THE ARTIN-SCHREIER THEOREM

JAMES TAYLOR

1. The Theorem

We aim to prove the following theorem. We follow the notes by Keith Conrad.

Theorem 1.1 (Artin-Schreier). Suppose that F is a field with $0 < [\overline{F}: F] < \infty$. Then:

- (1) $\overline{F} = F(i)$, for $i \in \overline{F}$ with $i^2 = -1$,
- (2) For any $a \in F^{\times}$, exactly one of a and -a is a square in F, and every finite non-empty sum of non-zero squares is again a non-zero square in F.

In particular, F has a unique structure as an ordered field with set of positive elements

$$\mathbb{P} \coloneqq \{a^2 \mid a \in F^\times\},\$$

and therefore, F has characteristic 0.

Let's recall some of the notions involved the statement.

Definition 1.2. An order on a field is a subset $\mathbb{P} \subset F$ is a set of *positive elements*:

(1) $F = -\mathbb{P} \sqcup \{0\} \sqcup \mathbb{P},$

(2) \mathbb{P} is closed under addition and multiplication.

Remark 1.3. This is equivalent to giving a strict total order < on F such that

- $a < b \Rightarrow a + c < b + c$,
- $a < b \Rightarrow ad < bd$,

for any $a, b, c, d \in F$ with d > 0.

Lemma 1.4. Suppose that \mathbb{P} is a set of positive elements in some field F. Then:

$$\{a^2 \mid a \in F^\times\} \subset \mathbb{P},\$$

and F has characteristic 0.

Proof. Suppose that $a \in F^{\times}$. Then either a or -a is in \mathbb{P} . So $a^2 = (-a)^2 \in \mathbb{P}$. Now $1^2 = 1$ is positive, and \mathbb{P} is closed under addition and doesn't contain 0, so F has characteristic 0. \Box

Note that $1 = 1^2$ is always positive, and therefore -1 is never positive. In particular, for F(i)/F as in the main theorem, F(i)/F will not admit a set of positive elements: fields which admit such a set of positive elements are often called *formally real*, and if they admit no totally real algebraic extension, *real closed*. In fact, one can show that being formally real is equivalent to -1 being a sum of squares. Note that a set of positive elements for a field need not be unique in general.

What we will actually prove is the following theorem.

Theorem 1.5 (Strong Artin-Schreier). Suppose that F is a field with $0 < [F^{sep}: F] < \infty$. Then:

(1) $\overline{F} = F(i)$, for $i \in \overline{F}$ with $i^2 = -1$,

(2) For any $a \in F^{\times}$, exactly one of a and -a is a square in F, and every finite non-empty sum of non-zero squares is again a non-zero square in F.

In particular, F has a unique structure as an ordered field with set of positive elements

$$\mathbb{P} \coloneqq \{a^2 \mid a \in F^\times\},\$$

and therefore, F has characteristic 0.

Date: January 26, 2024.

In order to see that this implies Theorem 1.1, we use the following lemma.

Lemma 1.6. Suppose that F has characteristic p. Then if $a \in F \setminus F^p$, the polynomial

$$X^{p^n} - a$$

is irreducible in F[X] for any $n \ge 1$.

Proof. Suppose that $f(X) = X^{p^n} - 1 = g(X)h(X)$ is a product of $g(X), h(X) \in F[X]$, both monic and non-constant. Let $b \in \overline{F}$ be a root of f(X). Then

$$f(X) = X^{p^n} - a = (X - b)^{p^n}$$

Because F[X] is a UFD, $g(X) = (X - b)^m$ for some $0 < m < p^n$. If $m = p^r k$ for k coprime to p, then

$$g(X) = (X - b)^{p^r k} = (X^{p^r} - b^{p^r})^k.$$

The coefficient of $X^{(k-1)p^r}$ is $-kb^{p^r}$. Because k is coprime to p, b^{p^r} is therefore in F. Therefore,

$$a = (b^{p^r})^{p^{n-r}} \in F^{p^{n-r}} \subset F^p$$

a contradiction.

Corollary 1.7. If $F = F^{\text{sep}}$ and $\overline{F} \neq F$, then \overline{F}/F is an infinite extension. In particular, Theorem 1.5 implies Theorem 1.1.

Proof. As $\overline{F} \neq F^{\text{sep}}$, F has characteristic p and $F \neq F^p$. Then the family from Lemma 1.6 shows that \overline{F}/F is infinite.

Now we focus on proving Theorem 1.5. For notational simplicity we write $L := F^{\text{sep}}$. The key special case is the following.

