
RAPOPORT ZINK SPACES: THE LUBIN-TATE CASE

JAMES TAYLOR

These are notes for a talk at the Oxford Rapoport-Zink Spaces study group in Hilary term
2023.

Notation. Let K be a finite extension of Qp, with integer ring O, a uniformiser π ∈ O and
residue field O ↠ k. For h ≥ 1, let Kh be the unique unramified extension of K of degree
h, and Oh its ring of integers. Let K̆ be the maximal unramified extension of K, and Ŏ its
ring of integers. For A a commutative ring, write AlgA for the category of commutative unital
associative A-algebras.

Let NilpO be the category of O algebras for which π is nilpotent, CO the full subcategory of
artinian local O-algebras with residue field k.

1. Background On Formal Group Laws

Definition 1.1. Let R be a commutative ring. A formal group law1 over R is a power series
F (X,Y ) ∈ R[[X,Y ]] such that,

(1) The linear term of F (X,Y ) is F (X,Y ) ≡2 X + Y ,
(2) F (F (X,Y ), Z) = F (X,F (Y, Z)),
(3) F (X,Y ) = F (Y, Z).

Definition 1.2. Let R be a commutative ring, and F (X,Y ), G(X,Y ) formal group laws over
R. Then an homomorphism of h : F (X,Y )→ G(X,Y ) is a power series h(X) ∈ XR[[X]] such
that,

h(F (X,Y )) = F (h(X), h(Y )).

Morphisms can be composed by composing the associated power series. Using the formal group
law G(X,Y ), the set HomR(F,G) of homomorphisms of formal group laws over R from F (X,Y )
to G(X,Y ) becomes an abelian group:

h1(X) + h2(X) := G(h1(X), h2(X)),

and EndR(F (X,Y )) becomes a ring.

Definition 1.3. Let A be a commutative ring, and R ∈ AlgA. A formal A-module law over R
is a formal group law F (X,Y ) over R, together with a ring homomorphism [−] : A→ EndR(F ),
such that for any a ∈ A, the linear term is,

[a](X) ≡2 aX.

For two formal A-modules laws F (X,Y ), G(X,Y ) over R, we write HomR/A(F,G) for the set
of homomorphisms of formal A-module laws: homomorphisms of formal group laws over R
which respect the action of A. As before, using A→ EndR(G(X,Y )) this set is canonically an
A-module.

Example 1.4. If R ∈ AlgS , where S is one of the rings Z,Z(p),Zp, then formal S-module laws
over R are the same as formal group laws over R: for any formal group law F (X,Y ) over R
there exists a unique formal S-module law structure on F (X,Y ).

1we only consider commutative 1-dimensional formal group laws
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1.1. Universal Formal O-Modules. Consider the functor,

FGLO : AlgO → Set,

sending R ∈ AlgO to the set of isomorphism classes of formal O-module laws over R. It is not
hard to show this is representable. What is more interesting, is the following presentation of
the universal algebra as a polynomial ring ΛO ∈ AlgO, and of the universal formal O-module
law over ΛO.

Theorem 1.5. Let,

ΛO := O[t2, t3, ...] ∈ AlgO,

and let σ : ΛO → ΛO be the O-algebra endomorphism defined by σ(ti) = tqi for any i ≥ 2. For
each i ≥ 1, write vi := tqi. Let fu(X) ∈ ΛO[1/π][[X]] defined by the functional equation,

fu(X) = X +

∞∑
i=1

tiX
i −

∞∑
i=1

viX
qi +

∑
i=1

vi
πi

σ∗f(X
qi),

and let F u(X,Y ) := f−1(f(X) + f(Y )) ∈ ΛO[[X,Y ]] be the unique formal O-module law with
logarithm fu(X). Then the pair (ΛO, F

u(X,Y )) is a universal O-module law.

1.2. Height. Let L be a field extension of k.

Proposition 1.6. Let f : F1(X,Y )→ F2(X,Y ) be a morphism of formal O-module laws over
L. Then if f(X) ̸= 0, there is a unique m ∈ N≥1 and g(X) ∈ L[[X]] such that,

f(X) = g(Xq),

and g′(0) ̸= 0. We set ht(f) := m if f(X) ̸= 0, and ht(0) :=∞.

Definition 1.7. Let F (X,Y ) be a formal O-module over L. Then we define the height of
F (X,Y ) to be,

ht(F (X,Y )) := ht([π]) ∈ N≥1 ∪ {∞}.

