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Basics and Examples

All rings are commutative with unit.

R is a ring and k is a field.

R-algebra = commutative associative unital R-algebra.



Basics and Examples

Last time we saw group objects in a category.

A group object G is called commutative if the multiplication
commutates with the twist map π2 × π1 : G × G → G × G .

Equivalently, if the group structure on each Hom(X ,G ) is
commutative.



Basics and Examples

A morphism of group objects f : G → H is a morphism in the
category such that mH ◦ (f × f ) = f ◦mG .

Equivalently, the induced map Hom(X ,G )→ Hom(X ,H) is a
homomorphism of groups for all objects X .

Group objects with such morphisms form a subcategory.



Basics and Examples

Definition

A morphism of schemes f : X → Y is finite if there is an open
cover by affine schemes Vi = Spec(Ai ) such that for all i ,
f −1(Vi ) = Spec(Bi ) is affine, with Bi a finitely generated
Ai -module.

Proposition

f : X → Y is finite if and only if for any affine open V = Spec(A),
then f −1(V ) = Spec(B) is affine open with B is a finitely
generated A-module.



Basics and Examples

If the base Y = Spec(R) is affine, then f : X → Spec(R) is finite if
and only if X = Spec(A) and A is a finite R-algebra.

Similarly, an affine scheme X = Spec(A) over an affine base
Spec(R) is of finite-type if and only if A a finitely-generated
R-algebra.

We call group schemes over R algebraic if they are of finite-type.



Basics and Examples

Therefore, we can talk about commutative finite group schemes
over R.

There are automatically affine.

They are the same as finite dimensional commutative
cocommutative hopf algebras over R.



Basics and Examples

Notation: G = Spec(A) is a group scheme over R.

4 : A→ A⊗ A the comultiplication.

ε : A→ R the counit.

S : A→ A the antipode.
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Basics and Examples

Hopf ideal of A: ideal I of A such that

4(I ) ⊂ A⊗ I + I ⊗ A.

S(I ) ⊂ I .

ε(I ) = 0.

Example: the augmentation ideal ker(ε) ⊂ A.

Closed subschemes of Spec(A) correspond to ideals of A.

Hopf ideals correspond to closed sub-group schemes.

These conditions: there is an induced comultiplication, antipode
and counit on the quotient A/I .



Basics and Examples

From now we will work over the field k .

G = Spec(A) be a commutative finite group scheme.

k is a field so this is automatically flat.

More generally: consider commutative finite flat group schemes
over a noetherian ring.

Later we will discuss commutative finite flat group schemes over a
noetherian hensellian local ring.



Example: Idempotents in a Ring

The idempotent elements (e = e2) of a ring B form a group.

The multiplication is defined by

(y , z)→ y(1− z) + z(1− y),

with identity 0 and all elements self-inverse.

Note: yz , y(1− z), z(1− y) and (1− y)(1− z) are pairwise
orthogonal idempotents.

Transport group structure to turn A := R[X ]/(X 2 − X ) into a
finite commutative hopf algebra.



Example: Idempotents in a Ring

Given a group structure on Hom(A,B) for all rings B how do we
recover the multiplication, counit and antipode?

Let f , g : A→ B.

f corresponds to f (X ) ∈ B, thus

(f ∗ g)(X ) = f (X )(1− g(X )) + g(X )(1− f (X )).



Example: Idempotents in a Ring

Comultiplication 4: the product of the inclusion maps
ι1, ι2 : A→ A⊗ A in Hom(A,A⊗ A).

4(X ) = (ι1 ∗ ι2)(X )

= (X ⊗ 1)(1⊗ 1− 1⊗ X ) + (1⊗ X )(1⊗ 1− X ⊗ 1)

= (X ⊗ 1)(1⊗ (1− X )) + (1⊗ X )((1− X )⊗ 1)

= X ⊗ (1− X ) + (1− X )⊗ X

= 1⊗ X + X ⊗ 1− 2X ⊗ X .

Counit ε: the identity element of Hom(A,R): ε(X ) = 0.

Antipode S : the inverse of idA in Hom(A,A): S(X ) = X .



