FORMALISM OF ADMISSIBLE REPRESENTATIONS

JAMES TAYLOR

These are notes from a talk at the Oxford p-adic Hodge Theory study group in February 2022. They aim to cover the content of [1, I.5] and [4, III.1].

1. (F, G)-Regular Rings

Notation: K is a p-adic field, and $G_{K}:=\operatorname{Gal}(\bar{K} / K)$. Write C_{K} for the completion of \bar{K}, and \mathbb{F} for the residue field of K.

Let F be a field and G a group. Suppose that B is a commutative F-algebra such that

- B has an action of G by F-algebra automorphisms,
- $E:=B^{G}$ is a field,
- B is a domain.

Aim: construct a functor from finite dimensional F-representations of G to finite dimensional E-vector spaces. Depending on B, these E-vector spaces will typically naturally have extra structure.

Let C be the fraction field of B. There is a unique extension of the action of G on B to an action of G on C by F-algebra automorphisms.

Definition 1.1. B as above is called (F, G)-regular, if

- $B^{G}=C^{G}$,
- If $b \in B \backslash 0$ is such that $F \cdot b$ is G-stable, then $b \in B^{\times}$.

From this we see the necessity of the requirement that B^{G} is a field.
Example 1.2. If B is a field, then B is trivially (F, G)-regular.
We are mostly interested in $\left(\mathbb{Q}_{p}, G_{K}\right)$-regular rings.
Example 1.3. Any field extension of \mathbb{Q}_{p} with an action of G_{K} is $\left(\mathbb{Q}_{p}, G_{K}\right)$-regular. In particular, both \bar{K} and C_{K} are $\left(\mathbb{Q}_{p}, G_{K}\right)$-regular.

Write $\chi: G_{K} \rightarrow \mathbb{Z}_{p}^{\times} \subset \mathbb{Q}_{p}^{\times}$for the p-adic cyclotomic character.
Definition 1.4. If M is a $\mathbb{Z}_{p}\left[G_{K}\right]$-module, then for $n \in \mathbb{Z}$, define $M(n)$ to be the $\mathbb{Z}_{p}\left[G_{K}\right]$ module, which is M as a \mathbb{Z}_{p}-module, but with "twisted" action,

$$
g \cdot m:=\chi(g)^{n} g(m) .
$$

More generally, if $\eta: G_{K} \rightarrow \mathbb{Z}_{p}^{\times}$is a continuous character, set $M(\eta)$ to be M with action $g \cdot m=\eta(g)^{n} g(m)$.

Therefore, we can talk about the action of G_{K} on $C_{K}(n)$ for $n \in \mathbb{Z}$.
Theorem 1.5 (Sen - Tate Theorem). Let $n \in \mathbb{Z}$. Then the G_{K}-invariants,

$$
C_{K}(n)^{G_{K}}=\left\{\begin{array}{ll}
K & \text { if } n=0 \\
0 & \text { if } n \neq 0
\end{array} .\right.
$$

Put another way, this says that

- There are no transcendental invariants of $C_{K}: C_{K}^{G_{K}}=\bar{K}^{G_{K}}=K$,
- If $n \neq 0$, and $x \in C_{K}$ with $x=\chi(g)^{n} g(x)$ for all $g \in G_{K}$, then $x=0$.

Actually we will need a more general result, which sometimes goes by the same name.

Theorem 1.6. Suppose that $\eta: G_{K} \rightarrow \mathbb{Z}_{p}^{\times}$is a continuous character. Then the G_{K}-invariants,

$$
C_{K}(\eta)^{G_{K}}= \begin{cases}K & \text { if } \eta\left(I_{K}\right) \text { is finite, } \\ 0 & \text { if } \eta\left(I_{K}\right) \text { is infinite. }\end{cases}
$$