Theorem 1.8. Suppose that L algebraically closed. Then taking the height defines an bijection
from the set of formal O-modules over L to the set N≥1 ∪ {∞}.

Remark. The representatives of each isomorphism class are defined over k. The additive formal
group Ga(X,Y ) has height ∞. For each h ≥ 1, the formal O-module of height h, Fh(X,Y ) has
endomorphisms,

Endk/O(Fh(X,Y )) = O[Π] ↪→ OD = Endkh/O(Fh,kh(X,Y )) = Endk/O(Fh,k(X,Y )),

2. The Moduli Functor

Let h ≥ 1. We fix a formal O-module Xh of height h over k.
We are interested the functor,

M̆RZ,h : NilpŎ → Set,

is defined by sending R ∈ NilpŎ to the set of isomorphism classes of pairs (X, ρ), where,

• X is a π-divisible formal O-module over R,
• ρ : FR/πR 99K XR/πR, is an O-linear quasi-isogeny.

In fact, this makes sense over O, and by general Rapoport-Zink theory the height will break
this up a disjoint union formal schemes indexed by the height, so we are really interested in
showing representability of the functor,

MRZ,h,0 : NilpO → Set,

is defined by sending R ∈ NilpO to the set of isomorphism classes of pairs (X, ρ), where,

• X is a π-divisible formal O-module over R,
• ρ : FR/πR 99K XR/πR, is an O-linear quasi-isogeny of height 0.
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Now classically, in the papers by Lubin-Tate and Gross-Hopkins, they consider the following
functor on CO. Let,

LTh : CO → Set,

send an artinian local O-algebra R with residue field k, to the set of formal O-module laws
F (X,Y ) over R which reduces to Fh(X,Y ) modulo mR up to equivalence. Here two lifts
F1(X,Y ), F2(X,Y ) are called equivalent if there is an isomorphism f : F1(X,Y ) → F2(X,Y )
such that f(X) ≡ X modulo mR.

In order to relate these two functors, we introduce an intermediate functor,

Mh : NilpO → Set .

Definition 2.1. Let R ∈ NilpO, and h : F (X,Y )→ G(X,Y ) a morphism of formal O-module
laws over R. Then h is said to be a ⋆-isomorphism if there is a nilpotent ideal I of R such that,

f(X) ≡I X.

Remark. Note that if h is a ⋆-isomorphism, then the coefficient of X is in 1 + I ⊂ R, hence in
R× as I is nilpotent. Therefore, the morphism h is invertible.

Definition 2.2. Fix Fh(X,Y ), a 1-dimensional formal group law over k of finite height h ∈ N≥1.
Let,

Mh : NilpO → Set,

be the functor assigning to R ∈ NilpO, the set of ⋆-isomorphism classes of formal O-modules
F (X,Y ) over R such that,

FR/IR(X,Y ) = Fh,R/IR(X,Y ),

over R/IR for some nilpotent ideal I ⊂ R with π ∈ I.

The relationship betweenMh andMRZ,h,0 is the following.

Proposition 2.3. There is a natural isomorphism of functors NilpO → Set,

Mh
∼−→MRZ,h,0.

Proof Sketch. Send a formal O-module F (X,Y ) in Mh(R) to the pair (F (X,Y ), α), where
α : FR/πR 99K Fh,R/πR is the unique quasi-isogeny lifting the identity FR/IR → Fh,R/IR. The
quasi-isogeny α will have height 0 as the identity has height 0. □

On the other hand, the link betweenMh and LTh is the following.

Proposition 2.4. The restriction of Mh to the full subcategory CO is naturally isomorphic to
LTh.

Now in order to show the representability of our original functor M̆RZ,h, we want to show
the representability ofMh.

Definition 2.5. For S ∈ ComplO, we let Spf(S) : NilpO → Set, be the functor sending
R ∈ NilpO to,

Spf(S)(R) := HomO,cts(S,R),

where R is viewed with the discrete topology.

Example 2.6. For example, if S = O[[X1, ..., Xn]], then for R ∈ NilpO,

Spf(S)(R)
∼−→ Nil(R)n,

sending f : S → R to the tuple (f(x1), ..., f(xn)).

