These are notes from a talk at the Oxford p-adic Hodge Theory study group in February 2022. They aim to cover the content of [1, I.5] and [4, III.1].

1. (F,G)-Regular Rings

Notation: K is a p-adic field, and $G_K := \text{Gal}(\overline{K}/K)$. Write C_K for the completion of \overline{K}, and \mathbb{F} for the residue field of K.

Let F be a field and G a group. Suppose that B is a commutative F-algebra such that

- B has an action of G by F-algebra automorphisms,
- $E := B^G$ is a field,
- B is a domain.

Aim: construct a functor from finite dimensional F-representations of G to finite dimensional E-vector spaces. Depending on B, these E-vector spaces will typically naturally have extra structure.

Let C be the fraction field of B. There is a unique extension of the action of G on B to an action of G on C by F-algebra automorphisms.

Definition 1.1. B as above is called (F,G)-regular, if

- $B^G = C^G$,
- If $b \in B \setminus 0$ is such that $F \cdot b$ is G-stable, then $b \in B^\times$.

From this we see the necessity of the requirement that B^G is a field.

Example 1.2. If B is a field, then B is trivially (F,G)-regular.

We are mostly interested in (\mathbb{Q}_p, G_K)-regular rings.

Example 1.3. Any field extension of \mathbb{Q}_p with an action of G_K is (\mathbb{Q}_p, G_K)-regular. In particular, both \overline{K} and C_K are (\mathbb{Q}_p, G_K)-regular.

Write $\chi : G_K \to \mathbb{Z}_p^\times \subset \mathbb{Q}_p^*$ for the p-adic cyclotomic character.

Definition 1.4. If M is a $\mathbb{Z}_p[G_K]$-module, then for $n \in \mathbb{Z}$, define $M(n)$ to be the $\mathbb{Z}_p[G_K]$-module, which is M as a \mathbb{Z}_p-module, but with “twisted” action, $g \cdot m := \chi(g)^n g(m)$.

More generally, if $\eta : G_K \to \mathbb{Z}_p^\times$ is a continuous character, set $M(\eta)$ to be M with action $g \cdot m = \eta(g)^n g(m)$.

Therefore, we can talk about the action of G_K on $C_K(n)$ for $n \in \mathbb{Z}$.

Theorem 1.5 (Sen - Tate Theorem). Let $n \in \mathbb{Z}$. Then the G_K-invariants,

$$C_K(n)^{G_K} = \begin{cases} K & \text{if } n = 0 \\ 0 & \text{if } n \neq 0 \end{cases}.$$

Put another way, this says that

- There are no transcendental invariants of C_K: $C_K^{G_K} = \overline{K}^{G_K} = K$,
- If $n \neq 0$, and $x \in C_K$ with $x = \chi(g)^n g(x)$ for all $g \in G_K$, then $x = 0$.

Actually we will need a more general result, which sometimes goes by the same name.
Theorem 1.6. Suppose that \(\eta : G_K \to \mathbb{Z}_p^\times \) is a continuous character. Then the \(G_K \)-invariants,

\[
C_K(\eta)^{G_K} = \begin{cases}
K & \text{if } \eta(I_K) \text{ is finite}, \\
0 & \text{if } \eta(I_K) \text{ is infinite}.
\end{cases}
\]

Example 1.7. \(B_{\text{HT}} \) can be non-canonically identified with \(C_K[T, 1/T] \). The action under this identification of \(G_K \) on \(C_K[T, 1/T] \) is given by

\[
g \cdot \left(\sum_{i \in \mathbb{Z}} a_i T^i \right) = \sum_{i \in \mathbb{Z}} g(a_i)\chi(g)^i T^i,
\]

where \(\chi \) is the cyclotomic character. Then we claim this is \((\mathbb{Q}_p, G_K)\)-regular. We first need to compute the invariant subring of \(C_K[T, 1/T] \) and of its fraction field \(C_K(T) \). To do so, we consider both inside the formal Laurent power series ring \(C_K((T)) \), the fraction field of \(C_K[[T]] \). The inclusion \(C_K(T) \hookrightarrow C_K((T)) \) is \(G_K \)-equivariant when \(C_K((T)) \) is given the action \(g \cdot \left(\sum_{i \geq i_0} a_i T^i \right) = \sum_{i \geq i_0} \chi(g)^i g(a_i) T^i \).

