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Introduction
Exploratory factor analysis (EFA), often just called “factor analysis,” is intended to
help researchers understand the structure of complex data, and possibly reduce the
complexity by combining items that can be considered to be indicators of the same
underlying concept.
EFA refers to a set of procedures intended to determine the number of distinct
constructs needed to account for the pattern of observed correlations among a set
of measures. These constructs are called factors (or more correctly “common
factors”), or sometimes latent variables as distinct from the measured variables that
are actually observed.
The basic premise is that observed correlations among measured variables are the
result of the fact that they are influenced by the same common factor. Hence, if we
understand the relationships between common factors and measured variables, we
can potentially reduce the complexity of the observed data.
The EFA model also assumes that observed measures are influenced by unique
factors, representing all sources of variance in each measured variable that is not
due to common factors. One such source is measurement error, and indeed this is
generally how unique factors are conceptualised, as if there are systemmatic, unique
factors that would suggest a problem with the measure.
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Partitioning variance

observed variance = common variance + unique variance

unique variance = specific variance + error variance

An important way of assessing an EFA model is the porportion of the total variance
accounted for by the common factors, which is called the communality.

communality = common variance
observed variance
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Basic common factor model
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Two common factors
Graphical representation of a common factor model with two orthogonal common
factors and six measured variables.
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Path diagramme conventions

It is conventional to represent factors/latent variables by circles or ovals, measured
variables by squares or rectangles, linear causal relations by single-headed arrows,
and covariances and variances by double-headed arrows. Some relations and
variances are constrained to have the value 1.0. The common factors are not
correlated with each other (i.e., they are orthogonal). The unique factors are
independent of each other.
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Correlation Structure Model

P = ΛΦΛT + Dψ
P is the observed correlation matrix (a 6 × 6 matrix in our example):

P =


ρ11
ρ21 ρ22
ρ31 ρ32 ρ33
ρ41 ρ42 ρ43 ρ44
ρ51 ρ52 ρ53 ρ54 ρ55
ρ61 ρ62 ρ63 ρ64 ρ65 ρ66


Λ is the matrix of factor loadings, the strength and direction of the linear
relationships between common factors and measured variables:

Λ =


Λ11 Λ12
Λ21 Λ22
Λ31 Λ32
Λ41 Λ42
Λ51 Λ52
Λ61 Λ62


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Correlation structure model, continued

Φ is the correlation matrix among the common factors:

Φ =
(
1.00 Φ12
Φ21 1.00

)
In the orthogonal model, Φ21 = Φ12 = 0, so this matrix can be omitted. DΨ is the
correlation matrix among the unique factors.

DΨ =


DΨ11 0 0 0 0 0
0 DΨ22 0 0 0 0
0 0 DΨ33 0 0 0
0 0 0 DΨ44 0 0
0 0 0 0 DΨ55 0
0 0 0 0 0 DΨ66


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Implications

Consider two specific cases:

ρ11 = 1.0 = Λ11Λ11 + Λ12Λ12 + DΨ11 .

This implies that the variance of measured variable 1 comes from three sources, and
the first term in the sum corresponds to the proportion of the variance due to
common factor 1, the second term to the proportion of the variance due to
common factor 2 and the third term to that due to the unique factor.

ρ21 = Λ21Λ11 + Λ22Λ12.

This implies that the correlation between measured variables 1 and 2 is the sum of
the product of common factor 1’s loadings on MV1 and MV2, and the product of
common factor 2’s loadings on MV1 and MV2. You can see that if both MV1 and
MV2 load highly on either common factor 1 or 2 (or both), then they will have a
high correlation.
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Data considerations

When designing research with the expectation that EFA will be used, it is
generally a good idea to plan to have at least 5 MVs per construct.
Keep measurement error to the minimum.
MVs should be interval variables (or a close approximation).
Sample sizes depend on the properties of the data.

Under optimal conditions (low measurement error, 3–5 MVs per construct),
sample sizes of 100 should suffice.
Under moderately good conditions, a sample size of 200 is adequate.
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Common Factor Model or Principal Components Model?
There is a lot of confusion between these two. In fact, many people report doing “factor
analysis” when they in fact use principal components analysis (PCA). It is widely believed
that PCA is a “type” of factor analysis, but this is not the case. Although it may be true
that PCA often produces similar results to CFA, that is certainly not always true. The
main differences are:

PCA was originally intended to reduce a set of MVs to the smallest set of scores that
preserve as much information as possible. That is, it is about modelling the variances
in MVs, not covariance among them.
Principal components were not intended to be thought of as corresponding to
meaningful latent constructs.
Principal components do not distinguish between common and unique sources of
variance in MVs.