Basics and Examples

Definition

The rank/order of a finite group scheme G = Spec(A) over k is
dimk A.

More generally over a noetherian ring R: the order of G is the
locally constant function on Spec(A)

P 7→ rankRP
AP



Example: Constant Group Schemes

The constant group scheme of a finite group H has order |H|.

k-algebra kH : functions from H → k, with

4(f )(x , y) = f (xy),

S(f )(h) = f (h−1),

ε(f )(h) = f (1).

Cocommutative if and only if H is abelian.



Example: Constant Group Schemes

The group algebra kH has

4(h) = h ⊗ h (group-like),

S(h) = h−1,

ε(h) = 1,

for all h ∈ H.



Basics and Examples

Cartier dual of G : group scheme defined by the dual hopf algebra.

We need both cocommutativity and finite dimension of A.

If A was not cocommutative then A∗ would not be commutative so
would not even correspond to a group scheme.

If A not finite dimensional, then A∗ is not well defined (A∗ ⊗ A∗ is
a proper subset of (A⊗A)∗, so one might have m∗A(A) 6⊂ A∗⊗A∗).



Example: Duals

Let k has characteristic p > 0.

αp is the kernel of the power of p map.

Represented by k[t]/(tp).

This is self dual.

The isomorphism is given by: if {e∗i }0≤i<p is the dual basis of
k[t]/(tp) coming from the standard basis
{1,T ,T 2, ...,T p−1}, then send

e∗k → T k/k!.



Example: Characteristic p

If k has characteristic p > 0, then Z/pZ, µp and αp are pairwise
non-isomorphic.

Z/pZ is reduced (because k is).

Both others aren’t: represented by k[T ]/(T p − 1) and k[X ]/(X p).

These last two have isomorphic algebras (T 7→ X + 1).

But are not isomorphic as hopf algebras: the dual of the first is
Z/pZ but the second is self dual.



Basics and Examples

Here is an interesting theorem by Deligne.

Theorem

Let G be a finite flat commutative group scheme over R of order
n. Then n kills G : the multiplication by n map n : G → G is zero.

This is also conjectured to hold for non-commutative finite flat
groups.



Group Schemes of Rank 2

Classify all finite group schemes free of rank 2 over R.

Proposition

Let G = Spec(A) be a finite group scheme over R that is free of
rank 2. Then G is isomorphic to

Ga,b = Spec (B) , B = R[X ]/(X 2 − aX )

with group law 4(X ) = 1⊗ X + X ⊗ 1− bX ⊗ X, and a, b ∈ R
with ab = 2.

Furthermore, Ga,b as defined above is a group scheme and
Ga,b

∼= Gc,d if and only if (c , d) = (ua, u−1b) for a unit u ∈ R.



Group Schemes of Rank 2

Proof.

The augmentation ideal gives a direct sum A = R ⊕ I .

I is actually free, I = Rx , so any element of A is r + sx .

As I is an ideal, then x2 = ax ∈ Rx for a unique a ∈ R.

Therefore, we can view A = R[X ]/(X 2 − aX ).

Comultipliciation determined by 4(x).

R-linear combination of 1⊗ x , x ⊗ 1, 1⊗ 1, x ⊗ x .



Group Schemes of Rank 2

Proof.

Use both m ◦ (idA⊗ε) ◦ 4 = idA = m ◦ (ε⊗ idA) ◦ 4.

Compatibility of multiplication and comultiplication, and
a4(x) = 4(x2):

(ab − 1)(ab − 2) = 0.

ε ◦ S = ε implies S(I ) = I .

Hence for a unique c ∈ R, S(x) = cx .

Cocommutatively of S means that S2 = idA, thus c2 = 1.



Group Schemes of Rank 2

Proof.

Axiom for antipode: m ◦ (idA⊗S) ◦ 4 is the zero map.

Hence c + 1 = abc. Therefore,

0 = c2 − 1 = (c − 1)(c + 1) = abc2 − abc = ab − abc,

hence c + 1 = ab and ab − 1 = c is a unit, thus ab = 2.

Conversely, this defines a cocommutative hopf algebra.

