
THE BASS-QUILLEN CONJECTURE

JAMES TAYLOR

Abstract. These are notes from a talk giving an overview of the Bass-Quillen Conjecture and

Quillen’s original proof of Serre’s problem on projective modules.

Throughout we follow [1], where all uncited results we state can be found. For a ring R, we write
P(R) for the set of isomorphism classes of finitely generated projective R-modules.

1. The Conjecture

Definition 1.1. Suppose that R is a ring, n ≥ 1, and M is an R[t1, ..., tn]-module. Then M is called
extended (from R) if

M ∼= R[t1, ..., tn]⊗R N

for some R-module N .

Remark 1.2. Such an N as above is necessarily unique, recovered as

M/(t1, ..., tn)M ∼=
R[t1, ..., tn]

(t1, ..., tn)
⊗R M ∼=

R[t1, ..., tn]

(t1, ..., tn)
⊗R R[t1, ..., tn]⊗R N ∼= N.

The Bass-Quillen Conjecture is the conjecture that for all n ≥ 1 and all commutative regular
noetherian rings A, all vector bundles on An

A arise via pullback from a vector bundle on Spec(A). In
other words:

Conjecture 1.3 (Bass-Quillen Conjecture). Suppose that A is a commutative regular noetherian ring,
and n ≥ 1. Then

P(A) → P(A[t1, ..., tn]), M 7→ A[t1, ..., An]⊗A M

is a bijection. Equivalent, every M ∈ P(A[t1, ..., tn]) is extended from A.

When A = k is a field, the Bass-Quillen Conjecture is known as the following.

Theorem 1.4 (Serre’s Problem on Projective Modules). Suppose that n ≥ 1 and k is a field.
Then any finitely generated projective modules over k[t1, ..., tn] is free.

In this talk we will describe the relationship between this problem and K-theory, and discuss two
ways to prove this. This first involves unimodular rows, and it more elementary. The second is
Quillen’s original solution, which involves his patching lemma, and Horrocks’ Theorem.

2. Stably Free Modules and K0

Let us first outline how the Bass-Quillen conjecture relates to K-theory, and try to motivate some
of the assumptions that appear in the statement.

Recall that for a ring R, K0(R) is the group completion of P(R) with respect to ⊕. In particular,
P,Q ∈ P(R) are equal in K0(R) if and only if there is some P ′ ∈ P(R) with

P ⊕ P ′ ∼= Q⊕ P ′.

Furthermore, because free modules are cofinal in P(R), this is equivalent to the statement that P and
Q are stably isomorphic:

P ⊕Rm ∼= Q⊕Rm

for some m ≥ 1.
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2.1. Regularity. If the Bass-Quillen conjecture is true for a ring R, the it is certainly true that the
natural map

K0(R) → K0(R[t1, ..., tn]) (1)

is an isomorphism.

Theorem 2.1 (Grothendieck’s Theorem). If R is left regular, then (1) is an isomorphism.

Remark 2.2. Note that for any ring R, the map (1) is always injective, as K0 is a functor and
R ↪→ R[t1, ..., tn] is split by ti 7→ 0.

Here R is called left regular if R is left noetherian and any finitely generated left R-module admits
a finite projective resolution. When R is commutative and noetherian, this agrees with the usual
definition of regular in commutative algebra (that Rm is a regular local ring for any maximal ideal m
of R).

It is not known exactly for which rings Grothendieck’s Theorem holds. However, one can say
something regarding the corresponding question for Pic(R).

Recall that for a commutative ring R, Pic(R) is the set of isomorphism classes of finitely generated
projective modules over R, which is a group with respect to the tensor product. This is related to
K0(R) through the natural group homomorphism

Pic(R) → K0(R)∗. (2)

Theorem 2.3. Suppose that R is an integral domain with field of fractions K. Then the following
are equivalent.

(1) Pic(R) → Pic(R[t1, ..., tn]) is an isomorphism for some n ≥ 1.
(2) Pic(R) → Pic(R[t1, ..., tn]) is an isomorphism for all n ≥ 1.
(3) If a ∈ K and am ∈ R for sufficiently large m, then a ∈ R.
(4) R is semi-normal: If a ∈ K and a2, a3 ∈ R, then a ∈ R.

Proof. [1, Thm. 5.11]. □

Remark 2.4. Similarly to above, this map is always injective, and the content is about the surjectivity.

Remark 2.5. Semi-normal is a weakening of normal, and a regular commutative noetherian ring is
normal (as any (commutative noetherian) regular local ring is a UFD).

This motivates the regularity condition in Conjecture 1.3. Whilst we are here, let us
mention what is known about the relationship between regular schemes and homotopy invariance
for Kn. More generally than Grothendieck’s Theorem, algebraic K-theory is homotopy invariant for
regular schemes, meaning that the natural map

Kn(X) → Kn(X × A1)

is an isomorphism for all n ∈ Z. This is not an isomorphism in general for non-regular X.