A formal Laurent series as above is \(G_K \)-invariant if and only if each \(a_i \in C_K(i)^{G_K} \), and so by the Theorem above of Sen-Tate, \(C_K((T))^{G_K} = K \).

Now to prove the second property, let \(b \in C_K[T, 1/T] \setminus 0 \), and suppose that \(\mathbb{Q}_p \cdot b \) is \(G_K \)-stable. Then the action of \(G_K \) on \(b \) defines a group homomorphism \(\eta : G_K \to \mathbb{Q}_p^\times \). For any \(i \in \mathbb{Z} \) and \(g \in G_K \), we have

\[
\eta(g) a_i = \chi(g)^i g(a_i).
\]

Some \(a_{i_0} \neq 0 \), and \(\eta(g) = \chi(g)^{i_0}(g(a_{i_0})/a_{i_0}) \). Then because \(\chi^{i_0} \) and the action of \(g \) on \(C_K \) are continuous, \(\eta \) is continuous. Because \(\eta \) is continuous, \(\eta(G_K) \subset \mathbb{Z}_p^\times \) - this is because the composition \(\| \cdot \| \circ \eta : G_K \to \mathbb{R} \) is continuous, and so \(\| \eta(G_K) \| \subset \mathbb{R} \) is compact.

If \(a_i \neq 0 \), then \(a_i = (\chi^i \eta^{-1})(g)g(a_i) \) for all \(g \in G_K \), so \(a_i \in C_K(\chi^i \eta^{-1})^{G_K} \). Therefore, by the stronger version of the Sen-Tate Theorem above, \((\chi^i \eta)(I_K) \) is finite. Therefore, if \(a_i \neq 0 \neq a_j \), then \((\chi^i \eta^{-1} \chi^{-j} \eta)(I_K) = \chi^{i-j}(I_K) \) is finite, so \(i = j \). Thus \(b = a_i T^i \) and is a unit. So \(C_K[T, 1/T] \) is \((\mathbb{Q}_p, G_K)\)-regular.

Example 1.8. The ring \(B_{\text{cris}}^+ \) is a complete DVR with uniformiser \(t \in B_{\text{cris}}^+ \), and \(G_K \) acts on \(t \) via the \(p \)-adic cyclotomic character. \(B_{\text{cris}}^+ \) is not \((\mathbb{Q}_p, G_K)\)-regular, because \(\mathbb{Q}_p \cdot t \) is a \(G_K \)-stable subspace, but \(t \) is not a unit of \(B_{\text{cris}}^+ \). However, the fraction field is \(B_{\text{cris}} = B_{\text{cris}}^+[1/t] \) and being a field is \((\mathbb{Q}_p, G_K)\)-regular. There is a natural filtration on \(B_{\text{cris}} \), with associated graded \(B_{\text{HT}} \), and using this one can see that \(B_{\text{HT}}^{G_K} = K \) (as a consequence, \(B_{\text{HT}}^{G_K} = K \) too).

Example 1.9. We also will construct subrings \(B_{\text{crist}} \subset B_{\text{st}} \) of \(B_{\text{cris}} \). These are both not fields, but will turn out to be \((\mathbb{Q}_p, G_K)\)-regular, with invariant ring \(K_0 = W(\mathbb{F})[1/p] \).

Example 1.10. How does this relate to the rings in Talk 3? Let \(E \) be a field of characteristic \(p > 0 \), and let \(E^s \) be a separable closure of \(E \). Let \(G_E = \text{Gal}(E^s/E) \). Then \(B = E^s \) is \((\mathbb{F}_p, G_E)\)-admissible. The ring \(B = \widehat{O}_{E^s} \) does not naturally fit into this framework, because even though it has an action of \(G_E \), \(B^{G_E} = \mathcal{O}_E \) is not a field. However, for \(E \) the fraction field of \(\mathcal{O}_E \), \(B = \widehat{O}_{E^s} \) is \((\mathbb{Q}_p, G_E)\)-regular, with \(B^G = E \).