Proposition 1.8. Suppose that F is as in the hypotheses of Theorem 1.5, and [L: F] = p is prime. Then p = 2, char $(F) \neq 2$, and L = F(i) where $i^2 = -1$.

We will leave proving this for later, and show how we can use it to prove Theorem 1.5.

Proof of Theorem 1.5. The extension L/F is Galois by definition. Let G be the Galois group of L/K. If $p \mid |G|$ is a prime, then we can find an element of G of order p. Let K/F be the intermediate field fixed by this element. Then L/K is an extension of degree p, and we may apply Proposition 1.8 to L/K to deduce that p = 2. So $|G| = 2^m$ for some $m \ge 1$. To show that m = 1, suppose for a contradiction that $4 \mid |G|$. Because p-groups of order p^m contain subgroups of order p^k for all $0 \le k \le m$, we can look at the field fixed by a subgroup of order $4 = p^2$ and assume that |G| = 4. Then taking an element of order 2 in |G| and looking at the fixed field, we obtain by Proposition 1.8, an intermediate field $F \subset K \subset L$, such that L = K(i), where $i^2 = -1$ and $i \notin K$. But in this case, we can consider the distinct intermediate field F(i). If we also plug in F(i) to Proposition 1.8, as F(i)/F must have degree two because |G| = 4, and this tells us that L = F(i)(j) for some $j^2 = -1$ and $j \notin F(i)$. This is a contradiction, as we must have j = i or j = -i, both of which are in F(i).

Using the following lemma (which we can apply because $\operatorname{char}(F) \neq 2$ so the extensions defined by square root of elements are separable), it remains to show that for any $a \in F^{\times}$, exactly one of a and -a is a square in F. If they are both squares, then -1 is a square, so assume that both a and -a are both non-squares. Then $L = F(\sqrt{a}) = F(\sqrt{-a})$. Writing

$$\sqrt{-a} = x + y\sqrt{a}$$

and squaring,

$$-a = x^2 + y^2a + 2xy\sqrt{a}.$$

Therefore, x = 0 or y = 0, because char $(F) \neq 2$, and $\sqrt{-a} \notin F$, hence x = 0. So $y = \sqrt{-a}/\sqrt{a}$ is an element of F which squares to -1, a contradiction.

Lemma 1.9. Suppose that -1 is not a square in F, and every element of F(i) is a square in F(i), where $i^2 = -1$. Then any non-empty finite sum of non-zero squares of F is a non-zero square of F.

Proof. It is sufficient to show that if $x, y \in F^{\times}$, then $x^2 + y^2$ is a non-zero square of F. We can define the element $z = x + iy \in F(i)$, and by the assumption have that

$$x + iy = (c + di)^2 = (c^2 - d^2) + 2cdi$$

for some $c, d \in F$. Therefore,

$$x^{2} + y^{2} = (c^{2} - d^{2})^{2} + 4c^{2}d^{2} = c^{4} + d^{4} + 2c^{2}d^{2} = (c^{2} + d^{2})^{2}$$

is again a square. This is non-zero, as if $x^2 + y^2 = 0$, $(x/y)^2 = -1$ contrary to the assumption on F.

Now we are left with proving the key Proposition 1.8.

Proof of Proposition 1.8. Suppose first that F has characteristic p. Then by Artin-Schreier theory, $L = F(\alpha)$ for some α a root of $X^p - X - a$, where $a \in F$. For any $b \in L$, there are unique $a_0, \dots, a_{p-1} \in F$ with

$$b = a_0 + a_1\alpha + \dots + a_{p-1}\alpha^{p-1}$$

Consider

$$b^{p} - b = \left(\sum_{j=0}^{p-1} a_{i} \alpha^{j}\right)^{p} - \sum_{j=0}^{p-1} a_{i} \alpha^{j},$$

$$= \sum_{j=0}^{p-1} a_{i}^{p} \alpha^{jp} - \sum_{j=0}^{p-1} a_{i} \alpha^{j},$$

$$= \sum_{j=0}^{p-1} a_{i}^{p} (a + \alpha)^{j} - \sum_{j=0}^{p-1} a_{i} \alpha^{j}.$$

Choose $b \in L$ such that $b^p - b = a\alpha^{p-1}$, and compare the terms of α^{p-1} . On the right hand side this is $a_{p-1}^p - a_{p-1}$, and on the right hand side this is a. So we have found a root in F of the irreducible polynomial $X^p - X - a \in F[X]$, a contradiction.

