
FORMALISM OF ADMISSIBLE REPRESENTATIONS

JAMES TAYLOR

These are notes from a talk at the Oxford p-adic Hodge Theory study group in February
2022. They aim to cover the content of [1, I.5] and [4, III.1].

1. (F,G)-Regular Rings

Notation: K is a p-adic field, and GK := Gal(K/K). Write CK for the completion of K,
and F for the residue field of K.

Let F be a field and G a group. Suppose that B is a commutative F -algebra such that

• B has an action of G by F -algebra automorphisms,
• E := BG is a field,
• B is a domain.

Aim: construct a functor from finite dimensional F -representations of G to finite dimensional
E-vector spaces. Depending on B, these E-vector spaces will typically naturally have extra
structure.

Let C be the fraction field of B. There is a unique extension of the action of G on B to an
action of G on C by F -algebra automorphisms.

Definition 1.1. B as above is called (F,G)-regular, if

• BG = CG,
• If b ∈ B \ 0 is such that F · b is G-stable, then b ∈ B×.

From this we see the necessity of the requirement that BG is a field.

Example 1.2. If B is a field, then B is trivially (F,G)-regular.

We are mostly interested in (Qp, GK)-regular rings.

Example 1.3. Any field extension of Qp with an action of GK is (Qp, GK)-regular. In partic-

ular, both K and CK are (Qp, GK)-regular.

Write χ : GK → Z×p ⊂ Q×p for the p-adic cyclotomic character.

Definition 1.4. If M is a Zp[GK ]-module, then for n ∈ Z, define M(n) to be the Zp[GK ]-
module, which is M as a Zp-module, but with “twisted” action,

g ·m := χ(g)ng(m).

More generally, if η : GK → Z×p is a continuous character, set M(η) to be M with action
g ·m = η(g)ng(m).

Therefore, we can talk about the action of GK on CK(n) for n ∈ Z.

Theorem 1.5 (Sen - Tate Theorem). Let n ∈ Z. Then the GK-invariants,

CK(n)GK =

{
K if n = 0
0 if n 6= 0

.

Put another way, this says that

• There are no transcendental invariants of CK : CGK
K = K

GK = K,
• If n 6= 0, and x ∈ CK with x = χ(g)ng(x) for all g ∈ GK , then x = 0.

Actually we will need a more general result, which sometimes goes by the same name.

Date: 10th February 2022.

1



2 JAMES TAYLOR

Theorem 1.6. Suppose that η : GK → Z×p is a continuous character. Then the GK-invariants,

CK(η)GK =

{
K if η(IK) is finite,
0 if η(IK) is infinite.

Example 1.7. BHT can be non-canonically identified with CK [T, 1/T ]. The action under this
identification of GK on CK [T, 1/T ] is given by

g ·

(∑
i∈Z

aiT
i

)
=
∑
i∈Z

g(ai)χ(g)iT i,

where χ is the cyclotomic character. Then we claim this is (Qp, GK)-regular. We first need
to compute the invariant subring of CK [T, 1/T ] and of its fraction field CK(T ). To do so, we
consider both inside the formal Laurent power series ring CK((T )), the fraction field of CK [[T ]].
The inclusion CK(T ) ↪→ CK((T )) is GK-equivariant when CK((T )) is given the action

g ·

∑
i≥i0

aiT
i

 =
∑
i≥i0

χ(g)ig(ai)T
i.

A formal Laurent series as above is GK-invariant if and only if each ai ∈ CK(i)GK , and so by
the Theorem above of Sen-Tate, CK((T ))GK = K.

Now to prove the second property, let b ∈ CK [T, 1/T ]\0, and suppose that Qp ·b is GK-stable.
Then the action of GK on b defines a group homomorphism η : GK → Q×p . For any i ∈ Z and
g ∈ GK , we have

η(g)ai = χ(g)ig(ai).

Some ai0 6= 0, and η(g) = χ(g)i0(g(ai0)/ai0). Then because χi0 and the action of g on CK
are continuous, η is continuous. Because η is continuous, η(GK) ⊂ Zp - this is because the
composition || · || ◦ η : GK → R is continuous, and so ||η(GK)|| ⊂ R is compact.