Let gh : ΛO → k be the universal morphism corresponding to Fh(X,Y ) over k defining
Mh. Note that this has gh(vi) = 0 for all i = 1, ..., h − 1 because Fh(X,Y ) has height h. Let
r : O[[X1, ..., Xh−1]]→ k be the map reducing modulo the maximal ideal (π,X1, ..., Xh−1).
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Theorem 2.7. Choose an O-algebra homomorphism gh : ΛO → O[[X1, ..., Xh−1]], such that,

ΛO O[[X1, ..., Xh−1]]

k

gh

ḡh

commutes, with the extra condition that gh(vi) = Xi for i = 1, ..., h − 1, which is possi-
ble as gh(vi) = 0 for all i = 1, ..., h − 1. Let F univ(X,Y ) := gh,∗F

u(X,Y ). Then the
pair (O[[X1, ..., Xh−1]], F

univ(X,Y )) defines a representation of Mh: the map defined by push-
forward of the universal formal group law F univ(X,Y ),

Spf(O[[X1, ..., Xh−1]])
∼−→Mh.

is a natural isomorphism.

Remark. In particular, we note that this isomorphism is not canonical.

Remark. In order to even state the theorem, we have to use that ΛO is a polynomial ring.

The proof of this theorem goes via the following steps.

Definition 2.8. A functor

G : NilpO → Set,

is said to satisfy the formal Mayer-Vietoris property if for any morphisms R1 → S, R2 → S in
NilpO, such that R1 → S surjective with nilpotent kernel, the natural morphism,

G(R1 ×S R2)→ G(R1)×G(S) G(R2),

is a bijection. The functor G is called formally smooth if for any surjection R → S in NilpO
with nilpotent kernel, the map,

G(R)→ G(R/I),

is surjective.

It is easy to see that Spf(O[[X1, ..., Xh−1]]) is formally smooth and satisfies the formal Mayer-
Vietoris property.

Lemma 2.9. Mh is formally smooth and satisfies the formal Mayer-Vietoris property.

Remark. This would not be true, if in the definition ofMh we only considered things modulo
π and didn’t allow for general nilpotent ideals I.

Using this, we can reduce the proof of Theorem 2.7, to proving that the restriction to LTh is
an isomorphism.

Lemma 2.10. If Spf(O[[X1, ..., Xh−1]])(R)
∼−→ Mh(R) from the statement of Theorem 2.7 is

an isomorphism for any R ∈ CO, then it is for any R ∈ NilpO.

Remark. This is generally true for a morphism of functors which are both satisfy the formal
Mayer-Vietoris property and are formally smooth.

Then verifying this statement reduces to showing the map is a bijection on certain modules of
the form “k[M ]”, for M a k-module, for which one actually uses properties of formal O-modules.

3. The Period Morphism

Here we give an overview of the Gross Hopkins period morphism, and why it is surjective.
In order for the equations to be as explicit as possible, we choose as universal formal O-

module F univ(X,Y ) over O[[X1, ..., Xh−1]] the “canonical lift”, where in Theorem 2.7 we take
O-linear homomorphism,

ΛO → O[[X1, ..., Xh−1]],

sending vi 7→ Xi for i = 1, ..., h− 1, vh 7→ 1, and all other variables sent to zero.
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LetMRZ,h : NilpO → Set be the Rapoport-Zink functor, which splits up,

MRZ,h =
⊔
m∈Z
MRZ,h,m.

We want to construct a morphism,

πGH :Mad
RZ,h,η → Ph−1,ad

K .

Once we base change to Kh, the group D× acts on Mad
RZ,h, and also on Ph−1,ad

Kh
via fractional

linear transformations.
Explicitly, the action of D× is through the natural action of GLh−1(Kh), and an embedding

D ↪→ Mh−1(Kh), such that Π maps to an invertible matrix which induces the automorphism
which looks like,

Π · [c0 : c1 : · · · : ch−1] = [π−1c1 : c2 : · · · : c0].

However, even if we stay over K, and don’t base change to Kh, we still have this equivariant
action of the group ΠZ. Consider the open subset,

D := Spa

(
K

〈
Xh

1

πh−1
, · · · ,

Xh
h−1

πh−(h−1)

〉)
⊂ Spa(O[[X1, ..., Xh−1]])

ad
η .