The isomorphism type claim follows from direct computation.

Corollary

All finite group schemes over R of rank 2 are commutative.



Group Schemes of Rank 2

Example

R = k is a field, characteristic two: exactly 3. We have actually
seen all three already!

1 µ2 is represented by k[t]/(t2 − 1), with m(t) = t ⊗ t.

k[t]/(t2 − 1)→ k[x ]/(x2), t 7→ x + 1

New multiplication is then

4′(x) = 4(t − 1) = 4(t)−4(1)

= t ⊗ t − 1⊗ 1

= (x + 1)⊗ (x + 1)− 1⊗ 1

= 1⊗ x + x ⊗ 1 + x ⊗ x ,

thus b = −1 = 1 and µ2
∼= G0,1 .



Group Schemes of Rank 2

Example

2 α2 is already of the above form, G0,0.

3 Idempotent hopf algebra: k[x ]/(x2 − x). Thus a = 1, and
multiplication has x primitive, hence b = 0, and this is G1,0.

Example

R = k is a field, characteristic 6= two: one finite group scheme
over k .

Example

If R is not a field, then there can be more. Let R = Z2[ 79
√

2]. Then
there are 80, corresponding to the factorisations of
2 = ( 79

√
2)i ( 79
√

2)79−i for 0 ≤ i ≤ 79.



Group Schemes of Rank 2

Oort and Tate in [1] classify finite group schemes of order p over a
complete noetherian local ring of residue characteristic p: for such
R: isomorphism classes of finite flat group schemes over R of order
p are classified by factorisations of p = ac in R, with ac = a′c ′

equivalent if there is some unit u with a = up−1a′, c = u1−pc ′.

[1] Tate, John, and Frans Oort. “Group schemes of prime order.”
Annales scientifiques de l’École Normale Supérieure. Vol. 3. No. 1. 1970.
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The Category

Commutative finite group schemes form an abelian category.

G = Spec(A) and H = Spec(B) be commutative finite group
schemes.

f , g : G → H are elements of Hom(G ,H).

Abelian group structure: f + g is the morphism

G
diag−−→ G × G

f×g−−→ H × H
mH−−→ H.



The Category

Corresponds to the convolution product on maps between hopf
algebras:

A← A⊗ A
f ′⊗g ′
←−−− B ⊗ B

4←− B.

Furthermore, the f − g in Hom(B,A) is

A← A⊗ A
f ′⊗g ′
←−−− B ⊗ B

id⊗S←−−− B ⊗ B
4←− B.



The Category

The zero morphism G → H is the composition of the morphism to
and then from the zero object Spec(k).

The kernel of f is G ×H Spec(k), which corresponds to the
cokernel A⊗B k.

The cokernel is exists in this category but is harder to describe -
see last week.



The Category

We can give exact sequences a more down to earth description:

Proposition

Let K = Spec(A), G = Spec(B), H = Spec(C ) and

1→ K
g−→ G

f−→ H → 1

be morphisms of commutative finite group schemes over k.

Then this sequence is exact if and only if

(K , g) is the kernel of f .

f ′ : C → B is faithfully flat.



The Category

Fortunately, this becomes even easier.

Theorem

Let A ⊂ B be hopf algebras over a field. Then B is faithfully flat
over A.

Proof.

Waterhouse Chapter 14.



The Category

The theorem above can actually be used for the following.

Theorem

Let A represent a finite connected group scheme over a perfect
field k of characteristic p. Then

A ∼= k[X1, ...,Xn]/(X e1
1 · · ·X

en
n )

for some e1, ..., en ∈ N.

In particular the order is a power of p.
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Étale Group Schemes and Separable Algebras

Theorem

Let B be any ring. Then idempotents of B are in one-to-one
correspondence with clopen sets of Spec(B).

The open set of Spec(B) corresponding to an idempotent e ∈ B is
Z (e) = {P ∈ Spec(B) | e ∈ P}, with complement Z (1− e).

Spec(A) is connected if and only if A has no non-trivial
idempotents.



Étale Group Schemes and Separable Algebras

Now consider the finite group scheme µ3 over a field k ,
represented by A = k[X ]/(x3 − 1).