You can think of PCA as being represented by:

P = ΛΛT ,

that is, assuming that there is no variance due to unique factors.

The attraction of PCA has been ease of computation, but this is no longer a serious
concern. I generally prefer CFA primarily because it maps on to the idea that MVs are
associated with theoretical, unobserved constructs.
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Example data

How much of each of nine types of social support do each of 200 subjects, who are graduate students, provide
to friends and family in an average week? (1) the number of hugs the person gives (Hugs), (2) the number of
compliments the person gives (Comps), (3) the number of times the person gives another person advice about
his or her personal life (PerAd), (4) the number of times the person invites someone to social activities
(SocAc), (5) the number of times the person provides some type of professional advice (ProAd), (6) how often
the person participates in communal study sessions (i.e., studying in a group; ComSt), (7) the number of
times the person provides some form of physical help, such as garden or house maintenance (PhyHlp), (8) how
often the person explicitly encourages others (Encour), and (9) how often the person tutors other students on
an academic subject (Tutor).

Hugs Comps PerAd SocAc ProAd ComSt PhyHlp Encour Tutor

1.00 0.67 0.15 0.62 0.54 0.65 0.47 0.55 0.57
0.67 1.00 0.25 0.58 0.51 0.64 0.42 0.54 0.49
0.15 0.25 1.00 0.22 0.08 0.16 0.09 0.18 0.12
0.62 0.58 0.22 1.00 0.41 0.56 0.34 0.45 0.35
0.54 0.51 0.08 0.41 1.00 0.67 0.73 0.46 0.75
0.65 0.64 0.16 0.56 0.67 1.00 0.60 0.54 0.67
0.47 0.42 0.09 0.34 0.73 0.60 1.00 0.43 0.72
0.55 0.54 0.18 0.45 0.46 0.54 0.43 1.00 0.41
0.57 0.49 0.12 0.35 0.75 0.67 0.72 0.41 1.00
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Number of common factors
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How many common factors?

Although there are likely to be theoretical expectations about the number of
common factors, it is important that this be checked rather than assumed. To
obtain estimates of factor loadings in practice we have to specify in advance how
many common factors to include in the model, and there are a range of methods
intended to assess the appropriateness of a choice. When making a choice, we need
to find a model that:

1 Does a good job of accounting for correlations among MVs;
2 Would do substantially worse with one fewer common factor;
3 Would not do substantially better with one more common factor;
4 All common factors can be readily interpreted and related to theoretical

constructs.
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Eigenvalues greater than one

A very common method is based on the eigenvalues of the sample correlation
matrix. The rule (sometimes called the Kaiser criterion) is that the number of
common factors required is equal to the number of eigenvalues greater than 1. This
rule has some logic when it comes to PCA, but less so to CFA. It also performs
poorly in simulation studies.

The eigenvalues of the sample correlation matrix, θ, are given by:

P = V θV −1
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Scree test
This involves producing a graph plotting the eigenvalues in descending order. The
graph is examined to find the number of eigenvalues before the last major drop.
This gives the number of factors to be selected. In this example, the last major
drop follows the second largest eigenvalue, and so a two factor model would be
used. It seems ad hoc, but in practice often performs quite well.
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Parallel analysis
This method compares eigenvalues obtained from the sample correlation matrix
with eigenvalues obtained from random data. Random data is generated with the
same sample size and number of MVs and this is used to obtain a correlation
matrix. The random data eigenvalues are typically averages over a number of
simulations. The number of eigenvalues from the sample data that are larger than
the corresponding eigenvalues from random data is the number of common factors.
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Likelihood ratio test

If we use maximum likelihood methods to obtain estimates of the factor loadings,
then it is possible to compare the goodness of fit of models with different numbers
of common factors using a likelihood ratio test.
One-factor v. two-factor <div class="kable-table">

Model Df ML Chisq Delta Df Delta Chisq Pr(> Delta Chisq) Emp Chisq Delta Emp Chisq Pr(> Emp.Delta Chisq) BIC Delta BIC

efa1 19 17.1 NA NA NA 5.47 NA NA -83.6 NA
efa0 27 157.1 8 140 0 100.03 94.6 0 14.0 97.6

Two-factor v. three-factor <div class="kable-table">

Model Df ML Chisq Delta Df Delta Chisq Pr(> Delta Chisq) Emp Chisq Delta Emp Chisq Pr(> Emp.Delta Chisq) BIC Delta BIC

efa2 12 8.65 NA NA NA 4.21 NA NA -54.9 NA
efa1 19 17.11 7 8.46 0.294 5.47 1.26 0.989 -83.6 -28.6
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RMSEA

Using a model fit index (more widely associated with the SEMs we will discuss next
week). The most common is the RMSEA (root mean squared error of
approximation):

Number of factors RMSEA
1 0.158
2 0
3 0

A general rule of thumb is that RMSEA lower than 0.08 are acceptable, and ideally
it should be below 0.05.