If ai 6= 0, then ai = (χiη−1)(g)g(ai) for all g ∈ GK , so ai ∈ CK(χiη−1)GK . Therefore, by the
stronger version of the Sen-Tate Theorem above, (χiη)(IK) is finite. Therefore, if ai 6= 0 6= aj ,
then (χiη−1χ−jη)(IK) = χi−j(IK) is finite, so i = j. Thus b = aiT

i and is a unit. So CK [T, 1/T ]
is (Qp, GK)-regular.

Example 1.8. The ring B+
dR is a complete DVR with uniformiser t ∈ B+

dR, and GK acts on t

via the p-adic cyclotomic character. B+
dR is not (Qp, GK)-regular, because Qp · t is a GK-stable

subspace, but t is not a unit of B+
dR. However, the fraction field is BdR = B+

dR[1/t] and being
a field is (Qp, GK)-regular. There is a natural filtration on BdR, with associated graded BHT,

and using this one can see that BGK
dR = K (as a consequence, (B+

dR)GK = K too).

Example 1.9. We also will construct subrings Bcris ⊂ Bst of BdR. These are both not fields,
but will turn out to be (Qp, GK)-regular, with invariant ring K0 = W (F)[1/p].

Example 1.10. How does this relate to the rings in Talk 3? Let E be a field of characteristic
p > 0, and let Es be a separable closure of E. Let GE = Gal(Es/E). Then B = Es is (Fp, GE)-

admissible. The ring B = ÔnrE does not naturally fit into this framework, because even though

it has an action of GE , BGE = OE is not a field. However, for E the fraction field of OE , B = Ênr
is (Qp, GE)-regular, with BG = E .

2. B-Admissible Representations

From now on, we will assume that B is (F,G)-regular.

Definition 2.1. We define a functor from the category of finite dimensional F -representations
of G to E-vector spaces,

DB : RepF (G)→ VectE ,

by
DB(V ) := (V ⊗F B)G.
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Here G acts on V ⊗F B by g(b⊗v) = gb⊗gv, and (V ⊗F B)G is a E = BG-vector space induced
from the B-module structure of V ⊗F B where b′(v⊗ b) = v⊗ b′b. We also have a natural map,

αV : DB(V )⊗E B → (V ⊗F B)⊗E B = V ⊗F (B ⊗E B)→ V ⊗F B.
With G acting on DB(V ) ⊗E B through the second factor B, then this is a G-equivariant
B-linear map.

Example 2.2. Suppose that V = F is the trivial representation. Then DB(F ) = BG, and αV
is the identity map.

Example 2.3. Suppose that B = F . Then DB(V ) = (V ⊗F F )G = V G is the functor from
RepF (G) to VectF taking V to its G-invariants.

At this point, it is not really obvious why DB(V ) is finite dimensional.

Lemma 2.4. If V ∈ RepF (G), then αV : DB(V )⊗E B → V ⊗F B is (B-linear, G-equivariant,
and) injective.

Proof. If C is the fraction field of B, we have a commutative square:

DB(V )⊗E B V ⊗F B

DC(V )⊗E C V ⊗F C

αV

βV

Therefore it is sufficient to prove that βV is injective. βV is injective if and only if βV maps an
E-basis to a C-linearly independent set of V ⊗F C. Therefore, it is sufficient to show that if
{x1, ..., xm} ⊂ (V ⊗F C)G are E-linearly independent, then they are C-linearly independent.

Suppose not, and take a C-linear dependence of minimal length. So for some r ≥ 1, xr =∑
i<r cixi, and r is the minimal length of such a relation. Then for all g ∈ G,

xr = g(xr) =
∑
i<r

g(ci)xi.

Equivalently,

0 =
∑
i<r

(g(ci)− ci)xi,

and so by minimality, g(ci) = ci for all i. But then for all i, ci ∈ CG = E, a contradiction. �

Theorem 2.5. For V ∈ RepF (G), we have the bound,

dimE DB(V ) ≤ dimF (V ).