Definition 2.6. For a scheme X and n ≥ 1, X is said to be Kn-regular if the above map is an
isomorphism.

Vorst’s Conjecture, proven by Cortiñas, Hasemeyer and Weibel, states that if R is a commutative
ring, essentially finite type over a characteristic 0 field1, then the property that R is Kdim(R)+1-regular
implies that R is regular.

1meaning a localisation of a finite type algebra over the field
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2.2. Commutativity. Let us also note that the Bass-Quillen Conjecture isn’t true if A is not commu-
tative. For example, letD be a division algebra that is not a field, and fix a pair (a, b) of non-commuting
elements. Then the module

P := {(r, s) ∈ D[x, y]2 | r(x+ a) = s(y + b)}
satisfies

P ⊕D[x, y] ∼= D[x, y]2

and is finitely generated projective, but one can show that P is not free [1, Cor. 3.6]. In fact, for some
division rings (such as the quarternions), you can show that Pic(D[x, y]) is infinite!

3. Hermite Rings

Suppose now that R is a ring such that (1) is an isomorphism. For example, R could be a commu-
tative regular noetherian ring, as in the assumptions of Bass-Quillen.

Then we see that any P ∈ P(R) satisfies

P ⊕R[t1, ..., tn]
m ∼= R[t1, ..., tn]⊗R M ⊕R[t1, ..., tn]

m ∼= R[t1, ..., tn]⊗R (M ⊕Rm)

for some m ≥ 1 and M ∈ P(R), and therefore P is stably extended. Therefore, to show the Bass-
Quillen Conjecture, using Grothendieck’s Theorem it is enough to show that stably extended modules
are actually extended.

In particular, Serre’s Problem is equivalent to the statement that stably free is equivalent to free
over k[t1, ..., tn], or that k[t1, ..., tn] is Hermite, where:

Definition 3.1. A ring R is called Hermite if any stably free module is free.

It is not relevant, but let us note that stably free modules are a bit strange, in the sense that one
can show that the non-finitely generated ones are simpler by using a trick due to Gabel.

Lemma 3.2 ([1, Prop. I..4.2]). Suppose that P is an R-module that is not finitely generated.
Then if P ⊕Rm is free for some m ≥ 1, then P is free.

4. Hermite Rings and Unimodular Rows

In this section, we want to give a matrix characterisation of Hermitian rings. Throughout, for
simplicity, we assume that R is commutative.

Suppose that P ∈ P(R) is stably free. To this, one can choose an isomorphism Rm ⊕ P ∼= Rn

(m ≥ n), and let M be the matrix m × n matrix of the associated projection f : Rn ↠ Rm. The
matrix M is right invertible: there is an n×m matrix N such that MN = Im (taking N as the matrix
of the inclusion Rm ↪→ Rm ⊕ P . One recovers P (up to isomorphism) as the kernel of the matrix M .

Lemma 4.1. Let P , f : Rn ↠ Rm be as above. Then P is free if and only if exists an isomorphism

f̂ : Rn ∼−→ Rm ⊕Rr

for some r ≥ 0 such that π ◦ f̂ = f , where π : Rm ⊕Rr → Rm is the projection.

Corollary 4.2. Let P , M be as above. Then P is free if and only if M can be extended to an invertible
matrix (by adding n−m rows).

Proof. If A is the matrix of f̂ , and X is the matrix of π, then X is the m× n made of Im with zeros
to the right, hence XA = N exactly corresponds to the first m rows of A being equal to N . □

Of special interest is the case when m = 1.

Definition 4.3. A unimodular row is a vector (b1, ..., bn) ∈ Rn such that b1R + · · · + bnR = R. We
write Umn(R) for the set of unimodular rows of length n ≥ 1 in R.

Remark 4.4. For a unimodular row of length n, the corresponding projective module has rank n−1.

Because it is sufficient to show that stably free implies free when m = 1, we have the following.
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Corollary 4.5. A commutative ring R is Hermite if and only if every unimodular row can be extended
(by adding (n− 1) rows) to an invertible matrix.

For any n ≥ 1, there is a natural action of GLn(R) on Umn(R) by multiplication on the right.

Lemma 4.6. The correspondence between right invertible matrices and stably free P ∈ P(R) induces
a bijection between Umn(R) are P ∈ P(R) with P ⊕ R ∼= Rn. The free module Rn−1 corresponds to
(1, 0, ..., 0).

Example 4.7. If R is commutative, P has rank 1, and

P ⊕R ∼= R2,

then P ∼= R. Indeed, to show this, we just need to show that any (a, b) ∈ Um2(R) is completable to
an invertible matrix. Indeed, as (a, b) is unimodular, there are (e, f) ∈ R2 with ae + bf = 1, and so
taking c = −f , d = e we can extend (a, b) to an invertible matrix.

