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Introduction

These are lecture notes from the course Ring Theory, given by Professor Charudatta
Hajarnavis at the University of Warwick in 2019, written by James Taylor.
If any mistakes are identified, please email me (James Taylor).

Overview

In this course we aim to study non-commutative rings with chain conditions. A commu-
tative integral domain has a (unique) field of fractions. What happens if we drop the
commutativity axiom? Do we now obtain a division ring of fractions? If not always then
when exactly? Do we need to differentiate between the left hand side and the right hand
side of the ring? Also, does the theory extend meaningfully to rings such as rings of
matrices which contain zero divisors? We shall give precise answers to all these questions.
Topics covered in pursuit of the above will include prime and semiprime rings, Artinian
rings, composition series, the singular submodule, Ore’s theorem leading up to Goldie’s
theorems and their applications.
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0 Rings and Modules Preliminaries

A familiarity with the basics of rings and modules is assumed. We list some definitions
and facts that we will reference here.

Rings

Generally the rings we consider will not necessarily have an identity or be commutative.
We assume knowledge of the notations of subrings and ideals (all ideals are subrings),
ring homomorphisms, quotient rings. The kernel of a ring homomorphism is an ideal, and
the image generally only a subring. We have the isomorphism theorems similar to those
for modules in the next section, and along with internal and external direct sums.

Definition 0.1. A division ring is a ring D with 1, 1 6= 0, such that for all non-zero ele-
ments u, there is d ∈ D with ud = du = 1. When the multiplication in D is commutative
we call D a field.
A ring where the product of non-zero elements is non-zero is called a domain. If this is
commutative, we call this an integral domain.

Modules

Definition 0.2. For a ring R, a right R-module is an Abelian group M and ring homo-
morphism f : Rop → End(M). We write MR. A left R-module is an Abelian group M
and a ring homomorphism f : R → End(M), and we write RM . These do not assume
that R has an identity, and when R does we call these modules unital if additionally f(1)
is the identity of M .

All modules we consider if not specified will be assumed to be right modules. This will
make life slightly easier - see remark 0. Furthermore, if R has an identity, we will assume
that any R-modules we consider are unital - see exercise 7.
We assume a familiarity with submodules, quotient modules, module homomorphisms,
kernels, cokernels, and the first isomorphism theorem.

Proposition 0.3. Let K, L be submodules of MR. Then

(L+K)/K ∼= L/(L ∩K).

Furthermore, if K ⊂ L, then L/K is a submodule of M/K, and

(M/K)/(L/K) ∼= M/L.

Given R-modules Mi we can define the external direct product and direct sum. These are
the same for finite index sets, but can differ otherwise - the sum requires all but finitely
many entries of an element to be 0. Categorically, the direct product is a product, and
the direct sum is a coproduct.
Given an R-module M with submodules Mi, we can define their sum to be the set of all
finite sums of elements of some finite subset of the Mi. This forms a submodule, and is
called the internal sum. We write ∑

i

Mi.
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This sum is said to be direct if every element has a unique representation in this sum.
We write ⊕

i

Mi.

We can express this equivalently as: for all j,

Mj ∩

∑
i:i 6=j

Mi

 = 0.

Let M be a R-module, and K,S subsets of M,R respectively. We define their product
to be finite sums of ks where k ∈ K, s ∈ S. If K is a non-empty subset of M , and S a
right ideal then KS is a submodule of M . In particular this applies when M = R. So for
∅ 6= S ⊂ R we can define S2, and inductively Sn for n ∈ N. If S is a right ideal of R then
so is Sn.
Let R be a ring with an ideal I, and let M be a right R-module. Generally M need not
be a right R-module. However, if MI = 0, then M can be given the structure of a right
R/I-module.

Proposition 0.4. Let R be a ring with an ideal I, and let M be a right R-module with
MI = 0. Then m(r+ I) := mr makes M a well-defined R/I-module, and as the quotient
map is surjective, R and R/I submodules of M coincide.

In particular, (In/In+1)I = 0, so (In/In+1) is naturally a right (and left) R/I-module.
Note that if MI 6= 0, then this definition will not be well-defined.
If M1

∼= M2 as modules, then End(M1) ∼= End(M2) as rings.

Proposition 0.5. Let R be a ring with identity. Then as rings,

R ∼= End(RR)

Proof. For x ∈ R, let ρx : R→ R, ρx(r) = xr. �

Remark. If we write our endomorphism composition in the same way, but consider left
R-modules, then the isomorphism we obtain is

Rop ∼= End(RR).

We could remedy this by writing our functions on the right in End(M), and then work
with left modules with the nicer isomorphism.
Let X,Y be R-modules. HomR(X,Y ) is easily seen to be an Abelian group.

Lemma 0.6. Let V = V1⊕· · ·Vn, W = W1⊕· · ·Wm, for submodules Vi, Wj of R-modules
V,W . Then

1. As Abelian groups,

HomR(V,W ) ∼=

HomR(V1,W1) · · · HomR(Vn,W1)
... . . . ...

HomR(V1,Wm) · · · HomR(Vn,Wm)


2. In particular, for a R module M ,

EndR(M (n)) ∼= Mn(EndR(M))

as rings.
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1 Chain Conditions

1.1 Finitely Generated Modules

Definition 1.1. Let T ⊂MR. Then 〈T 〉 is the intersection of all submodules containing
T . By definition 〈∅〉 = 0.

In particular, if T = {a}, then we have 〈a〉 = {ar + λa | r ∈ R, λ ∈ Z}. When R and M
are unital, then 〈a〉 = aR = {ar | r ∈ R}.
Note. aR is always a submodule of M , but when M is not unital there is no guarantee
that a ∈ aR.

Definition 1.2. MR is said to be finitely generated if MR = 〈T 〉 for some finite subset
T .

If R has 1 and M is unital and finitely generated, then there exists a1, ..., am ∈ M with
M = a1R+ a2R+ ...+ amR. We call the ai generators. If M is generated by one element
then M is called cyclic. So a finitely generated module is a finite sum of cyclic modules.
Both RR and RR are cyclic R modules with generator 1. Cyclic submodules of RR [RR]
are called principal right [left] ideals of R.

1.2 Finiteness Assumptions

Definition 1.3. Let C be a non-empty collection of submodules of MR. K ∈ C is maximal
in C if there does not exist any N ∈ C with K ( N . Similarly K ∈ C is minimal in C if
there does not exist any N ∈ C with N ( K.
MR has the ACC for submodules in C, if every chain

A1 ⊂ A2 ⊂ ...

stabilises: ∃k ∈ N with Ak = Ak+1 = ... . MR has the maximum condition on submodules
in C, if every non-empty collection of submodules in C has a maximal submodule. We
similarly define the DCC and minimum condition on submodules in C.

Proposition 1.4. Let C be a non-empty collection of submodules of MR. Then TFAE:

(a) MR has ACC [DCC] on submodules in C.

(b) MR has maximum [minimum] condition on submodules in C.

Proof. We will do the ACC case, with the DCC case being symmetric. Suppose that MR

has ACC on submodules in C, and let B be non-empty set of submodules of C. Suppose
that this B has no maximal submodule. So taking any N1 ∈ B, we can construct a chain
inductively, for Ni ∈ B not maximal in B implies that there is some Ni+1 ∈ B with
Ni ( Ni+1. But this chain contradicts the ACC. Conversely, given any chain, we take
B ⊂ C as the collection of all submodules in the chain, and a maximal element in the
chain implies this chain stabilises. �

Definition 1.5. We say MR has ACC, if MR has ACC for submodules in the collection
of all submodules of MR.
We say MR has maximal condition, if MR has maximal condition on submodules in the
collection of all submodules of MR.
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Proposition 1.6. TFAE for any MR:

(a) M has ACC.

(b) M has maximal condition.

(c) Every submodule of M is finitely generated.

Remark. M being finitely generated does not imply that all submodules are! See exercise
11.

Proof. All that is left to show is that (c) is equivalent to either (a) or (b).
(a) ⇒ (c): Take any submodule S. If S is not finitely generated, then we can find a
sequence of elements a1, a2, .. from S such that ai 6∈ 〈a1, ..., ai−1〉 for each i. But then this
contradicts ACC.
(c) ⇒ (b): Suppose that there is some non empty collection C of submodules which do
not have a maximal element. So we can construct a sequence M1 (M2 ( ... of elements
of C. Let N be their union. If N was finitely generated then it’s generators must all be
in Mk for some k, and so this would contradict that Mk 6= Mk+1. So N is not finitely
generated. �

Example 1.7. Any PID has all ideals finitely generated, so as right modules over them-
selves have ACC. Therefore, ZZ has ACC. Note that with Z we can construct arbitrarily
long chains, so there is no universal bound of the length of strict chains. We will see later
though when we look at composition series, that if we require ACC and DCC, then we
can actually get universal bounds.

Lemma 1.8 (Dedekind Modular Law). Let A,B,C be submodules of MR, with A ⊃ B.
Then:

A ∩ (B + C) = B +A ∩ C (= A ∩B +A ∩ C)

“If A ⊃ B, then the distributive law holds.”

Proof. If x = b+ c ∈ A ∩B +A ∩ C, then b+ c ∈ A, so x ∈ A ∩ (B + C). If x = b+ c ∈
A ∩ (B + C), then c = x− b ∈ A, as B ⊂ A, so x ∈ A ∩B +A ∩ C. �

Proposition 1.9. Let K be a submodule of MR. Then MR has ACC [DCC] ⇔ Both K
and M/K have ACC [DCC].

Proof. Here is the ACC case. The DCC case is similar.
“⇒”: Every submodule of M is finitely generated, so all submodules of K must be too,
so K has ACC. Any submodule of M/K is the image of a submodule of M under the
quotient map, so must be finitely generated, thus M/K has ACC.
“⇐”: Let M1 ⊂M2 ⊂ ... be an ascending chain. Then both

K ∩M1 ⊂ K ∩M2 ⊂ ...
M1 +K ⊂M2 +K ⊂ ..

stabilise after some N ∈ N. The first because K has ACC, and the second via the quotient
subgroup correspondence, because the chain

(M1 +K)/K ⊂ (M2 +K)/K ⊂ ..
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must stabilise. Therefore for any i ≥ 0,

MN+i = MN+i ∩ (MN+i +K)

= MN+i ∩ (MN +K)

= MN+i + (MN+i ∩K)

= MN + (MN ∩K)

= MN

�

This proposition has many useful consequences, which we shall now explore.

Corollary 1.10. Let M1,M2, ...,Mn be submodules of MR. If each Mi has ACC [DCC]
then so does M1 + ...+Mn.

Proof. By induction on n. Let L = M1 + ...+Mn−1 have ACC. Let K = L+Mn. Then
K/L = (L + Mn)/L ∼= Mn/(Mn ∩ L), which has ACC as a quotient of Mn. So as L has
ACC, so does K. �

Corollary 1.11. Let R have 1, with ACC [DCC] on right ideals of R (submodules of
RR). Let MR be a unital finitely generated module. Then MR has ACC [DCC].

Proof. For ACC: As MR is unital and finitely generated, there exist mi ∈ M such that
M = m1R+...+mkR. Therefore, it is sufficient to show thatmiR has ACC on submodules.
Indeed, let ψi : R → miR, ψi(r) = mir, a surjective homomorphism of modules. So
miR ∼= R/ ker(ψi) has ACC. �

Remark. What if R does not have 1? Here the ACC and DCC cases are not symmetric.
For ACC the result is still true, but for DCC is not. This is due to the fact that for a
general R,

〈m〉 = mR+mZ

and Z has ACC but not DCC. Find an example where the theorem doesn’t hold for DCC.

Corollary 1.12. If R has ACC [DCC] on right ideals, then so does Mn(R).

