would
fall into the same category as inbreeding. From our point of view,
relatedness is a measure of the animal’s information, and in the evolution
of social behaviour this is something very real and very important.

Another consequence is that one individual can have a different
relatedness to another, depending on the ‘action-category’ to which it
belongs at the time. Suppose in a species with much brood parasitism that
nestlings are related to each other by a quarter, because some are full sibs
while others are unrelated; and that nestlings recognize each other only as
fellow occupiers of the same nest and so cannot recognize each other after
leaving the nest. Then an individual will treat sibs and unrelated
individuals alike when in the nest, with a relatedness of one-quarter, and
later will treat all of them as unrelated because he cannot distinguish them
from any other individuals. Thus, relatedness is a property of ‘action
categories’, not of individuals and not simply of patterns of common
ancestry.

Finally, in this section whose main purpose is to argue that R will often
fall on the p—A line, I turn briefly to the evolutionary consequences of R’s
lying off that line. Recall that this means the relatedness as defined by
eqn (7) of section 2, our definition of r that makes Hamilton’s rule work,
will be different for different p-scores. [It was Hamilton (1967) who first
discussed this problem of genomic discord, with reference to the difference
between the autosomes and the sex chromosomes, a cause I have entirely
neglected here. He explored the consequences for the sex ratio of the fact
that the X chromosome follows the same pattern of relatedness as
haplodiploids, while the Y chromosome has an extreme pattern in which a
male has a relatedness of one to sons and father.] Our formula for wAp,
eqn (6), is still correct for any p-score, so let us consider how it affects the
frequency of an allele by choosing the p-score to be the frequency of that
allele. In particular, let us consider those alleles that influence the
performance of the social action. Then there is a critical value of r, say 7',
defined by r'=c/b, which is the relatedness at which the allele’s frequency
does not alter as a result of selection on the social action. The benefit and
cost are such that with a relatedness of 7', the actor is indifferent towards
performing the act.

Now, if r varies between alleles and between loci, then alleles that
contribute towards performance will increase in frequency if their r is
greater than r’ and decrease if it is less. Alleles that reduce performance of
the act will increase in frequency if their r is less than 7', and decrease if it is
greater. Thus, selection will be acting in opposite ways on alleles with the
same effect. The net effect of this genomic discord would depend on the
relative numbers and size of effect of the alleles with different values of
relatedness. Alleles with extreme values would tend to go to fixation or
extinction. Some kind of average would prevail, but selection could stop
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only when all alleles affecting the social behaviour, that had not gone to
fixation or extinction, had the same relatedness. The position is more
complicated than this, because relatedness is not a property of an allele by
itself. If relatedness varies through the genome, then it is likely that the
relatedness for one allele depends on its frequency and on the frequency of
other alleles. This variation is described by eqn (7) in section 2, where the
complication arises because the weights H; matter and depend on these
genetic complications. The conclusion that R falls on the p-A line is useful
because r does not then depend on those weights.

The next section picks up the fundamental assumptions on which we
base our conclusion that R falls on the p—A line and justifies them for our
purposes. This forms part of a defence of Hamilton’s rule as a general
evolutionary principle.

6. Hamilton’s rule as a general evolutionary principle

The justification of Hamilton’s rule as an evolutionary principle has two
parts to it. The first part was begun in previous sections and is to be
completed in this. It is that we expect characters to evolve under conditions
in which Hamilton’s rule will be obeyed, and so if we understand a
character correctly in nature, we should observe Hamilton’s rule being
obeyed. We justify the first part by showing that Hamilton’s rule is a
correct summary of a certain particularly relevant set of population
genetics models. While the population geneticist is rightly interested in the
exact analysis of a wide range of models, some models will be more
relevant than others to the likely effect of selection in nature. The first part
is permissive, it says that if we do use the rule we should get the right
answer. The second part, not mentioned so far, is an argument that says we
should want to analyse a character in terms of Hamilton’s rule. For both
models and data, this will enable us to understand the evolution of a
character in a particularly interesting way; and for certain kinds of data it
may be possible to analyse a character in terms of Hamilton’s rule when it
is not possible by rival methods. The second part of the justification may
sometimes be so strong that it is worth using Hamilton’s rule even when it
is an incorrect summary of relevant population genetics models. These
assertions will be argued later on.

Let us make sure of the starting point for our current argument by
reviewing the relevant conclusions of earlier sections. On the way, we will
come across points that need further discussion. The fundamental result is
eqn (6) of section 2, which shows that Hamilton’s rule correctly describes
the effect of social interactions on the direction of selection of any p-score,
provided we define relatedness as the genetic regression coefficient
described in eqn (7). We must also remember that eqn (6) is based on an
additive model of social interactions. The usefulness of eqn (6) depends on
the relatedness being the same for all p-scores. Then, in section 4, we saw
that this condition is fulfilled if the genetic similarity between interactants
arises through links of common ancestry that do not involve inbreeding,
provided there is weak selection and the population is homogeneous.
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This leads us to the conclusion that Hamilton’s rule, using the
relatedness we would compute from ancestry, works under the conditions
of (i) additivity, (i) weak selection, (iii) homogeneity, and (iv) outbreeding.
As we shall see in the next section, these conclusions are not new, and are
the consensus of a fair-sized literature. If the third or fourth of these
assumptions is broken, then alleles with the same effect may be selected in
opposite directions because they differ in frequency or dominance.
Although circumstances in which these assumptions are broken are very
important, I have nothing further to say here about the outcomes of this
genomic discord.

For most of this section, I shall concentrate on recent common ancestry
as the main cause of the genetic similarity that influences the evolution of
social behaviour. As a partial defence, I now consider a very special
property of common ancestry in this respect. Common ancestry produces
genetic similarity at every locus in the genome, and it produces the same
genetic similarity (as measured by the relatedness of section 2) at every
locus. Population structure as a cause of genetic similarity has already been
discussed. Other possible mechanisms that have been suggested are genetic
determination of micro-habitat choice, ‘green beards’, and the active
detection of genetically similar individuals. Now I want to picture the effect

a. 1
Relatedness
at a locus

Relatedness A
at a locus ;

Position of locus along chromosome

Relatedness
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Fig. 13.(a) The relatedness between outbred diploid sibs under conditions of weak
selection is the same at all loci and for all alleles at each locus. (b) When genetic
similarity is caused by ensuring that one locus is identical, the relatedness falls off
on either side of the ‘guaranteed’ locus. The rate of decay depends on the linkage
disequilibrium between that locus and nearby loci. () To maintain a high
relatedness along the chromosome, it is necessary to have ‘guaranteed’ loci at close
intervals, so that all loci are in linkage disequilibrium with one or more of the
‘guaranteed’ loci, which can then act as telegraph poles.
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of these possible mechanisms, and to consider their likely evolutionary
consequences; I will not discuss the difficult problem of whether the
mechanism is likely to evolve in the first place.