2. \textit{B-Admissible Representations}

From now on, we will assume that \(B \) is \((F, G)\)-regular.

Definition 2.1. We define a functor from the category of finite dimensional \(F \)-representations of \(G \) to \(E \)-vector spaces,

\[
D_B : \text{Rep}_F(G) \to \text{Vect}_E,
\]

by

\[
D_B(V) := (V \otimes_F B)^G.
\]
Here G acts on $V \otimes_F B$ by $g(b \otimes v) = gb \otimes gv$, and $(V \otimes_F B)^G$ is a $E = B^G$-vector space induced from the B-module structure of $V \otimes_B B$ where $b'(v \otimes b) = v \otimes b'b$. We also have a natural map,

$$\alpha_V : D_B(V) \otimes_E B \to (V \otimes_F B) \otimes_E B = V \otimes_F (B \otimes_E B) \to V \otimes_F B.$$
With G acting on $D_B(V) \otimes_E B$ through the second factor B, then this is a G-equivariant B-linear map.

Example 2.2. Suppose that $V = F$ is the trivial representation. Then $D_B(F) = B^G$, and α_V is the identity map.

Example 2.3. Suppose that $B = F$. Then $D_B(V) = (V \otimes_F F)^G = V^G$ is the functor from $\text{Rep}_F(G)$ to Vect_F taking V to its G-invariants.

At this point, it is not really obvious why $D_B(V)$ is finite dimensional.

Lemma 2.4. If $V \in \text{Rep}_F(G)$, then $\alpha_V : D_B(V) \otimes_E B \to V \otimes_F B$ is (B-linear, G-equivariant, and) injective.

Proof. If C is the fraction field of B, we have a commutative square:

$$
\begin{array}{c}
D_B(V) \otimes_E B \\
\downarrow
\end{array}
\xrightarrow{\alpha_V}

\begin{array}{c}
V \otimes_F B \\
\downarrow
\end{array}
\quad
\begin{array}{c}
D_C(V) \otimes_E C \\
\downarrow
\end{array}
\xrightarrow{\beta_V}

\begin{array}{c}
V \otimes_F C
\end{array}
$$

Therefore it is sufficient to prove that β_V is injective. β_V is injective if and only if β_V maps an E-basis to a C-linearly independent set of $V \otimes_F C$. Therefore, it is sufficient to show that if for some $\{x_1, ..., x_n\} \subset (V \otimes_F C)^G$ are E-linearly independent, then they are C-linearly independent.

Suppose not, and take a C-linear dependence of minimal length. So for some $r \geq 1$, $x_r = \sum_{i<r} c_i x_i$, and r is the minimal length of such a relation. Then for all $g \in G$,

$$x_r = g(x_r) = \sum_{i<r} g(c_i) x_i.$$

Equivalently,

$$0 = \sum_{i<r} (g(c_i) - c_i) x_i,$$

and so by minimality, $g(c_i) = c_i$ for all i. But then for all i, $c_i \in C^G = E$, a contradiction. \qed

Theorem 2.5. For $V \in \text{Rep}_F(G)$, we have the bound,

$$\dim_E D_B(V) \leq \dim_F(V).$$

In particular, $D_B(V)$ is a finite dimensional E-vector space. Furthermore, for $d = \dim_F(V)$, the following are equivalent:

1. $\dim_E D_B(V) = \dim_F(V)$,
2. α_V is an isomorphism,
3. There is an isomorphism $V \otimes_F B \cong B^d$ as B-modules which is G-equivariant,
4. There is a B-basis of $V \otimes_F B$ consisting of d elements of $(V \otimes_F B)^G$.

