CHEVALLEY’S RESTRICTION THEOREM

JAMES TAYLOR

1. INTRODUCTION

Let g be a semisimple Lie algebra over an algebraically closed field k& of characteristic 0. Here
we give an overview of the proof of Chevalley’s theorem, which is the technical heart of the
proof that the Harish-Chandra homomorphism is an isomorphism. The presentation here is a
synthesis of that of [1, Chap. 8, Sect. 8] and [2, Sect. 23].

1.1. Notational Conventions. All Lie algebras are over an algebraically closed field k£ of
characteristic 0. a will denote a Lie algebra, g a semisimple lie algebra, with fixed cartan
subalgebra h. W is the weyl group of g and ® the root system, relative to b.

2. POLYNOMIAL FUNCTIONS

Let V be a k-vector space. We first make clear the relationship between four different
perspectives of polynomial functions on V', and how a acts on each when V is a representation
of a.

Let O(V) := S(V*), the symmetric algebra of V*. Choose a basis ey,...,e, of V, with
corresponding dual basis e, ..., e € V*. Then there is a isomorphism of k-algebras k[e], ..., ef] =
S(V*), where

()™ ()™ & (D)™ @ ()

n n

There is a natural map S(V*) — Func(V, k), given by

1@ @ fm [ve fi(v) - fm(v)].

Because k is an infinite field, this is injective!, and we denote the image by k[V] € Func(V, k),
the algebra of polynomial functions on V. If we write an element of V' as (ay, ..., a,) with respect
to the basis ey, .., e, above, then for example, under the above identifications the polynomial
etes — (e})? corresponds to the function

(a1, ...,an) — ajag — a%,

as one might expect. In fact, a function in Func(V, k) can be written as a polynomial (as above)
with respect to one basis, if and only if it can be written as a polynomial with respect to any
basis of V. This is because kle], ..., e}] = S(V*) = k[V], independently of the basis chosen.

Another common way to view this algebra S(V*), is to first consider the dual of the symmetric
algebra on V, S(V)*. If we write S(V) = &p>05" (V) as a direct sum of homogeneous parts,
then S(V)* = [],,>05™(V)*. S(V)* is a commutative k-algebra, the multiplication induced
from the coalgebra structure on S(V'). By the universal property of S(V*), we can extend the
linear map V* — V* = SYV)* c S(V)* to a k-algebra homomorphism ¢ : S(V*) — S(V)*.
Explicitly, ¢ sends,

Y@@ fm)= (V1@ @vm) = Y f1{Toq) i (Tom) |
0ESh
a linear form on S™ (V). In other words, this tells us the multiplication in S(V)*: the product
of fi,..., fm inside S(V)* is the linear functional on S™ (V') shown to the right. The image is

LOver a finite field, this is not an isomorphism. In fact, these rings are not isomorphic - the ring of functions
is finite whilst the other is not.
1
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P(S(V¥)) =
fesmv),

Bm>05""(V)*. Furthermore, this is injective, and the inverse on ¢(S(V*)) is, for

5 ()®) = (o),

considered as an element of k[V]. Indeed, one can verify that this element of Func(V, k) actually
lies in k[V], by choosing a basis of V' and writing

() = Z fleirs oy i), (v) - e, (0).

115y im =1

By construction, ¢ restricts to a linear isomorphism S™(V*) — S™(V)*. Note that by the
universal property of the tensor product of vector spaces over k, we will consider S™(V')* also as
m-multilinear maps on V™ which are symmetric: invariant under permutations of their entries.

In summary, we have four different ways to view the polynomial algebra O(V). Namely

S(VF), KV, klet, ., ep], and ¢(S(VF)) < S(V)*.