In the picture, each chromosome is a line, and the relatedness at each
locus is plotted above it. Figure 13a shows the simple case of interacting
sibs, where the relatedness at each locus is a half. Figure 13b shows the
relatedness caused by any mechanism that ensures genetic identity at one
particular locus. The relatedness at that locus is 1, and the relatedness at
closely linked loci is increased above 0. The other loci must be so closely
linked that they are in linkage disequilibrium with the locus that is
guaranteed identical. The likely evolutionary consequence of one guaranteed
identical locus is small. If a character could be affected only by very close
loci, then it might evolve under a Hamiltonian regime with a relatedness
appreciably different from 0. If a character can be affected by loci that
are distant from the one guaranteed identical locus, then Hamilton’s rule
will continue to operate with 0 relatedness at distant loci and the net effect
of selection will probably be settled in favour of the more numerous distant
loci. This argument is the one given by Hamilton (1967) to explain the
comparative inactivity of the sex chromosomes. To build up the kind of
substantial average relatedness across the genome which is likely to be
needed to produce an evolutionary effect, the mechanism would have to
ensure identity at a number of loci, to be the ‘telegraph poles’ of Fig. 13c.

Hamilton (1964, p. 25) first suggested the possibility of direct recognition of
possession of certain alleles [later termed ‘green beard genes’ by Dawkins
(1976)] or even traits, and it has been further discussed by Dawkins (1976,
1982) and by Rushton et al. (1984). There are two possible effects of a
direct recognition mechanism of this sort. The first is to distinguish
between different kinds of relatives. Thus, in a mixed nest of sibs and half-
sibs, the more similar individuals are likely to be sibs. This could be useful
information. The other effect is to recognize from among unrelated
individuals a subset who are as genetically similar as, say, cousins, but who
are in fact genealogically unrelated. It is to this second possible effect that I
now turn.

Rather than ask how a mechanism could ensure identity at enough loci
to hold up the ‘telegraph wire’ of relatedness for the whole genome, I want
to ask a logically prior question. It is, what fraction of unrelated individuals
happen to be as genetically similar to an individual as its cousins? In other
words, forget for the moment about how these individuals are to be
recognized, how many of them are there to be discovered in the first place?
If the number is very small, then genetic recognition mechanisms are
probably unimportant for detecting genetically similar organisms from the
population at large, but may still be important for distinguishing between
different kinds of relative. We can answer this question in a rough way by
recalling how many unrelated individuals we have met who are as
phenotypically similar to us as our sibs (cousins, second cousins, and so on)
are. We can also answer the question in a mathematical way, by calculating
the probability distribution of relatedness [using eqn (7) from section 2 and
weighting each locus equally] among unrelated individuals. Suppose there
are L units in the genome that we can assume are in linkage equilibrium,
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and that the mean probability of gene identity at a locus is f. Then, using
the normal approximation to the binomial, we can obtain a normal deviate
corresponding to a given relatedness. It is defined by the following
formula:

z=r\/{ lf;f}

For a species with L=50 000 and f=0.8 (plausible values for humans;
Cavalli-Sforza and Bodmer 1971; Nevo 1978; Lewontin 1974), the square
root is about 100. Hence, the normal deviate corresponding to an identical
twin arising by chance among unrelated individuals is 100, for sibs is 50,
and for cousins is about 12. These are very high normal deviates. A
standard deviate of 4.8, corresponding to a relatedness of 0.048, would
make the frequency of such individuals one in a million. A standard
deviate of 3.1, corresponding to a relatedness of 0.031, would make their
frequency 1 in 1000. If these values of L and f are reasonable, then it seems
that there are no great advantages to be gained. The advantage from
interacting with one individual with a relatedness of 0.03 would have to be
offset against the cost of testing all 1000 individuals. I conclude that for
genetic recognition to work other than by distinguishing between different
kinds of relative, it is necessary that the relevant part of the genome be
small, and this brings us back to green beards and the necessity for linkage;
or alternatively that genetic variability be low. Unless the genetically
similar, but unrelated individuals are of comparable frequency with
corresponding relatives, selection is unlikely to favour complex or costly
mechanisms for their detection. Of course, it may be that in some species
these computations work out much more favourably.

I proceed by concentrating on common ancestry as the major cause of
genetic similarity that is relevant to the selection of social behaviour. In the
previous section, we saw that under weak selection, additivity, homogeneity,
and outbreeding, common ancestry leads to unanimity of relatedness
among the alleles and loci, and that this relatedness is derivable from
knowledge of the ancestral links between interactants. I now wish to
discuss how the assumptions of weak selection and additivity can be
defended. The test is whether the r defined by eqn (7), a measure of
genetic similarity I will call Hamilton’s r because it makes Hamilton’s rule
work, is different from the relatedness that would be calculated from
common ancestry, which I shall call the ancestral r.

An important point to begin with is that we are mostly interested in the
evolution of a character, as distinct from the genetic changes that take
place at a particular locus. The major part of the defence of the
assumptions of weak selection and additivity is that they are likely to hold
when selection has brought a character to a state in which there are no
large improvements to be made. The argument is one given by Fisher
(1958). Although strong selection pressures are to be expected when a
character is changing rapidly, perhaps because of some change in the
environment or in another species, once most of the required change has
been made the possible improvements are small. It follows that the only
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strong selection pressures in connection with the character are downwards
pressures on strongly disadvantageous mutants. When the ‘fine-tuning’ of
the character takes place, the only relevant selection pressures are weak
ones. From now on we will assume where necessary that selection is weak.
This is reasonable because we are interested in the conditions under which
characters are perfected by natural selection. In this respect, Hamilton’s
rule and the Darwinian principle that animals are designed to maximize
their reproduction, are in the same position. The Darwinian principle
depends on fine-tuning under conditions of weak selection so that
evolution will produce the precise optimum. Hamilton’s rule depends on
fine-tuning additionally because the weak selection implies equality
between Hamilton’s r and the ancestral r. Relying on the same condition
twice introduces little extra burden of assumption for Hamilton’s rule.

The simplest kind of character is one which can take any value in a
continuum, and for which the fitness of the character is a smoothly varying,
single peaked function of its value. (In the case of social interactions, the
fitness function may depend on the state of the population in some way but
this complication is unimportant.) I shall call this kind of character graded,
and first discuss how Hamilton’s rule works for them. Then we will go on to
consider apparently ungraded characters.