One shows that πGH induces a (highly non-trivial) isomorphism from this closed polydisk onto
the closed polydisk,

D′ := Spa

(
K

〈
wh
1

πh−1
, · · · ,

wh
h−1

πh−(h−1)

〉)
⊂ Ph−1,ad

K ,

where wi := ci/c0 for i = 1, ..., h− 1 are coordinates of Ah−1,ad
K ⊂ Ph−1,ad

K .
One then uses theD×-equivariance to show that πGH is surjective, using that the open subsets

Πi ·D′
Kh

for i ∈ Z cover Ph−1,ad
Kh

. With a little extra argument, one can show that the restriction,

πGH |0 :Mad
RZ,h,0,η → Ph−1,ad

K ,

is also surjective, by showing that if R is the ring of integers in a sufficiently large enough finite
extension ofK, that given (G(X,Y ), ρ) ∈MRZ,h,0(R), you can always find some (G′(X,Y ), ρ′) ∈
MRZ,h,0(R) such that,

πGH(G(X,Y ), ρ) = πGH(G
′(X,Y ), ρ′).

To say a little about how the morphism is constructed, let (B,B+) be a complete sheafy
Huber pair over (K,O). Then,

Mad
RZ,h,η(B,B+) = lim−→

B0⊂B+

MRZ,h(B0) = lim−→
B0⊂B+

lim←−
n≥1

MRZ,h(B0/π
nB0).

On the other hand, Ph−1,ad
K (B,B+) is the set of isomorphism classes of invertible B-modules L

with a surjection Bh → L.
Given any π-adically complete π-torsion free O-algebra R like B0, the morphism πGH is

constructed by taking a point (G, ρ) ∈ MRZ,h(R) to (L, Bh → L), where L := Lie(G)[1/π].
Now actually Lie(G) will be free, and it comes down to choosing some nice naturally varying
choice of c0, c1, ..., ch−1 to define the map Bh → L.

One constructs for any π-torsion free O-algebra S, a covariant functor,

M(−) : FGS/O,π−div(S/π)→ {fin. locally free S-modules},

which is defined in terms of quasi-logarithms, and somehow uses this to get these sections.
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4. Level Structures

In this section, we consider the base change,

LTh : CŎ → Set,

sending R to the set of LTh(R), which in this section we consider as the set of equivalence
classes of pairs (X,ϕ), where ϕ : Xk → Xh is an isomorphism of formal O-module laws.

Definition 4.1. Let m ≥ 0. For X ∈ LTh(R), a Drinfeld Level m Structure on X is an
O-module homomorphism,

η : (π−mO/O)h → (mR,+X),

such that, ∏
a∈(π−mO/O)h

(X − η(a)) | [πm](X),

in R[[X]].

Remark. There are quite a few ways one can rephrase this condition: see the notes by Fargues.

Definition 4.2. Let m ≥ 0. Let LTh,m : CŎ → Set, be the functor sending R to the set of

isomorphism classes of triples (X,ϕ, η), where (X,ϕ) ∈ LTh,0(X) and η is a Drinfeld Level m
Structure on X.

Remark. Let’s try and motive Drinfeld’s condition. Suppose instead we had defined a level
m-structure as just any homomorphism,

η : (π−mO/O)h → (mR,+X),

and we don’t impose Drinfeld’s condition. Then this functor is represented by,

Sh,m := Rh,0[[T1, ..., Th]]/([π
m](T1), ..., [π

m](Th)),

with universal level structure ζunivm (ei) = Ti, for e1, ..., eh the standard basis of (π−mO/O)h.
In the case that h = 1, we want the rings R1,m to be integral models of the Lubin-Tate

extensions K̆m/K̆. If we have K = Qp, we can take Xuniv = Gm(X,Y ), with [p](X) =
(1 +X)p − 1. Then,

S1,0 = Ŏ, S1,1 = Ŏ[T ]/((1 + T )p − 1).

However, this is slightly too big, as we want the ring of integers in Qp(ζp), which has degree
p− 1 over Qp, so we want instead,

Ŏ[ζp] = Ŏ[ζp − 1] = Ŏ[T ]/((1 + T )p − 1

T
) = Ŏ[T ]/([p](T )/T ).

The higher extensions Ŏm for m ≥ 2 should be given by,

Ŏ[ζpm ] = Ŏ[ζpm−1 ][T ]/([p](T )− (ζpm−1 − 1)).

Adding these quotients corresponds exactly to imposing Drinfeld’s condition.

By restricting the level structure, we have natural transformations,

LT = LTh,0 ← LTh,1 ← LTh,2 ← · · · .
The functor LTh,m has an right action of GLh(O/πmO)×O×

D, defined by,

(X,ϕ, η) · (g, x) := (X,ϕ ◦ x, η ◦ g).
Let Xuniv be a universal element for LTh,0.

