
CHEVALLEY’S RESTRICTION THEOREM

JAMES TAYLOR

1. Introduction

Let g be a semisimple Lie algebra over an algebraically closed field k of characteristic 0. Here
we give an overview of the proof of Chevalley’s theorem, which is the technical heart of the
proof that the Harish-Chandra homomorphism is an isomorphism. The presentation here is a
synthesis of that of [1, Chap. 8, Sect. 8] and [2, Sect. 23].

1.1. Notational Conventions. All Lie algebras are over an algebraically closed field k of
characteristic 0. a will denote a Lie algebra, g a semisimple lie algebra, with fixed cartan
subalgebra h. W is the weyl group of g and Φ the root system, relative to h.

2. Polynomial functions

Let V be a k-vector space. We first make clear the relationship between four different
perspectives of polynomial functions on V , and how a acts on each when V is a representation
of a.

Let O(V ) := S(V ∗), the symmetric algebra of V ∗. Choose a basis e1, ..., en of V , with
corresponding dual basis e∗1, ..., e

∗
n ∈ V ∗. Then there is a isomorphism of k-algebras k[e∗1, ..., e

∗
n] ∼=

S(V ∗), where

(e∗1)
m1 · · · (e∗n)mn ↔ (e∗1)

⊗m1 ⊗ · · · ⊗ (e∗n)⊗mn .

There is a natural map S(V ∗)→ Func(V, k), given by

f1 ⊗ · · · ⊗ fm 7→ [v 7→ f1(v) · · · fm(v)].

Because k is an infinite field, this is injective1, and we denote the image by k[V ] ⊂ Func(V, k),
the algebra of polynomial functions on V . If we write an element of V as (a1, ..., an) with respect
to the basis e1, .., en above, then for example, under the above identifications the polynomial
e∗1e
∗
2 − (e∗3)

2 corresponds to the function

(a1, ..., an) 7→ a1a2 − a23,

as one might expect. In fact, a function in Func(V, k) can be written as a polynomial (as above)
with respect to one basis, if and only if it can be written as a polynomial with respect to any
basis of V . This is because k[e∗1, ..., e

∗
n] ∼= S(V ∗) ∼= k[V ], independently of the basis chosen.

Another common way to view this algebra S(V ∗), is to first consider the dual of the symmetric
algebra on V , S(V )∗. If we write S(V ) = ⊕m≥0Sm(V ) as a direct sum of homogeneous parts,
then S(V )∗ =

∏
m≥0 S

m(V )∗. S(V )∗ is a commutative k-algebra, the multiplication induced

from the coalgebra structure on S(V ). By the universal property of S(V ∗), we can extend the
linear map V ∗ → V ∗ = S1(V )∗ ⊂ S(V )∗ to a k-algebra homomorphism φ : S(V ∗) → S(V )∗.
Explicitly, φ sends,

φ(f1 ⊗ · · · ⊗ fm) =

[
(v1 ⊗ · · · ⊗ vm) 7→

∑
σ∈Sn

f1(xσ(1)) · · · fm(xσ(m))

]
,

a linear form on Sm(V ). In other words, this tells us the multiplication in S(V )∗: the product
of f1, ..., fm inside S(V )∗ is the linear functional on Sm(V ) shown to the right. The image is

1Over a finite field, this is not an isomorphism. In fact, these rings are not isomorphic - the ring of functions
is finite whilst the other is not.

1



2 JAMES TAYLOR

φ(S(V ∗)) = ⊕m≥0Sm(V )∗. Furthermore, this is injective, and the inverse on φ(S(V ∗)) is, for
f ∈ Sm(V )∗,

φ−1(f)(v) =
1

n!
f(v, ..., v),

considered as an element of k[V ]. Indeed, one can verify that this element of Func(V, k) actually
lies in k[V ], by choosing a basis of V and writing

φ−1(f)(v) =
1

n!

n∑
i1,...,im=1

f(ei1 , ..., eim)e∗i1(v) · · · e∗im(v).

By construction, φ restricts to a linear isomorphism Sm(V ∗) → Sm(V )∗. Note that by the
universal property of the tensor product of vector spaces over k, we will consider Sm(V )∗ also as
m-multilinear maps on V m which are symmetric: invariant under permutations of their entries.

In summary, we have four different ways to view the polynomial algebra O(V ). Namely
S(V ∗), k[V ], k[e∗1, ..., e

∗
n], and φ(S(V ∗)) ⊂ S(V )∗.