Over R, the has two connected components corresponding to the
factorisation X 3 − 1 = (X − 1)(X 2 + X + 1).

However, the base extension to C has 3 connected components as
this splits into linear polynomials.



Étale Group Schemes and Separable Algebras

Therefore, we see that base extension can create additional
idempotents.

Want a nicer theory of connected components which detects
potential idempotents that appear after base extension.

To do this we use separable algebras.



Étale Group Schemes and Separable Algebras

Lemma

Let A be a finite dimensional k-algebra.

Then (as a k-algebra) A is isomorphic to a finite product Ai of
k-algebras each with a unique prime/maximal ideal consisting of
nilpotent elements.



Étale Group Schemes and Separable Algebras

Example

Q[X ]/(X 2) is of this form already with unique maximal ideal
generated by X .

Q[X ,Y ]/(X 2,XY ,Y 2) ∼= Q[X ]/(X 2)×Q[Y ]/(Y 2).

Corollary

A finite dimensional k-algebra A is connected (Spec(A) is
connected) if and only if A is local.



Étale Group Schemes and Separable Algebras

Proposition

Let A be a finite dimensional k-algebra. The following are
equivalent.

1 A⊗ ka is reduced.

2 A⊗ ka ∼= ka × · · · × ka as a ka-algebra.

3 dim(A) is equal to the number of k-algebra homomorphisms
A→ ka.

4 A is a product of separable field extensions.

5 A⊗ ks ∼= ks × · · · × ks as a ks -algebra.

If k is perfect this is further equivalent to A being reduced.



Étale Group Schemes and Separable Algebras

Definition

We call a finite dimensional k-algebra A separable if A satisfies the
above properties.

Example

Separable field extensions are separable.

Q[X ]/(X 2) is a finite dimensional Q-algebra that is not
separable.



Étale Group Schemes and Separable Algebras

From the proposition one can see that products, tensor products,
subalgebras and quotients of separable algebras are separable.

Separability is invariant under base change:

Proposition

Let A be a finite dimensional k-algebra, and L be any field
extension of k. Then A is separable over k if and only if A⊗k L is
separable over L.



Kähler Differentials

For any R-algebra A, an R-derivation of A with values in an
A-module M, is an R-linear map δ : A→ M such that

δ(xy) = xδ(y) + δ(x)y .

Universal derivation d : A→ Ω1
A/R .

Constructed as the quotient of the free A-module on symbols da
for all a ∈ A, by the obvious relations

d(a− b)− da− db,

r(da)− d(ra),

d(ab)− adb − bda.



Kähler Differentials

Under base change: R → R ′, the universal property implies that

Ω1
A/R ⊗R R ′ ∼= Ω1

(A⊗RR′)/R′ .

This has lots of nice properties which we won’t be concerned with.

This construction does allow us to generalise the separable algebras
to bases other than fields.



Étale Group Schemes and Separable Algebras

Definition

An étale map is a ring homomorphism A→ B which is flat, finitely
presented and ΩB/A = 0.

The condition on the morphism A→ B that ΩB/A = 0 is
sometimes called being unramified.



Étale Group Schemes and Separable Algebras

The following proposition shows how that this coincides with the
notion of an étale morphism of schemes.

Proposition

If h : A→ B is flat of finite presentation, then h is étale if and only
if for each P ∈ Spec(A), B ⊗A (A/P) is an étale A/P-algebra.



Étale Group Schemes and Separable Algebras

Over a field this becomes simpler and more tangible:

Proposition

Thus over a field, a finitely generated algebra is étale if and only if
ΩB/A = 0, if and only if A is separable.



Classification of Separable Algebras

Now we would like to classify separable algebras.

Idea: separable algebras over k look essentially the same over ks .

It makes sense that this can be done with galois theory, which
classifies separable extensions.



Étale Group Schemes and Separable Algebras

Recall:

Let L/k be a finite Galois extension of k .

Then any automorphism of ks/k maps L to L.

On the other hand, any automorphism of L/k can be uniquely
extended to one of ks/k.

Give Gal(ks/k) the standard profinite topology.