Proof. Consider Mn(R) as a right R module. Let Tij ∼= R be the R submodule of the
(i, j)th position. Each Tij has ACC [DCC], and so Mn(R) =

∑
Tij has ACC [DCC] as a

right R module. Then the result follows, as right ideals of Mn(R) are also R submodules
(we have actually proven something slightly stronger). �

Definition 1.13. A module with ACC on submodules is called Noetherian, and with
DCC on submodules is called Artinian. A ring is right Noetherian if it has ACC on
right ideals. A ring is right Artinian, if it has 1 and has DCC on right ideals. A ring is
Noetherian if both right and left Noetherian, and Artinian if both right and left Artinian.

Remark. Why do we add the condition that Artinian rings must have identity? We will
see in 3.20 that “most” rings with DCC have an identity automatically, and rings with
DCC but not identity are quite peculiar, see Baer’s example in exercise 15.
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Example 1.14. Mn(Z) is Noetherian, and Mn(k) for any field k is both Artinian and
Noetherian.
By applying the reasoning used in the proof, one can show both[

Z 2Z
Z Z

]
and

[
Z Z
0 Z

]
are Noetherian (see exercise 17).

We will use the following without proof:

Theorem 1.15 (Hilbert Basis Theorem). If R is a unital right (resp. left) Noetherian
ring, then R[x] is a unital right (resp. left) Noetherian ring.

1.3 Composition Series

We will see in this section, that together ACC and DCC together can be used to give
certain invariants of a module.

Definition 1.16. MR is said to have finite length if there exists a chain of submodules

M = M0 )M1 ) ... )Mk−1 )Mk = 0

such that no submodule can be properly inserted between any two.

If R and M are unital, then this means that each quotient Mi/Mi+1 is irreducible.

Definition 1.17. We call such a series a composition series for M , and each quotient
Mi/Mi+1 a factor of the series. We call k the length of the series. Given two series

M = M0 )M1 ) ... )Ms−1 )Ms = 0

M = K0 ) K1 ) ... ) Kt−1 ) Kt = 0

these are equivalent, if s = t and there exists σ ∈ St with

Mi/Mi+1
∼= Kσ(i)/Kσ(i)+1

for all i.

Example 1.18. One pair of equivalent composition series are

Z/6Z ) 2Z/6Z ) 0

Z/6Z ) 3Z/6Z ) 0

Lemma 1.19. MR has a composition series if and only if MR has both ACC and DCC.

Proof. “⇐”: By ACC we can choose M1 maximal such that M = M0 ) M1. Continue
this process to choose M2, M3 etc. Then by DCC this process must terminate.
“⇒”: Induction on k, the least length of a composition series for M . If k = 1, then M is
simple. Now assume true for MR with composition series of least length smaller than k.
Take a composition series

M = M0 )M1 ) ... )Mk = 0
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which is a shortest composition series for M . Then

M1 ) ... )Mk = 0

is a shortest composition series for M1. By the induction hypothesis, M1 has ACC and
DCC, and M/M1 has a composition series of length 1 so has ACC and DCC. Then by
1.9, M has both ACC and DCC. �

Lemma 1.20. Let MR be a module admitting a composition series. Then any series of
submodules can be refined to a composition series, by inserting extra terms as needed.

Proof. Let
M = A0 ) A1 ) ... ) Ak = 0

be a series of submodules in M . By the above, MR has both ACC and DCC. Choose a
submodule B1 with

A0 ) B1 ) A1

where B1 is minimal containing A1. This can be chosen by DCC. Then choose B2 such
that

A0 ) B2 ) B1 ) A1

where B2 is minimal containing B1, again using DCC. This process must terminate, by
ACC. �

Now we show that the concept of length of a module is well defined. The proof here for
modules is much simpler than the proof of the corresponding theorem for groups.

Theorem 1.21 (Jordan Hölder). Any two composition series for a module are equivalent.

Proof. Let MR admit a composition series. Let λ(M) be the length of a shortest com-
position series for M . We use induction on λ(M). If λ(M) = 1, then M is irreducible.
Suppose that the result holds for all modules XR with λ(X) ≤ s − 1. Let MR have
λ(M) = s, so there exists a shortest composition series

M = M0 )M1 ) ... )Ms = 0 (A)

Consider another composition series

M = K0 ) K1 ) ... ) Kn = 0 (B)

Now as both Ms−1 and Kn−1 are simple, we must have that either Ms−1 = Kn−1, or
Ms−1 ∩Kn−1 = 0 ( a classic strategy when dealing with simple modules).
Case 1: Ms−1 = Kn−1. Divide both series by Ms−1:

M = M0/Ms−1 )M1/Ms−1 ) ... )Ms−1/Ms−1 = 0 (C)
M = K0/Ms−1 ) K1/Ms−1 ) ... ) Kn−1/Ms−1 = 0 (D)

which are two composition series for M/Ms−1, and λ(M/Ms−1) = s− 1. So by induction,
s − 1 = n − 1, hence s = n and (C) and (D) are equivalent by the module isomorphism
theorems.
Case 2: Ms−1 ∩ Kn−1 = 0. Then Ms−1 + Kn−1 is a direct sum. Then by 1.20 we can
construct a compostion series for M :

M = Q0 ) Q1 ) ... ) Qt−3 )Ms−1 ⊕Kn−1 )Ms−1 )Ms = 0 (E)
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By case 1, s = t, and (E) is equivalent to (A). Now we need to do the work that doesn’t
just use the induction hypothesis: Consider

M = Q0 ) Q1 ) ... ) Qt−3 )Ms−1 ⊕Kn−1 ) Kn−1 ) Kn = 0 (F)

a composition series equivalent to (E), with just the last two composition factors swapped.
(F) has length s, and the last non zero term is Kn−1, so (F) is equivalent to (B) as in
case 1. Therefore, as equivalence is transitive, (A) is equivalent to (B). �

Definition 1.22. For a module MR of finite length, let |M | denote the length.

Corollary 1.23. Let MR be a module of finite length, and K a submodule. Then

|M | = |K|+ |M/K|

Proof. Exercise 42. �

2 Basic Concepts in Non-Commutative Rings

2.1 Prime Ideals

Definition 2.1. An ideal I / R is prime if P 6= R, A,B / R and AB ⊂ P ⇒ A ⊂ P or
B ⊂ P .

Example 2.2. In a unital ring, maximal ideals are prime: Suppose that P is maximal,
but not prime, so there is some A,B ideals with AB ⊂ P , but A 6⊂ P , B 6⊂ P . Let
a ∈ A \ P , b ∈ B \ P . Then ab ∈ P . Let C be the ideal generated by P and a, which
as P is maximal must equal R, and as 1 = x + ar for some x ∈ P , r ∈ R. But then
b = bx+ bar ∈ P .

We will see later that every unital ring contains a maximal ideal, and so a prime ideal.

Theorem 2.3. Let P / R, P 6= R. Then TFAE:

(a) P is prime.

(b) If A,B /r R, then AB ⊂ P ⇒ A ⊂ P or B ⊂ P

(c) If A,B /l R, then AB ⊂ P ⇒ A ⊂ P or B ⊂ P

(d) aRb ⊂ P and a, b ∈ R⇒ a ∈ P or b ∈ P .

Proof. For (b) ⇒ (a) ⇒ (d) ⇒ (b): The first is trivial. Let aRb ⊂ P and a, b ∈ R. Then
(RaR), (RbR) / R, and (RaR)(RbR) ⊂ R(aRb)R ⊂ RPR ⊂ P . Then either RaR ⊂ P or
RbR ⊂ P . (If R is unital we are done here) Then suppose that RaR ⊂ P . Define

〈a〉 :=

{
λa+ ra+ as+

∑
i

riasi | λ ∈ Z, r, s, ri, si ∈ R

}

Then this is an ideal. We have that RaR ⊂ 〈a〉3 ⊂ P , so 〈a〉 ⊂ P , so a ∈ P .
For (d) ⇒ (b), Let AB ⊂ P , where these are right R modules. Suppose that A 6⊂ P .
Then fix some a ∈ P \A. Then for any b ∈ B, aRb ⊂ P , so b ∈ P .
Similarly for (c) ⇒ (a) ⇒ (d) ⇒ (c). �
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Corollary 2.4. Let P be a proper ideal of a commutative ring R. Then P is a prime
ideal if and only if P is completely prime (ab ∈ P ⇒ a ∈ P or b ∈ P ), if and only if R/P
is an integral domain.

Proof. If P is prime then ab ∈ P means that aRb = abR ⊂ P , so a ∈ P or b ∈ P by the
final equivalent condition. Conversely, if P is not prime, then there are ideals AB ⊂ P
with A 6⊂ P , B 6⊂ P , so there is ab ∈ P with a 6∈ P , B 6∈ P . �

Definition 2.5. R is called a prime ring if 0 is a prime ideal.

Example 2.6. Directly from the definition, domains are prime rings, and by the above
this is equivalent for commutative rings. M2(Z) is not an integral domain, so 0 is not
completely prime. But 0 is a prime ideal (AB = 0 ⇒ A = 0 or B = 0), and so M2(Z) is
a prime ring.

2.2 Ideals in Matrix Rings

Let R be a unital ring, and (aij) an n×n matrix with aij ∈ R. Let Eij be the matrix with
a single 1 in the (i, j) th place. Then (aij) =

∑
i

∑
j aijEij uniquely. Also EijEkl = δjkEil.

Theorem 2.7. Let R be a unital ring. Then

1. I / R⇒Mn(I) / Mn(R)

2. (Converse) Every ideal of Mn(R) is of the form Mn(I) for some I / R.

Proof. Let X /Mn(R). Let A = (aij) ∈ X. Consider a fixed 1 ≤ α, β ≤ n. We have that

E1α

∑
i,j

aijEij

Eβ1 ∈ X

So aαβE11 ∈ X. Letting I be all elements that occur in the top left hand corner of some
matrix of X, then I / R, and X = Mn(I). �

What is a characterisation of right/left ideals? See this stackexchange answer.

Example 2.8. Not true for right ideals. Take[
2Z 2Z
0 0

]
/rM2(Z)

which is not of the form above.

Corollary 2.9. If R is a unital ring and R is prime, then so is Mn(R).

Example 2.10. Mn(Z) is an example of a non-commutative prime noetherian ring.

Definition 2.11. An domain is a ring R with ab = 0⇒ a = 0 or b = 0.

Example 2.12. Division Ring ⇒ Domain ⇒ Prime ring. A matrix ring over an domain
is prime. Thus Mn(Z) is a typical example of a prime ring.
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2.3 Simple Rings

Definition 2.13. R is said to be simple if 0 and R are the only ideals of R. A field is a
commutative simple ring with 1.

Let R be a simple ring, and consider R2, an ideal of R. Then R2 = 0 or R2 = R.
Consider the case R2 = 0. So xy = 0 for all x, y ∈ R. So any additive subgroup of R is
automatically an ideal of R. So the additive group has no subgroups other than 0 and
R, hence the additive group of R is cyclic of prime order. Therefore, the structure of
such simple rings is completely determined, with trivial multiplication. Therefore, we will
always assume that simple rings have R2 = R. Therefore, a simple ring is prime. This
condition is always the case when R has an identity.

Example 2.14. Let D be a division ring. Then for n ≥ 1, Mn(D) is a simple Artinian
ring.

Proof. D has no right or left ideals other than 0 or D. So by 2.7, Mn(D) is a simple ring.
Similarly, if the base ring is right Artinian, then so is the matrix ring, by 1.12. �

We will see later that the Artin-Wedderburn Theorem gives that all simple Artinian rings
are of this form.