Theorem 4.3. For each m ≥ 0, the functor LTh,m is represented by a regular local ring Rh,m.
There is a universal Drinfeld level m structure,

ϕuniv
m : (π−mO/O)h → (mRh,m

,+Xuniv),

so that (Xuniv, ϕuniv
m ) represents LTh,m. Furthermore,

• For n > m, the extension Rh,m → Rh,n is finite and flat,
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• The extension Rh,0[1/π] ↪→ Rh,m[1/π] is a finite étale Galois extension, with Galois
group GLh(O/πmO).

One can define Rh,m and ϕuniv
m in terms of Rh,0 and the power series [π](X). If we already

know these for m = 0, 1, then for m ≥ 2, Rh,m and universal level structure ϕuniv
m are inductively

defined as follows. Fix some some compatible basis em,1, ..., em,1 of (π−mO/O)h as an O/πmO-
module for eachm ≥ 0. Suppose we are given (Rh,m, ϕuniv

m ) form ≥ 1, and let bi := ϕuniv
m (em,i) ∈

mRh,m
for i = 1, ..., h. Then,

Rh,m+1 = Rh,m[[y1, ..., yh]]/([π](y1)− b1, ..., [π](yh)− bh),

and ϕuniv
m+1(em+1,i) := yi.

Therefore, it only remains to see how to construct Rh,1 and ϕuniv
1 . This itself is done induc-

tively as follows.

Definition 4.4. For 0 ≤ r ≤ h, we define the functor Φr : CO → Set, which sends R to the
set of isomorphism classes of pairs (X,ϕ, η), where (X,ϕ) ∈ LTh,0(R) and η is an O-module
homomorphism,

η : (π−1O/O)r → (mR,+X),

such that, ∏
a∈(π−mO/O)r

(X − η(a)) | [π](X),

in R[[X]].

This is representable, by Lr and (Xuniv, ϕuniv, ηunivr ), which we define inductively now.
L0 = Rh,0 with trivial ηuniv0 . Then supposing we have defined this for r − 1, set,

gr−1(T ) :=
[π](T )∏

a∈(π−mO/O)r−1(T − ηunivr−1 (a))
.

Then let,
Lr := Lr−1[[zr]]/(gr−1(zr)),

and ηunivr extending ηunivr−1 , defined by ηunivr (er) := zr. Finally, we can set Rh,1 := Lh, and

ϕuniv
m := ηunivh , and LTh,1 = Φh.

Remark. Note that gr−1(T ) = [π](T )/T , and so this agrees with what we would expect from
the h = 1, K = Qp example above.

Corollary 4.5. For each m ≥ 0, the elements bi := ϕuniv
m (em,i) for i = 1, ..., h form a regular

system of parameters for the regular local ring Rh,m.

4.1. Connected Components. Now over Ŏ, the rings Rh,m are all integral domains, hence
connected. What can we say about their geometrically connected components?

In what follows, we let K̆m denote the mth Lubin-Tate extension of K̆. Recall that,

K̆ = K̆0 ⊂ K̆1 ⊂ K̆m ⊂ · · · ,
and the extension,

K̆∞ := ∪m≥0K̆m,

has a canonical isomorphism,

χ : Gal(K̆∞/K̆)
∼−→ O×.

Theorem 4.6. The ring Rh,m[1/p] contains the field extension K̆m of K̆. For any m ≥ 1, and

for any finite separable extension E of K̆m,

Sp(Rh,m[1/p])×Sp(K̆) Sp(E),

has (q − 1)qm−1 geometrically connected components, which are the fibres of the morphism,

Sp(Rh,m[1/p])×Sp(K̆) Sp(E)→ Sp(K̆m)×Sp(K̆) Sp(E) = Sp(K̆m ⊗K̆ E).
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The natural decomposition,

K̆m ⊗K̆ E =
∏

τ∈Gal(K̆∞/K̆)

Sp(E),

together with the isomorphism,

χm : Gal(K̆m/K̆)
∼−→ (O/πmO)×,

induces a bijection,

π0(Sp(Rh,m[1/p])×Sp(K̆) Sp(E)) ≡ π0(Sp(K̆m ⊗K̆ E))
∼−→ (O/πmO)×,

which is GLh(O/πmO)×O×
D-equivariant if we define the action,

(g, h) · x := det(g)Nrd(h)−1x,

of GLh(O/πmO)×O×
D on (O/πmO)×.

Here Nrd : O×
D → O is the reduced norm.
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