In particular, DB(V ) is a finite dimensional E-vector space. Furthermore, for d = dimF (V ),
the following are equivalent:

(1) dimE DB(V ) = dimF (V ),
(2) αV is an isomorphism,
(3) There is an isomorphism V ⊗F B ∼= Bd as B-modules which is G-equivariant,
(4) There is a B-basis of V ⊗F B consisting of d elements of (V ⊗F B)G.

Proof. Again let C be the fraction field of B. If we tensor αV : DB(V ) ⊗E B → V ⊗F B with
C over B, we obtain,

αV ⊗B C : DB(V )⊗E C → V ⊗F C.
The C-dimension of the term of the left is dimE(DB(V )), and the C-dimension of the term
of the right is dimF (V ). Because αV is injective and C is flat over B, we see that in general
dimE(DB(V )) ≤ dimF (V ). Furthermore, clearly if αV is an isomorphism (1), we have the
equality (2). Now, to prove that (2) ⇒ (1), suppose that dimE(DB(V )) = dimF (V ). We want
to show that αV is an isomorphism.

Let {ei} be an E-basis of DB(V ), and {vj} be an F basis of V . By assumption, these
have the same size d, and we can express the B-linear map αV by the d × d matrix (bij), so
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αV (ei) =
∑

j bij ⊗ vj . By assumption, αV ⊗B C is an isomorphism, so det(bij) 6= 0, when
considered an element of C.

We know that b := det(bij) ∈ B \ 0, and want to show that b ∈ B×. To do this we use the
fact that B is (F,G)-regular, so we want to show that F · b is stable under the action of G.

Passing to the dth exterior power (as B-modules),

∧d(αV )(e1 ∧ · · · ∧ ed) = b(v1 ∧ · · · vd)

Because αV is G-equivariant, and ei are G-invariant, G acts on the left trivially, and so

g(b)g(v1 ∧ · · · ∧ vd) = b(v1 ∧ · · · vd).

But g(v1 ∧ · · · ∧ vd) = det(g)(v1 ∧ · · · ∧ vd), hence

g(b) = det(g)−1b,

and Qp · b is stable under the action of G.
The equivalence of (3) and (4) is immediate, so we just need to show that (3) is equivalent

to (1) and (2). If αV is an isomorphism (1), then because dimE(DB(V )) = d, by choosing an
E basis of DB(V ) we have Bd ∼= DB(V ) ⊗E B, and this is G-equivariant because the action
of G on DB(V ) is trivial. Therefore, composing this with αV we have (3). Conversely, if
Bd ∼= DB(V )⊗E B, then dimE(DB(V )) = d and we have (1). �

Definition 2.6. We call V ∈ RepF (G) B-admissible if dimE DB(V ) = dimF (DB(V )). We
write RepBF (G) for the full-subcategory of finite dimensional B-admissible F -representations of
G. If (F,G) = (Qp, GK), and B is one of BHT, BdR, Bst or Bcris, then we call B-admissible
p-adic representations Hodge-Tate, de Rham, Semistable and Crystalline respectively.

For the next example, we need a couple of definitions. Let R be a commutative topological
ring, and Γ a topological group, such that Γ acts on R continuously. Then a R-representation [3,
Def. 2.2] is an R-module of finite type equipped with a continuous semi-linear action of Γ. This is
called free of rank d if the underlying R-module is. This is called trivial if it has a basis consisting
of Γ-invariant elements. For a fixed d ≥ 1, there is a one-to-one correspondence between free R-
representations of rank d and elements of H1

cts(Γ,GLd(R)). Furthermore, a free R-representation
X is trivial if and only if it corresponds to the trivial element of H1

cts(Γ,GLd(R)) [3, Prop. 2.6].

Example 2.7. (F,G) = (Qp, GK), B = K. Then we claim that V is K-admissible if and only
if the action of GK on V factors through some finite quotient. This property is called being
potentially trivial, and is the same as V being smooth as a GK-representation, or that the action
of GK is discrete: continuous when V is given the discrete topology.

