
THE ARTIN-SCHREIER THEOREM

JAMES TAYLOR

1. The Theorem

We aim to prove the following theorem. We follow the notes by Keith Conrad.

Theorem 1.1 (Artin-Schreier). Suppose that F is a field with 0 < [F : F ] <∞. Then:

(1) F = F (i), for i ∈ F with i2 = −1,
(2) For any a ∈ F×, exactly one of a and −a is a square in F , and every finite non-empty

sum of non-zero squares is again a non-zero square in F .

In particular, F has a unique structure as an ordered field with set of positive elements

P := {a2 | a ∈ F×},
and therefore, F has characteristic 0.

Let’s recall some of the notions involved the statement.

Definition 1.2. An order on a field is a subset P ⊂ F is a set of positive elements:

(1) F = −P t {0} t P,
(2) P is closed under addition and multiplication.

Remark 1.3. This is equivalent to giving a strict total order < on F such that

• a < b⇒ a+ c < b+ c,
• a < b⇒ ad < bd,

for any a, b, c, d ∈ F with d > 0.

Lemma 1.4. Suppose that P is a set of positive elements in some field F . Then:

{a2 | a ∈ F×} ⊂ P,
and F has characteristic 0.

Proof. Suppose that a ∈ F×. Then either a or −a is in P. So a2 = (−a)2 ∈ P. Now 12 = 1 is
positive, and P is closed under addition and doesn’t contain 0, so F has characteristic 0. �

Note that 1 = 12 is always positive, and therefore −1 is never positive. In particular, for
F (i)/F as in the main theorem, F (i)/F will not admit a set of positive elements: fields which
admit such a set of positive elements are often called formally real, and if they admit no totally
real algebraic extension, real closed. In fact, one can show that being formally real is equivalent
to −1 being a sum of squares. Note that a set of positive elements for a field need not be unique
in general.

What we will actually prove is the following theorem.

Theorem 1.5 (Strong Artin-Schreier). Suppose that F is a field with 0 < [F sep : F ] < ∞.
Then:

(1) F = F (i), for i ∈ F with i2 = −1,
(2) For any a ∈ F×, exactly one of a and −a is a square in F , and every finite non-empty

sum of non-zero squares is again a non-zero square in F .

In particular, F has a unique structure as an ordered field with set of positive elements

P := {a2 | a ∈ F×},
and therefore, F has characteristic 0.
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In order to see that this implies Theorem 1.1, we use the following lemma.

Lemma 1.6. Suppose that F has characteristic p. Then if a ∈ F \ F p, the polynomial

Xpn − a
is irreducible in F [X] for any n ≥ 1.

Proof. Suppose that f(X) = Xpn − 1 = g(X)h(X) is a product of g(X), h(X) ∈ F [X], both
monic and non-constant. Let b ∈ F be a root of f(X). Then

f(X) = Xpn − a = (X − b)pn .
Because F [X] is a UFD, g(X) = (X − b)m for some 0 < m < pn. If m = prk for k coprime to
p, then

g(X) = (X − b)prk = (Xpr − bpr)k.

The coefficient of X(k−1)pr is −kbpr . Because k is coprime to p, bp
r

is therefore in F . Therefore,

a = (bp
r
)p

n−r ∈ F pn−r ⊂ F p,

a contradiction. �

Corollary 1.7. If F = F sep and F 6= F , then F/F is an infinite extension. In particular,
Theorem 1.5 implies Theorem 1.1.

Proof. As F 6= F sep, F has characteristic p and F 6= F p. Then the family from Lemma 1.6
shows that F/F is infinite. �

Now we focus on proving Theorem 1.5. For notational simplicity we write L := F sep. The
key special case is the following.

Proposition 1.8. Suppose that F is as in the hypotheses of Theorem 1.5, and [L : F ] = p is
prime. Then p = 2, char(F ) 6= 2, and L = F (i) where i2 = −1.

We will leave proving this for later, and show how we can use it to prove Theorem 1.5.

Proof of Theorem 1.5. The extension L/F is Galois by definition. Let G be the Galois group
of L/K. If p | |G| is a prime, then we can find an element of G of order p. Let K/F be the
intermediate field fixed by this element. Then L/K is an extension of degree p, and we may
apply Proposition 1.8 to L/K to deduce that p = 2. So |G| = 2m for some m ≥ 1. To show
that m = 1, suppose for a contradiction that 4 | |G|. Because p-groups of order pm contain
subgroups of order pk for all 0 ≤ k ≤ m, we can look at the field fixed by a subgroup of order
4 = p2 and assume that |G| = 4. Then taking an element of order 2 in |G| and looking at the
fixed field, we obtain by Proposition 1.8, an intermediate field F ⊂ K ⊂ L, such that L = K(i),
where i2 = −1 and i 6∈ K. But in this case, we can consider the distinct intermediate field F (i).
If we also plug in F (i) to Proposition 1.8, as F (i)/F must have degree two because |G| = 4,
and this tells us that L = F (i)(j) for some j2 = −1 and j 6∈ F (i). This is a contradiction, as
we must have j = i or j = −i, both of which are in F (i).

Using the following lemma (which we can apply because char(F ) 6= 2 so the extensions defined
by square root of elements are separable), it remains to show that for any a ∈ F×, exactly one
of a and −a is a square in F . If they are both squares, then −1 is a square, so assume that
both a and −a are both non-squares. Then L = F (

√
a) = F (

√
−a). Writing

√
−a = x+ y

√
a,

and squaring,
−a = x2 + y2a+ 2xy

√
a.