Example 1.7. B_{HT} can be non-canonically identified with $C_{K}[T, 1 / T]$. The action under this identification of G_{K} on $C_{K}[T, 1 / T]$ is given by

$$
g \cdot\left(\sum_{i \in \mathbb{Z}} a_{i} T^{i}\right)=\sum_{i \in \mathbb{Z}} g\left(a_{i}\right) \chi(g)^{i} T^{i}
$$

where χ is the cyclotomic character. Then we claim this is $\left(\mathbb{Q}_{p}, G_{K}\right)$-regular. We first need to compute the invariant subring of $C_{K}[T, 1 / T]$ and of its fraction field $C_{K}(T)$. To do so, we consider both inside the formal Laurent power series ring $C_{K}((T))$, the fraction field of $C_{K}[[T]]$. The inclusion $C_{K}(T) \hookrightarrow C_{K}((T))$ is G_{K}-equivariant when $C_{K}((T))$ is given the action

$$
g \cdot\left(\sum_{i \geq i_{0}} a_{i} T^{i}\right)=\sum_{i \geq i_{0}} \chi(g)^{i} g\left(a_{i}\right) T^{i} .
$$

A formal Laurent series as above is G_{K}-invariant if and only if each $a_{i} \in C_{K}(i)^{G_{K}}$, and so by the Theorem above of Sen-Tate, $C_{K}((T))^{G_{K}}=K$.

Now to prove the second property, let $b \in C_{K}[T, 1 / T] \backslash 0$, and suppose that $\mathbb{Q}_{p} \cdot b$ is G_{K}-stable. Then the action of G_{K} on b defines a group homomorphism $\eta: G_{K} \rightarrow \mathbb{Q}_{p}^{\times}$. For any $i \in \mathbb{Z}$ and $g \in G_{K}$, we have

$$
\eta(g) a_{i}=\chi(g)^{i} g\left(a_{i}\right) .
$$

Some $a_{i_{0}} \neq 0$, and $\eta(g)=\chi(g)^{i_{0}}\left(g\left(a_{i_{0}}\right) / a_{i_{0}}\right)$. Then because $\chi^{i_{0}}$ and the action of g on C_{K} are continuous, η is continuous. Because η is continuous, $\eta\left(G_{K}\right) \subset \mathbb{Z}_{p}$ - this is because the composition $\|\cdot\| \circ \eta: G_{K} \rightarrow \mathbb{R}$ is continuous, and so $\left\|\eta\left(G_{K}\right)\right\| \subset \mathbb{R}$ is compact.

If $a_{i} \neq 0$, then $a_{i}=\left(\chi^{i} \eta^{-1}\right)(g) g\left(a_{i}\right)$ for all $g \in G_{K}$, so $a_{i} \in C_{K}\left(\chi^{i} \eta^{-1}\right)^{G_{K}}$. Therefore, by the stronger version of the Sen-Tate Theorem above, $\left(\chi^{i} \eta\right)\left(I_{K}\right)$ is finite. Therefore, if $a_{i} \neq 0 \neq a_{j}$, then $\left(\chi^{i} \eta^{-1} \chi^{-j} \eta\right)\left(I_{K}\right)=\chi^{i-j}\left(I_{K}\right)$ is finite, so $i=j$. Thus $b=a_{i} T^{i}$ and is a unit. So $C_{K}[T, 1 / T]$ is $\left(\mathbb{Q}_{p}, G_{K}\right)$-regular.
Example 1.8. The ring B_{dR}^{+}is a complete DVR with uniformiser $t \in B_{\mathrm{dR}}^{+}$, and G_{K} acts on t via the p-adic cyclotomic character. B_{dR}^{+}is not $\left(\mathbb{Q}_{p}, G_{K}\right)$-regular, because $\mathbb{Q}_{p} \cdot t$ is a G_{K}-stable subspace, but t is not a unit of B_{dR}^{+}. However, the fraction field is $B_{\mathrm{dR}}=B_{\mathrm{dR}}^{+}[1 / t]$ and being a field is $\left(\mathbb{Q}_{p}, G_{K}\right)$-regular. There is a natural filtration on B_{dR}, with associated graded B_{HT}, and using this one can see that $B_{\mathrm{dR}}^{G_{K}}=K$ (as a consequence, $\left(B_{\mathrm{dR}}^{+}\right)^{G_{K}}=K$ too).
Example 1.9. We also will construct subrings $B_{\text {cris }} \subset B_{\mathrm{st}}$ of B_{dR}. These are both not fields, but will turn out to be $\left(\mathbb{Q}_{p}, G_{K}\right)$-regular, with invariant ring $K_{0}=W(\mathbb{F})[1 / p]$.
Example 1.10. How does this relate to the rings in Talk 3? Let E be a field of characteristic $p>0$, and let E^{s} be a separable closure of E. Let $G_{E}=\operatorname{Gal}\left(E^{s} / E\right)$. Then $B=E^{s}$ is $\left(\mathbb{F}_{p}, G_{E}\right)$ admissible. The ring $B=\widehat{\mathcal{O}_{\mathcal{E}}^{n r}}$ does not naturally fit into this framework, because even though it has an action of $G_{E}, B^{G_{E}}=\mathcal{O}_{\mathcal{E}}$ is not a field. However, for \mathcal{E} the fraction field of $\mathcal{O}_{\mathcal{E}}, B=\widehat{\mathcal{E}^{n r}}$ is $\left(\mathbb{Q}_{p}, G_{E}\right)$-regular, with $B^{G}=\mathcal{E}$.