2.1. Representations. Now suppose that V is additionally a representation of Lie algebra a.
The natural action of a on S(V) is
m
$'(U1®"'®Um) :ZU1®"'®$‘Ui®"‘®Um7
i=1

for all z € a and vy, ..., vy, € V. Therefore, the natural action of a on S(V)* is by

(iL"f)(’Ul,..., Zf Uiy ey X+ Vjyeney U m);

forall x € a, f € S™(a)*, and vy, ...,v, € V.
The natural action of a on V* is by (x - f)(v) = —f(x - v), and the natural action of of a on
S(V*) is by

2 (10 @ fn) =) 1® Q2 [i @ ® fm
i=1
Suppose that V' is also a representation of a group G. Then G acts on V* via (g - f)(v) =

f(g~ ), and so too is S(V*) via

g.(f1®...®fm):g.f1®...®g.fm.
Additionally, G acts on V', so on S(V), and thus on S(V)* too in the usual way:

(g : f)('Ul, ...,’Um) - f(g_lvh "'79_1vm)a
forall g € G, f € S™(a)*, and v1, ..., v, € V.

Lemma 2.1. ¢ : S(V*) — S(V)* is both g-equivariant and G-equivariant with respect to the
actions described above.

Via the identification of S(V*) with k[V], g € G acts on a polynomial function f € k[V] by
(9- F)w) = flg~"v).

2.2. Nilpotents and exponentials. Let (V,p) be a representation of the Lie-algebra a.
First we need a quite general lemma, which can be proven by a direct computation and the
binomial expansion.

Lemma 2.2. Let R be a Q-algebra, and r € R nilpotent, say vt = 0. Then

n

r
exp(r) ::1+T+”.+E

is invertible, with inverse exp(—r).
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We can apply the above to the ring R = End(V'), and consider the group
H := (exp(p(a)) | p(a) is nilpotent) < Aut(V) = End(V)*,

which comes with defining representation V.
Because V' is a representation of H, then S(V*) is too in the natural way, and so for each
a € A with p(a) nilpotent, we have a linear automorphism of S(V*),

exp(p(a)) - (f1 @ - @ fm) = exp(p(a)) f1 ® - - @ exp(p(a)) fm,

with (exp(p(a))f;)(v) = fi(exp(p(a)~1)(v)) = fi(exp(—p(a))(v)). We write this automorphism
of S(V*) as S*(exp(p(a))). Alternatively, because V is a representation of a, then S(V*) is also
a representation of a as described above; call it (S(V*),0). The following can be shown by
explicitly by writing out both maps, and slogging through.

Proposition 2.3. If p(a) is nilpotent, then so is o(a). Furthermore, exp(o(a)) = S*(exp(p(a))).

For a finite dimensional representation of a semisimple Lie-algebra g, the invariants under
both g and H are the same.

Lemma 2.4. Let (p,V) be a finite dimensional representation of g, a semisimple Lie-algebra.
Then v € V' is g-invariant if and only if v is H-invariant: exp(p(x))v = v for all x € g with
p(z) nilpotent.

Proof. If v is invariant under g, then for all x € g with p(z) nilpotent, p(x)"-v = 0 for all n > 1,
thus exp(p(z))v = v. Conversely, suppose that « € g with p(x) nilpotent, so that there is some
m > 0 with p(xz)™ = 0. Then for all ¢ € k, by assumption,

1

ﬁt(mfl)/)(l’)(mil)%
m —1)!

1
0 =exp(tp(z))v —v = tp(x)v + Etzp(aj)% +-

and thus

plx)v =t(p(x)? + -+ (ml_l)!t(ml)Zp(:U)(ml)v),

which holds for all t € k*, hence p(z)v = 0. Therefore, v is invariant for all x € g where
p(z) is nilpotent. We can write h =n~ @ h @ nt, where n= and n™ are nilpotent Lie-algebras.
All elements of a nilpotent Lie algebra act by nilpotent matrices in any finite dimensional
representation, so v is fixed by all x € n~ @ n™, and as this subspace generates g, then v is fixed
by all z € g. O

3. CHEVALLEY’S THEOREM

Let g be a semisimple lie algebra, with a fixed cartan subalgebra . We can form the algebras
O(g) := S(g*), O(h) := S(h*) as above. The dual of the inclusion, g* — h*, induces a homo-
morphism of algebras, 8 : S(g*) — S(b*). Viewed as a map from k[g] — k[h] via our previous
identifications, this is just the restriction of functions. Our aim is to prove the following.

