RAPOPORT ZINK SPACES: THE LUBIN-TATE CASE

JAMES TAYLOR

These are notes for a talk at the Oxford Rapoport-Zink Spaces study group in Hilary term
2023.

Notation. Let K be a finite extension of @, with integer ring O, a uniformiser 7 € O and
residue field O — k. For h > 1, let K be the unique unramified extension of K of degree
h, and O}, its ring of integers. Let K be the maximal unramified extension of K, and O its
ring of integers. For A a commutative ring, write Alg, for the category of commutative unital
associative A-algebras.

Let Nilpy be the category of O algebras for which 7 is nilpotent, Co the full subcategory of
artinian local O-algebras with residue field k.

1. BACKGROUND ON FORMAL GROUP LAWS

Definition 1.1. Let R be a commutative ring. A formal group lawE] over R is a power series
F(X,Y) € R[[X,Y]] such that,

(1) The linear term of FI(X,Y) is F(X,Y) =, X 4+ Y,

(2) F(F(X,Y),Z) = F(X, F(Y, ),

(3) F(X,Y)=F(Y,Z).

Definition 1.2. Let R be a commutative ring, and F(X,Y), G(X,Y) formal group laws over
R. Then an homomorphism of h : F(X,Y) — G(X,Y) is a power series h(X) € X R[[X]] such
that,

WE(X,Y)) = F(h(X),h(Y)).

Morphisms can be composed by composing the associated power series. Using the formal group
law G(X,Y), the set Hompg(F, G) of homomorphisms of formal group laws over R from F'(X,Y)
to G(X,Y’) becomes an abelian group:

hi(X) + ho(X) := G(hi(X), ha (X)),
and Endp(F(X,Y)) becomes a ring.

Definition 1.3. Let A be a commutative ring, and R € Alg,. A formal A-module law over R
is a formal group law F(X,Y’) over R, together with a ring homomorphism [—]| : A — Endg(F),
such that for any a € A, the linear term is,

[a](X) =2 aX.

For two formal A-modules laws F(X,Y),G(X,Y) over R, we write Homp,4(F,G) for the set
of homomorphisms of formal A-module laws: homomorphisms of formal group laws over R
which respect the action of A. As before, using A — Endr(G(X,Y")) this set is canonically an
A-module.

Example 1.4. If R € Algg, where S is one of the rings Z,Z,), Z,, then formal S-module laws
over R are the same as formal group laws over R: for any formal group law F(X,Y) over R
there exists a unique formal S-module law structure on F(X,Y).

Lywe only consider commutative 1-dimensional formal group laws
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1.1. Universal Formal O-Modules. Consider the functor,
FGLp : Algy — Set,

sending R € Algy to the set of isomorphism classes of formal O-module laws over R. It is not
hard to show this is representable. What is more interesting, is the following presentation of
the universal algebra as a polynomial ring Ap € Algp, and of the universal formal O-module
law over Ap.

Theorem 1.5. Let,
Ao = Olta, t3,...] € Algp,

and let o : Ao — Ao be the O-algebra endomorphism defined by o(t;) =t for any i > 2. For
each i > 1, write v; := ty. Let f*(X) € Ao[1/7][[X]] defined by the functional equation,

o oo
fUX) =X+ ZtiXi - Zvinz + Z %U*f(XqZ%
m
i=1 i=1 i=1

and let FU(X,Y) = f7H(f(X) + f(Y)) € Ao[[X,Y]] be the unique formal O-module law with
logarithm f*(X). Then the pair (Ao, F*(X,Y)) is a universal O-module law.

1.2. Height. Let L be a field extension of k.

Proposition 1.6. Let f: F1(X,Y) — F»(X,Y) be a morphism of formal O-module laws over
L. Then if f(X) # 0, there is a unique m € N>; and g(X) € L[[X]] such that,
f(X) = g(X9),
and ¢'(0) # 0. We set ht(f) :=m if f(X) # 0, and ht(0) := oo.
Definition 1.7. Let F(X,Y) be a formal O-module over L. Then we define the height of
F(X,Y) to be,
ht(F(X,Y)) := ht([r]) € N>; U {oo}.