2.1. Representations. Now suppose that V is additionally a representation of Lie algebra a.
The natural action of a on S(V ) is

x · (v1 ⊗ · · · ⊗ vm) =
m∑
i=1

v1 ⊗ · · · ⊗ x · vi ⊗ · · · ⊗ vm,

for all x ∈ a and v1, ..., vm ∈ V . Therefore, the natural action of a on S(V )∗ is by

(x · f)(v1, ..., vm) = −
m∑
i=1

f(v1, ..., x · vi, ..., vm),

for all x ∈ a, f ∈ Sm(a)∗, and v1, ..., vm ∈ V .
The natural action of a on V ∗ is by (x · f)(v) = −f(x · v), and the natural action of of a on

S(V ∗) is by

x · (f1 ⊗ · · · ⊗ fm) =

m∑
i=1

f1 ⊗ · · · ⊗ x · fi ⊗ · · · ⊗ fm.

Suppose that V is also a representation of a group G. Then G acts on V ∗ via (g · f)(v) =
f(g−1v), and so too is S(V ∗) via

g · (f1 ⊗ · · · ⊗ fm) = g · f1 ⊗ · · · ⊗ g · fm.

Additionally, G acts on V , so on S(V ), and thus on S(V )∗ too in the usual way:

(g · f)(v1, ..., vm) = f(g−1v1, ..., g
−1vm),

for all g ∈ G, f ∈ Sm(a)∗, and v1, ..., vm ∈ V .

Lemma 2.1. φ : S(V ∗) → S(V )∗ is both g-equivariant and G-equivariant with respect to the
actions described above.

Via the identification of S(V ∗) with k[V ], g ∈ G acts on a polynomial function f ∈ k[V ] by

(g · f)(v) = f(g−1v).

2.2. Nilpotents and exponentials. Let (V, ρ) be a representation of the Lie-algebra a.
First we need a quite general lemma, which can be proven by a direct computation and the

binomial expansion.

Lemma 2.2. Let R be a Q-algebra, and r ∈ R nilpotent, say rn+1 = 0. Then

exp(r) := 1 + r + · · ·+ rn

n!

is invertible, with inverse exp(−r).
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We can apply the above to the ring R = End(V ), and consider the group

H := 〈exp(ρ(a)) | ρ(a) is nilpotent〉 /Aut(V ) = End(V )∗,

which comes with defining representation V .
Because V is a representation of H, then S(V ∗) is too in the natural way, and so for each

a ∈ A with ρ(a) nilpotent, we have a linear automorphism of S(V ∗),

exp(ρ(a)) · (f1 ⊗ · · · ⊗ fm) = exp(ρ(a))f1 ⊗ · · · ⊗ exp(ρ(a))fm,

with (exp(ρ(a))fi)(v) = fi(exp(ρ(a)−1)(v)) = fi(exp(−ρ(a))(v)). We write this automorphism
of S(V ∗) as S∗(exp(ρ(a))). Alternatively, because V is a representation of a, then S(V ∗) is also
a representation of a as described above; call it (S(V ∗), σ). The following can be shown by
explicitly by writing out both maps, and slogging through.

Proposition 2.3. If ρ(a) is nilpotent, then so is σ(a). Furthermore, exp(σ(a)) = S∗(exp(ρ(a))).

For a finite dimensional representation of a semisimple Lie-algebra g, the invariants under
both g and H are the same.

Lemma 2.4. Let (ρ, V ) be a finite dimensional representation of g, a semisimple Lie-algebra.
Then v ∈ V is g-invariant if and only if v is H-invariant: exp(ρ(x))v = v for all x ∈ g with
ρ(x) nilpotent.

Proof. If v is invariant under g, then for all x ∈ g with ρ(x) nilpotent, ρ(x)n ·v = 0 for all n ≥ 1,
thus exp(ρ(x))v = v. Conversely, suppose that x ∈ g with ρ(x) nilpotent, so that there is some
m ≥ 0 with ρ(x)m = 0. Then for all t ∈ k, by assumption,

0 = exp(tρ(x))v − v = tρ(x)v +
1

2!
t2ρ(x)2v + · · ·+ 1

(m− 1)!
t(m−1)ρ(x)(m−1)v,

and thus

ρ(x)v = t(ρ(x)2 + · · ·+ 1

(m− 1)!
t(m−1)−2ρ(x)(m−1)v),

which holds for all t ∈ k∗, hence ρ(x)v = 0. Therefore, v is invariant for all x ∈ g where
ρ(x) is nilpotent. We can write h = n− ⊕ h⊕ n+, where n− and n+ are nilpotent Lie-algebras.
All elements of a nilpotent Lie algebra act by nilpotent matrices in any finite dimensional
representation, so v is fixed by all x ∈ n−⊕n+, and as this subspace generates g, then v is fixed
by all x ∈ g. �

3. Chevalley’s Theorem

Let g be a semisimple lie algebra, with a fixed cartan subalgebra h. We can form the algebras
O(g) := S(g∗), O(h) := S(h∗) as above. The dual of the inclusion, g∗ → h∗, induces a homo-

morphism of algebras, θ̂ : S(g∗) → S(h∗). Viewed as a map from k[g] → k[h] via our previous
identifications, this is just the restriction of functions. Our aim is to prove the following.