To see why, suppose that the action of GK on V is potentially trivial, so there is an open
subgroup of GK which acts trivially on V . Let X = V ⊗Qp K. The action of GK on X by
g(v ⊗ λ) = g(v) ⊗ g(λ) also factors through some open subgroup, because this is true for the
action of GK on K. Let d = dimQp V = dimK X, and fix the discrete topology on K. Then X

is a free rank d K-representation of GK .
By a strong version of Hilbert’s Theorem 90, we have that for all d ≥ 1,

H1
cts(GK ,GLd(K)) = 0.

Therefore, by the above discussion, X = (V ⊗Qp K) has a K-basis of GK-invariant elements.

But this means that V is K-admissible by Theorem 2.5.
Showing the converse is easier: suppose that (V, ρ) is K-admissible and choose a basis of GK-

invariant elements {e1, ..., ed}. We want to show that the stabiliser of any element x =
∑

i λiei
is an open subgroup. For any g ∈ GK , g(x) =

∑
i g(λi)ei, and so

(GK)x = ∩i(GK)λi ,

is an open subgroup of GK . But then for a Qp-basis {v1, ..., vd} of V , letting x = vi⊗ 1 in turn,
we see that ker(ρ) = ∩i(GK)vi⊗1 is open.
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Example 2.8. Let P := K̂nr. We have Gal(P/P ) = IK . Let (F,G) = (Qp, GK), B = P . Then

a p-adic representation V of GK is P -admissible if and only if the action of IK is discrete [3,
Prop. 3.53]. This property is called being potentially unramified.

We have that K ⊂ P ⊂ CK . In fact the CK-admissible representations are the same as the
P -admissible representations:

Example 2.9. (F,G) = (Qp, GK), B = CK . Then a p-adic representation V is CK-admissible
if and only if the action of IK factors through some finite quotient. Then a p-adic representation
V of GK is P -admissible if and only if the action of IK is discrete [3, Prop. 3.55].

Concretely, if (ρ, V ) is a p-adic representation of GK , then

• V is K-admissible iff ker(ρ) ≤ GK is open,
• V is P -admissible iff V is CK-admissible iff ker(ρ) ∩ IK ≤ IK is open (in IK).

Example 2.10. In talk 5 we shall see an equivalent definition of a Hodge-Tate representation,
not in terms of the period ring.

Example 2.11. In talk 3, B = Es is a (Fp, GE)-regular ring. Then the Es-admissible Fp-
representations of GE are exactly the continuous representations (where GE has the Krull
topology and V the discrete topology). The reasoning is analogous to that of Example 2.7.
DEs as it stands is not an equivalence of categories - this functor is essentially surjective and

faithful, but not full. In talk 3, this is modified to an equivalence of categories, by mapping
to finite-dimensional K-vector spaces equipped with an injective (Frobenius) semi-linear φ. We
have the frobenius Es → Es, and for any V ∈ RepFp

(V ) we define φ on DEs(V ) = (Es⊗Fp V )GE

by restricting φ : Es ⊗Fp V → Es ⊗Fp V ,

φ(x⊗ v) = xp ⊗ v,
to DEs(V ) = (Es ⊗Fp V )GE .

3. Properties of DB

Now we summarise the main properties of the functor DB.

Theorem 3.1. The restriction of the functor DB to the full subcategory RepBF (G),

DB : RepBF (G)→ VectE ,

is exact and faithful. RepBF (G) is closed under sub-representations and quotients. Furthermore,

• If V1, V2 ∈ RepBF (G), then there is a natural isomorphism,

DB(V1)⊗E DB(V2)→ DB(V1 ⊗F V2),
and so V1 ⊗ V2 ∈ RepBF (G).
• If V ∈ RepBF (G), then V ∗ ∈ RepBF (G), and the natural map,

DB(V )⊗E DB(V ∗)
∼−→ DB(V ⊗F V ∗)→ DB(F ) ∼= E,

is a perfect pairing.
• RepBF (G) also is closed under symmetric and exterior powers, and DB commutates with

these constructions.

Proof. We prove that DB is exact, fully faithful and closed under subquotients. The rest can
be found in [1, Part I, Section 5].