Basis of open subgroups at the identity is Gal(ks/L), where L is a
finite extension of k .



Classification of Separable Algebras

If X is a set with an action of a topological group G , then this
action is called continuous if for all x ∈ X , StabG (x) is open in G .

Equivalently, regarding X as having the discrete topology,
G × X → X is continuous.

Therefore, an action of Γ on a set X is continuous if and only for
every point there is some finite extension L of k with Gal(ks/L)
acting trivially.



Classification of Separable Algebras

Theorem

Separable k-algebras are anti-equivalent to finite sets with a
continuous action of Γ = Gal(ks/k).

Idea: Any finite separable field extension L of k has [L : k]
embeddings into ka, and so into ks .

Now Γ has a natural action by left multiplication on the finite set
of left cosets of Gal(ks/L), with stabiliser
StabΓ(x Gal(ks/L)) = x Gal(ks/L)x−1, an open subgroup.



Classification of Separable Algebras

In order to phrase this action for more general algebras, we can
identity the coset space of Gal(ks/L) canonically with Homk(L, ks)
(any k-linear field morphism L→ ks can be extended to one
ks → ks).

This is unique exactly up precomposition with an element of
Gal(ks/L).



Classification of Separable Algebras

For a separable k-algebra A: XA = Homk(A, ks) be the finite set of
k-algebra homomorphisms, with natural action ψ(f )(a) = ψ(f (a))
from the action of ψ ∈ Γ on ks .

This action of Γ is continuous: the image of each f : A→ ks lies
in some finite extension of k.

Any algebra map A→ B induces a map G -sets XB → XA.



Classification of Separable Algebras

Given a finite set with continuous action of Γ, define

AX = MapΓ(X , ks) = {f : X → ka | f (x)γ = f (xγ) for all γ ∈ Γ},

This is a ring using pointwise operations in ks , and a k-algebra via
the embedding sending each r ∈ k to the constant function on X
with value r .



Classification of Separable Algebras

Want to show that AX is a finite-dimensional separable k-algebra.

Enough to show this for X1 ⊂ X a transitive Γ-set.

If this is separable, then

AX = AX1t···tXr = AX1 × · · · × AXr

is separable too.



Classification of Separable Algebras

As X1 has continuous action of Γ and is finite, for any x1 ∈ X1,
there is some galois L/k with H = StabΓ(x1) ⊃ Gal(ks/L) acting
trivially on x1 and hence X1.

Thus for all f ∈ AX1 , x ∈ X1, γ(f (x)) = f (x) so we have f (x) ∈ L
(if not then some γ ∈ Γ has γ(f (x)) 6= f (x)).

Claim: LH ∼= AX1 , so AX1 is a separable field extension of k.

f ∈ AX1 is determined by its value on x1: y 7→ fy (x1) = y and
f → f (x1) ∈ LH .



Classification of Separable Algebras

Note that this correspondence matches the size of X with the
dimension of A.

[LH : k] = [Γ : H] = |Γ/H|, which is equal to |X | by the orbit
stabiliser theorem as the action is transitive.

Additionally, writing A the product of separable field extensions,
the orbits of X match up to each factor.



Classification of Separable Algebras

Example

The Q-algebra Q(
√

2) corresponds to a set with two elements, with
action of C2 = Gal(Q/Q)/Gal(Q/Q(

√
2)) swapping the elements.

Definition

A finite group scheme Spec(A) over k is called etale if A is
separable.



Classification of Separable Algebras

Then in light of the last theorem:

Theorem

Finite étale group schemes over k are anti-equivalent to finite
groups with a continuous action of Γ = Gal(ks/k) by group
automorphisms.



Classification of Separable Algebras

Proof.

The above equivalence specialises to one here.

A finite étale group scheme Spec(A) induces a group structure
naturally on Homk(A, ks) that is compatible with the group action.

Conversely, if X is in fact as group with a continuous group action
of Γ, then AX has hopf algebra structure:

Comultiplication: 4X (f )(x , y) = f (xy), viewing AX ⊗ AX as
the space of functions X × X → ks .

Counit: εX (f )(x) = f (1).