2. B-Admissible Representations

From now on, we will assume that B is (F, G)-regular.
Definition 2.1. We define a functor from the category of finite dimensional F-representations of G to E-vector spaces,

$$
D_{B}: \operatorname{Rep}_{F}(G) \rightarrow \operatorname{Vect}_{E},
$$

by

$$
D_{B}(V):=\left(V \otimes_{F} B\right)^{G} .
$$

Here G acts on $V \otimes_{F} B$ by $g(b \otimes v)=g b \otimes g v$, and $\left(V \otimes_{F} B\right)^{G}$ is a $E=B^{G}$-vector space induced from the B-module structure of $V \otimes_{F} B$ where $b^{\prime}(v \otimes b)=v \otimes b^{\prime} b$. We also have a natural map,

$$
\alpha_{V}: D_{B}(V) \otimes_{E} B \rightarrow\left(V \otimes_{F} B\right) \otimes_{E} B=V \otimes_{F}\left(B \otimes_{E} B\right) \rightarrow V \otimes_{F} B
$$

With G acting on $D_{B}(V) \otimes_{E} B$ through the second factor B, then this is a G-equivariant B-linear map.
Example 2.2. Suppose that $V=F$ is the trivial representation. Then $D_{B}(F)=B^{G}$, and α_{V} is the identity map.

Example 2.3. Suppose that $B=F$. Then $D_{B}(V)=\left(V \otimes_{F} F\right)^{G}=V^{G}$ is the functor from $\operatorname{Rep}_{F}(G)$ to Vect_{F} taking V to its G-invariants.

At this point, it is not really obvious why $D_{B}(V)$ is finite dimensional.
Lemma 2.4. If $V \in \operatorname{Rep}_{F}(G)$, then $\alpha_{V}: D_{B}(V) \otimes_{E} B \rightarrow V \otimes_{F} B$ is (B-linear, G-equivariant, and) injective.

Proof. If C is the fraction field of B, we have a commutative square:

Therefore it is sufficient to prove that β_{V} is injective. β_{V} is injective if and only if β_{V} maps an E-basis to a C-linearly independent set of $V \otimes_{F} C$. Therefore, it is sufficient to show that if $\left\{x_{1}, \ldots, x_{m}\right\} \subset\left(V \otimes_{F} C\right)^{G}$ are E-linearly independent, then they are C-linearly independent.

