THE ARTIN-SCHREIER THEOREM

JAMES TAYLOR

1. The Theorem

We aim to prove the following theorem. We follow the notes by Keith Conrad.
Theorem 1.1 (Artin-Schreier). Suppose that F is a field with $0<[\bar{F}: F]<\infty$. Then:
(1) $\bar{F}=F(i)$, for $i \in \bar{F}$ with $i^{2}=-1$,
(2) For any $a \in F^{\times}$, exactly one of a and $-a$ is a square in F, and every finite non-empty sum of non-zero squares is again a non-zero square in F.
In particular, F has a unique structure as an ordered field with set of positive elements

$$
\mathbb{P}:=\left\{a^{2} \mid a \in F^{\times}\right\}
$$

and therefore, F has characteristic 0.
Let's recall some of the notions involved the statement.
Definition 1.2. An order on a field is a subset $\mathbb{P} \subset F$ is a set of positive elements:
(1) $F=-\mathbb{P} \sqcup\{0\} \sqcup \mathbb{P}$,
(2) \mathbb{P} is closed under addition and multiplication.

Remark 1.3. This is equivalent to giving a strict total order $<$ on F such that

- $a<b \Rightarrow a+c<b+c$,
- $a<b \Rightarrow a d<b d$,
for any $a, b, c, d \in F$ with $d>0$.
Lemma 1.4. Suppose that \mathbb{P} is a set of positive elements in some field F. Then:

$$
\left\{a^{2} \mid a \in F^{\times}\right\} \subset \mathbb{P}
$$

and F has characteristic 0 .
Proof. Suppose that $a \in F^{\times}$. Then either a or $-a$ is in \mathbb{P}. So $a^{2}=(-a)^{2} \in \mathbb{P}$. Now $1^{2}=1$ is positive, and \mathbb{P} is closed under addition and doesn't contain 0 , so F has characteristic 0 .

Note that $1=1^{2}$ is always positive, and therefore -1 is never positive. In particular, for $F(i) / F$ as in the main theorem, $F(i) / F$ will not admit a set of positive elements: fields which admit such a set of positive elements are often called formally real, and if they admit no totally real algebraic extension, real closed. In fact, one can show that being formally real is equivalent to -1 being a sum of squares. Note that a set of positive elements for a field need not be unique in general.

What we will actually prove is the following theorem.
Theorem 1.5 (Strong Artin-Schreier). Suppose that F is a field with $0<\left[F^{\mathrm{sep}}: F\right]<\infty$. Then:
(1) $\bar{F}=F(i)$, for $i \in \bar{F}$ with $i^{2}=-1$,
(2) For any $a \in F^{\times}$, exactly one of a and $-a$ is a square in F, and every finite non-empty sum of non-zero squares is again a non-zero square in F.
In particular, F has a unique structure as an ordered field with set of positive elements

$$
\mathbb{P}:=\left\{a^{2} \mid a \in F^{\times}\right\}
$$

and therefore, F has characteristic 0.
Date: January 26, 2024.

In order to see that this implies Theorem 1.1, we use the following lemma.
Lemma 1.6. Suppose that F has characteristic p. Then if $a \in F \backslash F^{p}$, the polynomial

$$
X^{p^{n}}-a
$$

is irreducible in $F[X]$ for any $n \geq 1$.
Proof. Suppose that $f(X)=X^{p^{n}}-1=g(X) h(X)$ is a product of $g(X), h(X) \in F[X]$, both monic and non-constant. Let $b \in \bar{F}$ be a root of $f(X)$. Then

$$
f(X)=X^{p^{n}}-a=(X-b)^{p^{n}} .
$$

Because $F[X]$ is a UFD, $g(X)=(X-b)^{m}$ for some $0<m<p^{n}$. If $m=p^{r} k$ for k coprime to p, then

$$
g(X)=(X-b)^{p^{r} k}=\left(X^{p^{r}}-b^{p^{r}}\right)^{k} .
$$

The coefficient of $X^{(k-1) p^{r}}$ is $-k b^{p^{r}}$. Because k is coprime to $p, b^{p^{r}}$ is therefore in F. Therefore,

$$
\left.a=\left(b^{p^{r}}\right)\right)^{p^{n-r}} \in F^{p^{n-r}} \subset F^{p}
$$

a contradiction.
Corollary 1.7. If $F=F^{\text {sep }}$ and $\bar{F} \neq F$, then \bar{F} / F is an infinite extension. In particular, Theorem 1.5 implies Theorem 1.1 .
Proof. As $\bar{F} \neq F^{\text {sep }, ~} F$ has characteristic p and $F \neq F^{p}$. Then the family from Lemma 1.6 shows that \bar{F} / F is infinite.