Antipode: SX (f )(x) = f (x−1).



Classification of Separable Algebras

Example

A finite group X with trivial action on Γ corresponds to the
constant group scheme associated to X .

Thus if k is algebraically closed, then the finite étale group schemes
over k are exactly the constant group schemes of finite groups.

Finite group schemes which become constant group schemes after
a finite extension are dubbed “twisted” constant group scheme.



Classification of Separable Algebras

Example

Let k = R so ks = C. Then to which finite group and action of
C2 = Gal(C/R) does µ3 (represented by R[X ]/(X 3 − 1))
correspond?
Write ω for a non-trival third root of unity in C.

Then HomR(R(ω),C) has three elements so is C3. One can see
immediately that this is not the constant group scheme C3, as µ3

has only one real point.

The action of C2 by swapping the generators.



Classification of Separable Algebras

Example

Alternatively, if k = C, the Γ = 1 is trivial, and
HomC(C[X ]/(X 3 − 1),C) ∼= C3 (this is the same as asking how
many one-dimensional representations are there of the group ring
C[C3]) with trivial action.

So µ3 over R is an example of a twisted constant group scheme.



Classification of Separable Algebras

Example

Over Q there are infinitely many twisted forms of the constant
group scheme Z/3Z.

Each distinct quadratic extension L of Q gives a distinct
continuous action of Gal(Q/Q) on Aut(C3) = C2.

Each corresponds to the 3-dimensional algebra Q× L, which after
changing base to L becomes the constant group scheme.



Classification of Separable Algebras

Example

The Q-algebra Q(
√

2) example above shows that this admits no
hopf algebra structure.

If so then we could put a group structure on X = {1, 2} such that
the non-trivial action by C2 is a group action.

But the automorphism group of a group with two elements is
trivial.



Classification of Separable Algebras

In particular, commutative finite group schemes over k:

Theorem

The above equivalence restricts to an equivalence between finite
étale commutative group schemes over k and finite continuous
Z[Γ]-modules.



Classification of Separable Algebras

Proof.

If Spec(A) is commutative, then XA = Homk(A, ks) is then a
Z-module.

Further a Z[Γ]-module, as the product (f ∗ g) = (f ⊗ g) ◦ 4 is
compatible with the action: for f , g ∈ XA, γ ∈ Γ,
γ(f ∗ g) = (γf ) ∗ (γg).

If X is abelian, then 4X (f )(x , y) = f (xy) = f (yx) is
cocommutative.



Connected-Étale Decomposition



Connected Étale Decomposition

Definition

Let A be a finitely-generated k-algebra.

π0(A) is the maximal separable k-subalgebra of A.

Is this well defined?

Let B be a separable subalgebra.

B ⊗k k
a is a separable ka-subalgebra of A⊗k k

a.



Connected-Étale Decomposition

B ⊗k k
a is spanned by idempotents, hence

dimk(B) = dimka(B ⊗k k
a)

is bounded by the number of connected components of
Spec(A⊗ ka), which is finite.

Let B1,B2 be separable subalgebras.

B1B2 is a quotient of B1 ⊗k B2, hence separable.

Then there exists a unique maximal subalgebra π0(A), as the
dimension cannot keep increasing.



Connected-Étale Decomposition

Proposition

If A,A′ are finitely generated k-algebras, then

π0(A× A′) = π0(A)× π0(A′).



Connected-Étale Decomposition

We can think of π0(G ) = Spec(π0(A)) as describing the connected
components of G = Spec(A).

Clopen subsets of Spec(A) are in one to one correspondence with
idempotents.

π0(A) contains all idempotents because k[e] is separable.



Connected-Étale Decomposition

Theorem

Let A be a finitely generated k-algebra, and k ⊂ L a field
extension. Then

π0(A)⊗k L = π0(A⊗k L).



Connected-Étale Decomposition

Theorem

For an algebraic affine group scheme G = Spec(A) over k, the
following are equivalent.

1 π0(G ) is trivial (one dimensional).

2 G is connected.

3 G is irreducible.

4 A/N(R) is an integral domain.



Connected-Étale Decomposition

Corollary

Let L be a field extension of k. Then an algebraic affine group
scheme G over k is connected if and only if GL is connected.