Proof. Again let C be the fraction field of B. If we tensor $\alpha_V : D_B(V) \otimes_F B \to V \otimes_F B$ with C over B, we obtain,

$$\alpha_V \otimes_B C : D_B(V) \otimes_E B \to V \otimes_F B.$$

The C-dimension of the term of the left is $\dim_E(D_B(V))$, and the C-dimension of the term of the right is $\dim_F(V)$. Because α_V is injective and C is flat over B, we see that in general $\dim_E(D_B(V)) \leq \dim_F(V)$. Furthermore, clearly if α_V is an isomorphism (1), we have the equality (2). Now, to prove that (2) \Rightarrow (1), suppose that $\dim_E(D_B(V)) = \dim_F(V)$. We want to show that α_V is an isomorphism.

Let $\{e_i\}$ be an E-basis of $D_B(V)$, and $\{v_j\}$ be an F basis of V. By assumption, these have the same size d, and we can express the B-linear map α_V by the $d \times d$ matrix (b_{ij}), so
is an open subgroup of \(G \). By assumption, \(\alpha_V \otimes_B C \) is an isomorphism, so \(\det(b_{ij}) \neq 0 \), when considered an element of \(C \).

We know that \(b := \det(b_{ij}) \in B \setminus 0 \), and want to show that \(b \in B^\times \). To do this we use the fact that \(B \) is \((F,G)\)-regular, so we want to show that \(F \cdot b \) is stable under the action of \(G \).

Passing to the \(d \)th exterior power (as \(B\)-modules),
\[
\wedge^d (\alpha_V) (e_1 \wedge \cdots \wedge e_d) = b(v_1 \wedge \cdots v_d)
\]
Because \(\alpha_V \) is \(G \)-equivariant, and \(e_i \) are \(G \)-invariant, \(G \) acts on the left trivially, and so
\[
g(b) g(v_1 \wedge \cdots v_d) = b(v_1 \wedge \cdots v_d).
\]
But \(g(v_1 \wedge \cdots v_d) = \det(g)(v_1 \wedge \cdots v_d) \), hence
\[
g(b) = \det(g)^{-1} b,
\]
and \(Q_p \cdot b \) is stable under the action of \(G \).

The equivalence of (3) and (4) is immediate, so we just need to show that (3) is equivalent to (1) and (2). If \(\alpha_V \) is an isomorphism (1), then because \(\dim_E(D_B(V)) = d \), by choosing an \(E \) basis of \(D_B(V) \) we have \(B^d \cong D_B(V) \otimes_E B \), and this is \(G \)-equivariant because the action of \(G \) on \(D_B(V) \) is trivial. Therefore, composing this with \(\alpha_V \) we have (3). Conversely, if \(B^d \cong D_B(V) \otimes_E B \), then \(\dim_E(D_B(V)) = d \) and we have (1). \(\square \)

Definition 2.6. We call \(V \in \text{Rep}_F(G) \) \(B \)-admissible if \(\dim_E D_B(V) = \dim_F(D_B(V)) \). We write \(\text{Rep}^B_F(G) \) for the full-subcategory of finite dimensional \(B \)-admissible \(F \)-representations of \(G \). If \((F,G) = (Q_p,G_K)\), and \(B \) is one of \(B_{\text{HT}}, B_{\text{dR}}, B_{\text{st}} \) or \(B_{\text{cris}} \), then we call \(B \)-admissible \(p \)-adic representations Hodge-Tate, de Rham, Semistable and Crystalline respectively.

For the next example, we need a couple of definitions. Let \(R \) be a commutative topological ring, and \(\Gamma \) a topological group, such that \(\Gamma \) acts on \(R \) continuously. Then a \(R \)-representation \([3, \text{Def. 2.2}]\) is an \(R \)-module of finite type equipped with a continuous semi-linear action of \(\Gamma \). This is called free of rank \(d \) if the underlying \(R \)-module is. This is called trivial if it has a basis consisting of \(\Gamma \)-invariant elements. For a fixed \(d \geq 1 \), there is a one-to-one correspondence between free \(R \)-representations of rank \(d \) and elements of \(H^1_{\text{cts}}(\Gamma, \text{GL}_d(R)) \). Furthermore, a free \(R \)-representation \(X \) is trivial if and only if it corresponds to the trivial element of \(H^1_{\text{cts}}(\Gamma, \text{GL}_d(R)) \) \([3, \text{Prop. 2.6}]\).