RMSEA definition√
[χ2

model − dfmodel ]/[(N − 1)dfmodel ]
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Rotation

David Barron Exploratory Factor Analysis Trinity Term 2018 21 / 28



Rotation

Solutions to the factor analysis equations (i.e., sets of factor loadings) are not
unique. Although the solutions found by the fitting algorithms are the best fit,
there are an infite number of solutions that have the same fit. So, how to select the
best one? The process of finding the best set of loadings is generally called rotation
because you can think of it as rotating the axes that represent the common factors
about the origin. The “best” rotation will meet these criteria:

Each row should contain at least one value very close to 0;
Each column should contain at least m values close to 0, where m is the
number of common factors;
Every pair of columns should have several rows with near zero values in one
column but not the other;
Every pair of columns should have only a few rows with non-zero values in
both columns.
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Plot of factor loadings

Loading required namespace: GPArotation
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Factor loadings
Factor Analysis using method = ml
Call: fa(r = efa.eg, nfactors = 2, n.obs = 200, rotate = "oblimin",

fm = "ml", normalize = TRUE)
Standardized loadings (pattern matrix) based upon correlation matrix

ML1 ML2 h2 u2 com
Hugs 0.22 0.68 0.680 0.32 1.2
Comps 0.14 0.73 0.657 0.34 1.1
PerAd -0.07 0.31 0.075 0.93 1.1
SocAc 0.00 0.74 0.552 0.45 1.0
ProAd 0.84 0.06 0.765 0.24 1.0
ComSt 0.48 0.47 0.705 0.30 2.0
PhyHlp 0.86 -0.04 0.695 0.30 1.0
Encour 0.21 0.52 0.435 0.56 1.3
Tutor 0.85 0.04 0.753 0.25 1.0

ML1 ML2
SS loadings 2.85 2.47
Proportion Var 0.32 0.27
Cumulative Var 0.32 0.59
Proportion Explained 0.54 0.46
Cumulative Proportion 0.54 1.00

With factor correlations of
ML1 ML2

ML1 1.00 0.56
ML2 0.56 1.00

Mean item complexity = 1.2
Test of the hypothesis that 2 factors are sufficient.

The degrees of freedom for the null model are 36 and the objective function was 5.06 with Chi Square of 988
The degrees of freedom for the model are 19 and the objective function was 0.09

The root mean square of the residuals (RMSR) is 0.02
The df corrected root mean square of the residuals is 0.03

The harmonic number of observations is 200 with the empirical chi square 5.47 with prob < 1
The total number of observations was 200 with Likelihood Chi Square = 17.1 with prob < 0.58

Tucker Lewis Index of factoring reliability = 1
RMSEA index = 0 and the 90 % confidence intervals are 0 0.056
BIC = -83.6
Fit based upon off diagonal values = 1
Measures of factor score adequacy

ML1 ML2
Correlation of (regression) scores with factors 0.95 0.92
Multiple R square of scores with factors 0.91 0.86
Minimum correlation of possible factor scores 0.81 0.71
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Example
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Maslach burnout inventory example
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Parallel analysis suggests that the number of factors = 5 and the number of components = NA
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Factor loadings

Loadings:
ML1 ML2 ML3

l1 0.711 -0.120
l2 0.814
l3 0.766 0.106
l8 0.868
l12r 0.315 0.422
l13 0.503 0.208
l14 0.557
l20 0.436 0.209
l5 0.514
l6 0.194 0.373
l10 0.866
l11 0.832
l15 0.508
l16 0.376
l22 0.163 0.359
l4r 0.503
l7r 0.636
l9r 0.648
l17r 0.557
l18r 0.536
l19r 0.593
l21r 0.542

ML1 ML2 ML3
SS loadings 3.460 2.560 2.491
Proportion Var 0.157 0.116 0.113
Cumulative Var 0.157 0.274 0.387

RMSEA: 0.061
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Factor loadings plot
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