2.4 Nil and Nilpotent Subsets

Definition 2.15. Let S ⊂ R, non-empty. S is nil if for any s ∈ S, there exists a k ≥ 1
(dependant on s) such that sk = 0. S is nilpotent if there exists a k ≥ 1 such that Sk = 0
/ s1 · · · sk = 0 for any si ∈ S. Clearly nilpotent implies nil. If S is just a single element,
then these coincide, and we say the element is nilpotent.

Example 2.16. In Z/4Z, the ideal 2Z/4Z is nilpotent.

Lemma 2.17. Let R be a ring.

(a) If I,K are nilpotent right ideals of R, then so are I +K and RI.

(b) Any nilpotent right ideal lies inside a nilpotent ideal.

Note that RI is a two sided ideal.

Proof. Suppose that Im = Kn = 0 for m,n ≥ 1. Consider (I +K)m+n−1. A typical term
in the expansion is of the form X1X2...Xm+n−1 where each Xi is I or K. There are at
least m I’s in the term or else at least n K’s. IK ⊂ I, KI ⊂ K. So any term is either a
subset of Im or Kn, so is zero. Also (RI)m = R(IR)m−1I ⊂ RIm = 0.
For the (b), even if R doesn’t have an identity this holds, as I ⊂ RI + I, and RI + I is a
two sided ideal. �

By symmetry the corresponding result holds for nilpotent lefts ideals.

Definition 2.18. The sum of all nilpotent ideals of R is called the Nilpotent Radical of
R or the Nil-Radical. This is usually denoted by N(R).
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Note that this is the sum of two sided ideals. However, it follows from 2.17 that N(R) is
also equal to the sum of all nilpotent right ideals, and by symmetry is also equal to the
sum of all nilpotent left ideals.
Clearly N(R) is a nil ideal, because any element is contained inside a finite sum of ideals.
In general however it is not nilpotent. For example the ring ⊕nZ/nZ has N(R) = R, but
no power of N(R) is zero. This shows that just because we have proven the sum of finitely
many nilpotent ideals is nilpotent, the general sum need not be. Additionally, N(R) ⊂ P
for all prime ideals P , as any nilpotent ideal to some power is in P , so it is in P .

Example 2.19. If n is a nilpotent element in a commutative ring R, then the ideal
generated by n, RnR, is nilpotent.

Example 2.20 (Zassenhaus’s Example). Let F be a field, I the open interval (0, 1), and
R the vector space with basis {xi | i ∈ I}. Define multiplication on R by extending the
following product of basis elements:

xixj =

{
xi+j if i+ j < 1
0 if i+ j ≥ 1

Every element of R can be written uniquely as
∑

i aixi for ai ∈ F , all ai zero except for
a finite number. Then R is nil but not nilpotent. For any N , let i < N−1. Then xNi 6= 0.
In fact N(R) = R.

Remark. For commutative rings we have the binomial theorem, but in general we don’t,
so that is why in this section there is a lot of divergence between the commutative and
non-commutative theories.

Proposition 2.21. Let R be a commutative ring. Then N(R) equals the set of all nilpo-
tent elements of R.

Proof. Let X be the set of all nilpotent elements. Then X / R, and every element of X
lies in a nilpotent ideal of R (by 2.19). �

Remark. Doesn’t hold if R is non-commutative: Let R = M2(F ) for some field F . Then
R is a simple ring, so N(R) = 0. But (

0 1
0 0

)2

= 0

2.5 Semiprime Ideals

Definition 2.22. Let K /R. We say K is a semiprime ideal if [A/R, An ⊂ K, for some
n ≥ 1]⇒ A ⊂ K.

A prime ideal is semiprime. More generally, any intersection of prime ideals is semiprime.
R is called semiprime if 0 is a semiprime ideal. So R is a semiprime if and only if R has
no non-zero nilpotent prime ideals.

Lemma 2.23. For K / R, K is semiprime if and only if R/K is a prime ring.

Proposition 2.24. R is semiprime ⇔ N(R) = 0 ⇔ R contains no non-zero nilpotent
right ideals ⇔ R contains no non-zero nilpotent ideals.
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The proof of the following is similar to the proof for the analogous theorem for prime
ideals.

Proposition 2.25. The following are equivalent for K / R:

(a) K is a semiprime ideal

(b) An ⊂ K, A /r R, n ≥ 1⇒ A ⊂ K

(c) An ⊂ K, A /l R, n ≥ 1⇒ A ⊂ K

(d) aRa ⊂ K, a ∈ R⇒ a ∈ K

2.6 Minimal Prime Ideals in Rings with ACC on Ideals

The following has a very interesting proof.

Proposition 2.26. Let R be a ring with ACC on ideals. Then every ideal of R contains
a product of prime ideals.

Proof. Suppose not, and let S be the non-empty set of all ideals which don’t contain a
product of prime ideals. By ACC then S has a maximal element A. By assumption A
cannot be prime. So there exist B,C ideals with BC ⊂ A, but neither is a subset of
A. So B + A and C + A strictly contain A. By maximality of A in S, both B + A
and C + A contain a product of prime ideals. Therefore (B + A)(C + A) does too. But
(B + A)(C + A) ⊂ BC + A ⊂ A. Hence A contains a product of primes, which is a
contradiction. �

Definition 2.27. A prime ideal P of R is a minimal prime if it does not properly contain
any other prime ideal.

Theorem 2.28. Let R be a ring with ACC on ideals. Then

(a) Every prime ideal of R contains a minimal prime and R contains only finitely many
minimal primes.

(b) If P1, ..., Pk are the minimal primes of R then

N(R) = P1 ∩ ... ∩ Pk

(c) N(R) is nilpotent

At first this looks surprising, as the ACC talks about maximality, but here this gives us
minimality. The proof uses the previous result heavily.

Proof. (a) By 2.26, there exists prime ideals T1, ..., Tn such that T1 · · ·Tn = 0. Let
P1, ..., Pk be minimal in the set {Ti}i, so each Tj contains one of the Pq’s. Then for
any prime ideal P ⊃ 0 = T1 · · ·Tn, so P ⊃ Ti ⊃ Pj for some i, j. Thus P1, ..., Pk are
precisely the minimal primes of R.

(b) Now P1 ∩ ... ∩ Pk ⊂ Tj for all j, 1 ≤ j ≤ k. Hence (P1 ∩ ... ∩ Pk)n = 0. Thus
P1∩...∩Pk ⊂ N(R). But clearly N(R) ⊂ P for all primes P . So N(R) = P1∩...∩Pk.

(c) We have shown that P1 ∩ ... ∩ Pk is nilpotent.
�
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2.7 Annihilators

Definition 2.29. Let S be a non empty subset of MR. The right annihilator of S is

r(S) = {r ∈ R | Sr = 0}.

Clearly r(S) is a right ideal. When S is a submodule of MR, then actually r(S) / R.
Similarly l(S) is defined for a left R-module, is a left ideal, and when S is a submodule
then l(S) / R. In most applications S is a subset of R, or even both a left and right
ideal, so we can consider both the left and right annihilators. A right ideal I is called an
annihilator right ideal or a right annihilator if I = r(S) for some subset S ⊂ R. Similarly
for left ideals. Clearly S ⊂ rl(S), S ⊂ lr(S), and using this, we have that rlr(S) = r(S),
lrl(S) = l(S), see exercise 23c. It follows that ACC on right annihilators is the same as
DCC on left annihilators.

2.8 Nil Implies Nilpotent Theorems

We often want objects such as N(R) to be nilpotent. In the presence of ACC or DCC
fortunately the problem of N(R) typically being only Nil goes away.

Definition 2.30. Let 0 6= M/rR [0 6= M/R]. Then M is said to be a minimal right ideal
[ideal] if M ′ ( M and M ′ /r R [M ′ / R] ⇒ M ′ = 0. (Minimal with respect to non-zero
right ideals [ideals])

Let K be a nil ideal of R, and M a minimal right ideal. Exercise 25 gives that MK = 0.
In particular, l(K) 6= 0 in this case. (∗)

Theorem 2.31 (Hopkins). Let R be a ring with DCC on right ideals. Then nil ideals of
R are nilpotent.

Note. We are not assuming the ring is right Artinian, where the identity is assumed.

Proof. Let K be a nil ideal of R. The chain

K ) K2 ) K3

stabilises, so for some n, Kn = Kn+1. Therefore, l(Kn) = l(Kn+1). Let R̄ = R/l(Kn),
letting bars denote images. We want to show that R̄ = 0. Suppose that R̄ 6= 0. By DCC
in R̄, R̄ contains a minimal right ideal. Also K̄ is a nil ideal. By (∗), there exists x̄ ∈ R̄\0,
such that x̄K̄ = 0. So in R, xK ⊂ l(Kn) hence xKn+1 = 0 and x ∈ l(Kn+1) = l(Kn).
Therefore, x̄ = 0 so R̄ = 0 and hence R ⊂ l(Kn). Then RKn = 0, and Kn+1 = 0. �

Corollary 2.32. N(R) is a nilpotent ideal in a ring with DCC on right ideals.

(This gives that Jacobson radical is a nilpotent ideal)
Remark. The idea of this proof comes from a paper by Herstein and Small. In fact we
can show that nil one sided ideals are nilpotent in this ring (perhaps later when we do
semisimple artinian rings). It is possible to do this right here using the Jacobson radical.
(take K as the Jacobson Radical and the proof works).

Lemma 2.33 (Utumi 1963). Let R be a ring with ACC on right annihilators. If R has
a non-zero nil one-sided ideal, then R has a non-zero nilpotent right ideal.
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The proof is very interesting, and only works if you do the left hand side first.

Proof. Suppose that R has a non-zero nil left ideal A. Let r(a) be maximal in the set
{r(y) | y ∈ A \ 0}. Claim: aRa = 0. Let t ∈ R. If ta = 0 then we’re done. Otherwise,
there is some k > 1 such that (ta)k = 0, (ta)k−1 6= 0, as ta ∈ A which is nil. So
ta ∈ r((ta)k−1) ⊃ r(a). We chose r(a) to be maximal, so r((ta)k−1) = r(a). So ta ∈ r(a),
so ata = 0 always. So aRa = 0. This gives us (a)3 = 0, where (a) is the right ideal
generated by a 6= 0.
Now suppose that we have 0 6= B a right ideal of R with B nil. If B2 = 0 then B is a
non-zero nilpotent right ideal. Otherwise, there exists b ∈ B, with Bb 6= 0. So Rb 6= 0.
Take A = Rb. This is a non-zero nil left ideal, and thus by the first part with this as A,
we’re done. �

Lemma 2.34. Let R be a ring with ACC on ideals. Then R contains a unique maximal
nilpotent ideal N and N contains all nilpotent one-sided ideals of R.

Proof. By 2.28 we have that N(R) is nilpotent. Therefore the set S of nilpotent ideals
containing N(R) is non-empty, and so by ACC contains a maximal element N . For any
one-sided nilpotent ideal, this is contained in a nilpotent ideal and so in N(R) and thus
in N . Furthermore, this is clearly unique. �

Theorem 2.35 (Lentzki). Let R be a right Noetherian ring. Then nil one-sided ideals of
R are nilpotent.

Remark. Compare this with Hopkins Theorem.

Proof. By 2.34, R has a unique maximal nilpotent ideal N . Suppose that R has a nil one
sided ideal X such that X 6⊂ N . Then (X + N)/N is a non-zero nil one-sided ideal of
the right Noetherian ring R/N . By 2.33, R/N contains a non-zero nilpotent right ideal.
Hence R contains a nilpotent right ideal which does not lie inside N1. Contradiction to
2.34. Thus X ⊂ N . �

2.9 Idempotent Elements

Definition 2.36. An element e ∈ R is idempotent if e = e2.

Example 2.37. 0 and 1 are idempotent. In an integral domain with 1, these are the
only idempotents. In Z/6Z, we have that 3 and 4 are idempotent. In M2(Z),(

1 0
0 0

) (
0 0
0 1

)
are idempotent.