In section 2 we proved Hamilton’s rule using a model with additive
fitness interactions and by agreeing to define r in a special way. We now
wish to show that Hamilton’s rule applies using ancestral r and with any
kind of fitness interaction, on the assumption of weak selection. We saw in
the previous section that the assumption of weak selection guarantees that
Hamilton’s r is the same as the ancestral r, and this leaves us with the
additivity of fitness interactions. The meaning of additivity involves our
model of the fitness of an individual as a function of its phenotype and of
the phenotype of the individuals with which it interacts. Equation (4) from
section 1 expresses the model as

w; = % (f; + nyib — mhc) 4)

i

where w; is the fitness per haploid set of individual i, /; is its ploidy, f; is its
baseline fitness, n; is the number of interactions in which it is the potential
recipient, y; is the average phenotype of the actors on the occasions when
individual i is the potential recipient, m; is the number of occasions on
which it is the actor, and 'A; is its phenotype. (For more details on the
meaning of these symbols, the reader is referred back to section 2.) In our
present application we are interested in whether a slight variant in a form
of behaviour in a social interaction will spread or not. b is therefore the
average effect on the recipient of interacting with the variant form rather
than with the common form, and c is the average effect on the actor of
adopting the variant form of behaviour rather than the common form.
Examples of variants are to give slightly more or slightly less food, or to be
slightly more or slightly less vigilant. b and ¢ must be small if the social
interaction is close to evolutionary stability, and the variant action is
advantageous.
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The important part of additivity is that w; should be approximately a
linear function of A; and y;. Alternative specifications for w; are discussed
by Scudo and Ghiselin (1975), Cavalli-Sforza and Feldman (1978),
Charlesworth (1978), Maynard Smith (1980), Feldman and Cavalli-Sforza
(1981), and others. The meaning of additivity is that the effects of separate
occasions on an individual’s fitness add up. Being a recipient once increases
an individual’s fitness by a certain amount. It is possible that being a
recipient again does not increase the individual’s fitness again by that same
amount. This may be because, for example, the first gift of food rescued
the individual from starvation, whereas the second merely allowed it to put
on a little extra fat. Help in the form of warning calls when a predator is
near does not add, but has diminishing returns, because the chance of
survival is increased more by the first than by later calls.

However, when selection is weak the effects of occasions will approximately
add up. This follows if fitness is a continuous and smooth function of the
phenotypes of the interactants, which is part of the definition of a graded
character. This convergence to additivity under weak selection is not a new
point and has been made many times. One implication of this is that b and
¢ may vary for a given kind of social interaction as the frequencies of those
adopting it change [Uyenoyama and Feldman (1982) make this point more
generally].

To find if Hamilton’s rule fits a social interaction well, it is therefore
necessary to consider the effects of slight variations in the behaviour of
interactants. The total benefit and cost of the interaction are relevant to the
question of whether the actor should abandon the interaction altogether,
but marginal benefits and costs are relevant to the question of whether
Hamilton’s rule fits the precise form of the interaction.

Now this ‘marginalization’ of Hamilton’s rule works well for graded
characters, in which continuous changes in behaviour affect fitness
continuously and there is only one local optimum. However, many
characters seem to be not at all graded, and it is to these that we now turn.
There are two main ways in which characters may fail to be graded. The
first is that an action may be ‘all or nothing’, as in Haldane’s famous
example of a man saving a child from drowning by diving in and pulling
him from a river (Haldane 1955). It is convenient here to suppose the
victim to be an adult. The second way is that there may be ‘multiple peaks’
in the adaptive landscape (Wright 1977, 1978), and so it may be important
to know whether a mutation of large effect will spread. When we need to
predict the behaviour of a mutation of large effect, we lose the assumption
of weak selection, and so lose the useful conclusion that Hamilton’s r and
ancestral r are equal.

My main strategy here is not to tackle ungraded characters directly, but
rather to argue that apparently ungraded characters may be graded after
all. This will not be a compelling case that all apparently ungraded
characters are in fact graded, because that is largely a matter of fact.
Instead I aim only to suggest that many apparently ungraded characters may
be graded. After making this case, I will turn briefly to the question of how
ungraded characters might evolve.

In Haldane’s example, the action of the hero who dives in to save
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someone from drowning seems to be ‘all or nothing’. The problem this
causes for Hamilton’s rule is as follows. The potential hero makes an
imaginary computation of the gene frequencies of the victim and, in
particular, of the frequency of an allele that has a strong influence on the
tendency of its bearer to be a hero in those circumstances when the
opportunity arises. The obvious computation for the potential hero to
make is the one from section 3. The gene frequency of the victim is in part
the same as his own and the rest is the same as the population mean. That
part is the relatedness.

The complication is that the potential hero has extra information about
the genotype of the victim. The victim is still alive. This suggests that if the
victim has had an opportunity to save others from drowning, he has not
taken it. (We suppose a hero risks his own life.) This in turn suggests that
the victim does not have alleles that are conducive to saving others. This
information means that Hamilton’s r at the loci affecting the tendency to
save others from drowning is lower than their genealogical relationship
alone suggests. If opportunities are rare, then this extra information is
weak and the ancestral r will be only a little lower than Hamilton’s r. If
they are common, then the extra information would be stronger.

This illustrates the important point that genealogical relatedness affects
the evolution of social behaviour only through the tendency of the same
alleles to be present in actor and recipient, and so any other information
about the presence or absence of those alleles is relevant in exactly the
same way. We saw earlier that animals are unlikely to have information
that makes a non-relative as genetically similar as a relative at all loci in the
genome. The possibility shown in Haldane’s example is that because of the
phenotypic effects of particular loci, mere survival can give information
about the genotype at those loci. In this case, the loci are those that affect
willingness to risk one’s own life. Selection through kin effects will be
altered at those loci, in a way that Hamilton’s rule predicts. Although
Hamilton’s rule is correct in this case, it loses its most appealing feature,
because Hamilton’s r is not the same as ancestral r.

Now the definition of a graded character was that the fitness of the
character is a smoothly varying, single peaked function of its value. My aim
now is to show how the character ‘reaction when faced with the
opportunity to dive in to a river to save someone else’s life at some risk to
one’s own’ might be graded, despite the all or none aspect of the decision
in a particular case. These opportunities for heroism will not all be the
same. In some cases the chance of success will be high, in some cases low.
The risk will be great on some occasions and small on others. Various clues
will be available to these chances, such as the temperature of the water, the
light, the distance from shore, the swimming ability of the victim, the
presence of other potential rescuers, and so on. The character can be
graded once we accept that the behaviour of the potential hero depends on
these circumstances. For any given set of circumstances, his decision is
discrete — he dives or he doesn’t — but to represent his decision rule we
must say that in such and such sets of circumstances he will jump, and in so
and so circumstances he will not. :

Let us consider how those decision rules may differ among individuals. It
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a.
Light Dive
Don't
Temperature
b. 1.
2.3 4
Light Dive
Don't
Temperature

Fig. 14.(a) Animaginary decision rule that divides possible circumstances into two
sets — those in which Haldane’s man would dive and those in which he wouldn’t. (b)
The imaginary decision rules of four individuals. If the circumstances in which the
rules differ are rare, then there is little information about genotype to be gained
from observing the consequences of having dived or not (such as survival in the
example in the text), even though diving may be common.

helps to have a picture and so Fig. 14a illustrates an imaginary decision
rule that depends on temperature and light. The area to the left and above
the line represents combinations of temperature and light at which he will
dive, while the area to the right and below represents combinations at
which he will not dive. Figure 14b illustrates the decision rules of a number
of different individuals and I have assumed that they differ only slightly.
For the sake of argument, assume that when an opportunity arises, it is
equally likely to occur at any combination of circumstances in the figure.
How does this affect the calculation of gene frequencies made by a
potential hero?