Example 2.7. \((F,G) = (Q_p,G_K), B = \overline{K}\). Then we claim that \(V \) is \(\overline{K} \)-admissible if and only if the action of \(G_K \) on \(V \) factors through some finite quotient. This property is called being potentially trivial, and is the same as \(V \) being smooth as a \(G_K \)-representation, or that the action of \(G_K \) is discrete: continuous when \(V \) is given the discrete topology.

To see why, suppose that the action of \(G_K \) on \(V \) is potentially trivial, so there is an open subgroup of \(G_K \) which acts trivially on \(V \). Let \(X = V \otimes_{Q_p} \overline{K} \). The action of \(G_K \) on \(X \) by \(g(v \otimes \lambda) = g(v) \otimes g(\lambda) \) also factors through some open subgroup, because this is true for the action of \(G_K \) on \(\overline{K} \). Let \(d = \dim_{Q_p} V = \dim_{\overline{K}} X \), and fix the discrete topology on \(\overline{K} \). Then \(X \) is a free rank \(d \) \(\overline{K} \)-representation of \(G_K \).

By a strong version of Hilbert’s Theorem 90, we have that for all \(d \geq 1 \),
\[
H^1_{\text{cts}}(G_K, \text{GL}_d(\overline{K})) = 0.
\]
Therefore, by the above discussion, \(X = (V \otimes_{Q_p} \overline{K}) \) has a \(\overline{K} \)-basis of \(G_K \)-invariant elements. But this means that \(V \) is \(\overline{K} \)-admissible by Theorem 2.5.

Showing the converse is easier: suppose that \((V,\rho)\) is \(\overline{K} \)-admissible and choose a basis of \(G_K \)-invariant elements \(\{e_1, \ldots, e_d\} \). We want to show that the stabiliser of any element \(x = \sum_i \lambda_i e_i \) is an open subgroup. For any \(g \in G_K \), \(g(x) = \sum_i g(\lambda_i) e_i \), and so
\[
(gG_K)x = \cap_i (G_K)_{\lambda_i} e_i,
\]
is an open subgroup of \(G_K \). But then for a \(Q_p \)-basis \(\{v_1, \ldots, v_d\} \) of \(V \), letting \(x = v_i \otimes 1 \) in turn, we see that \(\ker(\rho) = \cap_i (G_K)_{v_i \otimes 1} \) is open.
Example 2.8. Let $P := \bar{K}^w$. We have $\text{Gal}(\bar{P}/P) = I_K$. Let $(F,G) = (\mathbb{Q}_p, G_K)$, $B = \bar{P}$. Then a p-adic representation V of G_K is \bar{P}-admissible if and only if the action of I_K is discrete [3, Prop. 3.53]. This property is called being potentially unramified.

We have that $\bar{K} \subset \bar{P} \subset C_K$. In fact the C_K-admissible representations are the same as the \bar{P}-admissible representations:

Example 2.9. $(F,G) = (\mathbb{Q}_p, G_K)$, $B = C_K$. Then a p-adic representation V is C_K-admissible if and only if the action of I_K factors through some finite quotient. Then a p-adic representation V of G_K is \bar{P}-admissible if and only if the action of I_K is discrete [3, Prop. 3.55].

Concretely, if (ρ, V) is a p-adic representation of G_K, then

- V is \bar{K}-admissible iff $\ker(\rho) \leq G_K$ is open,
- V is \bar{P}-admissible iff V is C_K-admissible iff $\ker(\rho) \cap I_K \leq I_K$ is open (in I_K).

Example 2.10. In talk 5 we shall see an equivalent definition of a Hodge-Tate representation, not in terms of the period ring.

Example 2.11. In talk 3, $B = E^s$ is a (\mathbb{F}_p, G_E)-regular ring. Then the E^s-admissible \mathbb{F}_p-representations of G_E are exactly the continuous representations (where G_E has the Krull topology and V the discrete topology). The reasoning is analogous to that of Example 2.5.