These are important, as they allow us to split our ring into a direct sum of right ideals.

Lemma 2.38. Let e be an idempotent in R. Then R = eR ⊕K, where K = {x − ex |
x ∈ R}.

Proof. K is a right ideal. Any x = (x − ex) + ex. Also z ∈ eR ∩K, so z = ea = b − eb
for some a, b ∈ R. Then e2a = eb− e2b = 0, so z = ea = 0. �

1and so doesn’t lie in N(R) ⊂ N
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Corollary 2.39 (Peirce Decomposition). Let R be a ring with 1 and e an idempotent in
R. Then R = eR⊕ (1− e)R.

Proof. K = (1− e)R, for K as above. �

Proposition 2.40. Let R be a ring with 1. Suppose that R = I1 ⊕ ... ⊕ In a direct sum
of right ideals. Then we can write 1 = e1 + e2 + ...+ en uniquely for ei ∈ Ii. Then the ej
have the following properties:

1. e2
i = ei for all 1 ≤ i ≤ n.

2. eiej = 0 for i 6= j

3. Ij = ejR

4. R = Re1 ⊕ ...⊕Ren is a direct sum of left ideals.

Proof. For each j we have

ej = 1ej = e1ej + ...+ e2
j + ...+ enej

ej − e2
j = e1ej + ...+ ej−1ej + ej+1ej + ...+ enej ∈ Ij ∩

∑
s 6=j

Is

 = 0

So ej = e2
j . As the sum is direct, eiej = 0 for i 6= j. Clearly ejR ⊂ Ij , and if a ∈ Ij ,

a = 1a = e1a + ... + ena, and so a − eja = e1a + ... + ena ∈ Ij ∩
(∑

s 6=j Is

)
= 0, so

a = eja ∈ ejR. Finally, the sum of the left ideals is clearly R, and is direct, as given
riei =

∑
j 6=i rjej , then multiplying on the right by ej gives that riei = rie

2
i = 0. �

Example 2.41. In Mn(Z), let ej := diag(0, ..., 1, ..., 0). Remember left ideals are columns,
and right are rows.

2.10 Ideals and Idempotents

Definition 2.42. For a ring R, let the centre of R be

C(R) = {x ∈ R | xr = rx ∀r ∈ R}.

This is a subring of R, but in general not an ideal.

Example 2.43. In R = Mn(S), where S is a commutative ring, C(R) is the set of
diagonal matrices.

Lemma 2.44. Let I / R, with I = eR = Rf where e, f are idempotent. Then

1. e = f

2. e is the identity of the ring I

3. e ∈ C(R)

Proof. 1. e = e2 ∈ I. e = af , so e = af = af2 = af(f) = ef . Similarly, f = e(eb) =
ef . So e = f .
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2. For x ∈ I, so x = ea = be, so ex = x = xe for all x ∈ I.

3. For x ∈ R, ex, xe ∈ I, so as e is the identity, ex = exe = xe, so e ∈ C(R).
�

By both the above we have the following.

Lemma 2.45. Let R be a ring with 1. Suppose that R = A1 ⊕ ... ⊕ Ak a direct sum of
ideals. Let 1 = e1 + ...+ ek. Then

1. ej ∈ C(R),

2. ejei = ejδij,

3. Aj = ejR = Rej,

4. ej is the identity of the ring Aj.

Note that in the above, viewing Aj as a ring with identity in its own right, we can also
consider R = A1 ⊕ ...⊕Ak as a direct sum of rings with identity.

Example 2.46. Let R be a ring with 1, A/R and e = e2 ∈ A. This does not imply that
A = Re. Take

R =

[
Z Z
0 Z

]
, A =

[
Z Z
0 0

]
, and e =

(
1 0
0 0

)
.

Then A = eR / R, e = e2 but Re ( eR = A.

However, in an important case for us, it does work.

Proposition 2.47. Let A be an ideal of a semiprime ring R, with A = eR, e = e2 ∈ A.
Then A = Re.

Proof. Let K = {x − xe | x ∈ A}. Then K is a left ideal of R, since A is. We have
Ke = 0, so KeR = 0. Hence K2 = 0, as K ⊂ eR = A. Therefore, K = 0, as R is
semiprime. Thus, x = xe for all x ∈ A, so A ⊂ Re. Also Re ⊂ A since e ∈ A and A /l R,
so A = eR = Re. �

Lemma 2.48. Let A be an ideal of a ring R such that A = eR = Re with e = e2 ∈ A.
Viewing A as a ring in it’s own right, then K /r A [K /l A]⇒ K /r R [K /l R]

And so this is also true for two sided ideals. The conclusion of the lemma is definitely
not the case in general.

Proof. Let k ∈ K and r ∈ R. We have to use e to show that rk ∈ K. Now kr = (ke)r
since e is the identity of the ring A. (ke)r = k(er) ∈ K, as er ∈ A, and K /r A. Similarly
on the left. �

Corollary 2.49. Let A be an ideal of a ring R such that A = eR = Re with e = e2 ∈ A.
Then:

1. R is a right Artinian ring ⇒ A is a right Artinian ring.

2. A is a minimal ideal of R⇒ A is a simple ring.
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3 Artinian Rings

We will use Zorn’s lemma several times, which is equivalent to the axiom of choice.

Definition 3.1. A partially ordered set is (S,≤), where S is a non empty set, and ≤ is
a binary operation defined for certain pairs of elements, satisfying:

1. a ≤ a

2. a ≤ b, b ≤ c⇒ a ≤ c

3. a ≤ b, b ≤ a⇒ a = b

Let S be a partially ordered set. A non-empty subset T is said to be totally ordered if
for every pair a, b ∈ T , either a ≤ b or b ≤ a. An element x ∈ S is called maximal if
x ≤ y ⇒ x = y. Let T be a totally ordered subset of S. T has an upper bound (in S) if
there exists c ∈ S such that x ≤ c for all x ∈ T .

Theorem 3.2 (Zorn’s Lemma). Let S be a partially ordered set such that every totally
ordered subset of S has an upper bound in S. Then S contains a maximal element.

This maximal element need not be unique.

Definition 3.3. Let M be a proper right ideal of R. Then M is a maximal right ideal if
it is maximal among all proper right ideals.

Similarly we define maximality for left and two-sided ideals.

Proposition 3.4. Let R be a ring with 1. Let I /r R [I /R] such that I 6= R. Then there
exists a maximal right ideal [ideal] M of R such that I ⊂M .

Note that the identity assumption is crucial here.

Proof for right ideals. Let S be the set of proper right ideals of R containing I, partially
ordered by inclusion. S 6= ∅ as I ∈ S. Let {Tα}α be a totally ordered subset of S.
Let T := ∪αTα. Then T is a right ideal of R (the union is not typically a right ideal).
Additionally, T ⊃ I. We just need to check that T 6= R. This is not the case, as
T = R⇒ 1 ∈ T ⇒ 1 ∈ Tα for some α. T is our required maximal right ideal. �

Remark. This is false if R does not have 1: take any Abelian group without maximal
subgroups, such as (Q,+), with trivial multiplication (xy = 0 for all x, y ∈ R).

Corollary 3.5. Any ring with 1 contains a maximal right ideal [ideal].

Proof. Let I = 0 in above. �

3.1 Irreducible Modules

Definition 3.6. A right R module M is said to be irreducible if MR 6= 0 and M contains
no submodules other than 0 and M .

Note. Some use simple for this term, but we reserve this for simple rings.
If R has 1, then the first condition is the M 6= 0, and minimal right ideals of R are exactly
the irreducible submodules of RR.
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Example 3.7. (a) If p is prime, then Z/pZ is an irreducible Z module (and these are
all irreducible Z modules).

(b) Every ring with 1 has an irreducible module, as R contains a maximal right ideal
M . So R/M is an irreducible right R module.

(c) Let V be a vector space. Then irreducible submodules are exactly 1-dimensional
subspaces. Additionally, V is the direct sum of irreducible submodules, as any V
has a basis, see exercise 26.

(d) This is not true in general, Z/4Z is not even the sum of it’s subgroups, as only
proper non-trivial subgroup is 2Z/4Z. Z/6Z is however, and furthermore the sum
is direct.

Lemma 3.8. Let M,K be right R modules, and θ : M → K a non-zero R module
homomorphism.

1. M irreducible ⇒ θ is a monomorphism.

2. K irreducible ⇒ θ is a epimorphism.

3. Both M,K irreducible ⇒ θ is a isomorphism.

If θ : M →M is an isomorphism, then the inverse θ−1 : M →M is an isomorphism, and
θθ−1 = 11M = θ−1θ.

Lemma 3.9 (Schur’s Lemma). If M is irreducible, then EndR(M) is a division ring.

We now investigate irreducible modules.

Definition 3.10. A module MR is completely reducible (CR) if M is expressible as a sum
(not necessarily direct) of irreducible submodules.

Note. Again, some use semisimple for this term, but we reserve this for semisimple rings.
We will show we can always throw away redundant submodules to make this direct!

Example 3.11. Z/6Z is CR as a Z module.

Lemma 3.12. Let M be a right R-module such that

M =
∑
λ∈Λ

Mλ

where each λ is a irreducible submodule. Let K be a submodule of M . Then there exists
a subset Ω ⊂ Λ such that

M = K ⊕

(⊕
ω∈Ω

Mω

)

This heavily uses Zorn’s Lemma.

Proof. Consider S, the set of submodulesK+
∑

α∈AMα such that this sum is direct, where
A is a subset of Λ. Now for any chain of elements of S, Yi ⊂ Yi+1, Yi = K ⊕

⊕
α∈Ai

Mα.
We claim an upper bound for this chain is Y := K +

∑
α∈AMα, where A = ∪iAi. To see

this, note that as Yi ⊂ Yi+1, then
∑

α∈Ai
Mα ⊂

∑
α∈Ai+1

Mα, and so Ai ⊂ Ai+1, because
any Mβ for β ∈ Ai, has an inclusion homomorphism into

∑
α∈Ai+1

Mα, and so by Schur’s
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lemma is isomorphic to one of the summands. Using this, it is easily shown that the sum
for Y is direct and so Y ∈ S. Therefore, by Zorn’s Lemma we obtain a maximal element
in S, X = K ⊕

(⊕
ω∈ΩMω

)
. We claim X = M . Let λ ∈ Λ, we now use the classic trick.

Either X ∩Mλ = 0, or X ∩Mλ = Mλ. The first possibility cannot happen, as we get a
direct sum X ⊕Mλ contradicting maximality. Then as M =

∑
λ∈ΛMλ, X = M . �

Theorem 3.13. Let MR 6= 0. TFAE:

(i) MR is completely reducible

(ii) MR is a direct sum of irreducible submodules

(iii) mR = 0,m ∈M ⇒ m = 0, and every submodule of M is a direct summand of M .