Therefore, F does not have characteristic p. Because L is separably closed, L contains a primitive pth root of unity ζ . Furthermore, $[F(\zeta): F] \leq p-1 < p$, hence $F(\zeta) = F$, and $\zeta \in F$. Therefore, by Kummer theory, $L = F(\gamma)$, where $\gamma^p \in F$.

Because L is separably closed, we can find $\beta \in L$ with $\beta^p = \gamma$. Let $\sigma \in \text{Gal}(L/F)$ be non-trivial. Then $\sigma(\beta^{p^2}) = \beta^{p^2}$, so $\sigma(\beta) = \omega\beta$, where $\omega^{p^2} = 1$. Furthermore, if $\omega^p = 1$, then $\sigma(\beta^p) = \sigma(\beta)^p = \beta^p$, so $\beta^p = \gamma \in F$, a contradiction. Therefore ω is a primitive p^2 root of 1. Because σ is an automorphism and $\omega^p \in F$, $\sigma(\omega)/\omega$ is a *p*th root of 1, so

$$\sigma(\omega) = \omega \omega^{pk} = \omega^{1+pk}$$

for some $k \in \mathbb{Z}$. We have that

$$\beta = \sigma^{p}(\beta) = \sigma^{p-1}(\sigma(\omega)\sigma(\beta)) = \dots = \omega\sigma(\omega)\cdots\sigma^{p-1}(\omega)\beta,$$

and therefore,

$$1 + (1 + pk) + \dots + (1 + pk)^{p-1} = 0 \mod p^2$$

Equivalently,

$$\sum_{j=0}^{p-1} (1+jpk) = 0 \mod p^2,$$

or

$$p + \frac{p(p-1)}{2}pk = \mod p^2.$$

Therefore,

$$\frac{p(p-1)}{2}k = -1 \mod p.$$

Thus p is even, and k is odd. Consequently, ω has order $4 = p^2$, and $\omega^2 \neq 1$, thus $\omega^2 = -1$, as ω has order 4. Because $\omega \notin F$, then $L = F(\omega)$.

JAMES TAYLOR

2. Application: $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$

As a consequence of the above, we know that all torsion elements of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ have order 1 or 2. We can use this to describe all torsion elements of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

We will use the following fact:

Theorem 2.1 (Neukirch-Uchida). Every automorphism of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ is inner.

Therefore, in order to understand the automorphisms of $\overline{\mathbb{Q}}/\mathbb{Q}$, we just need to understand the conjugation action.

Lemma 2.2. The stabiliser of complex conjugation σ is $\langle \sigma \rangle$.

Proof. If commutes with σ , then preserves \mathbb{R} . By the uniqueness of the order, we have that any automorphism ϕ of \mathbb{R} preserves the order. But this forces ϕ to be the identity: if $\phi(a) \neq a$ for some $a \in \mathbb{R}$, then choose some rational q strictly between a and $\phi(a)$. If

$$a < q < \phi(a)$$

then $\phi(a) < \phi(q) = q$, a contradiction. Similarly if $\phi(a) < q < a$.

Corollary 2.3. The centre $Z(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})) = 1$, and the natural map

$$\operatorname{Gal}(\mathbb{Q}/\mathbb{Q}) \to \operatorname{Aut}(\operatorname{Gal}(\mathbb{Q}/\mathbb{Q}))$$

is an isomorphism.

The previous lemma also shows us that the conjugation action of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on the set of order two elements is faithful. The next proposition shows that this action is also transitive.

Proposition 2.4. Any two order two elements are conjugate in $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

Proof. Take σ_1, σ_2 order two automorphisms of $\overline{\mathbb{Q}}$. Let K_1, K_2 be the fixed fields inside $\overline{\mathbb{Q}}$. By the Artin-Schreier Theorem, these are both real-closed field extensions of \mathbb{Q} , which extend the unique (by Lemma 1.4) order on \mathbb{Q} . The real closure of \mathbb{Q} is unique up to isomorphism, and this extends to an automorphism of $\overline{\mathbb{Q}}$ because $\overline{\mathbb{Q}}$ is algebraically closed. This automorphism maps σ_1 to σ_2 , and by the previous corollary is given by conjugation.

In fact it is a possible to characterise $\overline{\mathbb{Q}}$ up to field isomorphism as the unique algebraically closed field for which $\operatorname{Aut}(\mathbb{Q})$ has non-trivial torsion elements and all torsion elements are conjugate.