Theorem 3.1 (Chevalley). The restriction homomorphism,

θ̂ : O(g)→ O(h),

induces an isomorphism,
θ : O(g)g → O(h)W .

Here the action of W on O(h) := S(h∗) is that induced by the defining action of W on h∗:

w · (f1 ⊗ · · · ⊗ fn) = w · f1 ⊗ · · · ⊗ w · fn,
for all w ∈W , fi ∈ h∗. The action of g on O(g) = S(g∗) is as described in Section 2.1, namely,

x · (f1 ⊗ · · · ⊗ fm) =
m∑
i=1

f1 ⊗ · · · ⊗ x · fi ⊗ · · · ⊗ fm,

where (x · fi)(y) = −fi([x, y]).
We prove this in four steps, namely that
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(1) O(g)g = O(g)G, for G the group of elementary automorphisms,

(2) θ is well defined: θ̂(O(g)G) ⊂ O(h)W ,
(3) θ is injective, using a density argument from affine algebraic geometry,
(4) θ is surjective, by explicitly exhibiting a spanning set of W -invariant polynomials.

We now proceed with the first, and rephrase the invariants O(g)g as invariants under all inner
automorphisms of g. The following is a special case of the group H of Section 2.2, with V the
adjoint representation of g.

Definition 3.2. Let

G := 〈exp(adx) | x is ad-nilpotent〉 /Aut(g),

the normal subgroup of elementary automorphisms of g.

We define our action of G on O(g) as in Section 2.1, by

(g · f)(v) = f(g−1v).

Proposition 3.3. The invariant subspaces of O(g) from the actions of g and G are equal:

O(g)g = O(g)G.

Proof. By Lemma 2.4, the invariants O(g)g are the same as the invariants under the group
generated by the exp(σ(x)) for x ∈ g ad-nilpotent, in the notation of Section 2.2. But then by
Proposition 2.3, these are exactly the invariants under G, with the action on O(g) described
above. �

Therefore, from now on we work with O(g)G instead of O(g)g.

3.1. Well-Definedness. In order to show that each g-invariant polynomial function on g is W -
invariant when restricted to h, we first consider elementary automorphisms τα of g, for α ∈ Φ,
which correspond to the generators sα of W .

For each root α ∈ Φ, define

τα = exp(ad(eα)) exp(ad(−e−α)) exp(ad(eα)) ∈ G.

Lemma 3.4. τα(h) = h− α(h)hα for all h ∈ h.

Proof. We can write h = kerα⊕〈hα〉k. If α(h) = 0, then [eα, h] = 0 = [e−α, h], because eα ∈ gα,
e−α ∈ g−α. Thus τα(h) = h = h− α(h)h. Furthermore, one can use the relations

[eα, hα] = −2eα,

[e−α, hα] = 2e−α,

[eα, e−α] = hα,

to explicitly compute that τα(hα) = −hα, and −hα = hα − 2hα = hα − α(hα)hα. �

Recall that for α ∈ Φ, the corresponding generator of W is sα : h∗ → h∗, (sα · f)(h) =
(f − f(hα)α)(h).

Corollary 3.5. For all α ∈ Φ and all f ∈ h∗,

(sα · f)(h) = f(τα(h)),

for all h ∈ h.

Proof. Using the definition of sα,

(sα · f)(h) = (f − f(hα)α)(h),

= f(h)− f(hα)α(h),

= f(h− α(h)hα),

= f(τα(h)).

�
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Remark. One might expect that this gives a way of realising W inside of G, as 〈τα|α ∈ Φ〉.
However in general, this subgroup of G can have order strictly larger than W . One example is
given by sl3(k). For more details on extending automorphisms of h to automorphisms of g, see
[2, Thm. 14.2].

Lemma 3.6. The restriction of a g-invariant polynomial function on g to a polynomial function
on h is W -invariant: if f ∈ O(g)G, then θ̂(f) ∈ O(h)W . Therefore θ is well-defined.