Suppose not, and take a C-linear dependence of minimal length. So for some $r \geq 1, x_{r}=$ $\sum_{i<r} c_{i} x_{i}$, and r is the minimal length of such a relation. Then for all $g \in G$,

$$
x_{r}=g\left(x_{r}\right)=\sum_{i<r} g\left(c_{i}\right) x_{i} .
$$

Equivalently,

$$
0=\sum_{i<r}\left(g\left(c_{i}\right)-c_{i}\right) x_{i}
$$

and so by minimality, $g\left(c_{i}\right)=c_{i}$ for all i. But then for all $i, c_{i} \in C^{G}=E$, a contradiction.
Theorem 2.5. For $V \in \operatorname{Rep}_{F}(G)$, we have the bound,

$$
\operatorname{dim}_{E} D_{B}(V) \leq \operatorname{dim}_{F}(V)
$$

In particular, $D_{B}(V)$ is a finite dimensional E-vector space. Furthermore, for $d=\operatorname{dim}_{F}(V)$, the following are equivalent:
(1) $\operatorname{dim}_{E} D_{B}(V)=\operatorname{dim}_{F}(V)$,
(2) α_{V} is an isomorphism,
(3) There is an isomorphism $V \otimes_{F} B \cong B^{d}$ as B-modules which is G-equivariant,
(4) There is a B-basis of $V \otimes_{F} B$ consisting of d elements of $\left(V \otimes_{F} B\right)^{G}$.

Proof. Again let C be the fraction field of B. If we tensor $\alpha_{V}: D_{B}(V) \otimes_{E} B \rightarrow V \otimes_{F} B$ with C over B, we obtain,

$$
\alpha_{V} \otimes_{B} C: D_{B}(V) \otimes_{E} C \rightarrow V \otimes_{F} C
$$

The C-dimension of the term of the left is $\operatorname{dim}_{E}\left(D_{B}(V)\right)$, and the C-dimension of the term of the right is $\operatorname{dim}_{F}(V)$. Because α_{V} is injective and C is flat over B, we see that in general $\operatorname{dim}_{E}\left(D_{B}(V)\right) \leq \operatorname{dim}_{F}(V)$. Furthermore, clearly if α_{V} is an isomorphism (1), we have the equality (2). Now, to prove that $(2) \Rightarrow(1)$, suppose that $\operatorname{dim}_{E}\left(D_{B}(V)\right)=\operatorname{dim}_{F}(V)$. We want to show that α_{V} is an isomorphism.

Let $\left\{e_{i}\right\}$ be an E-basis of $D_{B}(V)$, and $\left\{v_{j}\right\}$ be an F basis of V. By assumption, these have the same size d, and we can express the B-linear map α_{V} by the $d \times d$ matrix $\left(b_{i j}\right)$, so
$\alpha_{V}\left(e_{i}\right)=\sum_{j} b_{i j} \otimes v_{j}$. By assumption, $\alpha_{V} \otimes_{B} C$ is an isomorphism, so $\operatorname{det}\left(b_{i j}\right) \neq 0$, when considered an element of C.

We know that $b:=\operatorname{det}\left(b_{i j}\right) \in B \backslash 0$, and want to show that $b \in B^{\times}$. To do this we use the fact that B is (F, G)-regular, so we want to show that $F \cdot b$ is stable under the action of G.

Passing to the d th exterior power (as B-modules),

$$
\wedge^{d}\left(\alpha_{V}\right)\left(e_{1} \wedge \cdots \wedge e_{d}\right)=b\left(v_{1} \wedge \cdots v_{d}\right)
$$

Because α_{V} is G-equivariant, and e_{i} are G-invariant, G acts on the left trivially, and so

$$
g(b) g\left(v_{1} \wedge \cdots \wedge v_{d}\right)=b\left(v_{1} \wedge \cdots v_{d}\right)
$$

But $g\left(v_{1} \wedge \cdots \wedge v_{d}\right)=\operatorname{det}(g)\left(v_{1} \wedge \cdots \wedge v_{d}\right)$, hence

$$
g(b)=\operatorname{det}(g)^{-1} b,
$$

and $\mathbb{Q}_{p} \cdot b$ is stable under the action of G.
The equivalence of (3) and (4) is immediate, so we just need to show that (3) is equivalent to (1) and (2). If α_{V} is an isomorphism (1), then because $\operatorname{dim}_{E}\left(D_{B}(V)\right)=d$, by choosing an E basis of $D_{B}(V)$ we have $B^{d} \cong D_{B}(V) \otimes_{E} B$, and this is G-equivariant because the action of G on $D_{B}(V)$ is trivial. Therefore, composing this with α_{V} we have (3). Conversely, if $B^{d} \cong D_{B}(V) \otimes_{E} B$, then $\operatorname{dim}_{E}\left(D_{B}(V)\right)=d$ and we have (1).