Equivalently, the only orbit of GL2(R) on Um2(R) is (1, 0). To see this, note that, for the same
c, d found as above, we can take

(a, b)

Å
d −b
−c a

ã
=

(
1 0

)
.

Remark 4.8. In fact, one can show that any rank 1 stably free P ∈ P(R) is actually free, or in other
words that the map

Pic(R) → K0(R)

is injective, because P can be recovered from P ⊕Rn−1 as the determinant line bundle.

For any d ≥ 0, the following are equivalent:

(1) Any stably free P ∈ P(R) of rank > d is free,
(2) Any unimodular row of length n ≥ d+ 2 can be completed to an invertible matrix.
(3) GLn(R) acts transitively on Umn(R) for n ≥ d+ 2.

Definition 4.9. We call a (commutative) ring which satisfies the above d-Hermite.

Remark 4.10. We see that Hermite = 0-Hermite = 1-Hermite.

Theorem 4.11 (Bass). If R is noetherian and has Krull dimension d, then R is d-Hermite.

Note that this proves Serre’s conjecture for k[t] (which we already knew as k[t] is a PID).
Using unimodular rows, after Quillen and Suslin’s (independent) proofs of Serre’s problem, Suslin

and Vaserstein both discovered elementary solutions using unimodular rows by showing that there is
only one GLn(R) orbit.

5. Quillen Patching and Horrocks’ Theorem

In this section we briefly discuss Quillen’s original solution to Serre’s problem, which involves his
famous patching Theorem.

Definition 5.1. For a commutative ring R, we set R⟨t⟩ to be the localisation of R[t] at the set of
monic polynomials in t.

Theorem 5.2 ((Local) Horrocks’ Theorem, Algebraic). Suppose that R is a commutative local ring,
and P ∈ P(R[t]). Then if P ⟨t⟩ := R⟨t⟩ ⊗R[t] P is free, P is free.

This also has a geometric version:

Theorem 5.3 ((Local) Horrocks’ Theorem, Geometric). Suppose that R is a commutative local ring.
Then the only vector bundle on A1

R which extends to P1
R is the trivial bundle.
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To get a feel for why these are equivalent, consider the case when R = k is a field. In this case,
R⟨t⟩ = k(t) is the field of rational functions.

If the algebraic version is true, and a vector bundle on A1
R defined by P extends to P1

k, then
k(t) ⊗k[t] P is the stalk at the point at infinity, hence is free, and thus by the algebraic version the
vector bundle defined by P is free.

Conversely, if the geometric version is true, then for any such P , if k(t)⊗k[t] P is free, this means
there is a closed and open neighborhood around ∞ where P is free. Therefore, P can be extended to
a vector bundle over P1

k, which by the geometric version implies that P is free.
Quillen patching allows one to extend this beyond the local case. Let us state it now (much more

general versions exist).

Theorem 5.4 (Quillen Patching). Suppose that R is a commutative ring, and let P ∈ P(R[t1, ..., tn]).
Then P is extended from R if and only if each Pm is free over Rm[t1, ..., tn] for all maximal ideal m
of R.

Quillens result immediately implies the follow “affine” version of Horrock’s theorem.

Theorem 5.5 ((Affine) Horrocks’ Theorem, Algebraic). Suppose that R is a commutative ring, and
P ∈ P(R[t]). Then if P ⟨t⟩ := R⟨t⟩ ⊗R[t] P is extended from R, P is extended from P0 ∈ P(R).

This has an analogous geometric version too.

Theorem 5.6 ((Affine) Horrocks’ Theorem, Geometric). Suppose that R is a commutative ring. Then
the only vector bundles on A1

R which extends to P1
R are those pulled back from Spec(R).

Remark 5.7. The same proof as above shows that the geometric implies the algebraic, but the proof
that the geometric implies the algebraic doesn’t generalise. However, both statements are true, using
Quillen patching and local Horrocks for each.

This allows us to now prove Serre’s problem.

Proof of Serre’s Problem. We prove by induction on n ≥ 0 that any finitely generated projective
module over k[t1, ..., tn] is free. When n = 0 this is trivial, so let n ≥ 1, and set

A = k[t2, ..., tn].

Then
A[t] ⊂ k⟨t⟩[t2, ..., tn] ⊂ A⟨t⟩.

By induction, as k⟨t⟩ = k(t) is a field,

k(t)[t2, ..., tn]⊗A[t] P

is free, hence P ⟨t⟩ is also free. Therefore by affine Horrocks’ Theorem, P is extended from P/tP ∈
P(A). But then again but induction, a finitely generated projective modules over A are free, thus P
is free. □

Remark 5.8. The above proof also shows that the Bass-Quillen conjecture is true when k is a PID,
as for such rings k⟨t⟩ is also a PID, which was the only property that was used.

6. Current Status

Lindel (1981) showed that the Bass-Quillen conjecture holds for all commutative regular rings which
are essentially finite type over a field of characteristic 0.
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