Proof. Take f ∈ O(g)G. It is enough to show that θ̂(f) is fixed by each sα, for α ∈ Φ, as these
generate W . Indeed, a polynomial function is of the form

f =
∑
m≥0

fm,1 ⊗ · · · ⊗ fm,m,

and f ∈ O(g)G means that f fixed by τ−1α . Therefore considering f ∈ k[h], for y ∈ h,

(sα · f)(y) =
∑
m≥0

(sα · fm,1)(y) · · · (sα · fm,m)(y),

=
∑
m≥0

fm,1(ταy) · · · fm,m(ταy),

=
∑
m≥0

(τ−1α · fm,1)(y) · · · (τ−1α · fm,m)(y),

=
∑
m≥0

fm,1(y) · · · fm,m(y),

= f(y).

�

3.2. Injectivity. That θ is injective is shown using a density argument from affine algebraic
geometry. We show that if a G-invariant polynomial function on g vanishes on h, then in fact it
must vanish on the set of regular elements of g, which is a dense subset in the zariski topology,
so f must actually vanish on all of g.

3.3. Algebraic geometry. We will need the following standard results.

Lemma 3.7. Let n ≥ 1. Any non-empty zariski-open subset of Ank is dense.

This follows because Ank is irreducible, and a topological space is irreducible if and only if
every non-empty open subset is dense.

Lemma 3.8. Let n ≥ 1. If f ∈ k[x1, ..., xn] vanishes on a dense subset of Ank , then f = 0 in
k[x1, ..., xn].

Proof. Suppose that f vanishes on a dense subset D. The complement in Ank of the vanishing
set of f , Df = Ank \ V (f), is an open subset, which does not intersect D, thus by the density
of D, must be empty. Now because k is an infinite field (being algebraically closed), f must be
the zero element of k[x1, ..., xn]. �

3.4. Regular elements and Cartan subalgebras. A subalgebra a of g is said to be toral if
all x ∈ a have x = xs in the abstract jordan decomposition, i.e. adx : g → g is semisimple (di-
agonalisable). A cartan subalgebra is a maximal toral subalgebra. These exist, are abelian, and
any semisimple element lies in a maximal toral subalgebra. Further, any two cartan subalgebras
are conjugate by an element of G.

An element x ∈ g is said to be regular if g0,x, the generalised zero eigenspace of adx, is of
minimal dimension over all x ∈ g. If x is regular, then g0,x is a cartan subalgebra, and all cartan
subalgebras are of this form.
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3.5. Proof of injectivity. Let e1, ..., en be a basis of g. We identify S(g∗) with k[e∗1, ..., e
∗
n],

and through this give S(g∗) the zariski topology. For an element x ∈ g , write the characteristic
polynomial of adx : g→ g as,

ρx(T ) =
n∑
k=0

ck(x)Tn

where T is an indeterminate. The matrix of adx is an n× n matrix with entries in g, which are
linear, hence polynomial, functions on g. Therefore, each ck : g → k is a polynomial function
on g. Let m be the smallest integer with cm not identically zero. One might ask for which
elements this is non-zero.

Proposition 3.9. cm(x) 6= 0 if and only if x ∈ g is regular. Furthermore, m = dim(h).

Proof. By the definition of cm, cm(x) 6= 0 if and only x has the smallest factor of T in the
minimal polynomial of adx, which is exactly the condition that the generalised 0-eigenspace g0,x
is of minimal dimension over all x ∈ g, i.e. x is regular. Therefore, for a regular element x,
m = dim(g0,x), which for the dimension of any cartan subalgebra. �

Proposition 3.10. θ is injective.

Proof. Suppose that f ∈ O(g)G, with f |h identically zero. The set of regular elements of g is
open by Proposition 3.9, hence dense by Lemma 3.7. Therefore, to show f = 0, it suffices to show
f vanishes on the set of regular elements, by Lemma 3.8. Let x ∈ g be regular. Then because
x ∈ g0,x, and the cartan subalgebra g0,x is conjugate to h (both being cartan subalgebras), there
is some g ∈ G with h = g · x ∈ h. Therefore, f(x) = f(g−1h) = (g · f)(h) = f(h) = 0. �

3.6. Surjectivity.

3.7. Partial orders and dominant weights. Recall the integral weight lattice P = {χ ∈
h∗ | χ(hα) ∈ Z for all α ∈ Φ} ⊂ Q = ZΦ ⊂ h∗. If Π ⊂ Φ is a chosen set of simple roots, then
Φ+ = NΠ ∩ Φ is the set of positive roots. P+ = {χ ∈ h∗ | χ(hα) ∈ N for all α ∈ Φ+} ⊂ P is
the set of dominant integral weights. There is a bijection between h∗ and simple modules in
O, associating χ ∈ h∗ with the unique simple quotient L(χ) of the Verma module M(χ) of χ.
Furthermore, L(χ) is finite dimensional if and only if χ ∈ P+. There is a partial order on h∗

defined by λ ≥ µ if and only if λ − µ ∈ Q+ = NΦ+. For a fixed dominant weight λ ∈ P+, the
number of dominant weights µ ≤ λ is finite [2, Lemma 13.2 B].