Proof. (i)⇒ (ii): Take K = 0 in above.
(ii) ⇒ (iii): Suppose that mR = 0 for m ∈ M . Let M = ⊕Mλ, with each irreducible.
Write m = m1 + ...+mk, with each mj ∈Mλj . For all r ∈ R, 0 = mr = m1r+ ...+mkr,
so as a direct sum, mjr = 0 for all j. Define Kj = {x ∈ Mλj | xR = 0}, a submodule
of Mλj . Mλj is irreducible, so Kj = 0 or Kj = Mλj . But MλjR 6= 0, so Kj = 0, as
Mλj 6= Kj . Additionally all submodules of M must be a direct summand, as if they
contain any non-zero element of some Mλ, then they contain Mλ.
(iii) ⇒ (i): Note that for any non-zero submodule N of M , the hypothesis is still true:
if nR = 0, n ∈ N , then n = 0, and every submodule of N is a direct summand of N ,
because by the Dedekind/Modular law, if N ′ is a submodule of N , then M = N ′ ⊕ K
for some K, so N = N ∩ (N ′ ⊕ K) = N ′ ⊕ N ∩K. First we show that M contains an
irreducible submodule.
Let 0 6= y ∈ M . Let S = {K ⊂ M submodule | y /∈ K}. Partially ordering this set
by inclusion, by Zorn’s lemma there is a maximal element A, with A 6= M . There is
a submodule B 6= 0, such that M = A ⊕ B. We claim that B is irreducible. Suppose
that B contains a submodule B1 such that 0 ( B1 ( B. Then as the hypothesis is still
true for B, B = B1 ⊕ B2. Now y ∈ A ⊕ B1, so y ∈ A ⊕ B2 by maximality of A, thus
y ∈ (A ⊕ B1) ∩ (A ⊕ B2) = A, but this is a contradiction. So B is irreducible. Let K
be the sum of all irreducible submodules of M , which exists as this sum is non-empty. If
K 6= M , then there exists some non-zero submodule L such that M = K⊕L. As above, L
contains an irreducible submodule, contradiction. (K contains all irreducible submodules
of M , and K ∩ L = 0). So M = K. �

Remark. The first hypothesis of (iii) (mR = 0 ⇒ m = 0) holds automatically if R is
unital and MR is a unital module.

3.2 Minimal Right ideals and Idempotents

Lemma 3.14. Let M be a minimal right ideal of a ring R. Then either:

1. M2 = 0, or

2. M = eR where e = e2 ∈M \ 0.

Proof. Suppose the M2 6= 0. Then there exists a ∈M such that aM 6= 0. Now aM /r R
(as M /r R) and aM ⊂ M since a ∈ M . Then, M = aM . Since a ∈ M , there exists
some e ∈ M with a = ae. In particular, a 6= 0 ⇒ e 6= 0. Also, a = ae = ae(e) = ae2
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⇒ a(e − e2) = 0 ⇒ e − e2 ∈ M ∩ r(a). Now M ∩ r(a) /r R, and M ∩ r(a) ⊂ M implies
M ∩ r(a) = M or M ∩ r(a) = 0. But if M ∩ r(a) = M , then M ⊂ r(a), so aM = 0,
contradiction. �

Note. In a semi-prime ring, any minimal right ideal is generated by an idempotent, as
the first case cannot occur.

Example 3.15. Let

R =

[
Q Q
0 Q

]
,M1 =

[
0 Q
0 0

]
, and M2 =

[
0 0
0 Q

]
.

Note that M1 is the nil radical of R. Both are minimal right ideals by definition. Here
M2

1 = 0, M2 = eR where

e = e2 =

(
0 0
0 1

)
Furthermore, M1

∼= Q ∼= M2 as right R-modules via the obvious map. So we have isomor-
phic R-modules, but where exactly one is nilpotent, exactly one is idempotently generated.
However ring isomorphism preserves the property of being generated by idempotents.

3.3 The Socle

We assume in this section that modules MR satisfy mR = 0,m ∈ M ⇒ m = 0. In
particular this is the case when R has an identity, and is true for RR when R is semiprime
(l(R) = 0, as we always have l(R)2 = 0).

Definition 3.16. The socle2 of MR is E(MR) = the sum of all irreducible modules, or
zero if there are none. E(R) = E(RR) is the right socle of R and so by the assumption on
MR above, E(R) is the sum of all minimal right ideals of R when E(R) 6= 0. Similarly,
E′(R) = E(RR) is the left socle of R, and when non-zero is the sum of all minimal left
ideals of R.

Note. In general the left socle is different from the right. Of course, a right Artinian ring
always has a non-zero right socle, as DCC is equivalent to the minimum condition.

Proposition 3.17. (a) E(R) / R

(b) E′(R) / R

It is not immediately obvious why E(R) should form a left R-module.

Proof. Assume that E 6= 0. Clearly, E /r R. Let M be a minimal right ideal of R, with
x ∈ R. Then the map θ : M → xM given by left multiplication by x shows that either
xM = 0 or xM = M , in which case xM is also a minimal right ideal. It follows that E
is then also a left ideal. Similarly for (b). �

Example 3.18. Check that the above example has E(R) 6= E′(R), using exercise 36. So
the left and right socles can differ.

2Meaning base. For groups this is defined as the subgroup generated by the minimal normal subgroups.

21



3.4 Semisimple Artinian Rings

Definition 3.19. A semiprime ring with DCC on right ideals is called a semisimple
Artinian ring.

Remark. This is a weaker hypothesis than the ring being Artinian and a finite direct
sum of simple rings, as simple rings are prime and so a finite direct sum is semiprime.
However, we will show it is an equivalent condition - it is true that semisimple Artinian
ring is both semisimple and Artinian. We call a ring Artinian if it has DCC on the right
and the left, and has an identity. We will show (3.25) that a semiprime ring with DCC
on right ideals automatically implies DCC on left ideals too. For example this follows
from the Artin Weddurburn theorem. We can also prove that semisimple Artinian rings
have an identity - this is one of the reasons we don’t assume our rings have an identity to
begin with! Therefore, as we will also show that R semiprime with DCC on right ideals
implies that R is a finite direct sum of simple rings, it will turn out that such rings are
both semisimple and Artinian.

Lemma 3.20. Let R be a ring with DCC on right ideals, such that l(R) = 0. Suppose
that for some c ∈ R, r(c) = 0. Then R contains an identity, and further c is a unit of R.

Remark. We cannot do without the assumption of the existence of c. See exercise 15.

Proof. Consider the chain of right ideals

cR ⊂ c2R ⊂ c3R ⊂ ....

So for some n, cnR = cn+1R. Then there exists an e ∈ R with cnc = cn+1e. We claim
e is an identity. For all x ∈ R, cn+1x = cn+1ex, so x = ex, since r(c) = 0. So e is a
left identity of R. Now we use that l(R) = 0. Consider x − xe for x ∈ R. We want to
show that this is zero. For all y ∈ R, (x − xe)y = xy − xe(y) = xy − x(ey) = 0. So
(x − xe)R = 0, so x = xe, as l(R) = 0. Now as cnR = cn+1R, there exists d ∈ R such
that cne = cn+1d, so cd = e, and d is a right inverse for c. Also r(d) = 0, so by the same
argument, there exists b ∈ R such that db = e. Now b = eb = (cd)b = c(db) = ce = c.
Hence cd = dc = e and c is a unit of R. �

Theorem 3.21. Let R be a semisimple Artinian ring. Then

1. R has an identity

2. R = I1 ⊕ ...⊕ In, where each Ij is a minimal right ideal of R.

Proof. By DCC, each non-zero right ideal of R contains a minimal right ideal, and by
3.14, this is generated by an idempotent. We have that l(R) = 0, as R is semiprime. By
the above, to show that R has an identity, it is enough to prove existence of some c ∈ R
with r(c) = 0. Choose an idempotent f1 ∈ R such that f1R is minimal. If r(f1) = 0, then
we are done. Otherwise, considering the right ideals contained in r(f1), use the DCC to
choose an idempotent f2 ∈ r(f1) such that f2R is minimal. So r(f1) ) r(f1) ∩ r(f2), as
f2 ∈ r(f1) and f2 6∈ r(f2). In this way we obtain a strictly descending chain of ideals

r(f1) ) r(f1) ∩ r(f2) ) r(f1) ∩ r(f2) ∩ r(f3) ) ....

As R has DCC on right ideals, this stabilises. So we obtain idempotents f1, ..., fn ∈ R
such that r(f1) ∩ ... ∩ r(fn) = 0. Let c = f1 + ... + fn. Now if cx = 0 for x ∈ R, then
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f1x+ ...+ fnx = 0, so f2
1x+ f1f2x+ ...+ f1fnx = 0, thus f1x = 0 and f2x+ ...+ fnx = 0,

hence f2
2x + f2f3x + ... + f2fnx = 0, so f2x = 0, and continuing in this fashion, fix = 0

for all i. Therefore, x ∈ r(f1) ∩ ... ∩ r(fn) = 0. So r(c) = 0.
For the second part, let Ij = fjR. As the fi are idempotent, f1R + ... + fnR is a direct
sum. We have c ∈ I1 ⊕ ...⊕ In, and c is a unit by the above, so R = I1 ⊕ ...⊕ In. �

Corollary 3.22. Let R be a semisimple Artinian Ring. Then there exists idempotents
e1, ..., en such that 1 = e1 + ...+ en, and R = e1R⊕ ...⊕ enR.

Proof. Follows using 2.40. �

Proposition 3.23. The following are equivalent for a ring R.

(a) R is semisimple Artinian

(b) R has an identity, and RR is completely reducible.

We will use this extensively.

Proof. We have that (a) ⇒ (b). For the other direction, we have R =
⊕

λ Iλ, where each
Iλ is an irreducible submodule of R. Then we can write 1 = x1 + ...+ xk. For any r ∈ R,
r = rx1 + ... + rxk ∈ Iλ1 ⊕ ... ⊕ Iλk . So R =

⊕k
i=1 Iλk , so the sum is finite. Then by

1.10 R has DCC on right ideals. Let N = N(R), the nilpotent radical. By 3.13, then
there exists a right ideal K of R such that R = N ⊕K. So 1 = n + k. Now for some t,
(1− k)t = nt = 0 as n is nilpotent. So 1 = tk− ...± kt ∈ K. So K = R. So N = 0. Then
R is semiprime. �

Proposition 3.24. Let I /r R, where R is semisimple Artinian. Then I = eR, for some
e = e2 ∈ I.

Proof. By the above, RR is completely reducible and R has 1. So by 3.13, I is a direct
summand of R. Hence by 2.40, there exists some e = e2 ∈ I such that I = eR. �

So we have that R semisimple Artinian (R is semiprime and R has DCC on right ideals)
is equivalent to R having an identity and RR being completely reducible. This is all very
“right handed”, and we now seek to rectify this.

Proposition 3.25. A semisimple Artinian ring is left right symmetric: a semiprime ring
with DCC on right ideals also has DCC on left ideals.

Proof. By 3.23, R = e1R ⊕ ...⊕ enR, where 1 = e1 + ...+ en. e2
i = ei, eiej = 0 for i 6= j,

and each eiR is a minimal right ideal. By exercise 22, each Rei is a minimal left ideal, so
we have R = Re1 ⊕ ...⊕Ren, by 2.40. So RR is Artinian by 1.10. �

3.5 Ideals in Semisimple Artinian Rings

Lemma 3.26. Let R be a semisimple Artinian ring, A / R. Then there exists central
idempotent e ∈ A such that A = eR = Re.

Proof. We have A = eR and e = e2, by 3.24. So A = eR = Re, e ∈ C(R), by 2.45. �

Corollary 3.27. If R, A are as in the above, the there is an ideal B with R = A⊕B.
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See exercise 8 for failure in general - A two sided does not imply B is.

Proof. By the above lemma, A = eR with e = e2 ∈ C(R). By Peirce decomposition 2.39,
we have that R = eR⊕ (1−e)R. Now 1−e ∈ C(R) since e ∈ C(R). So B := (1−e)R/R.
�

Theorem 3.28. Let R be an semisimple Artinian ring. Then R is expressible as a finite
direct sum of minimal ideals R = S1⊕ ...⊕ Sm. The Si are the only minimal ideals of R.

Generally, R can be a direct sum of right ideals in lots of different ways. However for two
sided ideals this is unique!

Proof. Let S1 be a minimal ideal of R, which exists by DCC. By the above corollary,
there is an ideal T1 such that R = S1⊕ T1. If T1 6= 0, then T1 contains a minimal ideal of
R, call this S2. As above, R = S2 ⊕K for some ideal K of R. Now we use the Dedekind
modular law:

T1 = T1 ∩R = T1 ∩ (S2 ⊕K) = S2 ⊕ T1 ∩K = S2 ⊕ T2

where T2 = T1 ∩K. We have R = S1 ⊕ T1 = S1 ⊕ S2 ⊕ T2. If T2 6= 0 proceed similarly.
We obtain

T1 ) T2 ) ...