The answer is that it tends to restore them to ancestral values. If
individuals in the population have similar decision rules, then occasions on
which they would disagree are rare. Most of the occasions will therefore
fall into the unanimous regions of Fig. 14b, and so the survival to date of
the victim gives very little information about the position of his decision
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line. His survival therefore also gives very little information about his
genotype at the loci affecting his decision line. It follows that Hamilton’s 7
and the ancestral r will be much the same, because ancestry has again
become the only guide to genetic similarity. If any shape of decision line is
attainable by selection, then this means that the position of the line will be
determined under a Hamiltonian regime and so at the circumstances on the
line rb—c=0, while above it where the decision is to dive, rb—c>0, and
below it where the decision is not to dive, rb—c<0. This is a strongly
Hamiltonian conclusion, suggesting that in each circumstance the decision
to dive or not will be determined by Hamilton’s rule using ancestral r. This
is possible because in the final evolved state of the character there is no
genetic variation in the behaviour displayed in most circumstances. This is
a good example of the divergence between the population geneticist who is
interested in the genetics of a character, and the ethologist who is
interested in the likely outcome of its evolution.

The crucial question for the equality of Hamilton’s r and ancestral r is
whether further information on genotype is available to the actor. There
will be little information if the opportunities are rare on which the
decisions of different individuals would be different.

This process of converting an all or nothing response into a graded
character might be called parametrization, and is a generalization of the
use to which Charlesworth (1978) put penetrance. The penetrance of a
gene is the probability with which it is expressed, but usually there is no
suggestion that the circumstances in which it is expressed are any different
from the circumstances in which it is not. If the decision to dive in
Haldane’s example were made according to an irrelevant cue, then this
would be equivalent to a random decision.

Inclusive

fitness

0
Proportion of time spent tending sister's nest

Fig. 15. A possible relationship between inclusive fitness (using the ancestral value
of relatedness) and the extent of helping a sister. When a mutation for complete
help arises in a population that doesn’t help at all, the relatedness at that locus
towards a sister is not the same as the ancestral relatedness, because the fact that
the sister is not helping a previous sister makes it likely she does not share the gene
for helping.
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The second reason why a character may fail to be graded is that there are
multiple peaks in its adaptive landscape (Wright 1977, 1978). An example
of this is shown in Fig. 15. If the population is in the ‘catchment area’ of the
highest peak, then our previous argument for graded characters applies,
and the fine-tuning of the character is performed under Hamiltonian
conditions in which Hamilton’s r equals ancestral r. If the population is in
the catchment area of a lower peak, then so far as small changes are
concerned, the same argument applies again. The potential problem for
Hamilton’s rule occurs when a mutation occurs that could take the
population from one catchment area to another. This could be an
advantageous mutation of large effect, for which Hamilton’s r and
ancestral r might be different. If so, a mutation that is advantageous from
the point of view of the ancestral r, and so from the point of view of a
student of their behaviour, could fail to spread because Hamilton’s r was
lower than the ancestral r.

A hypothetical example of this, again borrowed from Charlesworth
(1978), involves a hymenopteran female faced with a choice of how much
of her time to allocate to her own reproduction, and how much to allocate
to the reproduction of her sister, who, we may suppose, has nested nearby.
It is convenient to suppose that a succession of sisters come to nest in an
area. The value of rb—c plotted against the fraction of time spent helping
her sister might well be U-shaped, as in Fig. 15, on the grounds that
dividing her time between two different nests would be inefficient. If the
population is all at the lower, selfish peak, then a mutation of small effect
would not spread. Consider the fate of a dominant mutation of large effect
that caused a female to abandon her own attempt to reproduce and instead
to become a full-time assistant to her sister. The fact that her sister has not
abandoned her own reproduction and become an assistant to an earlier
sister, shows that she does not share this mutation of large effect.
Consequently, when this mutation of large effect arises, Hamilton’s r will
be 0 for this allele, despite the fact that the ancestral r is 0.75. (If the
mutant had been recessive, Hamilton’s r would have been 0.5. Notice how,
when Hamilton’s r and the ancestral r differ, genetic details such as
dominance affect Hamilton’s r.)

This character can be graded in the same way as Haldane’s diving. If the
mutation is of low penetrance, or if its expression is conditional on
particularly favourable circumstances, then the fact that the sister has not
helped another sister is much less informative about her genotype, and
Hamilton’s r will be close to ancestral r.

The conclusion is that the two most obvious reasons why a character may
seem not to be graded are not decisive. Characters that have an all or
nothing aspect and characters that have multiple peaks in their adaptive
landscapes may after all be graded. If so Hamilton’s r and the ancestral r
will be equal when the character is finely-tuned by selection, and so the
form of the character will be as predicted by Hamilton’s rule using the
ancestral r.

Even when characters are ungraded, fairly extreme circumstances must
obtain to make the two r’s very different. The fact of being a potential
recipient must be very informative about an individual’s genotype to
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separate the 7’s, and this has strong implications for the size of the
phenotypic effect, for the informative nature of its expression, and for the
genetics of the character. It is for these reasons that I expect Hamilton’s r
and ancestral r to be the same for most characters. This is merely one
opinion about an unknown matter of fact, but it is unfortunately important
for the view we hold of the usefulness of Hamilton’s rule.

We have reached the end of the exposition of the first part of the
justification of Hamilton’s rule. The rule is a reasonable summary of a
particularly important set of population genetics models, namely those that
seem most likely to be relevant to the outcome of the evolution of a
character. Thus, if we use Hamilton’s rule, we should not get the wrong
answer about the evolutionary value of a character. If the first part says
that it is safe, the second part of the justification says that it is desirable to
analyse a character in terms of Hamilton’s rule. Let us take models and
data in turn.

To analyse a character in terms of Hamilton’s rule means to work out 7,
b, and c. Now in some models, in particular those devoted to testing
whether or not Hamilton’s rule works, 7, b, and ¢ are taken as given, and in
that case there is no analysing to be done. There are other models in which
the character is described or defined in some other way, and it is in these
models that Hamilton’s rule can be used to advantage. The questions of
particular interest for which this analysis is useful include: does this
character spread because of its effect on the actor’s own number of
offspring, or does it spread only because of the effect of the action on the
number of offspring of others? Is the action altruistic, or selfish, or
spiteful? The way a character is defined may obscure these points. For
example, the effects of an action may be described as, first, an effect on self
and, second, an effect on every group member. b is the net effect of the
action on self, and so if self is one of the group members, we must subtract
the second effect from the first to compute b. Similarly, c is the total effect
‘on others, and so to obtain ¢ we must multiply the second effect by the
number of group members (besides self) receiving it. This particular
conversion from one description to another reconciles the trait group
selection of Cohen and Eshel (1976), Matessi and Jayakar (1976), and
Wilson (1975), with the Hamilton’s rule approach.