Theorem 3.1 (Chevalley). The restriction homomorphism,
6:0(g) — O(h),

induces an isomorphism,
0:0(g) — O()".

Here the action of W on O(h) := S(h*) is that induced by the defining action of W on h*:

w (i® @ fa)=w 1@ @w- fu,
for all w € W, f; € h*. The action of g on O(g) = S(g*) is as described in Section 2.1, namely,

x.(ﬁ@...@fm):Zﬁ@...@x.ﬁ@...@fm’
i=1

where (z - f;)(y) = —fi([z,y])-

We prove this in four steps, namely that



4 JAMES TAYLOR

1) O(g)? = O(g)%, for G the group of elementary automorphisms,

0 is well defined: 6(O(g)%) c O(H)W
0 is injective, using a density argument from affine algebraic geometry,
0 is surjective, by explicitly exhibiting a spanning set of W-invariant polynomials.

(1)
(2)
(3)
(4)
We now proceed with the first, and rephrase the invariants O(g)? as invariants under all inner

automorphisms of g. The following is a special case of the group H of Section 2.2, with V the
adjoint representation of g.

Definition 3.2. Let
G := (exp(ady) |  is ad-nilpotent) < Aut(g),
the normal subgroup of elementary automorphisms of g.
We define our action of G on O(g) as in Section 2.1, by
(9-Hw) = flg~"v).
Proposition 3.3. The invariant subspaces of O(g) from the actions of g and G are equal:
O(g)? = O(g)“.

Proof. By Lemma 2.4, the invariants O(g)? are the same as the invariants under the group
generated by the exp(o(x)) for = € g ad-nilpotent, in the notation of Section 2.2. But then by
Proposition 2.3, these are exactly the invariants under G, with the action on O(g) described
above. (]

Therefore, from now on we work with O(g)¢ instead of O(g)?.

3.1. Well-Definedness. In order to show that each g-invariant polynomial function on g is W-
invariant when restricted to h, we first consider elementary automorphisms 7, of g, for a € &,
which correspond to the generators s, of W.

For each root o € ®, define

To = exp(ad(e,)) exp(ad(—e_q)) exp(ad(eq)) € G.
Lemma 3.4. 7,(h) = h — a(h)hy for all h € b.

Proof. We can write ) = ker a® (hq). If a(h) =0, then [eq, h| = 0 = [e_q, h], because e, € ga,
€_q € §—q. Thus 74(h) = h = h — a(h)h. Furthermore, one can use the relations

[eas ha] = —2€4,
[6—a) ha] = 2e_q,
[eas e—a] = ha,
to explicitly compute that 74(ha) = —hqa, and —hy = hq — 2ho = ho — a(hg)ha. O
Recall that for a € @, the corresponding generator of W is so : b* — bx, (so - f)(h) =
(f = f(ha))(h).
Corollary 3.5. For all a € ® and all f € b*,
(sa - f)(h) = f(7a(h)),
for all h € h.

Proof. Using the definition of s,
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Remark. One might expect that this gives a way of realising W inside of G, as (7,]a € P).
However in general, this subgroup of G can have order strictly larger than W. One example is
given by sl3(k). For more details on extending automorphisms of h to automorphisms of g, see
[2, Thm. 14.2].

Lemma 3.6. The restriction of a g-invariant polynomial function on g to a polynomial function
on by is W-invariant: if f € O(g)%, then 0(f) € O(h)W. Therefore 0 is well-defined.