We will make use of some facts about the weights of L(λ). The first is that the dimension of
the weight space dim(L(λ))µ is constant on the orbits of µ under the action of the weyl group
[2, Thm. 21.2]. The second is that dim(L(λ))λ = 1, and all non-zero weights in L(λ) have
µ ≤ λ [2, Thm. 20.2].

3.8. Proof of surjectivity. For each n ≥ 0, we consider the functions

fρ,n : x 7→ tr(ρ(x)n)

on g, where ρ is a finite dimensional representation of g.

Lemma 3.11. fρ,n is a g-invariant polynomial function on g.

Proof. Consider, g ∈ Sn(g)∗,

g(x1, ..., xn) =
∑
σ∈Sn

tr(ρ(xσ(1)) · · · ρ(xσ(n))),
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and write gσ(x1, ..., xn) = tr(ρ(xσ(1)) · · · ρ(xσ(n))). For any x ∈ g,

(x · gσ)(x1, ..., xn) = −
n∑
i=1

gσ(x1, ..., [x, xi], ..., xn)

= −
n∑
i=1

tr(ρ(xσ(1))[ρ(x), ρ(xσ(i))]ρ(xσ(n)))

= tr(ρ(xσ(1)) · · · ρ(xσ(n))ρ(x))− tr(ρ(x)ρ(xσ(1)) · · · ρ(xσ(n)))

= 0,

as the trace of finite dimensional linear operators is invariant under cyclic permutations. There-
fore g ∈ (Sn(g)∗)g, and thus

fρ,n(x) =
1

n!
g(x, ..., x),

is a g-invariant polynomial function. �

Our aim now is to show that these polynomial functions on g span O(h)W , when restricted
to W .

First we make some reductions. Because P contains Φ, P spans h∗, and so any element of
O(h) is a polynomial in the λ ∈ P . Furthermore, by the process of polarisation (see [2, Sect.
23, Ex. 5]), actually λk for λ ∈ P , k ≥ 0 span O(h). Now, if we write

γ(f) =
∑
w∈W

w · f,

for f ∈ O(h), this is W -invariant. Furthermore:

Lemma 3.12. The collection γ(λk) for λ ∈ P+, k ≥ 0, spans O(h)W .

Proof. Suppose that

f =
∑

λ∈P,k≥0
aλ,kλ

k,

is W -invariant. Then applying each element w ∈W and taking the sum,

|W |
∑

λ∈P,k≥0
aλ,kλ

k =
∑

λ∈P,k≥0

∑
w∈W

aλ,k(w · λ)k,

=
∑

λ∈P,k≥0
aλ,k

∑
w∈W

(w · λ)k.

Therefore, f is in the span of γ(λk) for λ ∈ P , k ≥ 0, and furthermore, every λ ∈ P is W -
conjugate to some λ′ ∈ P+ [2, Lemma 13.2 A], so γ(λk) = γ((λ′)k) and γ(λk) for λ ∈ P+,
k ≥ 0, spans O(h)W . �

Proposition 3.13. θ is surjective.

For λ ∈ P+, write ρλ for the finite dimensional simple representation L(λ).

Proof. By the above reductions, it is sufficent to show that γ(λk) for λ ∈ P+, k ≥ 0 is in the
image of θ. We achieve this (for each fixed k) by upward induction on the partial ordering ≥ of
P+, which we can do because as mentioned above, the number of λ ∈ P+ with λ ≤ µ, for a fixed
µ, are finite in number. For the base step, take λ ∈ P+ minimal. Because λ is minimal, there
is only one W -orbit of weights in L(λ), all of the same dimension, and because dimL(λ)λ = 1,
there are all one-dimensional. Therefore,

θ(fρλ,k) = γ(λk).

Now for the induction step, choose some λ with λ ∈ P+, k ≥ 0. Then

θ(fρλ,k) = γ(λk) +
∑

µ∈P+: µ<λ

cµγ(µk),
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for the only other weights µ that appear in L(λ) have µ < λ. By induction, each γ(µk) is in the
image of θ, and so γ(λk) is too. �
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