Now we focus on proving Theorem 1.5. For notational simplicity we write $L:=F^{\text {sep }}$. The key special case is the following.
Proposition 1.8. Suppose that F is as in the hypotheses of Theorem 1.5, and $[L: F]=p$ is prime. Then $p=2, \operatorname{char}(F) \neq 2$, and $L=F(i)$ where $i^{2}=-1$.

We will leave proving this for later, and show how we can use it to prove Theorem 1.5 .
Proof of Theorem 1.5. The extension L / F is Galois by definition. Let G be the Galois group of L / K. If $p||G|$ is a prime, then we can find an element of G of order p. Let K / F be the intermediate field fixed by this element. Then L / K is an extension of degree p, and we may apply Proposition 1.8 to L / K to deduce that $p=2$. So $|G|=2^{m}$ for some $m \geq 1$. To show that $m=1$, suppose for a contradiction that $4\left||G|\right.$. Because p-groups of order p^{m} contain subgroups of order p^{k} for all $0 \leq k \leq m$, we can look at the field fixed by a subgroup of order $4=p^{2}$ and assume that $|G|=4$. Then taking an element of order 2 in $|G|$ and looking at the fixed field, we obtain by Proposition 1.8, an intermediate field $F \subset K \subset L$, such that $L=K(i)$, where $i^{2}=-1$ and $i \notin K$. But in this case, we can consider the distinct intermediate field $F(i)$. If we also plug in $F(i)$ to Proposition 1.8, as $F(i) / F$ must have degree two because $|G|=4$, and this tells us that $L=F(i)(j)$ for some $j^{2}=-1$ and $j \notin F(i)$. This is a contradiction, as we must have $j=i$ or $j=-i$, both of which are in $F(i)$.

Using the following lemma (which we can apply because $\operatorname{char}(F) \neq 2$ so the extensions defined by square root of elements are separable), it remains to show that for any $a \in F^{\times}$, exactly one of a and $-a$ is a square in F. If they are both squares, then -1 is a square, so assume that both a and $-a$ are both non-squares. Then $L=F(\sqrt{a})=F(\sqrt{-a})$. Writing

$$
\sqrt{-a}=x+y \sqrt{a}
$$

and squaring,

$$
-a=x^{2}+y^{2} a+2 x y \sqrt{a} .
$$

Therefore, $x=0$ or $y=0$, because $\operatorname{char}(F) \neq 2$, and $\sqrt{-a} \notin F$, hence $x=0$. So $y=\sqrt{-a} / \sqrt{a}$ is an element of F which squares to -1 , a contradiction.
Lemma 1.9. Suppose that -1 is not a square in F, and every element of $F(i)$ is a square in $F(i)$, where $i^{2}=-1$. Then any non-empty finite sum of non-zero squares of F is a non-zero square of F.

Proof. It is sufficient to show that if $x, y \in F^{\times}$, then $x^{2}+y^{2}$ is a non-zero square of F. We can define the element $z=x+i y \in F(i)$, and by the assumption have that

$$
x+i y=(c+d i)^{2}=\left(c^{2}-d^{2}\right)+2 c d i
$$

for some $c, d \in F$. Therefore,

$$
x^{2}+y^{2}=\left(c^{2}-d^{2}\right)^{2}+4 c^{2} d^{2}=c^{4}+d^{4}+2 c^{2} d^{2}=\left(c^{2}+d^{2}\right)^{2}
$$

is again a square. This is non-zero, as if $x^{2}+y^{2}=0,(x / y)^{2}=-1$ contrary to the assumption on F.

Now we are left with proving the key Proposition 1.8.
Proof of Proposition 1.8. Suppose first that F has characteristic p. Then by Artin-Schreier theory, $L=F(\alpha)$ for some α a root of $X^{p}-X-a$, where $a \in F$. For any $b \in L$, there are unique $a_{0}, \cdots, a_{p-1} \in F$ with

$$
b=a_{0}+a_{1} \alpha+\cdots+a_{p-1} \alpha^{p-1} .
$$

Consider

$$
\begin{aligned}
b^{p}-b & =\left(\sum_{j=0}^{p-1} a_{i} \alpha^{j}\right)^{p}-\sum_{j=0}^{p-1} a_{i} \alpha^{j} \\
& =\sum_{j=0}^{p-1} a_{i}^{p} \alpha^{j p}-\sum_{j=0}^{p-1} a_{i} \alpha^{j}, \\
& =\sum_{j=0}^{p-1} a_{i}^{p}(a+\alpha)^{j}-\sum_{j=0}^{p-1} a_{i} \alpha^{j} .
\end{aligned}
$$

Choose $b \in L$ such that $b^{p}-b=a \alpha^{p-1}$, and compare the terms of α^{p-1}. On the right hand side this is $a_{p-1}^{p}-a_{p-1}$, and on the right hand side this is a. So we have found a root in F of the irreducible polynomial $X^{p}-X-a \in F[X]$, a contradiction.
Therefore, F does not have characteristic p. Because L is separably closed, L contains a primitive p th root of unity ζ. Furthermore, $[F(\zeta): F] \leq p-1<p$, hence $F(\zeta)=F$, and $\zeta \in F$. Therefore, by Kummer theory, $L=F(\gamma)$, where $\gamma^{p} \in F$.