Theorem 1.8. Suppose that L algebraically closed. Then taking the height defines an bijection
from the set of formal O-modules over L to the set N>; U {oo}.

Remark. The representatives of each isomorphism class are defined over k. The additive formal
group G4(X,Y) has height co. For each h > 1, the formal O-module of height h, F;(X,Y’) has
endomorphisms,

Endy o (Fp(X,Y)) = O[ll] = Op = Endy, /0 (Fhk, (X, Y)) = Endg o (F, 7(X, Y)),

2. THE MobDULI FUNCTOR
Let h > 1. We fix a formal O-module X}, of height h over k.

We are interested the functor,
Mgz, - Nilp s — Set,
is defined by sending R € Nilp to the set of isomorphism classes of pairs (X, p), where,
e X is a m-divisible formal O-module over R,
® p: Frixr —-* XR/xR, is an O-linear quasi-isogeny.

In fact, this makes sense over O, and by general Rapoport-Zink theory the height will break
this up a disjoint union formal schemes indexed by the height, so we are really interested in
showing representability of the functor,

MRZ,h,O : Nilpy — Set,
is defined by sending R € Nilpy to the set of isomorphism classes of pairs (X, p), where,

e X is a w-divisible formal O-module over R,
® p: Fr/rp --* Xpg/xR, is an O-linear quasi-isogeny of height 0.



RAPOPORT ZINK SPACES: THE LUBIN-TATE CASE 3

Now classically, in the papers by Lubin-Tate and Gross-Hopkins, they consider the following
functor on Cp. Let,

LTy : Co — Set,

send an artinian local O-algebra R with residue field k, to the set of formal O-module laws
F(X,Y) over R which reduces to Fj(X,Y) modulo mg up to equivalence. Here two lifts
Fi(X,Y), F»(X,Y) are called equivalent if there is an isomorphism f : F}(X,Y) — F»(X,Y)
such that f(X) = X modulo mp.

In order to relate these two functors, we introduce an intermediate functor,

My, : Nilppy — Set.

Definition 2.1. Let R € Nilpy, and h: F(X,Y) — G(X,Y) a morphism of formal O-module
laws over R. Then h is said to be a x-isomorphism if there is a nilpotent ideal I of R such that,

Remark. Note that if h is a *-isomorphism, then the coefficient of X isin 1 + I C R, hence in
R* as I is nilpotent. Therefore, the morphism A is invertible.

Definition 2.2. Fix F},(X,Y), a 1-dimensional formal group law over k of finite height h € N>;.
Let,

M, : Nilpy — Set,

be the functor assigning to R € Nilpy, the set of x-isomorphism classes of formal O-modules
F(X,Y) over R such that,

Frir(X,Y) = F, g/ir(X,Y),
over R/IR for some nilpotent ideal I C R with 7 € I.
The relationship between M}y, and Mgy 1 is the following.
Proposition 2.3. There is a natural isomorphism of functors Nilpy, — Set,
My = Mrzho-

Proof Sketch. Send a formal O-module F(X,Y) in My(R) to the pair (F(X,Y),«), where
a: Frirp --* Fj, g/rr 1s the unique quasi-isogeny lifting the identity Fr/rr — Fj r/rr- The
quasi-isogeny « will have height 0 as the identity has height 0. U

On the other hand, the link between My, and LT}, is the following.

Proposition 2.4. The restriction of My, to the full subcategory Co is naturally isomorphic to
LT),.

Now in order to show the representability of our original functor MRz,h, we want to show
the representability of My,.

Definition 2.5. For S € Comply, we let Spf(S) : Nilp, — Set, be the functor sending
R € Nilpp to,
Spf(S)(R) := Homp s(S, R),

where R is viewed with the discrete topology.

Example 2.6. For example, if S = O[[X1, ..., X,,]], then for R € Nilpy,
Spf(S)(R) = Nil(R)",

sending f : S — R to the tuple (f(x1),..., f(zn)).