Proof.

π0(G ) is invariant under base change.



Connected-Étale Decomposition

Theorem

If A and B are finitely generated k-algebras, then

π0(A⊗ B) = π0(A)⊗ π0(B).



Connected-Étale Decomposition

Proposition

If A is a finite dimensional hopf algebra, then π0(A) is a hopf
subalgebra of A.

Proof.

The comultiplication is an algebra homomorphism, hence

4(π0(A)) ⊂ π0(A⊗ A) = π0(A)⊗ π0(A).

Similarly S(π0(A)) ⊂ π0(A).



Connected-Étale Decomposition

Theorem

Let G = Spec(A) be an algebraic affine group over k.

Then π0(G ) := Spec(π0(A)) is étale, and all morphisms from G to
étale group schemes factor through π0(G ) via the canonical map
G → π0(G ).

The kernel of this map is the connected component of the identity.
In particular we have the exact sequence

1→ G 0 → G → π0(G )→ 1.



Connected-Étale Decomposition

Proof.

We saw before that π0(A) is a hopf subalgebra of A.

Given any morphism G to an étale group scheme H = Spec(B),
this corresponds to a morphism of hopf algebras H → A.

The image of H is a separable algebra, hence maps to π0(A), so
the morphism factors through the inclusion map.



Connected-Étale Decomposition

Proof.

Let G 0 be the kernel of this map, represented by the algebra
A⊗π0(A) k .

Write π0(A) = k1 × · · · × kr as a product of fields, corresponding
to idempotents f1, ..., fr ∈ A, so A =

⊕r
i=1 fiA.

Then the morphism π0(A)→ k is zero on all but one component,
say k1, and an isomorphism on k1.

Therefore, A⊗π0(A) k ∼= f1A, which is local as π0(A) contains all
idempotents of A, thus G 0 = Spec(f1A) is connected.
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Manin’s Decomposition

Now let k be a perfect field.

Note: a finite dimensional k-algebra is separable if and only if A is
reduced.

An algebraic affine group scheme connected if and only if G = G 0.

This is equivalent to A being local when A is finite dimensional
over k .



Manin’s Decomposition

Lemma

If A is a finitely generated k-algebra, then π0(A) ∼= π0(A/I ) (via
the canonical map) for any ideal I of A consisting of only nilpotent
elements.



Manin’s Decomposition

Corollary

Let A be a finite dimensional k-algebra. Let N = N(A).

If A/N is separable, then π0(A) = A/N (via the canonical map).



Manin’s Decomposition

Definition

An affine algebraic group scheme over k is a semidirect product of
algebraic subgroups N, Q (G = N o Q) if

N is normal in G ,

(n, q)→ nq from N(B)× Q(B)→ G (B) is a bijection for all
B.



Manin’s Decomposition

Lemma

G = N o Q if and only if there is a homomorphism G → Q ′ which
is

An isomorphism when restricted to Q,

Has kernel N.



Manin’s Decomposition

Theorem

Let G be a finite group scheme over the perfect field k.

Then G is the semi-direct product of G 0 and π0(G ).



Manin’s Decomposition

Proof.

As k is perfect then A/N is separable (being reduced), and again
because k is perfect, A/N ⊗ A/N is reduced. Therefore,

A→ A⊗ A→ A/N ⊗ A/N

factors through A/N, thus A/N defines a closed subgroup scheme
of G . By the previous corollary, the map
Spec(A/N)→ G → π0(G ) is an isomorphism, then use the
proposition.



Manin’s Decomposition

Over commutative finite group schemes, this is direct.

Example

If k is not perfect, then this need not be true.

Let k have characteristic 2 and imperfect, with b ∈ k non-square.

Let G = Spec(A), for A = k[X ]/(X 4 − bX 2).

View Hom(A,B) as {x ∈ B | x4 = bx2}, a group under addition.



Manin’s Decomposition

Example

Now G (k) = {x ∈ k | x2(x2 − b) = 0} = {0} has one element.