Definition 2.6. We call $V \in \operatorname{Rep}_{F}(G) B$-admissible if $\operatorname{dim}_{E} D_{B}(V)=\operatorname{dim}_{F}\left(D_{B}(V)\right)$. We write $\operatorname{Rep}_{F}^{B}(G)$ for the full-subcategory of finite dimensional B-admissible F-representations of G. If $(F, G)=\left(\mathbb{Q}_{p}, G_{K}\right)$, and B is one of $B_{\mathrm{HT}}, B_{\mathrm{dR}}, B_{\mathrm{st}}$ or $B_{\text {cris }}$, then we call B-admissible p-adic representations Hodge-Tate, de Rham, Semistable and Crystalline respectively.

For the next example, we need a couple of definitions. Let R be a commutative topological ring, and Γ a topological group, such that Γ acts on R continuously. Then a R-representation $[3$, Def. 2.2] is an R-module of finite type equipped with a continuous semi-linear action of Γ. This is called free of rank d if the underlying R-module is. This is called trivial if it has a basis consisting of Γ-invariant elements. For a fixed $d \geq 1$, there is a one-to-one correspondence between free R representations of rank d and elements of $H_{\mathrm{cts}}^{1}\left(\Gamma, \mathrm{GL}_{d}(R)\right)$. Furthermore, a free R-representation X is trivial if and only if it corresponds to the trivial element of $H_{\mathrm{cts}}^{1}\left(\Gamma, \mathrm{GL}_{d}(R)\right)$ [3, Prop. 2.6].

Example 2.7. $(F, G)=\left(\mathbb{Q}_{p}, G_{K}\right), B=\bar{K}$. Then we claim that V is \bar{K}-admissible if and only if the action of G_{K} on V factors through some finite quotient. This property is called being potentially trivial, and is the same as V being smooth as a G_{K}-representation, or that the action of G_{K} is discrete: continuous when V is given the discrete topology.

To see why, suppose that the action of G_{K} on V is potentially trivial, so there is an open subgroup of G_{K} which acts trivially on V. Let $X=V \otimes_{\mathbb{Q}_{p}} \bar{K}$. The action of G_{K} on X by $g(v \otimes \lambda)=g(v) \otimes g(\lambda)$ also factors through some open subgroup, because this is true for the action of G_{K} on \bar{K}. Let $d=\operatorname{dim}_{\mathbb{Q}_{p}} V=\operatorname{dim}_{\bar{K}} X$, and fix the discrete topology on \bar{K}. Then X is a free rank $d \bar{K}$-representation of G_{K}.

By a strong version of Hilbert's Theorem 90, we have that for all $d \geq 1$,

$$
H_{\mathrm{cts}}^{1}\left(G_{K}, \mathrm{GL}_{d}(\bar{K})\right)=0 .
$$

Therefore, by the above discussion, $X=\left(V \otimes_{\mathbb{Q}_{p}} \bar{K}\right)$ has a \bar{K}-basis of G_{K}-invariant elements. But this means that V is \bar{K}-admissible by Theorem 2.5.

Showing the converse is easier: suppose that (V, ρ) is \bar{K}-admissible and choose a basis of $G_{K^{-}}$ invariant elements $\left\{e_{1}, \ldots, e_{d}\right\}$. We want to show that the stabiliser of any element $x=\sum_{i} \lambda_{i} e_{i}$ is an open subgroup. For any $g \in G_{K}, g(x)=\sum_{i} g\left(\lambda_{i}\right) e_{i}$, and so

$$
\left(G_{K}\right)_{x}=\cap_{i}\left(G_{K}\right)_{\lambda_{i}},
$$

is an open subgroup of G_{K}. But then for a \mathbb{Q}_{p}-basis $\left\{v_{1}, \ldots, v_{d}\right\}$ of V, letting $x=v_{i} \otimes 1$ in turn, we see that $\operatorname{ker}(\rho)=\cap_{i}\left(G_{K}\right)_{v_{i} \otimes 1}$ is open.