By DCC this must stop, so eventually some Tm = 0. At this stage, R = S1⊕ ...⊕Sm. To
see these are the only minimal ideals of R, let S be a minimal ideal of R. Then SR 6= 0,
as R has 1, so SSj 6= 0 for some j. This is an ideal of R, and lies inside both Sj and S.
Therefore, S = SSj = Sj . �

Note that the uniqueness proof doesn’t work for one sided ideals.

3.6 The Artin-Wedderburn Theorem

Our proofs here will use right handed conditions only, so when we are done we can give
an alternative proof of the symmetry of definition of Semisimple Artinian rings.

Theorem 3.29. A semisimple Artinian Ring R, is a unique finite direct sum of simple
right Artinian rings.

Proof. By the above R = S1⊕ ...⊕Sm, is a unique direct sum of minimal ideals. By 2.49,
each Si is a simple right Artinian ring. �

Recall that if AR ∼= BR as right modules, then EndR(A) ∼= EndR(B) as rings. Given XR,
let X(n) denote X ⊕ ...⊕X, n times.

Theorem 3.30 (Artin-Wedderburn Theorem). R is a semisimple Artinian ring if and
only if R = S1 ⊕ ...⊕ Sm where Si ∼= Mni(Di), ni ≥ 1 and Di’s division rings.

Note that each Si is a both a minimal ideal and a ring with identity in it’s own right.

Proof. “⇒”: R = S1 ⊕ ... ⊕ Sm as rings, where each Si is simple and right Artinian.
It is enough then to show that if S is a simple right Artinian ring then S ∼= Mn(D)
as rings for some n and some division ring D. As such S are prime (as simple) so
semiprime, and have DCC on right ideals, S is semiprime Artinian, therefore by 3.21,
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S = I1 ⊕ ... ⊕ In is a direct sum of minimal right ideals. By exercise 32, Ij ∼= Ik as
right S-modules. Therefore, as right S modules, SS ∼= I

(n)
1 . Now as rings, by 0.5,

S ∼= EndS(SS) ∼= EndS(I
(n)
1 ) ∼= Mn(EndS(I1)) = Mn(D), where D = EndS(I1) is a

division ring by Schur’s Lemma.
“⇐”: Each Si is a simple right Artinian ring by 2.14, so each Si as a right R-module is
right Artinian. So as the sum of Artinian is Artinian, so RR is Artinian, i.e. R is a right
Artinian ring. Thus R is semisimple Artinian. �

Corollary 3.31. A semisimple Artinain ring is left right symmetric.

Proof. The “⇒” part of the above proof used only DCC on right ideals. Now Mn1(D1)⊕
...⊕Mnm(Dm) is also left Artinian. �

That is the second proof of the above. We will not actually use the Artin-Weddurburn
theorem itself in any further sections, but we will use the theory that got us here. However,
it’s statement is important to keep in mind.

3.7 Modules Over Semisimple Artinian Rings

Theorem 3.32. Let R be a simplesimple Artinian ring. MR a non-zero unital R module.
Then MR is completely reducible.

Proof. R = I1⊕ ...⊕ In, a direct sum of minimal right ideals, by 3.21. Let m ∈M . Then
m = m1 ∈ mI1 + ... + mIn. Each mIj is zero or irreducible. So each m ∈ M lies in a
sum of irreducible submodules of M , and so we can write MR as the sum of irreducible
modules, hence MR is completely reducible. �

Corollary 3.33. Let R be a ring with 1. Then R is semisimple Artinian if and only if
every unital right R module is completely reducible. (if and only if every left R module is
completely reducible, by the symmetry.)

Proof. “⇒”: By above. “⇐”: In particular, RR is completely reducible, and as R has 1,
by 3.23 the result follows. �

Lemma 3.34. Let R be a right Artinian ring, and N = N(R). Then the ring R/N is
semisimple Artinian.

Proof. By Hopkins Theorem 2.31, N is nilpotent. Then it follows that the ring R/N is
semiprime, and has DCC on right ideals (because all quotients do). �

The following is (also) called Hopkin’s Theorem.

Theorem 3.35. A right Artinian ring is right Noetherian.

Proof. Let N = N(R). By above, R/N is a semisimple Artinian ring. By 2.32, there
exists a smallest integer k ≥ 1 such that Nk = 0. Consider the chain

R ) N ) N2 ) ... ) Nk = 0

Let N0 = R. For 0 ≤ j ≤ j − 1, each N j/N j+1 is a unital right R/N -module, so by
3.32, N j/N j+1 is completely reducible. As N j/N j+1 has DCC as a right module (for
either ring), it must be a finite direct sum of irreducible submodules. So by 1.10, each
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N j/N j+1 is an Noetherian right module, for 0 ≤ j ≤ j − 1. Then in particular, Nk−1

and Nk−2/Nk−1 are Noetherian right modules. Then by 1.9, Nk−2 has ACC on right
modules. Proceeding this way we obtain that RR has ACC. Thus R is a right Noetherian
ring. �

Caution: This does not apply to modules!

Corollary 3.36. Every finitely generated module over a right Artinian ring has a com-
position series.

Proof. Let MR be a finitely generated module over a right Artinian ring R. By the
above, R is right Noetherian. So as R has a unit, by 1.11 M has both ACC and DCC on
submodules. So by 1.19, M has a composition series. �

4 Quotient Rings

From 1900-1920 it was known that R semiprime and DCC implies Artin-Wedderburn, so
you know exactly the structure of R. Hopkins proved that DCC implies ACC. In the
1950’s, the question was what can we draw from the weaker hypothesis of R semiprime,
and ACC. People thought these assumptions were too general to say anything meaningful.
This leads us onto Goldie’s theorems, and how to generalise fields of fractions to non-
commutative rings.

Definition 4.1. An element c of a ring is right regular if r(c) = 0, left regular if l(c) = 0,
and regular if both. A ring Q is called a quotient ring if Q has 1, and every regular
element of Q is a unit.

By 3.20, every right Artinian ring is a quotient ring. In particular, a division ring is a
quotient ring.

Definition 4.2. Let Q be a ring with 1 and R a subring of Q. The ring Q is said to be
a right quotient ring of R, if:

1. Every regular element of R is a unit of Q.

2. Every element of Q is expressible as ac−1, where a, c ∈ R and c is regular.

A left quotient ring is defined analogously. It is not obvious that these exist or are unique
when they do.

Example 4.3. (a) Any field of fractions of an integral domain is a right quotient ring
for the integral domain.

(b) Consider Z ⊂ 2Z ⊂ Z(p) = {ac | a, c ∈ Z, p - c, p prime} ⊂ Q. Then Q is a right
quotient ring of Z and so of all those in between (as is true in general). Note that
2Z is not unital, but we don’t require a subring to have a unit even if the bigger
ring does.

(c) Mn(Q) is a left (and right) quotient ring of Mn(Z). The regular elements are those
with non-zero determinant, as for a regular A, we can find a matrix B (the adjoint)
with AB = BA = dIn, for some d = det(A) ∈ Z \ 0.
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Note that if Q is a right quotient ring of R, then Q is a quotient ring. If R has a right
quotient ring Q, then we say that R has a right order on Q. The following is the analogue
of a common denominator.

Proposition 4.4. Suppose that R has a right quotient ring Q. Let c1, ..., cn be regular
elements of R. Then there exists r1, ..., rn, c ∈ R with c regular such that c−1

i = ric
−1 for

all i.

Proof. By induction on n. For n = 1, let r1 = c1, c = c2
1. Now assume that we have

obtained t1, ..., tn−1, d ∈ R, with d regular, and t−1
i = tid

−1. Consider d−1cn. As Q is a
right quotient ring for R, we have d−1cn = rr−1

n for some r, rn with rn regular. We have
cnrn = dr = c say, so c is regular in R. Now c−1

i = t1d
−1 = t1(rc−1) = ric

−1, where
ri = tir ∈ R for all i < n. Also c−1

n = rnc
−1
n . �

Proposition 4.5. Let R be a ring with a right quotient ring Q.

(a) If I /r R, then IQ /r Q, and every element of IQ is expressible as xc−1 with x ∈ I,
and c regular in R.

(b) If K /r Q, then K ∩R /r R, and (K ∩R)Q = K.

Proof. (a) Clearly IQ /r Q. IQ is finite sums of products, so there is still some work to
do. A typical element of IQ is

α = t1q1 + ...+ tkqk

with ti ∈ I and qi ∈ Q. So

α = t1a1c
−1
1 + ...+ tkakc

−1
k

with ai, ci ∈ R, ci regular. By the above, we can find r1, ..., rk, c ∈ R with c regular,
such that c−1

j = rjc
−1 (common denominator c). So

α = (t1a1r1 + ...+ tkakrk)c
−1.

(b) Clearly K∩R/rR. Clearly (K∩R)Q ⊂ K, and we can write any k ∈ K as k = ac−1,
a, c ∈ R, and thus k ∈ (K ∩R)Q, as a = (ac−1)c ∈ K, and c−1 ∈ Q.

�

Corollary 4.6. Suppose that R has a right quotient ring Q. If R is right Noetherian,
then Q is right Noetherian too.

Proof. This follows from (b) above: start with a chain in Q, and intersect this with R,
which then must stabilise, because R is Noetherian. �

Now, we want to prove uniqueness of right quotient rings.

Lemma 4.7. Let R1, R2 be rings with right quotient rings Q1, Q2 respectively. Suppose
that R1

∼= R2. Then Q1
∼= Q2.
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Proof. Let f : R1 → R2 be the isomorphism. A typical element of Q1 is ac−1 with
a, c ∈ R and c regular. Note that f(c) is regular in R2. Define F : Q1 → Q2 by
F (ac−1) = f(a)f(c)−1. We need to check that this is well-defined. Suppose that ac−1 =
bd−1, with c, d regular. Then ac−1d = b. (if R was commutative could just conclude that
ad = bc). Now we have c−1d = ef−1 for some e, f ∈ R1, with f regular. So df = ce,
hence f(df) = f(ce), so f(d)f(f) = f(c)f(e). Both f(f), f(c) are regular in R2, so we
have

f(c)−1f(d) = f(e)f(f)−1 (∗)

But b = aef−1, so bf = ae, hence f(bf) = f(ae), so f(b)f(f) = f(a)f(e), thus
f(b) = f(a)f(e)f(f)−1, so by (∗), f(a)f(c)−1 = f(b)f(d)−1, as required. Similarly, F
is a homomorphism, and bijective. For example, to prove additivity, use the common
denominator. Note that for injectivity, you can reverse the above argument. �

Corollary 4.8. If R has two right quotient rings then these are isomorphic via an iso-
morphism which is the identity map on R.

4.1 The Ore Condition

Now we consider the question of existence of quotient rings. This is a much longer road
than that of establishing uniqueness.

Definition 4.9. Let ∅ 6= S ⊂ R be a subset. S is multiplicatively closed if s1, s2 ∈ S ⇒
s1s2 ∈ S. R has the right Ore condition with respect to S if given a ∈ R, s ∈ S, there
exist a1 ∈ R, s1 ∈ S with as1 = sa1. This is also known as the right common multiple
property.

One can think of the Ore Condition as a “poor man’s commutativity”.

Example 4.10. The set of regular elements is multiplicatively closed, provided it is
non-empty.

Lemma 4.11. Let S be a multiplicatively closed subset of R. Suppose that the elements
of S are regular in R and that R has the right Ore condition with respect to S. Let
(x, c), (y, d), (r, s) ∈ R × S. such that cr = ds and xr = ys. Then for any a, b ∈ R,
ca = db implies that xa = yb.