Both faithfulness and exactness come down to the fact that B is an algebra over both F and
E = BG, and therefore is faithfully flat over F and E. Recall that for a ring R and module M ,
M is a faithfully flat R-module iff either of the following equivalent conditions hold:

• M is flat and for any R-linear f : N1 → N2, then f is non-zero if and only if f ⊗ 1 :
M1 ⊗RM →M2 ⊗RM is non-zero.
• For any sequence N1 → N2 → N3, this is exact at N2 if and only if N1 ⊗R M →
N2 ⊗RM → N3 ⊗RM is exact at N2 ⊗RM .
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Faithful: Suppose that f : V → W is a morphism F [G]-modules. Then because B is
faithfully flat over E, DB(f) = f ⊗ 1 : DB(V )→ DB(W ) is zero if and only if

(f ⊗ 1)⊗ 1 : DB(V )⊗E B → DB(W )⊗E B,

is zero. But because V and W are B-admissible, αV , αW are isomorphisms in the commutative
diagram,

DB(V )⊗E B DB(W )⊗E B

V ⊗F B W ⊗F B

(f⊗1)⊗1

αV αW

f⊗1

and because B is faithfully flat over F , f ⊗ 1 is zero if and only if f : V →W is zero.
Exact: Let

0→ U → V →W → 0,

be a short exact sequence in RepBF (G). Then

0→ U ⊗F B → V ⊗F B →W ⊗F B → 0,

is an exact sequence of B-modules, and so because U, V and W are B-admissible,

0→ DB(U)⊗E B → DB(V )⊗E B → DB(W )⊗E B → 0,

is exact. But then B is faithfully flat over E, hence

0→ DB(U)→ DB(V )→ DB(W )→ 0,

is exact.
Closed under subquotients: Consider a short exact sequence of F [G]-modules,

0→ U → V →W → 0,

where V is B-admissible. By definition DB is left exact, so we also have the exact sequence of
E-modules,

0→ DB(U)→ DB(V )→ DB(W )

Therefore,

dimE DB(V ) ≤ dimE DB(U) + dimE DB(W ) ≤ dimF (U) + dimF (W ) = dimF (V ).

But then because V is B-admissible, these are all equalities, hence U and W are B-admissible.
�

Remark. RepBF (G) need not be closed under extensions. For example, if B = BHT, then [4,
Example 1.1.12] exhibits a 2-dimensional representation V which is not Hodge-Tate but fits
into an exact sequence,

0→ Qp → V → Qp → 0.

Explicitly, we have logp : Z×p → Qp, defined by the usual power series on 1 + pZp, and on

Z×p = µp−1 × (1 + pZp) by logp(ζ(1 + x)) = logp(1 + x). Then the action of g ∈ GK on V is by,(
1 logp(χ(g))
0 1

)
However, one can show that for any p-adic representation W which fits into an exact sequence,

0→ Qp(m)→W → Qp(n)→ 0,

is Hodge-Tate whenever m 6= n. In the above, Qp = Qp(0).
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4. Image Categories

Recall that we have Bcris ⊂ Bst ⊂ BdR, and BHT. For each of these period rings B, E = BGK

is K0,K0,K and K respectively.
DBdR

can be modified using the filtration on BdR to give an exact faithful functor to FilK ,
the category of filtered K-vector spaces. However, this functor is not fully faithful.

DBcris , naturally takes values in MFφK , the category of filtered φ-modules over K (see Defini-
tion 7.3.4 [1]).

Dst takes values in MFφ,NK , the category of filtered (φ,N)-modules. There is a notion of a

weakly admissible object of MFφ,NK , the full subcategory these define is denoted MFφ,N,w.a.K . One
can show that any semistable representation is weakly admissible. It is a deep and recent result
of Fontaine and Colmez [2] that

Dst : Repst
Qp

(GK)→ MFφ,N,w.a.K ,

is an equivalence of categories. One can then pass to objects with vanishing monodromy (N =
0), to restrict this to an equivalence of categories,

Dcris : Repcris
Qp

(GK)→ MFφ,w.a.K .
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