Example 2.8. Let $P:=\widehat{K^{\mathrm{nr}}}$. We have $\operatorname{Gal}(\bar{P} / P)=I_{K}$. Let $(F, G)=\left(\mathbb{Q}_{p}, G_{K}\right), B=\bar{P}$. Then a p-adic representation V of G_{K} is \bar{P}-admissible if and only if the action of I_{K} is discrete [3, Prop. 3.53]. This property is called being potentially unramified.

We have that $\bar{K} \subset \bar{P} \subset C_{K}$. In fact the C_{K}-admissible representations are the same as the \bar{P}-admissible representations:
Example 2.9. $(F, G)=\left(\mathbb{Q}_{p}, G_{K}\right), B=C_{K}$. Then a p-adic representation V is C_{K}-admissible if and only if the action of I_{K} factors through some finite quotient. Then a p-adic representation V of G_{K} is \bar{P}-admissible if and only if the action of I_{K} is discrete [3, Prop. 3.55].

Concretely, if (ρ, V) is a p-adic representation of G_{K}, then

- V is \bar{K}-admissible iff $\operatorname{ker}(\rho) \leq G_{K}$ is open,
- V is \bar{P}-admissible iff V is C_{K}-admissible iff $\operatorname{ker}(\rho) \cap I_{K} \leq I_{K}$ is open (in I_{K}).

Example 2.10. In talk 5 we shall see an equivalent definition of a Hodge-Tate representation, not in terms of the period ring.
Example 2.11. In talk $3, B=E^{s}$ is a (\mathbb{F}_{p}, G_{E})-regular ring. Then the E^{s}-admissible $\mathbb{F}_{p^{-}}$ representations of G_{E} are exactly the continuous representations (where G_{E} has the Krull topology and V the discrete topology). The reasoning is analogous to that of Example 2.7.
$D_{E^{s}}$ as it stands is not an equivalence of categories - this functor is essentially surjective and faithful, but not full. In talk 3, this is modified to an equivalence of categories, by mapping to finite-dimensional K-vector spaces equipped with an injective (Frobenius) semi-linear ϕ. We have the frobenius $E^{s} \rightarrow E^{s}$, and for any $V \in \operatorname{Rep}_{\mathbb{F}_{p}}(V)$ we define ϕ on $D_{E^{s}}(V)=\left(E^{s} \otimes_{\mathbb{F}_{p}} V\right)^{G_{E}}$ by restricting $\phi: E^{s} \otimes_{\mathbb{F}_{p}} V \rightarrow E^{s} \otimes_{\mathbb{F}_{p}} V$,

$$
\phi(x \otimes v)=x^{p} \otimes v
$$

to $D_{E^{s}}(V)=\left(E^{s} \otimes_{\mathbb{F}_{p}} V\right)^{G_{E}}$.

3. Properties of D_{B}

Now we summarise the main properties of the functor D_{B}.
Theorem 3.1. The restriction of the functor D_{B} to the full subcategory $\operatorname{Rep}_{F}^{B}(G)$,

$$
D_{B}: \operatorname{Rep}_{F}^{B}(G) \rightarrow \operatorname{Vect}_{E},
$$

is exact and faithful. $\operatorname{Rep}_{F}^{B}(G)$ is closed under sub-representations and quotients. Furthermore,

- If $V_{1}, V_{2} \in \operatorname{Rep}_{F}^{B}(G)$, then there is a natural isomorphism,

$$
D_{B}\left(V_{1}\right) \otimes_{E} D_{B}\left(V_{2}\right) \rightarrow D_{B}\left(V_{1} \otimes_{F} V_{2}\right),
$$

and so $V_{1} \otimes V_{2} \in \operatorname{Rep}_{F}^{B}(G)$.