Proof. Take f € O(g)®. It is enough to show that é(f) is fixed by each s, for a € @, as these
generate W. Indeed, a polynomial function is of the form

f:meJ@"'@fm,my

m>0

and f € O(g)® means that f fixed by 7, '. Therefore considering f € k[h], for y € b,

(8a- fy) = Z(Sa fm) W) (Sa s fnm) (Y),

m>0

= Z fm’l(my) cet fm,m(Tay)a

m>0

= G I @) (- ) 0),

m>0

= Z fm71(y) s fm,’m(y)u

m>0
= f(y)
O

3.2. Injectivity. That 6 is injective is shown using a density argument from affine algebraic
geometry. We show that if a G-invariant polynomial function on g vanishes on b, then in fact it
must vanish on the set of regular elements of g, which is a dense subset in the zariski topology,
so f must actually vanish on all of g.

3.3. Algebraic geometry. We will need the following standard results.
Lemma 3.7. Let n > 1. Any non-empty zariski-open subset of A}l is dense.

This follows because A7 is irreducible, and a topological space is irreducible if and only if
every non-empty open subset is dense.

Lemma 3.8. Let n > 1. If f € k[z1,...,x,] vanishes on a dense subset of A}, then f =0 in
k1, ..., xp].

Proof. Suppose that f vanishes on a dense subset D. The complement in A} of the vanishing
set of f, Dy = A} \ V(f), is an open subset, which does not intersect D, thus by the density
of D, must be empty. Now because k is an infinite field (being algebraically closed), f must be
the zero element of k[x1, ..., zp]. O

3.4. Regular elements and Cartan subalgebras. A subalgebra a of g is said to be toral if
all z € a have x = x4 in the abstract jordan decomposition, i.e. ad, : g — ¢ is semisimple (di-
agonalisable). A cartan subalgebra is a maximal toral subalgebra. These exist, are abelian, and
any semisimple element lies in a maximal toral subalgebra. Further, any two cartan subalgebras
are conjugate by an element of G.

An element x € g is said to be regular if go ., the generalised zero eigenspace of ad,, is of
minimal dimension over all z € g. If x is regular, then g , is a cartan subalgebra, and all cartan
subalgebras are of this form.
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.er,

and through this give S(g*) the zariski topology. For an element = € g , write the characteristic
polynomial of ad, : g — g as,

3.5. Proof of injectivity. Let ej,...,e, be a basis of g. We identify S(g*) with k[e, ..., e}

pe(T) = er(a)T"
k=0

where T is an indeterminate. The matrix of ad, is an n X n matrix with entries in g, which are
linear, hence polynomial, functions on g. Therefore, each ¢ : g — k is a polynomial function
on g. Let m be the smallest integer with ¢, not identically zero. One might ask for which
elements this is non-zero.

Proposition 3.9. ¢, (x) # 0 if and only if x € g is reqular. Furthermore, m = dim(h).

Proof. By the definition of ¢, ¢n(z) # 0 if and only x has the smallest factor of T' in the
minimal polynomial of ad,, which is exactly the condition that the generalised 0-eigenspace go .
is of minimal dimension over all z € g, i.e. x is regular. Therefore, for a regular element x,
m = dim(go ), which for the dimension of any cartan subalgebra. O

Proposition 3.10. 6 is injective.

Proof. Suppose that f € O(g), with f|, identically zero. The set of regular elements of g is
open by Proposition 3.9, hence dense by Lemma 3.7. Therefore, to show f = 0, it suffices to show
f vanishes on the set of regular elements, by Lemma 3.8. Let x € g be regular. Then because
x € go,z, and the cartan subalgebra g , is conjugate to b (both being cartan subalgebras), there
is some g € G with h = g -z € h. Therefore, f(z) = f(g~*h) = (g- f)(h) = f(h) = 0. O