Therefore, x = 0 or y = 0, because char(F ) 6= 2, and
√
−a 6∈ F , hence x = 0. So y =

√
−a/
√
a

is an element of F which squares to −1, a contradiction. �

Lemma 1.9. Suppose that −1 is not a square in F , and every element of F (i) is a square in
F (i), where i2 = −1. Then any non-empty finite sum of non-zero squares of F is a non-zero
square of F .
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Proof. It is sufficient to show that if x, y ∈ F×, then x2 + y2 is a non-zero square of F . We can
define the element z = x+ iy ∈ F (i), and by the assumption have that

x+ iy = (c+ di)2 = (c2 − d2) + 2cdi

for some c, d ∈ F . Therefore,

x2 + y2 = (c2 − d2)2 + 4c2d2 = c4 + d4 + 2c2d2 = (c2 + d2)2

is again a square. This is non-zero, as if x2 + y2 = 0, (x/y)2 = −1 contrary to the assumption
on F . �

Now we are left with proving the key Proposition 1.8.

Proof of Proposition 1.8. Suppose first that F has characteristic p. Then by Artin-Schreier
theory, L = F (α) for some α a root of Xp − X − a, where a ∈ F . For any b ∈ L, there are
unique a0, · · · , ap−1 ∈ F with

b = a0 + a1α+ · · ·+ ap−1α
p−1.

Consider

bp − b =

p−1∑
j=0

aiα
j

p

−
p−1∑
j=0

aiα
j ,

=

p−1∑
j=0

apiα
jp −

p−1∑
j=0

aiα
j ,

=

p−1∑
j=0

api (a+ α)j −
p−1∑
j=0

aiα
j .

Choose b ∈ L such that bp− b = aαp−1, and compare the terms of αp−1. On the right hand side
this is app−1 − ap−1, and on the right hand side this is a. So we have found a root in F of the

irreducible polynomial Xp −X − a ∈ F [X], a contradiction.
Therefore, F does not have characteristic p. Because L is separably closed, L contains a

primitive pth root of unity ζ. Furthermore, [F (ζ) : F ] ≤ p− 1 < p, hence F (ζ) = F , and ζ ∈ F .
Therefore, by Kummer theory, L = F (γ), where γp ∈ F .

Because L is separably closed, we can find β ∈ L with βp = γ. Let σ ∈ Gal(L/F ) be

non-trivial. Then σ(βp
2
) = βp

2
, so σ(β) = ωβ, where ωp2 = 1. Furthermore, if ωp = 1, then

σ(βp) = σ(β)p = βp, so βp = γ ∈ F , a contradiction. Therefore ω is a primitive p2 root of 1.
Because σ is an automorphism and ωp ∈ F , σ(ω)/ω is a pth root of 1, so

σ(ω) = ωωpk = ω1+pk

for some k ∈ Z. We have that

β = σp(β) = σp−1(σ(ω)σ(β)) = · · · = ωσ(ω) · · ·σp−1(ω)β,

and therefore,
1 + (1 + pk) + · · ·+ (1 + pk)p−1 = 0 mod p2.

Equivalently,
p−1∑
j=0

(1 + jpk) = 0 mod p2,

or

p+
p(p− 1)

2
pk = mod p2.

Therefore,
p(p− 1)

2
k = −1 mod p.

Thus p is even, and k is odd. Consequently, ω has order 4 = p2, and ω2 6= 1, thus ω2 = −1, as
ω has order 4. Because ω 6∈ F , then L = F (ω). �
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2. Application: Gal(Q/Q)

As a consequence of the above, we know that all torsion elements of Gal(Q/Q) have order 1
or 2. We can use this to describe all torsion elements of Gal(Q/Q).

We will use the following fact:

Theorem 2.1 (Neukirch-Uchida). Every automorphism of Gal(Q/Q) is inner.

Therefore, in order to understand the automorphisms of Q/Q, we just need to understand
the conjugation action.

Lemma 2.2. The stabiliser of complex conjugation σ is 〈σ〉.

Proof. If commutes with σ, then preserves R. By the uniqueness of the order, we have that any
automorphism φ of R preserves the order. But this forces φ to be the identity: if φ(a) 6= a for
some a ∈ R, then choose some rational q strictly between a and φ(a). If

a < q < φ(a),

then φ(a) < φ(q) = q, a contradiction. Similarly if φ(a) < q < a. �

Corollary 2.3. The centre Z(Gal(Q/Q)) = 1, and the natural map

Gal(Q/Q)→ Aut(Gal(Q/Q))

is an isomorphism.

The previous lemma also shows us that the conjugation action of Gal(Q/Q) on the set of
order two elements is faithful. The next proposition shows that this action is also transitive.

Proposition 2.4. Any two order two elements are conjugate in Gal(Q/Q).

Proof. Take σ1, σ2 order two automorphisms of Q. Let K1,K2 be the fixed fields inside Q. By
the Artin-Schreier Theorem, these are both real-closed field extensions of Q, which extend the
unique (by Lemma 1.4) order on Q. The real closure of Q is unique up to isomorphism, and
this extends to an automorphism of Q because Q is algebraically closed. This automorphism
maps σ1 to σ2, and by the previous corollary is given by conjugation. �

In fact it is a possible to characterise Q up to field isomorphism as the unique algebraically
closed field for which Aut(Q) has non-trivial torsion elements and all torsion elements are
conjugate.
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