- If $V \in \operatorname{Rep}_{F}^{B}(G)$, then $V^{*} \in \operatorname{Rep}_{F}^{B}(G)$, and the natural map,

$$
D_{B}(V) \otimes_{E} D_{B}\left(V^{*}\right) \xrightarrow{\sim} D_{B}\left(V \otimes_{F} V^{*}\right) \rightarrow D_{B}(F) \cong E,
$$

is a perfect pairing.

- $\operatorname{Rep}_{F}^{B}(G)$ also is closed under symmetric and exterior powers, and D_{B} commutates with these constructions.

Proof. We prove that D_{B} is exact, fully faithful and closed under subquotients. The rest can be found in [1, Part I, Section 5].

Both faithfulness and exactness come down to the fact that B is an algebra over both F and $E=B^{G}$, and therefore is faithfully flat over F and E. Recall that for a ring R and module M, M is a faithfully flat R-module iff either of the following equivalent conditions hold:

- M is flat and for any R-linear $f: N_{1} \rightarrow N_{2}$, then f is non-zero if and only if $f \otimes 1$: $M_{1} \otimes_{R} M \rightarrow M_{2} \otimes_{R} M$ is non-zero.
- For any sequence $N_{1} \rightarrow N_{2} \rightarrow N_{3}$, this is exact at N_{2} if and only if $N_{1} \otimes_{R} M \rightarrow$ $N_{2} \otimes_{R} M \rightarrow N_{3} \otimes_{R} M$ is exact at $N_{2} \otimes_{R} M$.

Faithful: Suppose that $f: V \rightarrow W$ is a morphism $F[G]$-modules. Then because B is faithfully flat over $E, D_{B}(f)=f \otimes 1: D_{B}(V) \rightarrow D_{B}(W)$ is zero if and only if

$$
(f \otimes 1) \otimes 1: D_{B}(V) \otimes_{E} B \rightarrow D_{B}(W) \otimes_{E} B
$$

is zero. But because V and W are B-admissible, α_{V}, α_{W} are isomorphisms in the commutative diagram,

$$
\begin{gathered}
D_{B}(V) \otimes_{E} B \xrightarrow{(f \otimes 1) \otimes_{1}} D_{B}(W) \otimes_{E} B \\
\alpha_{V} \downarrow^{\downarrow}{ }_{f \otimes 1}^{\downarrow_{W}} \\
V \otimes_{F} B \xrightarrow[\otimes_{F} B]{ }
\end{gathered}
$$

and because B is faithfully flat over $F, f \otimes 1$ is zero if and only if $f: V \rightarrow W$ is zero.
Exact: Let

$$
0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0
$$

be a short exact sequence in $\operatorname{Rep}_{F}^{B}(G)$. Then

$$
0 \rightarrow U \otimes_{F} B \rightarrow V \otimes_{F} B \rightarrow W \otimes_{F} B \rightarrow 0
$$

is an exact sequence of B-modules, and so because U, V and W are B-admissible,

$$
0 \rightarrow D_{B}(U) \otimes_{E} B \rightarrow D_{B}(V) \otimes_{E} B \rightarrow D_{B}(W) \otimes_{E} B \rightarrow 0
$$

is exact. But then B is faithfully flat over E, hence

$$
0 \rightarrow D_{B}(U) \rightarrow D_{B}(V) \rightarrow D_{B}(W) \rightarrow 0
$$

is exact.
Closed under subquotients: Consider a short exact sequence of $F[G]$-modules,

$$
0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0
$$

where V is B-admissible. By definition D_{B} is left exact, so we also have the exact sequence of E-modules,

$$
0 \rightarrow D_{B}(U) \rightarrow D_{B}(V) \rightarrow D_{B}(W)
$$

Therefore,

$$
\operatorname{dim}_{E} D_{B}(V) \leq \operatorname{dim}_{E} D_{B}(U)+\operatorname{dim}_{E} D_{B}(W) \leq \operatorname{dim}_{F}(U)+\operatorname{dim}_{F}(W)=\operatorname{dim}_{F}(V)
$$

But then because V is B-admissible, these are all equalities, hence U and W are B-admissible.