Let G, : Ao — k be the universal morphism corresponding to Fj(X,Y) over k defining
M,. Note that this has g (v;) = 0 for all ¢ = 1,...,h — 1 because Fj,(X,Y) has height h. Let
r: O[[X1, ..., Xp—1]] = k be the map reducing modulo the maximal ideal (7, X1, ..., Xp—1).
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Theorem 2.7. Choose an O-algebra homomorphism gy, : Ao — O[[X1, ..., Xn_1]], such that,

Ao — 8 O[[X1, ..., Xp_1]]

N

commutes, with the extra condition that gp(v;) = Xivforz' = 1,...,h — 1, which is possi-
ble as gp(v;) = 0 for all i = 1,...,h — 1. Let F*"""(X,)Y) = gp F*“(X,Y). Then the
pair (O[[X1, ..., Xp_1]], F*""(X,Y)) defines a representation of My: the map defined by push-
forward of the universal formal group law F*"(X,Y),
Spf(O[[X1, .oy Xna]]) = M.

1 a natural isomorphism.
Remark. In particular, we note that this isomorphism is not canonical.
Remark. In order to even state the theorem, we have to use that Ay is a polynomial ring.

The proof of this theorem goes via the following steps.
Definition 2.8. A functor

G : Nilpy — Set,

is said to satisfy the formal Mayer-Vietoris property if for any morphisms R; — S, Ry — S in
Nilpy), such that R; — S surjective with nilpotent kernel, the natural morphism,

G(R1 XS Rg) — G(Rl) Xg(s) G(RQ),
is a bijection. The functor G is called formally smooth if for any surjection R — S in Nilpy,
with nilpotent kernel, the map,
G(R) = G(R/I),
is surjective.

It is easy to see that Spf(O[[X1, ..., X—1]]) is formally smooth and satisfies the formal Mayer-
Vietoris property.

Lemma 2.9. My, is formally smooth and satisfies the formal Mayer-Vietoris property.

Remark. This would not be true, if in the definition of M}, we only considered things modulo
m and didn’t allow for general nilpotent ideals I.

Using this, we can reduce the proof of Theorem to proving that the restriction to LT}, is
an isomorphism.

Lemma 2.10. If Spf(O[[X1,..., Xp_1]])(R) = Mp(R) from the statement of Theorem is
an isomorphism for any R € Cp, then it is for any R € Nilpy.

Remark. This is generally true for a morphism of functors which are both satisfy the formal
Mayer-Vietoris property and are formally smooth.

Then verifying this statement reduces to showing the map is a bijection on certain modules of
the form “k[M]”, for M a k-module, for which one actually uses properties of formal O-modules.

3. THE PERIOD MORPHISM

Here we give an overview of the Gross Hopkins period morphism, and why it is surjective.

In order for the equations to be as explicit as possible, we choose as universal formal O-
module F'W (X, Y) over O[[X1, ..., X;_1]] the “canonical lift”, where in Theorem we take
O-linear homomorphism,

A@ — O[[Xl, ...,Xh_l]],
sending v; — X; for i =1,...,h — 1, vy, — 1, and all other variables sent to zero.
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Let Mgz : Nilpp — Set be the Rapoport-Zink functor, which splits up,

MRgzh = |_| MRz.h,m-

meZ
We want to construct a morphism,

. ad h_lzad
TGH - Mszhm — ]P)K .

4 Via fractional

Once we base change to Kj, the group D* acts on M%{dzjh, and also on IP};(ZI’&
linear transformations.

