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1 Motivation

We want to study representations of G(AF ) where F is a number field and G is something like GLn. We want to know
about the structure of such groups, so for example their structure as algebraic varieties, the structure of their subgroup,
and their representations.

For these reasons we need a good theory of algebraic group groups.

2 Definitions and Examples

Definition 2.1. An algebraic group over a field k is a group object in the category of varieties over k, which
is denoted Vark. More concretely, it is a variety G with maps µ : G × G → G, i : G → G and e : ∗ → G
which correspond to multiplication, inversion and identity. These should satisfy the usual bunch of axioms given by
commutative diagrams, for example

G×G×G G×G

G×G G

µ×id

id×µ µ

µ

which encodes associativity.
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2 §2 Definitions and Examples

For example, we could consider the variety A1
k which is an algebraic group with addition, which we denote Ga. We also

have the multiplicative group Gm(k).

Fact: (Yoneda Lemma) any group variety is determined by its functor of points, which is the functor

Ring −→ Group

R 7−→ G(R)

For example the multiplicative group is defined by

Gm(S) = S× = Homk

(
k[x, y]

xy − 1
, S

)
and so Gm is the variety defined by k[x,y]

xy−1 . Similarly, we can define GLn by the functor

S 7→ GLn(S) = Homk(R,S)

where R = k[x11,...,xnn,t]
det(xij)t−1 . Elliptic curves and abelian varieties are also examples of algebraic groups.

Definition 2.2. A morphism of algebraic groups is a map of varieties which preserves the group structure (i.e.
some diagrams are commutative).

Definition 2.3. An isogeny is a map of algebriac groups which has finite kernel. (Do these need to be surjective
also?)

Fact: the category of algebraic groups has kernels, cokernels, products etc.

Definition 2.4. G is said to be a linear algebraic group if G is an algebraic group which embeds as a subgroup of
GLn for some n ∈ N.

For example, the multiplicative group is clearly linear. The additive group is linear via

Ga −→ GL2

a 7−→
(

1 a
0 1

)
as are the orthogonal groups and the symplectic groups. In fact, all affine algebriac groups are linear.

Non-examples: elliptic curves and abelian varieties are not linear.

Fact: Consider H ≤ G a closed subgroup, then G/H exists as a quasi-projective variety, and is a linear algebraic group if
and only if H is normal.

Definition 2.5. A group G is soluble if it is soluble as an abstract group. This means that the derived series G(n) = 0
for all n� 0, where G(0) = G and G(n) =

[
G(n−1), G(n−1)

]
.

Definition 2.6. An element g ∈ G, a linear algebriac group, is unipotent if ρ(g)−1 is nilpotent for any (equivalently
for all) faithful linear representations ρ : G→ GLn.

We have a filtration of important subgroups of an algebraic group

{1} ⊂ G3 ⊂ G2 ⊂ G1

where
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• G3 is the unique maximal connected unipotent subgroup of G,

• G2 is the unique maximal connected solvable normal subgroup of G,

• G1 is the unique maximal connected linear subgroup of G.

3 Lie algebras

Remark: For a Lie group, we can define this analytically.

Definition 3.1 (/Lemma). Let X be a variety of a field k, OX is a sheaf of rings, x ∈ X, and OX,x is a local ring
with maximal ideal mx. Then mx/m

2
x is a finite dimensional k-vector space. This is called the Zariski cotangent

space. We define the Zariski tangent space to be (mx/m
2
x)∨ =: TxX.

Proof. Consider α+ mx ∈ OX,x/x, and a+ m2
x ∈ mx/m

2
x, then

(α+ mx)(a+ m2
x) = α · a+ m2

x.

How do we turn this into a Lie algebra? First, we consider a linear algebraic group G with ring of functions A = k[G],
then G acts on A by g · f(x) = f(g−1x). The key idea is to look at the left-invariant derivations.

Definition 3.2. An element δ ∈ End(A) is a derivation if δ(fg) = fδ(g) + gδ(f). It is left-invariant if g · δ(f) =
δ(g · f).

It is an easy exercise to show that if δ1, δ2 ∈ End(A) are both left invariant differentials, then so is their Lie bracket
δ1δ2 − δ2δ1. This turns the vector space of left-invariant differentials into a Lie algebra.

Proposition 3.3. There is an isomorphism

{left-invariant derivations} −→ TeG

δ 7−→ (f 7→ δ(f)(e)).