D_{E^s} as it stands is not an equivalence of categories - this functor is essentially surjective and faithful, but not full. In talk 3, this is modified to an equivalence of categories, by mapping to finite-dimensional K-vector spaces equipped with an injective (Frobenius) semi-linear ϕ. We have the Frobenius $E^s \rightarrow E^s$, and for any $V \in \text{Rep}_{\mathbb{F}_p}(V)$ we define ϕ on $D_{E^s}(V) = (E^s \otimes_{\mathbb{F}_p} V)^{G_E}$ by restricting $\phi : E^s \otimes_{\mathbb{F}_p} V \rightarrow E^s \otimes_{\mathbb{F}_p} V$,

$$\phi(x \otimes v) = x^p \otimes v,$$

to $D_{E^s}(V) = (E^s \otimes_{\mathbb{F}_p} V)^{G_E}$.

3. Properties of D_B

Now we summarise the main properties of the functor D_B.

Theorem 3.1. The restriction of the functor D_B to the full subcategory $\text{Rep}_F^B(G)$,

$$D_B : \text{Rep}_F^B(G) \rightarrow \text{Vect}_E,$$

is exact and faithful. $\text{Rep}_F^B(G)$ is closed under sub-representations and quotients. Furthermore,

- If $V_1, V_2 \in \text{Rep}_F^B(G)$, then there is a natural isomorphism,
 $$D_B(V_1) \otimes_E D_B(V_2) \rightarrow D_B(V_1 \otimes_F V_2),$$
 and so $V_1 \otimes V_2 \in \text{Rep}_F^B(G)$.
- If $V \in \text{Rep}_F^B(G)$, then $V^* \in \text{Rep}_F^B(G)$, and the natural map,
 $$D_B(V) \otimes_E D_B(V^*) \xrightarrow{\sim} D_B(V \otimes_F V^*) \rightarrow D_B(F) \cong E,$$
 is a perfect pairing.
- $\text{Rep}_F^B(G)$ also is closed under symmetric and exterior powers, and D_B commutes with these constructions.

Proof. We prove that D_B is exact, fully faithful and closed under subquotients. The rest can be found in [1, Part I, Section 5].

Both faithfulness and exactness come down to the fact that B is an algebra over both F and $E = B^G$, and therefore is faithfully flat over F and E. Recall that for a ring R and module M, M is a faithfully flat R-module if and only if the following equivalent conditions hold:

- M is flat and for any R-linear $f : N_1 \rightarrow N_2$, then f is non-zero if and only if $f \otimes 1 : M_1 \otimes_R M \rightarrow M_2 \otimes_R M$ is non-zero.
- For any sequence $N_1 \rightarrow N_2 \rightarrow N_3$, this is exact at N_2 if and only if $N_1 \otimes_R M \rightarrow N_2 \otimes_R M \rightarrow N_3 \otimes_R M$ is exact at $N_2 \otimes_R M$.
Faithful: Suppose that \(f : V \to W \) is a morphism \(F[G] \)-modules. Then because \(B \) is faithfully flat over \(E \), \(\text{DB}(f) = f \otimes 1 : \text{DB}(V) \to \text{DB}(W) \) is zero if and only if

\[
(f \otimes 1) \otimes 1 : \text{DB}(V) \otimes_E B \to \text{DB}(W) \otimes_E B,
\]
is zero. But because \(V \) and \(W \) are \(B \)-admissible, \(\alpha_V, \alpha_W \) are isomorphisms in the commutative diagram,

\[
\begin{array}{ccc}
\text{DB}(V) \otimes_E B & \xrightarrow{(f \otimes 1) \otimes 1} & \text{DB}(W) \otimes_E B \\
\downarrow \alpha_V & & \downarrow \alpha_W \\
V \otimes_F B & \xrightarrow{f \otimes 1} & W \otimes_F B
\end{array}
\]

and because \(B \) is faithfully flat over \(E \), \(f \otimes 1 \) is zero if and only if \(f : V \to W \) is zero.