Explicitly, the action of D* is through the natural action of GLj_1(K}), and an embedding
D < My_1(K}), such that IT maps to an invertible matrix which induces the automorphism

which looks like,
O-fco:ecr::epq]=[rterea: il

However, even if we stay over K, and don’t base change to K}, we still have this equivariant
action of the group II%. Consider the open subset,

X{l Xl}zL—l ad
D :=Spa | K s SRR e C Spa(O[[X1, ..., Xp-1]])3"

One shows that mgy induces a (highly non-trivial) isomorphism from this closed polydisk onto

the closed polydisk,
h h
ra_ wy Wh—1 h—1,ad
D" := Spa <K<7rh_1,--- ’ﬂ.h(hl)>> C P,

where w; := ¢;/co for i = 1,...,h — 1 are coordinates of A};gl’ad C IP’;?l’ad.
One then uses the D*-equivariance to show that mqy is surjective, using that the open subsets
IT*- ]D)’Kh for i € Z cover ]P’};{;Lad. With a little extra argument, one can show that the restriction,

h—1,ad
maH ot Mg pon = Pr 0,

is also surjective, by showing that if R is the ring of integers in a sufficiently large enough finite

extension of K, that given (G(X,Y), p) € Mgz n0(R), you can always find some (G'(X,Y), p') €

Mgz.no(R) such that,

7"'GH(C;(‘Xa Y)’ P) = 7TGrH(Gj/(‘Xa Y)7 :0/)'

To say a little about how the morphism is constructed, let (B, B™) be a complete sheafy
Huber pair over (K, Q). Then,

Mg pn(B,BY) = lim Mgzp(Bo) = lim  lim Mgy, (Bo/7" Bo).
BoCBt BocBt+n>1

On the other hand, ]P’}}gl’ad (B, B") is the set of isomorphism classes of invertible B-modules £
with a surjection B" — L.

Given any m-adically complete w-torsion free O-algebra R like By, the morphism 7gy is
constructed by taking a point (G, p) € Mpzn(R) to (£,B" — L), where £ := Lie(G)[1/x].
Now actually Lie(G) will be free, and it comes down to choosing some nice naturally varying

choice of ¢, c1, ..., ¢p—1 to define the map B" — L.
One constructs for any w-torsion free O-algebra S, a covariant functor,

M(—) : FGg/0 r—ain(S/m) — {fin. locally free S-modules},

which is defined in terms of quasi-logarithms, and somehow uses this to get these sections.
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4. LEVEL STRUCTURES

In this section, we consider the base change,
ﬁh : C(ﬁ — Set,

sending R to the set of LTy (R), which in this section we consider as the set of equivalence
classes of pairs (X, ¢), where ¢ : X3 — X, is an isomorphism of formal O-module laws.

Definition 4.1. Let m > 0. For X € LT,(R), a Drinfeld Level m Structure on X is an
O-module homomorphism,
0 (x7"O/O)! = (mp, +x),
such that,
I[I & =n@) "),
ag(r=mO/O)h
in R[[X]].

Remark. There are quite a few ways one can rephrase this condition: see the notes by Fargues.

Definition 4.2. Let m > 0. Let ﬁhm : Css — Set, be the functor sending R to the set of
isomorphism classes of triples (X, ¢,7), where (X, $) € LT, o(X) and 7 is a Drinfeld Level m
Structure on X.

Remark. Let’s try and motive Drinfeld’s condition. Suppose instead we had defined a level
m-structure as just any homomorphism,

n: (ﬂme/O)h — (mp, +x),
and we don’t impose Drinfeld’s condition. Then this functor is represented by,
Shon = Baol[T1, ., Th]] /([7™](T1), ... [7"|(Th)),

with universal level structure (™Y (e;) = T3, for e, ..., e5 the standard basis of (770 /O)".

In the case that h = 1, we want the rings R, to be integral models of the Lubin-Tate
extensions K,,/K. If we have K = Q,, we can take X" = G,,(X,Y), with [p)(X) =
(1+ X)? — 1. Then,

S10=0, S =0[T]/(1+T)"-1).

However, this is slightly too big, as we want the ring of integers in Q,((p), which has degree
p — 1 over Q,, so we want instead,
(14T -1 "
S0 = O/ (el T).

The higher extensions O for m > 2 should be given by,
OlGom] = OGm-1[T]/([P)(T) = ({1 — 1))

Adding these quotients corresponds exactly to imposing Drinfeld’s condition.