Note that b and c are differences in number of offspring. Part of the
discrepancy between the additive and multiplicative models pointed out by
Cavalli-Sforza and Feldman (1978) is simply one of measurement. A
physicist who decides to measure mass in a logarithmic scale can easily
refute Newton’s second law, if he fails to make the necessary concomitant
adjustment to its algebraic expression. He deserves no attention because
Newton’s second law is framed with particular scales of measurement in
mind. Hamilton’s rule is designed to work on differences. It is not
surprising that if they are measured as ratios instead, then Hamilton’s rule
fails. If the differences caused by the social action vary from occasion to
occasion, then it will be necessary to find the average differences to
compute b and ¢ [Uyenoyama and Feldman (1982) explore this more
rigorously]. However, simply measuring the costs and benefits as differences
will not remove the discrepancies between the multiplicative and additive
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models if some individuals partake twice in social actions, because then
there is an added complication. The number of social actions an individual
is involved in may depend on its genotype, because an altruist is more
likely to have altruistic relatives. If, in addition, the effects of social actions
combine multiplicatively, then the effect of the marginal social action when
measured as a difference will depend in a systematic way on genotype.
Thus, the benefit received by a recipient may depend on its genotype and
this causes problems for inclusive fitness theory (Seger 1981; Queller
1984b). The main point here, though, is that even when social actions are
thought to act multiplicatively, it is still possible and desirable to measure
the costs and benefits as differences for the purposes of Hamilton’s rule,
averaging over occasions where necessary.

Having seen how and why we might want to analyse models in terms of
Hamilton’s rule, let us now turn to data. The questions Hamilton’s rule will
help us answer are the same — is the action selfish, spiteful, or altruistic,
and is the action advantageous only because of the fitness effect on others?
In applications to data, Hamilton’s rule comes into its own. The great
differences from models are that usually with data on social traits, the
genotypes of individuals are unknown and the genetic system controlling
the trait is unknown. This makes worries about dominance, number of loci,
and mode of gene action purely academic. In modelling, the fundamental
population genetics method of finding the number of offspring of each
genotype is the main rival to Hamilton’s rule. This alternative simply
cannot be applied to data if the genotypes of individuals are unknown.
Hamilton’s rule can be applied, provided enough information is available
to measure the effects of the social action. If this information is not
available, we cannot discover by any means whether the action is altruistic
or not. I have worked out an example in detail elsewhere (Grafen 1984,
section 3.3.3), using data of Noonan (1981) on joint nesting in Polistes
fuscatus.

Hamilton’s rule, then, is the way to answer central questions of interest
about a social action. It has the advantage that, unlike other methods, it
can be applied to data that is available about social actions. For these
reasons, the theoretical investigations of Hamilton’s rule are unlikely to
replace it with an alternative so far as data is concerned. A method that
works well in a model in which individuals’ genotypes are known can fail
altogether when they are unknown. The theoretical investigations are
valuable in finding the scope of validity of the rule, those circumstances in
which it correctly predicts the direction of evolution of a trait. However, in
a case where it is known to be incorrect, say where inbreeding is present,
the practical response is to apply Hamilton’s rule anyway, and treat the
results with caution.

In conclusion, Hamilton’s rule is useful because it tells us whether an
action is selfish, spiteful, or altruistic, and because it tells us the value we
expect one individual to place on another’s reproduction. These are its
important points, and they apply equally to models and to data. The
current interest in altruism and social evolution has the rule at its centre,
for it embodies the definitions of selfish, altruistic, and spiteful proposed by
Hamilton (1964).
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Many genetic details turned out not to upset the validity of Hamilton’s
rule. Dominance and the exact form of fitness interactions do not matter in
a range of cases and even apparently discontinuous characters may be
continuous underneath. However, there are limits in the range of possible
genetic mechanisms for which Hamilton’s rule does predict exactly the
direction of evolution. The most important limitations are that when the
population is structured, or when there is inbreeding, the relatedness
which will make Hamilton’s rule work will vary from allele to allele, and
from locus to locus; so alleles with the same phenotypic effect will be
selected in opposite directions because of differences in dominance or
frequency. The likely outcome of these complications is not known, but it
seems probable that some kind of average relatedness will prevail. The
required modification to Hamilton’s rule is likely to be a procedure for
computing that average relatedness from knowledge of the population
structure, nature of the inbreeding, and possibly the frequency of
mutations of particular kinds.

The viewpoint of a population geneticist on the exceptions was
expressed by Uyenoyama and Feldman (1982). They say:

‘In summary, for additive kin selection models our analyses indicate that
Hamilton’s theory is remarkable precise’ (p. 616).

‘We show that by regarding the multiplicative model as an additive model with
genotype-dependent benefit parameters, the multiplicative model can be
reconciled with Hamilton’s theory’ (p. 626).

They do not think that the multiplicative model should be regarded as a
minor variation on the additive model, however, and they give two
reasons. The first is that multiplicative models allow strong internal
equilibria, that is strongly stable polymorphisms, and the second is that the
nature and identity of internal equilibria are affected by the use of
approximations. These are good reasons why population genetic theorists
should be interested in multiplicative models, but they are not reasons why
an ethologist should be. The theory tells the ethologist that the behaviour
of organisms should follow Hamilton’s rule, and that is the only part of the
theory he is likely to be able to test. Whether the population is genetically
uniform for this behaviour (Uyenoyama and Feldman’s ‘viability-analogous
equilibrium’), or polymorphic (their ‘structural equilibria’), is less important,
and will usually be beyond his ability to find out.

There are exceptions, in population genetics models, to Hamilton’s rule.
The lesson I draw from them is that, in order to make the rule work in
those circumstances most relevant to the outcome of evolution on a
character, we should find a suitable generalization of relatedness. The rule
relates facts observable in the field to the evolutionary fate of a character,
and its terms are a touchstone to the evolutionary significance of social
behaviour. It is for these reasons, and not merely because it is a summary
of certain population genetics models (though it is surprisingly good at that
too), that Hamilton’s rule is a general evolutionary principle.
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7. A brief survey

In this section, a brief survey is presented of the work on Hamilton’s rule
and relatedness, and the ideas presented in previous sections will be placed
in that context. For a full review of derivations of Hamilton’s rule, see
Michod (1982). The two authoritative sources for definitions of relatedness
are Michod and Hamilton (1980), and Seger (1981). The first theme of this
section is the confirmation of Hamilton’s rule in a variety of models. The
second theme is a division of claimed exceptions into three categories. The
third is a comparison of the definition of r in this chapter with previous
definitions.

Hamilton (1964) presented the derivation of his rule with care, and left
the reader in no doubt about the qualifications and complications in the
analysis. It was an additive model and so would work only for small effects;
r was a good guide to the likely genotypic constitution of relatives only
under weak selection. Since then, the rule has been rederived and these
qualifications restated many times. Michod (1982) reviews these rederivations;
here I wish only to mention the categories into which they fall. Some
models have a single locus, while in others the tendency to altruism is a
quantitative or polygenic character. Some (‘inferential’) models infer the
gene frequency in recipients from the gene frequency of donors and the
relatedness; while in others (‘grouped’) the population is divided up into
mutually exclusive groups. These two classifications divide possible
derivations into four, but to my knowledge only three of the possible types
exist.