3.6. Surjectivity.

3.7. Partial orders and dominant weights. Recall the integral weight lattice P = {x €
bh* | x(ha) € Zforalla € &} C Q =ZP C h*. If II C @ is a chosen set of simple roots, then
®+ = NII N @ is the set of positive roots. Pt = {x € h* | x(hy) € Nforalla € T} C P is
the set of dominant integral weights. There is a bijection between h* and simple modules in
O, associating x € h* with the unique simple quotient L(x) of the Verma module M(x) of x.
Furthermore, L(x) is finite dimensional if and only if x € PT. There is a partial order on h*
defined by A > p if and only if A — 4 € QT = N®*. For a fixed dominant weight A € P, the
number of dominant weights @ < \ is finite [2, Lemma 13.2 B].

We will make use of some facts about the weights of L(A). The first is that the dimension of
the weight space dim(L(\)), is constant on the orbits of y under the action of the weyl group
[2, Thm. 21.2]. The second is that dim(L(\))y = 1, and all non-zero weights in L(A) have
< A2, Thm. 20.2].

3.8. Proof of surjectivity. For each n > 0, we consider the functions
fp,n FX tr(p(:c)")
on g, where p is a finite dimensional representation of g.

Lemma 3.11. f,,, is a g-invariant polynomial function on g.

Proof. Consider, g € S™(g)*,

g(xl, an) = Z tr(p(xa'(l)) e 'p<xa(n)))7

O’GSn
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and write go (21, ..., 7)) = tr(p(T4(1)) - P(To(ny))- For any z € g,

(T go)(X1y ey py) = — Zgg(xl, oy [y @]y ey )
i=1

= tr(p(T51)) - P(To(m))p(2)) — tr(p(@)p(T01)) -+ - P(To(n)))

= (]’
as the trace of finite dimensional linear operators is invariant under cyclic permutations. There-
fore g € (S™(g)*)9, and thus

1
fon(x) = ag(x, ey ),

is a g-invariant polynomial function. U
Our aim now is to show that these polynomial functions on g span O(h)", when restricted
to W.
First we make some reductions. Because P contains ®, P spans h*, and so any element of

O(h) is a polynomial in the A € P. Furthermore, by the process of polarisation (see [2, Sect.
23, Ex. 5]), actually A\* for A € P, k > 0 span O(h). Now, if we write

V=D w-f,

weW
for f € O(h), this is W-invariant. Furthermore:

Lemma 3.12. The collection y(\¥) for A\ € P, k >0, spans O(h)W.

f= Z ay A",

AEPEk>0

Proof. Suppose that

is W-invariant. Then applying each element w € W and taking the sum,

WY ad = D ) anklw- N,

AEPk>0 AEPE>0 weW

= D a Y (w- A~

AEPE>0 weW

Therefore, f is in the span of y(\F) for A € P, k > 0, and furthermore, every A € P is W-
conjugate to some N € Pt [2, Lemma 13.2 A], so v(AF) = 4((X)*) and y(\F) for A € P+,
k >0, spans O(h)W. O

Proposition 3.13. 6 is surjective.
For A\ € P, write p) for the finite dimensional simple representation L()\).

Proof. By the above reductions, it is sufficent to show that y(A\¥) for A\ € P*, k > 0 is in the
image of . We achieve this (for each fixed k) by upward induction on the partial ordering > of
P, which we can do because as mentioned above, the number of A € P+ with A < p, for a fixed
1, are finite in number. For the base step, take A € PT minimal. Because A is minimal, there
is only one W-orbit of weights in L(\), all of the same dimension, and because dim L(\)y = 1,
there are all one-dimensional. Therefore,

0(fpr ) = 7(A").
Now for the induction step, choose some X with A € P*, k > 0. Then

0(fori) =7+ Y (Wb,

HEPT: u<
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for the only other weights p that appear in L(\) have u < A. By induction, each v(u*) is in the
image of #, and so y(A\¥) is too. O
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