Remark. $\operatorname{Rep}_{F}^{B}(G)$ need not be closed under extensions. For example, if $B=B_{\mathrm{HT}}$, then [4, Example 1.1.12] exhibits a 2-dimensional representation V which is not Hodge-Tate but fits into an exact sequence,

$$
0 \rightarrow \mathbb{Q}_{p} \rightarrow V \rightarrow \mathbb{Q}_{p} \rightarrow 0
$$

Explicitly, we have $\log _{p}: \mathbb{Z}_{p}^{\times} \rightarrow \mathbb{Q}_{p}$, defined by the usual power series on $1+p \mathbb{Z}_{p}$, and on $\mathbb{Z}_{p}^{\times}=\mu_{p-1} \times\left(1+p \mathbb{Z}_{p}\right)$ by $\log _{p}(\zeta(1+x))=\log _{p}(1+x)$. Then the action of $g \in G_{K}$ on V is by,

$$
\left(\begin{array}{cc}
1 & \log _{p}(\chi(g)) \\
0 & 1
\end{array}\right)
$$

However, one can show that for any p-adic representation W which fits into an exact sequence,

$$
0 \rightarrow \mathbb{Q}_{p}(m) \rightarrow W \rightarrow \mathbb{Q}_{p}(n) \rightarrow 0
$$

is Hodge-Tate whenever $m \neq n$. In the above, $\mathbb{Q}_{p}=\mathbb{Q}_{p}(0)$.

4. Image Categories

Recall that we have $B_{\text {cris }} \subset B_{\mathrm{st}} \subset B_{\mathrm{dR}}$, and B_{HT}. For each of these period rings $B, E=B^{G_{K}}$ is K_{0}, K_{0}, K and K respectively.
$D_{B_{\mathrm{dR}}}$ can be modified using the filtration on B_{dR} to give an exact faithful functor to Fil_{K}, the category of filtered K-vector spaces. However, this functor is not fully faithful.
$D_{B_{\text {cris }}}$, naturally takes values in MF_{K}^{ϕ}, the category of filtered ϕ-modules over K (see Definition 7.3.4 [1]).
$D_{\text {st }}$ takes values in $\mathrm{MF}_{K}^{\phi, N}$, the category of filtered (ϕ, N)-modules. There is a notion of a weakly admissible object of $\mathrm{MF}_{K}^{\phi, N}$, the full subcategory these define is denoted $\mathrm{MF}_{K}^{\phi, N, w \cdot a}$. One can show that any semistable representation is weakly admissible. It is a deep and recent result of Fontaine and Colmez [2] that

$$
D_{\mathrm{st}}: \operatorname{Rep}_{\mathbb{Q}_{p}}^{\mathrm{st}}\left(G_{K}\right) \rightarrow \mathrm{MF}_{K}^{\phi, N, w \cdot a}
$$

is an equivalence of categories. One can then pass to objects with vanishing monodromy $(N=$ 0), to restrict this to an equivalence of categories,

$$
\begin{gathered}
D_{\text {cris }}: \operatorname{Rep}_{\mathbb{Q}_{p}}^{\text {cris }}\left(G_{K}\right) \rightarrow \mathrm{MF}_{K}^{\phi, w . a .} . \\
\text { REFERENCES }
\end{gathered}
$$

[1] Oliver Brinon and Brian Conrad. CMI Summer School Notes on p-adic Hodge Theory.
[2] Pierre Colmez and Jean-Marc Fontaine. Construction des représentations p-adiques semi-stables. Invent. Math., 140(1):1-43, 2000.
[3] Jean-Marc Fontaine and Yi Ouyang. Theory of p-adic Galois Representations.
[4] Serin Hong. Notes on p-adic Hodge Theory.