The original derivation was single locus and inferential, as were those of
Hamilton (1970), Charnov (1977), Orlove and Wood (1978), Michod
(1979), Harpending (1979), Charlesworth (1980), Charlesworth and
Charnov (1980), Seger (1981), and the expository derivation of Maynard
Smith (1982). The single locus grouped models include Hamilton (1975),
Orlove (1975), Levitt (1975), Scudo and Ghiselin (1975), Charlesworth
(1978), Cavalli-Sforza and Feldman (1978), Boorman and Levitt (1980),
Uyenoyama and Feldman (1981, 1982), Uyenoyama et al. (1981),
O’Donald (1982), Wade (1982), and Karlin and Matessi (1983). I know of
no inferential quantitative models, but grouped quantitative models have
been given by Yokoyama and Felsenstein (1978), Boyd and Richerson
(1980), Aoki (1982), Crow and Aoki (1982), Engels (1983), and Cheverud
(1984, 1985). All these models confirm the rule under the condition of
weak selection, in the absence of inbreeding and additional population
structure.

The derivations of Hamilton in 1964 and especially in 1970 have an extra
generality, in allowing any number of interactions of any kind between the
members of the population. Most others, including the derivation in this
paper, consider only a single kind of action, involving only two individuals
at a time, that may in some derivations be repeated. The 1970 derivation is
in many ways still the most comprehensive of all, as it is also valid for
inbreeding (though not mentioning exactly the problems this may cause).
Almost all of the present paper can be regarded as a long, expository
footnote to Hamilton’s 1970 article.
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The three kinds of approach have merits and disadvantages. The
connections between the inferential and grouped models are discussed by
Abugov and Michod (1981), and Michod (1982), who call them ‘inclusive
fitness’ and ‘family selection’ models. The ‘inferential’ models are more
general because the grouped models require that the social interactions
take place within groups, and that within groups no discrimination is made
between further and nearer relatives. The grouped models, on the other
hand, allow greater rigour as a consequence of this simplicity.

The hallmark of a rigorous derivation, besides algebraic rectitude, is
complete recursion. This means that when our ‘generation-to-generation’
equations are applied to one generation, they tell us enough about the next
generation to allow us to apply to our generation-to-generation equations
to that next generation. If they do, we can then move on to the third
generation in the same way, and on to the fourth, fifth, and so on. Our
derivation in section 2 is an example of an incomplete recursion, because
eqn (6) needs to know about covariances in this generation, but tells us
only about the mean p-score in the next. It follows that to obtain a
complete recursion, we would need to find a way of calculating what those
covariances will be in the next generation. Another name for completeness
of recursion is dynamic sufficiency (Lewontin 1974).

Complete recursions are very demanding. Little vagueness is allowed, so
it would be difficult, if not impossible, to prove a result that held for all
different kinds of relatives. Each separate case must be analysed on its
own. The joy of Price’s method is its generality, and it is potentially a great
advantage, but this raises an important question. Naively, it seems that
either complete recursions are necessary to avoid error, in which case
Price’s advantage is illusory, or complete recursions are unnecessary. No
doubt both methods have their part to play, but so far none of the
important conceptual advances have been made by completely recursive
methods. The important advances I have in mind are the original
derivation (Hamilton 1964); the application of covariance methods and the
‘backwards’ definition of r as ‘whatever will make Hamilton’s rule work’
(Hamilton 1970); the derivation of the rule to include inbreeding and the
evaluation of relatedness from common ancestry in the presence of
inbreeding (Hamilton 1970); the derivation of the rule for grouped
populations (Hamilton 1975); and the rederivation that showed more
explicitly the problems inbreeding may cause for Hamilton’s rule (Michod
1979). The completely recursive methods tend to follow on in the rear,
providing the comfort of a more rigorous derivation some time after the
advance party has decided the problem and found the solution. When the
incomplete methods lead to a result as simple as eqn (7), then for those
interested in the fairly gross behaviour of the system it may be that there is
little extra that complete recursions can do. Complete recursions are
necessary to determine the exact nature of interior equilibria when the
variations in r caused by selection are enough to change the sign of rb—c.
These computations are unlikely to have any observational, empirical
significance. Of course, it may be that complete recursions will play an
important role in future in resolving the outstanding problems of
inbreeding and heterogeneous populations.
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The quantitative and polygenic models are all grouped models. They
perform (essentially) an analysis of variance on the character of ‘tendency
to perform altruism to group members’, and on its heritable component.
There is, then, a within group variance and a between group variance in
each. These imply certain correlations between group members and can be
used to compute the covariances in terms of which relatedness can be
defined (Michod and Hamilton 1980). The different models show, to
varyingly explicit degrees, that Hamilton’s rule applies under conditions of
weak selection to indiscriminate social actions within groups in a grouped
population.

Engels (1983), in addition, explicitly modelled what, in section 6, we
argued by words, that a succession of small mutations will take a
population to the equilibrium determined by Hamilton’s rule. Cheverud
(1984) developed quantitative genetics models that include maternal
effects; he confirmed Hamilton’s rule in the case with no maternal effects.
Uyenoyama (1984) analysed exact models with specific patterns of
inbreeding. She stated that the relatedness calculated from ancestry was a
good guide to the models’ results even when the rule strictly failed. The
available literature confirms that the rule is a remarkably good summary of
a wide range of population genetics models.

The derivation of section 2 is an inferential model, but is both single
locus and polygenic, according to the interpretation of the p-score. It
allows arbitrary ploidies, individuals may interact more than once, and the
interactants need not have the same gene frequencies as the population. It
thereby combines in one derivation results that would otherwise have to be
proved separately.

The chief purpose of many of the papers cited above in support of
Hamilton’s rule was to prove it wrong in particular cases. The second
theme of this brief review is a classification of the alleged exceptions to the
rule. I divide them into three categories. The first are the strong selection
exceptions that arise through breaking the weak selection assumption of
section 6. These are real exceptions, but in section 6 I argued that they
were likely to be unimportant from the point of view of the outcome of
selection on a character. The second category are those that arise through a
misinterpretation of Hamilton’s'rule, and these are unfair exceptions that
we can set aside. The third category are exceptions within the assumptions
of weak selection, which we may call important exceptions.