However π0(A) = k[y ] for y = X 2, so π0(A) ∼= k[Y ]/(Y (Y − b)).

Hence π0(G )(k) = {0, b} has two elements.

G 6∼= π0(G )× G 0.



Manin’s Decomposition

Corollary

Let G be a finite commutative group scheme over the perfect field
k. Then G is a product of four factor of types:

(EE) Étale with Étale dual.

(EC) Étale with Connected dual.

(CE) Connected with Étale dual.

(CC) Connected with Connected dual.

Furthermore, between two finite commutative group schemes over
k of distinct types, there are no non-trivial homomorphisms.

Therefore, the category of finite commutative group schemes is the
product of these four subcategories.
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Proof.

G ∼= (GD)D ∼= ((GD)0 × π0(GD))D

∼= ((GD)0)D × π0(GD)D .

Now ((GD)0)D has a decomposition into a connected and an étale
part E × C .

ED × CD ∼= (((GD)0)D)D ∼= (GD)0 so both have connected dual.

Similarly, π0(GD)D decomposes into a connected and étale part
both with étale dual, lying in π0(GD).



Manin’s Decomposition

Proof.

Any morphism from a connected to an étale factors through
G → π0(G ) = 0, hence the only morphism is trivial.

Any morphism from an étale to connected corresponds to a
morphism local to reduced.

This factors through k , thus is trivial.

Therefore, using duality, there are no morphisms between any of
these four factors.



Manin’s Decomposition

Example

We have seen examples of all of these. Let k have characteristic p,
and let q ∈ Z be coprime to p.

Z/qZ is étale, with étale dual µq.

Z/pZ is étale with connected dual µp.

µp is connected with with étale dual Z/pZ.

αp is connected with connected dual.



Manin’s Decomposition

Note that the above examples are in finite characteristic.
This is necessary to provide an example of each.

Theorem (Cartier’s Theorem)

All finite group schemes over a field of characteristic 0 are étale.

This is proven using Kähler differentials.



Manin’s Decomposition

Proposition

Let k have characteristic p.

Let G = Spec(A) be a commutative finite group scheme.

Then G is of type (EE) if and only if G has order prime to p.

G has order a power of p otherwise.



Manin’s Decomposition

The galois theory described before describes the first three types.

The forth requires the introduction of Dieudonné modules.

One can introduce maps VG and FG .

The four possibilities correspond exactly to the four options for
these being nilpotent / isomorphisms.
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Connected-Étale Decomposition Revisited

Now we briefly describe the connected-étale decomposition over
more general rings then just fields, which requires more work.

First, let R be a commutative ring. We want to consider finite flat
commutative group schemes over R.

Because R is noetherian and our algebra A is finitely generated,
the flatness condition here is equivalent to A being locally free,
which is also equivalent to A begin projective.

If R also local, then these are equivalent to A being free.



Connected-Étale Decomposition Revisited

First we recall some definitions.

Definition

A local ring R is called hensellian if it satisfies any of the following
equivalent conditions.



Connected-Étale Decomposition Revisited

Proposition

For a local ring R with maximal ideal m, the following are
equivalent.

1 For any monic polynomial p ∈ R[x ], any factorisation of p in
(R/m)[x ] into a product of coprime monic polynomials can be
lifted to a factorisation in R[x ].

2 For all p ∈ R[x ] monic, if p(a0) = 0 and p′(a0) 6= 0 for some
a ∈ R/m, then there is some a ∈ R with p(a) = 0 and a = a0

in R/m.

3 Any finite R-algebra is isomorphic to a finite product of local
R-algebras, each finite over R.



Connected-Étale Decomposition Revisited

Proposition

Complete local rings are hensellian.

Example

Fields and complete discrete valuation rings are hensellian.



Connected-Étale Decomposition Revisited

Theorem (Connected-Etale Decomposition)

Let R be a noetherian hensellian local ring. Let G be a finite flat
commutative group scheme over R. Then there is a unique exact
sequence

1→ G 0 → G → G et → 1

where G 0 is connected and G et is etale.

Proof.

See Stix Notes - Prop. 37.
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Thanks for listening.
Any questions?
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