Think about what this means in terms of fractions, and common multiples. Recall that if
R is a (commutative) integral domain, then we can construct a field of fractions. Contrast
the equivalence relation there with what we are doing.

Proof. Since R has the right Ore condition with respect to S, there exists (λ, µ) ∈ R× S
such that bµ = sλ. Now caµ = dbµ = dsλ = crλ. So aµ = rλ as r(c) = 0. Hence
xaµ = xrλ = µdλ = ybµ. Thus xa = yb since l(u) = 0. �

Remark. We used both left and right regularity of elements of S.

Theorem 4.12. Let R be a ring with at least one regular element. Let S be the set of all
regular elements or R. (In an integral domain this is all non zero elements.) Then R has
a right quotient ring if and only if R satisfies the right Ore condition with respect to S.

Note. Often we just take S as here to be the set of all regular elements, and by “R satisfies
the right Ore condition”, we mean with respect to this S.
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Proof. “⇒”: Let a ∈ R, c ∈ S. Then by definition of a right quotient ring, we must have
that c−1a = a1c

−1
1 for some a1 ∈ R, and c1 ∈ S. So ac1 = ca1.

“⇐”: Define an equivalence relation ≡ on R× S as follows: (x, c) ≡ (y, d)⇔ there exists
(r, s) ∈ R × S such that cr = ds and xr = ys. This is clearly reflexative. For symmetry,
assume that (x, c) ≡ (y, d). By the right Ore condition, we can find (r1, s1) ∈ R× S such
that dr1 = cs1(∗). Since (x, c) ≡ (y, d), we can find (r, s) ∈ R × S such that cr = ds and
xr = ys. Then by the above technical lemma, we have that yr1 = xs1. Thus (y, d) ≡ (x, c)
by this and (∗). Suppose now that (x, c) ≡ (y, d) ≡ (z, e). By the right Ore condition,
there exists (r, s) ∈ R × S such that cr = es, and there exists (r2, s2) ∈ R × S such that
dr2 = (es)s2 = (cr)s2 = c(rs2), so this gives that yr2 = xrs2. Again the technical lemma
gives that dr2 = ess2, so yr2 = zss2. So xrs2 = yr2 = zss2. Hence xr = zs since s2 is
regular. So the relation is transitive.
Let Q = {(x, c) | (x, c) ∈ R × S}/∼. Now we need to turn this into a ring. Denote the
class of (x, c) by x

c . Define
x

c
+
y

d
:=

xr + ys

ds
,

where (r, s) ∈ R× S is such that cr = ds. This is well defined: Suppose that x
c = x′

c′ and
y
d = y′

d′ . Then by the right Ore condition, there is (r′, s′) ∈ R × S, with cr′ = d′s′, and
(ρ, σ) ∈ R× S such that dsρ = d′s′σ. By the technical lemma, we have that ysρ = y′s′σ.
Now

crρ = dsρ = d′s′σ = c′r′σ

By the lemma, xrρ = x′r′σ, so

(xr + ys)ρ = xrρ+ ysρ = x′r′σ + y′s′σ = (x′r′ + y′s′)σ

Thus xr+ys
ds = x′r′+y′s′

d′s′ . With similar techniques, it can be shown that Q under this
addition is an Abelian group. Define

x

c
· y
d

:=
xλ

dµ

where (λ, µ) ∈ R × S is such that yµ = cλ. Show that this product is also well defined,
and that (Q,+, ·) forms a ring. Q also has the following properties:

1. Q has an identity 1 = d
d for any regular d ∈ S.

2. R can be embedded in Q as a subring, via

x 7→ xd

d
,

again for (any) d ∈ S, the map is independent of choice of d, and a ring monomor-
phism.

3. Identifying R with it’s image in Q, elements of S are units of Q, and Q is the right
quotient ring.

�

Note. Note that there is actually work to be done to prove this is a symmetric equivalence
relation, which is quite rare. We won’t use the details of this construction later, as usual
with these sorts of things.
So the question still remains, as to how often does Ore’s condition hold / the right quotient
ring exists.
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4.2 Integral Domains

Definition 4.13. A module MR is said to have finite Goldie (or uniform) dimension, if
M contains no infinite direct sum of (non-zero) submodules.

Artinian and Noetherian modules have finite Goldie dimension, as an infinite direct sum
allows to construct an infinite ascending/descending chain. So we can consider this a
weaker requirement then the strong conditions of being Noetherian or Artinian.
The following technical lemma will help us make this definition more tractable.

Lemma 4.14. Let R be a ring and c ∈ R such that r(c) = 0. Let I /rR, with I ∩ cR = 0.
Then I + cI + c2I + ... is a direct sum.

Proof. Let x0 + cx1 + c2x2 + ...cnxn = 0. Then x0 = 0, as −x0 ∈ I ∩ cR = 0. Then
cx1 + c2x2 + ...cnxn = 0, so as r(c) = 0, x1 + c1x2 + ...cn−1xn = 0. Similarly, x1 = 0.
Continue, to obtain that xi = 0 for all i. Hence the sum is direct. �

It is fairly easy to see that if a domain has a right quotient ring D, then D must be a
division ring. Indeed, an integral domain R satisfies the following condition, as it has a
field of fractions, and so RR has finite Goldie dimension - integral domains can contain
no infinite direct sum. This is in line with the motto - “whatever you do for general rings,
check what this means in the commutative case”.

Theorem 4.15. Let R be a domain. Then R has right quotient division ring if and only
if RR is finite dimensional.

We prove a far stronger result.

Proof. “⇒”: Let I,K be two non-zero right ideals of R. Let 0 6= a, c ∈ I,K respectively.
By the right Ore condition, there exists a1, c1 ∈ R with c1 6= 0, such that ac1 = ca1. Thus
0 6= ac1 = ca1 ∈ I ∩K. Thus RR cannot contain an infinite direct sum of right ideals.
“⇐”: We use the above lemma. Let a, c ∈ R with c 6= 0. If a = 0, then we have ac = ca.
So assume that a 6= 0. So aR 6= 0. So aR ∩ cR 6= 0, by the lemma. So there exists
a1, c1 ∈ R with c1 6= 0 such that ac1 = ca1. So by Ore’s theorem, R has a right quotient
ring which must be a division ring, as every non-zero element is regular so a unit of the
quotient ring. �

This is a special case of Goldie’s theorem, see 5.11. In this case the proof is quite straight-
forward. The theorem shows that the Ore condition can be obtained naturally, in a far
easier way than you might expect.
Now we give an example to show that a right quotient ring need not exist. Recall that
if k is a field, then k[x] is a PID. This is proven using the Euclidean algorithm, on the
degree of the polynomial.

Example 4.16 (G.Higman). We exhibit an integral domain, which has a quotient ring
on the left, but not on the right. To construct, let F be a field with a monomorphism
F → F , a 7→ ā (a ∈ F ) which is not surjective. Let {ā | a ∈ F} =: F̄ ( F . Let
R = F [x], as a set, but with multiplication defined by xa = āx, and the distributive
law. It can be checked that this defines an integral domain (by a degree argument).
Furthermore, R has the Euclidian algorithm, so every left ideal of R is principal. (The
commutative proof works here for left ideals but not right because of the twist.) So by
the above, R has a left quotient division ring. However, R does not satisfy the right Ore
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condition (with respect it’s non-zero/regular elements): Consider x+a and x2 in R, where
a ∈ F \ F̄ . Suppose that there exists f(x), g(x) such that (x + a)f(x) = x2g(x). Then
(x+ a)(b0 + b1x+ ...+ bkx

k) = x2(c0 + ...+ ck−1x
k−1) for some bi, ci ∈ F , where bk 6= 0.

So
ab0 + (b̄0 + ab1)x+ ...+ ( ¯bk−1 + abk)x

k + b̄kx
k+1 = ( ¯̄c0 + ...+ ¯̄ck−1x

k−1)x2

so b̄k = ¯̄ck−1. Being a monomorphism, this implies that bk = ¯ck−1 ∈ F̄ . Now ¯bk−1 +abk =
¯ck−2. This implies that a ∈ F̄ unless bk = 0, so bk = 0. Therefore, the only option is

f = g = 0.

Remark. (a) The ring R⊕Rop with have a quotient ring on neither side.

(b) In fact, Mal’cer has constructed an example of an integral domain which is not
embeddable in any division ring.

If we have quotient rings on the right and left then the following shows that these must
be the same.

Proposition 4.17. If R has a left quotient ring P and a right quotient ring Q, then
Q ∼= P which is the identity on R, and Q is also a left quotient ring, P a right quotient
ring.

Proof. Consider the arbitrary element ac−1 of Q, with a, c ∈ R and c regular. Since R
has the left Ore condition, there exists a1, c1 ∈ R with c1 regular, such that c1a = a1c.
So ac−1 = c−1

1 a ∈ Q. Then Q is a left quotient ring, and we obtain the isomorphism from
the earlier uniqueness theorem. �

5 Goldie’s Theorems

Recall that DCC implies ACC for rings, semiprime and DCC implies Artin Wedderburn.
We now seek to answer the question of what semiprime and ACC imply.

5.1 The Singular Submodule

Definition 5.1. Let M 6= 0 be a right R-module. A submodule E of M is called essential
if E ∩K 6= 0, whenever K 6= 0 is a submodule of M .

Every non-zero ideal of a commutative domain is essential - take the product of a non
zero element of E and of K. See also exercise 29, which gives that if A is a submodule of
MR, then there exists a submodule B of M such that A⊕B is essential.

Lemma 5.2. Let E be an essential submodule of MR. Let a ∈M . Define

F = {r ∈ R | ar ∈ E}.

Then F is an essential right ideal of R.

Proof. Clearly F is a right ideal of R. Now let 0 6= I /r R. If aI = 0, then 0 6= I ⊂ F ∩ I.
Now assume that aI 6= 0, thus aI is a non-zero submodule of M and therefore aI∩E 6= 0.
So there exists x ∈ E, t ∈ I such that 0 6= x = at. Hence 0 6= t ∈ F ∩ I. Thus F is
essential in R. �
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Proposition 5.3. Let M be a right R module. Define

Z(M) = {m ∈M | mEm = 0 for some essential right ideal Em of R}

Then Z(M) is a submodule of M .

Note. The right singular ideal Z(R) of R can also be written as:

Z(R) = {x ∈ R | r(x) is essential in R}.

Proof. Let m1,m2 ∈ Z(M), so m1E1 = 0, m2E2 = 0, for some essential right ideals
E1, E2 of R. Then m1 − m2 ∈ Z(M), as (m1 − m2)(E1 ∩ E2) = 0, and E1 ∩ E2 is an
essential right ideal still. It is not obvious how to proceed, but we can use the preceding
lemma. Let m ∈ Z(M), a ∈ R. Then there exists an essential right ideal E of R, such
that mE = 0. Define F = {r ∈ R | ar ∈ E}. By the lemma with MR = RR, F is an
essential right ideal of R. Now maF ⊂ mE = 0, hence ma ∈ Z(R). �

Definition 5.4. Z = Z(M) as defined above is called the singular submodule of M .

Z = Z(RR) is clearly a two sided ideal of R. Similarly Z ′ = Z(RR) is a two sided ideal
of R. However, these need not be the same! We call Z the right singular ideal of R, and
Z ′ the left singular ideal of R.

Lemma 5.5. Let R be a ring with ACC on right annihilators. Then

(a) Z(R) is a nil ideal.

(b) If R is a semiprime ring, then Z = 0.

Proof. The first is done by “Fittings Lemma”.