The multiplicative models begun by Scudo and Ghiselin (1975), and
popularized by Cavalli-Sforza and Feldman (1978) are in danger of falling
into the second, ‘unfair’ category because, in Hamilton’s rule, the effects of
an action are expressed as differences not ratios. This is well discussed by
Uyenoyama and Feldman (1982). They regard the multiplicative model as
an additive model with genotype dependent cost and benefit parameters, and
this allows the results of their model to be compared with Hamilton’s rule
fairly. They found in their exact model of sib interaction that Hamilton’s
rule worked under weak, but not strong selection, and so we may place
their exceptions, and by extension those of previous multiplicative models
as well, in the first category.
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Another strong selection exception is the deviation depending on
heritability found by Boyd and Richerson (1980) in a quantitative model.
I will mention three examples of unfair exceptions. The first is claimed
by Uyenoyama et al. (1981), in an additive model with two sexes. They
define the benefits and costs relative to a mean fitness of unity, separately
within each sex. The relative fitness of an unhelped, unhelping male is
therefore 1 and that of a helped male is 1+ 3. However, when all males are
helped, the mean ‘relative fitness’ of the males is 1+B, and so their
- fitnesses must be scaled down because the total male fitness is fixed by the
number of females and the sex ratio of their offspring. Thus, in a
population where virtually all males are helped, a rare selfish mutation
reduces the male’s number of offspring not by B8, but by f normalized to
the mean male relative fitness, i.e., B/(1+p). This, together with a similar
adjustment to the costs, brings the models’ results into complete
agreement with Hamilton’s rule. ,

The second example of an unfair exception is from Cheverud (1984). He
proposes that there is pleiotropy between two characters, namely some
trait expressed as a juvenile and a maternal effect on that trait. He finds
that Hamilton’s rule, with costs and benefits derived from the effects of the
juvenile trait alone, does not predict the effect of selection on the trait. A
pleiotropic gene has two effects and it is hardly surprising that we cannot
predict its fate with a rule applied to only one of those effects. It is certainly
not a shortcoming in the rule.

The third example of an unfair exception is from Queller (1984b). He
presents a two strategy, two player game theory model of interactions
between relatives, where the strategy adopted by the recipient can affect
the pay-offs to both interactants. This dependence of benefits and costs on
the recipient’s genotype is just the sort of thing that will plausibly cause
exceptions to Hamilton’s rule. In one of his two models (the continuous
case), Queller supposes that the two strategies are played with a
probability that depends on genotype, and he searches for an ESS
probability which once common cannot be invaded by any other
probability. Using a subscript ‘Q’ to distinguish Queller’s notation where
necessary, the pay-offs to strategy one are bo—co+dq when playing
against strategy one, and —cqo when playing against strategy two: The pay-
offs to strategy two are bg when playing against strategy one, arid 0 when
playing against strategy two. The idea is that strategy one is to perform a
social act that costs cq, and has benefit bg, but that when both interactants
perform this social act, there is a non-additive interaction so that instead of
each receiving bo—cq, they each receive bo—cq+dq. He finds that the
condition for a population playing strategy one with probability P to be
invaded by a slightly higher probability of playing strategy one is

er“CQ+PdQ+rPdQ>0
where r is the relatedness between interactants. This seems to differ from

Hamilton’s rule by the presence of the third and fourth terms which are
caused by the interaction do. However, the b of Hamilton’s rule is the
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average effect on the opponent’s pay-off (in game theory terms), and this
depends on the probability with which the opponent plays the two
strategies. Similarly, c is the average effect on self and, in Queller’s model,
this also depends on the action of the opponent. Working out those
average effects, we find that:

b =bg + Pdg
and

C=CQ“PdQ.

When we express the condition for the spread of a slightly higher
probability of strategy one in terms of b and c, we recover Hamilton’s rule,
for

er—cQ+PdQ+rPdQ=rb—c.

An equivalent conversion from game theory notation to Hamilton’s rule
notation was performed by Grafen (1979). The recovery of Hamilton’s rule
in this case is encouraging, because it may often be the case that the
recipient’s genotype affects the benefits and costs of social actions.

These unfair exceptions show that care must be taken in applying
Hamilton’s rule. The rule is based on a particular way of measuring costs
and benefits, and on a particular concept of relatedness. If the rule works
with one set of interpretations of its elements, then it is most unlikely to
work with another. A result has no interest as an exception to Hamilton’s
rule if it is based on the wrong interpretation of r, b and c.

Now we come to the important exceptions, those where even with the
correct interpretation of the rule and with weak selection the rule fails. The
only example I am aware of is inbreeding and the reasons were first given
in a slightly different context by Seger (1976). He was interested in
explaining inbreeding depression as adaptive altruism by homozygotes,
who by reason of their homozygosity were more highly related than
average to those around them. The problems posed by inbreeding for
Hamilton’s rule were first explicitly discussed by Michod (1979), and
Michod and Anderson (1979). The problem, as discussed in section 6, is
that homozygotes and heterozygotes are differently related towards the
same classes of relatives. This makes dominance important. The relatednesses
depend on gene frequency, which adds to the complication.

Faced with this problem, a first approach is to try to place bounds on the
deviation from the simple rule. This can be done using formula (3) of
Michod and Hamilton (1980), although they did not do so. The relatedness
in this context we may think of as the critical cost-benefit ratio at which the
allele’s frequency will not change. In one example of Michod (1979, in
Fig. 2b with h = 1), the relatedness changed from seven-sixteenths to
four-sixteenths as the gene changed in frequency from 0 to 1. (Michod and
Hamilton pointed out that owing to a mistake in an earlier formula,
Michod’s figure is in error in showing the relatedness becoming negative as
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the gene frequency approached 1.) This is an appreciable difference, of a
size which could at some time matter in an application of Hamilton’s rule
to date.

One line of attack is to find bounds for a particularly relevant subset of
inbred relationships, perhaps for those that are weakly inbred, or for those
patterns that can arise in a system of regular mating. The second line of
attack is to consider the consequence of these complications for a polygenic
trait and find conditions under which the relatednesses at different loci will
effectively average out to some central value. Michod and Anderson
suggested simple averaging over loci and this could be right. The central
value could then be compared with the simple relatedness that does not
distinguish between homozygotes and heterozygotes.

There is one problem with the inclusive fitness approach which may be
particularly acute in the case of inbreeding. In this approach, the nature of
the relationship between interactants is taken as given, whereas it may be
that the postulated social actions in one generation would change the
relationship between interactants in the next. For example, a gene that
caused females to mate with their brothers would create a situation in the
next generation where some of the brother-sister pairs were themselves the
product of a brother-sister mating. The relative frequency of the ‘outbred’
pairs and the ‘inbred’ pairs matters because they will have different
relatednesses. Thus, it cannot be assumed that the pattern of relatednesses
between interactants is a constant independent of gene action. This is not
to say that the inclusive fitness approach is useless here, only that caution is
required. Maynard Smith (1980) discusses the advantages of the inclusive
fitness method in tackling this and other problems.

Uyenoyama (1984) analysed exact models with specific patterns of
common ancestry that involve inbreeding. She stated that the relatedness
calculated from ancestry was a good guide to the models’ results even when
the rule strictly failed. She searched for ESSs, in which a level of altruism
was non-invadable by mutations of small effect. In some cases, the non-
invadable level depended on the dominance of the mutations, which
implies that there is no level proof against all mutations. There is,
therefore, no ESS. In other cases, a whole range of levels was strongly
stable against mutations of small effect, implying the coexistence of many
strongly stable ESSs. Inbreeding is a major outstanding problem for
Hamilton’s rule and results about the likely outcome of selection on a
character would be very interesting.