é[Cp] = @[Cp - 1] = @[T]/(

By restricting the level structure, we have natural transformations,
LT =LTh0+ LTh1 < LTpo - .
The functor LT}, ,, has an right action of GLj,(O/7™0O) x OF, defined by,
(X,0,m) - (9,2) := (X, pox,nog).
Let X"™ be a universal element for LT}, o.

Theorem 4.3. For each m > 0, the functor ﬁhm is represented by a regular local ring Ry, p, .
There is a universal Drinfeld level m structure,

(MO JO) = (g, i),
s0 that (XY, pUVY represents LT, . Furthermore,

e Forn > m, the extension Ry, — Ry is finite and flat,



RAPOPORT ZINK SPACES: THE LUBIN-TATE CASE 7

e The extension Rpo[l/7] — Rpm[l/7] is a finite étale Galois extension, with Galois
group GL,(O/n™O).

One can define Ry, and ¢V in terms of Ry o and the power series [7](X). If we already
know these for m = 0, 1, then for m > 2, R}, and universal level structure AV are inductively
defined as follows. Fix some some compatible basis €y, 1, ..., €m,1 of (77 ™O/O)" as an O /7™O-
module for each m > 0. Suppose we are given (Rp, n, 922V) for m > 1, and let b; := ¢ (e, ;) €
mg,, ,, for i =1,..., h. Then,

Rhms1 = Bumllyr, - ynll/([7](y1) = b1, s [7](yn) — ba),

and m+1(6m+17i) = Y- .
Therefore, it only remains to see how to construct Ry and ¢{™"V. This itself is done induc-
tively as follows.

Definition 4.4. For 0 < r < h, we define the functor ®, : Co — Set, which sends R to the
set of isomorphism classes of pairs (X, ¢,n), where (X,¢) € LT, o(R) and 7 is an O-module
homomorphism,

n: (77 t0/O)" = (mg, +x),

such that,
[T & —n@)]x),
ac(mr=mO/O)"

in R[[X])].

This is representable, by L, and (X iV puniv punivy “which we define inductively now.

Lo = Ry with trivial ng™V. Then supposing we have defined this for r — 1, set,

[)(T)
gr—1(T) == : :
' Hae(w—mO/O)T—l (T - T#EIIV(G))
Then let,
Ly := Ly a[ze]]/(9r-1(2r)),

and Y extending 7Y, defined by n™V(e,) := 2,. Finally, we can set Ry := Ly, and

Py .= pniv and LTy 1 = @p,.

Remark. Note that g,_1(T) = [x](T')/T, and so this agrees with what we would expect from
the h = 1, K = Q, example above.

Corollary 4.5. For each m > 0, the elements b; := ?,?i"(em,i) fori=1,...h form a regular
system of parameters for the reqular local ring Ry, .

4.1. Connected Components. Now over (’j, the rings R}, are all integral domains, hence
connected. What can we say about their geometrically connected components?
In what follows, we let K, denote the mth Lubin-Tate extension of K. Recall that,

K:ROCR1CKmC“’,

and the extension,

Y

Ky = UmEOKma
has a canonical isomorphism,

¥ : Gal(K/K) = 0%,

Theorem 4.6. The ring Ry, ,,[1/p] contains the field extension K, of K. For anym > 1, and
for any finite separable extension E of f(m,

Sp(Rhm[l/p]) X Sp(K) Sp(E),
has (g — 1)g™ 1 geometrically connected components, which are the fibres of the morphism,

SP(Rim[1/p]) Xgp (i) SPIE) = Sp(Km) X g, ) SP(E) = Sp(Km @ E).
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The natural decomposition,

reGal(Ko /K)

together with the isomorphism,

Xm 1 Gal(Kn /K) = (0/a™0)%,
induces a bijection,

70(SP(Rhm[1/p]) Xgpiz) SP(E)) = m0(Sp(Km @ E)) = (O/7™0)*,
which is GLy(O/n™O) x Of-equivariant if we define the action,
(g,h) -z := det(g) Nrd(h) 'z,

of GL,(O/7™O) x OF, on (O/7™O)*.

Here Nrd : (’)B — O is the reduced norm.
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