Because L is separably closed, we can find $\beta \in L$ with $\beta^{p}=\gamma$. Let $\sigma \in \operatorname{Gal}(L / F)$ be non-trivial. Then $\sigma\left(\beta^{p^{2}}\right)=\beta^{p^{2}}$, so $\sigma(\beta)=\omega \beta$, where $\omega^{p^{2}}=1$. Furthermore, if $\omega^{p}=1$, then $\sigma\left(\beta^{p}\right)=\sigma(\beta)^{p}=\beta^{p}$, so $\beta^{p}=\gamma \in F$, a contradiction. Therefore ω is a primitive p^{2} root of 1 . Because σ is an automorphism and $\omega^{p} \in F, \sigma(\omega) / \omega$ is a p th root of 1 , so

$$
\sigma(\omega)=\omega \omega^{p k}=\omega^{1+p k}
$$

for some $k \in \mathbb{Z}$. We have that

$$
\beta=\sigma^{p}(\beta)=\sigma^{p-1}(\sigma(\omega) \sigma(\beta))=\cdots=\omega \sigma(\omega) \cdots \sigma^{p-1}(\omega) \beta,
$$

and therefore,

$$
1+(1+p k)+\cdots+(1+p k)^{p-1}=0 \quad \bmod p^{2} .
$$

Equivalently,

$$
\sum_{j=0}^{p-1}(1+j p k)=0 \quad \bmod p^{2}
$$

or

$$
p+\frac{p(p-1)}{2} p k=\quad \bmod p^{2} .
$$

Therefore,

$$
\frac{p(p-1)}{2} k=-1 \quad \bmod p .
$$

Thus p is even, and k is odd. Consequently, ω has order $4=p^{2}$, and $\omega^{2} \neq 1$, thus $\omega^{2}=-1$, as ω has order 4. Because $\omega \notin F$, then $L=F(\omega)$.

2. Application: $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$

As a consequence of the above, we know that all torsion elements of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ have order 1 or 2 . We can use this to describe all torsion elements of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$.

We will use the following fact:
Theorem 2.1 (Neukirch-Uchida). Every automorphism of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ is inner.
Therefore, in order to understand the automorphisms of $\overline{\mathbb{Q}} / \mathbb{Q}$, we just need to understand the conjugation action.

Lemma 2.2. The stabiliser of complex conjugation σ is $\langle\sigma\rangle$.
Proof. If commutes with σ, then preserves \mathbb{R}. By the uniqueness of the order, we have that any automorphism ϕ of \mathbb{R} preserves the order. But this forces ϕ to be the identity: if $\phi(a) \neq a$ for some $a \in \mathbb{R}$, then choose some rational q strictly between a and $\phi(a)$. If

$$
a<q<\phi(a)
$$

then $\phi(a)<\phi(q)=q$, a contradiction. Similarly if $\phi(a)<q<a$.
Corollary 2.3. The centre $Z(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}))=1$, and the natural map

$$
\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \operatorname{Aut}(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}))
$$

is an isomorphism.
The previous lemma also shows us that the conjugation action of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ on the set of order two elements is faithful. The next proposition shows that this action is also transitive.
Proposition 2.4. Any two order two elements are conjugate in $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$.
Proof. Take σ_{1}, σ_{2} order two automorphisms of $\overline{\mathbb{Q}}$. Let K_{1}, K_{2} be the fixed fields inside $\overline{\mathbb{Q}}$. By the Artin-Schreier Theorem, these are both real-closed field extensions of \mathbb{Q}, which extend the unique (by Lemma 1.4) order on \mathbb{Q}. The real closure of \mathbb{Q} is unique up to isomorphism, and this extends to an automorphism of $\overline{\mathbb{Q}}$ because $\overline{\mathbb{Q}}$ is algebraically closed. This automorphism maps σ_{1} to σ_{2}, and by the previous corollary is given by conjugation.

In fact it is a possible to characterise $\overline{\mathbb{Q}}$ up to field isomorphism as the unique algebraically closed field for which $\operatorname{Aut}(\mathbb{Q})$ has non-trivial torsion elements and all torsion elements are conjugate.