Summing up the survey of derivations of Hamilton’s rule, the rule has
been abundantly confirmed under weak selection. Inbreeding is the only
important exception reported in the literature and, while the reasons for
this exception are well understood, little has been established about the
likely effect on the evolution of a character.

The next, briefer survey is of definitions of relatedness. The two
authoritative surveys are by Michod and Hamilton (1980), and Seger
(1981), and the early work was by Hamilton (1964, 1970, 1971, 1972,
1975), Orlove (1975), and Orlove and Wood (1978). The point of these
definitions was to make Hamilton’s rule work, and they all involve
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variances and covariances of various sorts. Seger gave a particularly
illuminating discussion of the assumptions under which some proposed
definitions are valid. The definition in section 2 of the present paper is a
slight improvement on previous definitions in three ways. Firstly, it is valid
for arbitrary ploidies, thus uniting many cases in one formulation.
Secondly, it allows different numbers of interactions per individual, and it
allows the gene frequency of interactants to be different from the
population mean. Thirdly, it allows the genotypic value to be any p-score.
This draws our attention to the possibility that relatedness may be different
for different alleles and shows how the relatednesses at loci in a many locus
model should be combined.

Seger (1981) suggested a definition of relatedness (his R,) which allowed
actors and recipients to be genetically unrepresentative of the population.
Comparison with eqn (7) shows that the reason for the complexity of his
definition, and its dependence on b and c, is that it is expressed in terms of
covariances around the actors’ mean and recipients’ mean. The simpler
form of eqn (7) is achieved by taking moments about the population mean
gene frequency, rather than about the actors’ and recipients’ means.

Michod and Hamilton (1980) gave the formula for relatedness from
knowledge of common ancestry in the presence of inbreeding for diploids.
They showed that all previous formulae were equivalent to it. I take this
opportunity to present a particularly simple arrangement of their ‘one
pleomorphic coefficient’. Suppose aj,, and g, are the regressions of
phenotype (tendency to perform the social action) on genotype (the
fraction of a particular allele at a locus) within inbred actors and outbred
actors, respectively, and that p;,, and p,, are the probabilities of the
actor being inbred and outbred, respectively, at that locus. Further, let ¢;;,
and @ou, be the average fraction of genes at that locus in the recipient that
are identical by descent with any gene at that locus in the actor, when the
actor is inbred and outbred, respectively. The @s are therefore the
relatednesses of inbred and outbred actors to recipients. Then, eqn (3) of
Michod and Hamilton relatedness may be re-expressed as

2PinbQ®inb@inb + Poutb@outbPoutb

2PinbQinb + Poutb@outb

(13)

critical cost-benefit ratio =

This is a weighted average of the relatedness of inbred actors and the
relatedness of outbred actors. The idea of distinguishing these two
relatednesses was suggested by Hamilton (1970). In terms of the
coefficients of identity by Jacquard (1974), and as the reader can easily
check from Fig. 12b,

8, + 542
8+ 5, + 85 + 84

Pinb =

and
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ds + 87 + 852
85 + 36 + 87 + dg + do

Poutb =

The weights in the weighted average are the product of three factors.
The first factor is two for inbred actors and one for outbred actors, because
the fate of genes in an inbred actor is twice as important from the point of
view of one of his alleles. The second factor is the probability that the actor
is inbred or outbred. The third factor, the regression of phenotype on
genotype, is the only one that varies (explicitly at least) as a function of
gene frequency and is the only one that depends on dominance. In fact it is
only oy (equivalent to the a of Michod and Hamilton) that depends on
gene frequency.

The form of eqn (13) makes very clear some of the properties of the
critical cost-benefit ratio in the case of inbreeding. It is a constant if the two
¢s are equal, which means that inbred and outbred actors do not differ in
their relatedness to the recipient; it does not depend on gene frequency
when the heterozygotes are half-way between the homozygotes in their
behaviour, for this makes ., independent of gene frequency; if the
heterozygote lies between the two homozygotes in its behaviour (no over-
or under-dominance) then the critical ratio lies between the two es,
because both weights are then always positive. I note that, with purely
notational changes, eqn (13) is an immediate consequence of a result of
Hamilton (1970).

In quantitative models, the population is divided into mutually exclusive
and exhaustive groups, and the interactions have a very simple structure in
which an individual affects all other group members equally. Relatedness
is, in consequence, a much simpler concept and is defined as a correlation
between group members. Thus, when Aoki (1982) claimed to have proved
the rule ‘independent of . . . inbreeding and under the action of selection’,
we must bear in mind that under inbreeding or selection the correlation
between group members will vary between alleles and loci. Aoki had not,
therefore, proved a stronger result in the quantitative case than is known
for single locus models.

8. Conclusions

It may be of help to the reader to sum up the variety of material in the
preceding seven sections and make some conclusions. The geometric view
of relatedness was presented as a psychovisual aid in understanding the
sometimes complex topics of relatedness and Hamilton’s rule. Algebraic
results parallel to the geometric intuition were derived in surrounding
sections and these culminated in an explicit defence of Hamilton’s rule as a
general evolutionary principle in the study of social behaviour.

Hamilton (1964) derived his rule as a tool for understanding the
evolution of social behaviour. In the central case of weak selection in an
outbreeding, homogeneous population, later work has abundantly confirmed
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the validity of the rule as a summary of relevant population genetics
models. The social behaviour of inbred and heterogeneous populations is
also of great interest, however. In 1970, Hamilton extended his rule to
include inbreeding, while in 1975 he explored how population structure
could increase relatedness between members of the same group. The
problems caused by inbreeding have been explored by Michod (1979), and
Michod and Anderson (1979), and some examples worked out by
Uyenoyama (1984). The fundamental problem is that the relatedness
needed to predict the direction of gene frequency changes differs for
dominant and recessive alleles, and depends on gene frequencies. We have
seen that this same problem arises in the case of heterogeneous
populations.

Neither of these difficult cases has been fully explored, and it would not
be surprising if the solutions proposed by Hamilton (1972, 1975) turn out
to be close to the truth most or even all of the time. On the other hand, it is
also possible that there are biologically significant exceptions, cases of
special interest where the solution is materially different. To the extent
that Hamilton’s rule is applied to species with inbreeding or with a
structured population, the speedy working out of these cases is of some
importance.

The rule must be judged as a success. It expresses in a precise way the
ideas of altruism, spite, and selfishness. It summarizes, in a readily
intelligible and accurate way, a whole host of population genetics models
relevant to the likely evolution a social trait. Neither of the two serious
drawbacks is understood well enough to say what other relevant factors
must be included in a more embracing rule. The effects of inbreeding or of
a structured population would be best summarized, if possible, in a way of
defining relatedness that would make Hamilton’s rule apply to those cases
as well. The relative value placed on the reproduction of another,
compared to the value placed on one’s own, is a clear and interesting way
of summarizing the action of selection on a social characteristic. This is the
reason for the importance of the rule, and why we should strive to express
our conclusions in terms of it.
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