Exact: Let

\[
0 \to U \to V \to W \to 0,
\]
be a short exact sequence in \(\text{Rep}_F^B(G) \). Then

\[
0 \to U \otimes_F B \to V \otimes_F B \to W \otimes_F B \to 0,
\]
is an exact sequence of \(B \)-modules, and so because \(U, V \) and \(W \) are \(B \)-admissible,

\[
0 \to \text{DB}(U) \otimes_E B \to \text{DB}(V) \otimes_E B \to \text{DB}(W) \otimes_E B \to 0,
\]
is exact. But then \(B \) is faithfully flat over \(E \), hence

\[
0 \to \text{DB}(U) \to \text{DB}(V) \to \text{DB}(W) \to 0,
\]
is exact.

Closed under subquotients: Consider a short exact sequence of \(F[G] \)-modules,

\[
0 \to U \to V \to W \to 0,
\]
where \(V \) is \(B \)-admissible. By definition \(\text{DB} \) is left exact, so we also have the exact sequence of \(E \)-modules,

\[
0 \to \text{DB}(U) \to \text{DB}(V) \to \text{DB}(W)
\]

Therefore,

\[
\dim_E \text{DB}(V) \leq \dim_E \text{DB}(U) + \dim_E \text{DB}(W) \leq \dim_F(U) + \dim_F(W) = \dim_F(V).
\]

But then because \(V \) is \(B \)-admissible, these are all equalities, hence \(U \) and \(W \) are \(B \)-admissible.

Remark. \(\text{Rep}_F^B(G) \) need not be closed under extensions. For example, if \(B = B_{\text{HT}} \), then [4, Example 1.1.12] exhibits a 2-dimensional representation \(V \) which is not Hodge-Tate but fits into an exact sequence,

\[
0 \to \mathbb{Q}_p \to V \to \mathbb{Q}_p \to 0.
\]

Explicitly, we have \(\log_p : \mathbb{Z}_p^\times \to \mathbb{Q}_p \), defined by the usual power series on \(1 + p\mathbb{Z}_p \), and on \(\mathbb{Z}_p^\times = \mu_{p-1} \times (1 + p\mathbb{Z}_p) \) by \(\log_p((1 + x)) = \log_p(1 + x) \). Then the action of \(g \in G_K \) on \(V \) is by,

\[
\begin{pmatrix}
1 & \log_p(\chi(g)) \\
0 & 1
\end{pmatrix}
\]

However, one can show that for any \(p \)-adic representation \(W \) which fits into an exact sequence,

\[
0 \to \mathbb{Q}_p(m) \to W \to \mathbb{Q}_p(n) \to 0,
\]
is Hodge-Tate whenever \(m \neq n \). In the above, \(\mathbb{Q}_p = \mathbb{Q}_p(0) \).
4. Image Categories

Recall that we have $B_{\text{cris}} \subset B_{\text{st}} \subset B_{\text{dR}}$, and B_{HT}. For each of these period rings B, $E = B^{G_K}$ is K_0, K_0, K and K respectively.

$D_{B_{\text{dR}}}$ can be modified using the filtration on B_{dR} to give an exact faithful functor to Fil_K, the category of filtered K-vector spaces. However, this functor is not fully faithful.

$D_{B_{\text{cris}}}$, naturally takes values in MF_K^ϕ, the category of filtered ϕ-modules over K (see Definition 7.3.4 [1]).

D_{st} takes values in $\text{MF}_K^{\phi,N}$, the category of filtered (ϕ,N)-modules. There is a notion of a weakly admissible object of $\text{MF}_K^{\phi,N}$, the full subcategory these define is denoted $\text{MF}_K^{\phi,N,w.a}$. One can show that any semistable representation is weakly admissible. It is a deep and recent result of Fontaine and Colmez [2] that

$$D_{\text{st}} : \text{Rep}_{\text{st}}^p(G_K) \to \text{MF}_K^{\phi,N,w.a},$$

is an equivalence of categories. One can then pass to objects with vanishing monodromy ($N = 0$), to restrict this to an equivalence of categories,

$$D_{\text{cris}} : \text{Rep}_{\text{cris}}^p(G_K) \to \text{MF}_K^{\phi,w.a}.$$

References