In particular, we have a Lie algebra structure on TeG.

Definition 3.4. g = TeG = Lie(G).

Proposition 3.5. The functor G 7→ g is fully faithful.

Definition 3.6. Given an element g ∈ G, we get the conjugation map cg : G→ G with x 7→ gxg−1. By functoriality
of the Lie algebra construction, we get a map d(cg) : g→ g. Therefore we get a morphism of linear algebraic groups

AdG : G→ GL(g),

called the adjoint representation of G. Taking the derivative of this map we now get a map

adg = d(AdG)e : g→ End(g),

called the adjoint representation of g.

Exercise: look up the proof of the fact that gln = Matn and try to work out what sln is.



4 §5 Root Systems

Proposition 3.7. 1. If H ≤ G is a closed subgroup, then h ≤ g is a subalgebra.

2. If the characteristic of k is 0, then the kernel of the adjoint representation is the center Z(G). If the characteristic
is p, then this may not hold. For example, an example worked out in Chevalley’s theory of Lie groups concerns
the group 

a 0 0
0 ap b
0 0 1

 ⊂ GL3(Fp)

4 Reductive Groups

Definition 4.1. A reductive group is a LAG G such that {1} is the only connected unipotent normal subgroup.

Definition 4.2. A Borel subgroup is a maximal connected solvable subgroup.

For example, the upper triangular matrices in GLn form a Borel subgroup.

Proposition 4.3. GLn and SLn are reductive.

Proof. The unipotent radical would have to be contained inside any Borel subgroups, but the lower triangular matrices
also form a Borel subgroup, and their intersection is the diagonal matrices. The only unipotent diagonal matrix is the
identity.

Definition 4.4. A torus T is a closed subgroup of G such that T ∼= Gm over k. A character of T is a map T→ Gm,
and a cocharacter (often called a 1-parameter subgroup) is a map Gm → T.

For example the diagonal matrices define a torus inside GLn. If we consider the adjoint representation of G, then we can
diagonalise the action of any torus, and we get

g =
⊕

α∈X(T)

gα, gα := {x ∈ g : Ad(t) · x = α(t),∀t ∈ T} .

The key point here is that for all but finitely many α ∈ T the space on the right is 0. The set of α 6= 0 for which the space
is not zero are called the roots of G with respect to T, denoted Φ(G,T) ⊂ X(T).

Proposition 4.5. Let G be a connected reductive group and T a maximal torus with Lie algebra t.

• g = t⊕
⊕

α∈Φ gα

• For all α ∈ Φ, Tα := (kerα)0 is a torus of codimension 1.

• For all α ∈ Φ, there exists a unique AdTα -stable subgroup Uα ≤ G called the root group, and these are permuted
by W (G,T) = NG(T)/ZG(T) which is called the Weyl group.

• G = 〈Uα,T : α ∈ Φ(G,T)〉.

5 Root Systems

Definition 5.1. An abstract root system in a finite dimensional R-vector space is a set Φ along with maps
{sα ∈ End(V ) : α ∈ Φ} such that

• 0 6∈ Φ,



George Robinson 5

• sα(Φ) ⊂ Φ

• If α, β ∈ Φ, then sα(β)− β ∈ αZ.

Fact: if T is a maximal torus in G, then Φ(G,T) gives a root system in Z[Φ] ⊗Z R. Any cocharacter/character of Gm is
of the form x 7→ xn for some n ∈ Z. Therefore there is a pairing

Y (T)×X(T) −→ Z
〈χ, φ〉 7−→ χ ◦ φ ∈ End(Gm) ∼= Z

This is a perfect pairing. It allows us to define the dual root

Definition 5.2. If α ∈ Φ, then there is a unique dual root α∨ ∈ Y (T) such that

sα(β) = β − 〈β, α∨〉α

(check this).

Definition 5.3. An abstract root datum is a tuple Ψ = (Φ,Φ∨, X(T), Y (T)) satisfying a bunch of axioms. Given
a root datum Ψ, we can define the dual datum by Ψ∨ := (Φ∨,Φ, Y,X).

Fact: if Ψ (equivalently Ψ∨) is reduced, then there is a unique reductive group with that root datum.

Definition 5.4. This root datum corresponds to a unique connected reductive group, which is called the dual group
Ĝ.
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