(a) Let z ∈ Z. Claim: there is some n ≥ 0 such that znR ∩ r(zn) = 0. The chain

r(z) ⊂ r(z2) ⊂ ...

must stabilise: r(zn) = ... = r(z2n). Let y ∈ znR ∩ r(zn). y = znt for some t ∈ R,
and zny = 0, implies that z2nt = 0, so t ∈ r(z2n) = r(zn). So y = znt = 0. Now
zn ∈ Z since Z is an ideal of R. Hence r(zn) is essential by the above note. So
znR = 0 and zn+1 = 0.

(b) Follows directly from Utumi’s Lemma 2.33.

�

Definition 5.6. R is a called a right Goldie ring if RR is finite dimensional and R has
ACC on right annihilators.

A integral domain is then a Goldie ring. A right Noetherian ring is a right Goldie ring.

Lemma 5.7. Let R be a semiprime right Goldie ring, and c ∈ R. Then r(c) = 0 ⇒
l(c) = 0.

Proof. Now cR is essential by 4.14. So l(c) ⊂ Z(R). By 5.5(b), Z(R) = 0 and thus
l(c) = 0. �

Remark. So right regular elements are left regular automatically. Note l(c) = 0 6⇒ r(c) = 0
- see exercise 48.
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5.2 Goldie’s Theorems

The following proposition is key.

Proposition 5.8. Every essential right ideal of a semiprime right Goldie ring R contains
a regular element.

Proof. Let E be an essential right ideal of R. Then by Utumi’s lemma 2.33, E cannot
be nil (all nil one sided ideals are zero). Using ACC on right annihilators, choose c1 ∈ E
such that r(c1) is maximal in {r(x) | 0 6= x ∈ E, x not nilpotent} 6= ∅. Then r(c1) =
r(c2

1). If E ∩ r(c1) = 0, then r(c1) = 0. So by 5.7, c1 is regular. If E ∩ r(c1) 6= 0,
then as above, E ∩ r(c1) is not nil. Choose c2 ∈ E ∩ r(c1) such that r(c2) is maximal
in {r(x) | 0 6= x ∈ E ∩ r(c1), x not nilpotent} 6= ∅. Then r(c2) = r(c2

2). We claim
r(c1 + c2) = r(c1)∩ r(c2). Clearly r(c1 + c2) ⊃ r(c1)∩ r(c2). Conversely, if c1y = −c2y for
some y ∈ R, then c2

1y = −c1c2y = 0, so y ∈ r(c2
1) = r(c1), so c1y = 0, and so also c2y = 0,

thus r(c1 + c2) = r(c1) ∩ r(c2). Similarly, if c1a = c2b ∈ c1R ∩ c2R, then c1a = c2
1a =

c1c2b = 0, as c2 ∈ r(c1), thus c1R ∩ c2R is a direct sum. If r(c1 + c2) 6= 0, then choose
c3 ∈ E∩ r(c1)∩ r(c2) 6= 0. Repeat process, to obtain r(c1 + c2 + c3) = r(c1)∩ r(c2)∩ r(c3),
and (c1R⊕c2R)+c3R is a direct sum. As RR is finite dimensional, this procedure cannot
continue indefinitely, so we obtain c = c1 + ...+ cn with c ∈ E and r(c) = 0. �

This is similar to the proof that semiprime Artinian rings have identity, as that proof was
inspired by this.

Lemma 5.9. If K is a nilpotent (two sided) ideal of a ring R, then l(K) (also two sided)
is an essential right ideal of R.

Proof. Let 0 6= I /rR. If IK = 0, then 0 6= I ⊂ l(K)∩ I. Otherwise, since K is nilpotent,
there exists n > 1 such that IKn = 0, but IKn−1 6= 0. But then 0 6= IKn−1 ⊂ l(K) ∩ I.
So l(K) is essential as a right ideal. �

Lemma 5.10. Let R be a ring, with a right quotient ring Q. Then

1. E essential right ideal of R⇒ EQ essential right ideal of Q.

2. F essential right ideal of Q⇒ F ∩R essential right ideal of R.

Proof. 1. Let K 6= 0 be a right ideal of Q. Then K ∩ R is a right ideal of R, and so
intersects E non-trivially, a ∈ E ∩K ∩R. Then a = a1 ∈ EQ. So EQ is essential.

2. Let 0 6= J /r R. We want to show F ∩ J = (F ∩R) ∩ J 6= 0. Now JQ is a non-zero
ideal of Q, so t ∈ JQ ∩ F 6= 0. We can write t = xc−1 for x ∈ J , c ∈ R regular.
Then tc = x 6= 0, tc ∈ F ∩ J , so F ∩ J 6= 0, and F ∩R is essential in R.

�

Theorem 5.11 (Goldie’s Theorem, 1960). A ring R has a semisimple Artinian right
quotient ring Q ⇔ R is a semiprime right Goldie ring.

Being semiprime Noetherian is (strictly) stronger than the right condition. The key
recurrent point of the proof is that every essential ideal contains a right regular (so left
regular) element.
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Proof. “⇐”: Let a, c ∈ R, with c regular. By 4.14, cR is essential in R. Let F = {r ∈ R |
ar ∈ cR}. Then F /r R, and by 5.2, F is also essential. So by 5.8, F contains a regular
element, call it c1. Thus ac1 = ca1 for some a ∈ R, and by Ore’s theorem, R has a right
quotient ring, call it Q. We want to show that this is semisimple Artinian. Let G be
an essential right ideal of Q. Then by the above, G ∩ R is an essential right ideal of R.
By 5.8, G ∩ R contains a regular element, so G contains a unit of Q, hence G = Q. So
every right ideal of Q is a direct summand of Q, by exercise 29. Thus QQ is completely
reducible. As Q has a unit, then Q is semisimple Artinian.
“⇒”: Let E be an essential right ideal of R. By the previous lemma, EQ is an essential
right ideal of Q. Q semisimple Artinian, so every right ideal is a direct summand. Hence
EQ = Q. So 1 = xc−1, for some x ∈ E, c ∈ R, regular, as 1 ∈ EQ. So c = x ∈ E.
Thus every essential right ideal of R contains a regular element. Trick: Suppose K is
a nilpotent ideal of R. By 5.9, l(K) (two sided) is essential as a right ideal. So l(K)
contains a regular element, which forces l(K) = 0. So R is semiprime.
A direct sum of right ideals of R extends to one of Q (Ii goes to IiQ), so R cannot be
an infinite direct sum. Hence RR is finite dimensional. Finally, for any annihilator right
ideal rR(T ), we have rR(T ) = rQ(T ) ∩R.
Q has ACC on right ideals (every ideal idempotently generated, so principal), hence R
has ACC on right annihilators. �

The proof used effectively all the theory we have developed so far. This theorem is from
1967, due to Goldie, and is a simplified version of his original proof. R semiprime and
DCC implies that R is isomorphic to a product of matrix rings over division rings. The
weaker condition, R semiprime and ACC, then implies R has a right quotient ring which
is a product of matrix rings over division rings. This came as a surprise at the time, as
this weak condition contains a large class of rings.

5.3 The Prime Case

We now see what happens if the ring is prime. If A is an ideal of R, then the right ideal
AQ of Q is not necessarily a two-sided ideal of Q. However we can ensure it is a left ideal
when Q is Noetherian.

Lemma 5.12. Let R be a ring with a right quotient ring Q. Suppose that Q is right
Noetherian. Then A / R⇒ AQ / Q.

Proof. Clearly, AQ /r Q. Let c be a regular element of R. Now for all i > 0, ciAQ ⊂ AQ
so we can consider the chain

AQ ⊂ c−1AQ ⊂ c−2AQ ⊂

of right ideals in Q. This stabilises, hence for some k, c−kAQ = c−(k+1)AQ, hence
AQ = c−1AQ. This holds for any regular c ∈ R, so as we can write any element of Q as
ac−1 where a, c ∈ R and c is regular, (ac−1)AQ = a(AQ) ⊂ AQ, so AQ is a left ideal of
Q. �

Theorem 5.13 (Goldie, 1958). A ring R has a simple Artinain right quotient ring if and
only if R is a prime right Goldie ring.

Proof. “⇐”: By Goldie’s Theorem, we know R has a semisimple Artinian right quotient
ring Q and we just need to show this is simple. Let AB = 0, with A,B / Q, then
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(A ∩ R)(B ∩ R) = 0. So as R is prime, either A ∩ R = 0, or B ∩ R = 0. Hence
A = (A ∩R)Q = 0 or B = (B ∩R)Q = 0, so A = 0 or B = 0.
“⇒”: R is a semiprime right Goldie ring. Let AB = 0, with A,B /R, suppose B 6= 0. By
the above, BQ / Q. So BQ = Q, because Q is simple. So 0 = AB = ABQ = AQ. Thus
A = 0, and R is a prime ring. �

Note that this shows that if R is a prime ring, then it’s right quotient must be prime too.
Chronologically, the main theorem was done 2 years later, and this corollary before! In
the remaining sections, we will do some small topics where this machinery is used.

5.4 Quasi-Frobenius Rings

Definition 5.14. A ring R is called Quasi-Frobenius (QF) if

(a) R has DCC on right and left ideals

(b) Every right ideal of R is a right annihilator.

(c) Every left ideal of R is a left annihilator.

Remark. Recall that Artinain means that our ring has identity. We cannot say that these
rings are Artinian, but we shall prove that they all have an identity in this section.

Example 5.15. (a) All semisimple Artinian rings are Quasi-Frobenius.

(b) Let F be field and G a finite group. Then the group ring is Quasi-Frobenius (we
won’t prove this though). Note that when the characteristic does not divide |G|,
the F [G] is semisimple Artinian. If F has characteristic p > 0 and p | |G|, then let
x =

∑
g∈G g. This is central and xR is nilpotent, as x2 = |G|x = 0 (so Mashke’s

Theorem is an if and only if statement).

An equivalent way to state the definition is the following.

Definition 5.16. A ring R is called Quasi-Frobenius (QF) if

(a) R has DCC on right and left ideals.

(b) I /r R⇒ I = rl(I).

(c) I /l R⇒ I = lr(I).

Lemma 5.17. Let R be a Quasi-Frobenius ring, Then:

(a) I /r R⇒ I = rl(I) and I /l R⇒ I = lr(I).

(b) R is Noetherian.

(c) xR = 0 and x ∈ R⇒ x = 0, and Rx = 0, x ∈ R⇒ x = 0.

Proof. For (a) and (b) see 2.7. For (c) we have 0 = rl(0) = r(R), and 0 = lr(0) = l(r). �

Recall that Z = Z(R) is the right singular ideal of R, and Z ′ = Z ′(R) is the left singular
ideal of R, and these don’t typically agree (example: upper triangular matrices). Also,
E(R) is the right socle, E′(R) the left, and N = N(R) the nilpotent radical.
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Theorem 5.18. In a Quasi-Frobenius ring R, then E(R) = l(N) = E′(R) = r(N).

Proof. If F is an essential right ideal of R, then F ⊃ E, as F is essential, so Z ⊂ l(E).
Also as R has DCC on the right, all right ideals contain a minimal right ideal, hence E
is essential and l(E) ⊂ Z. Thus Z = l(E). Now R is right Noetherian, so by 5.5 Z is
nil, and by 2.31 Z is nilpotent, thus l(E) = Z ⊂ N . Hence E = rl(E) ⊃ r(N). But
EN = 0, so E ⊂ l(N). So we have that r(N) ⊂ E ⊂ l(N). Symmetrically, we have that
l(N) ⊂ E′ ⊂ r(N). So these are all equal. �

Remark. You cannot just use exercise 36 to say E = l(N), as this requires existence of
the identity.

Theorem 5.19. Let R be a ring with DCC on left and right ideals, l(R) = 0 = r(R), and
E ⊂ E′. Then R has an identity.

Proof. By Hopkin’s Theorem 2.31, N is nilpotent, so N 6= R, as l(R) = 0. Hence R/N
is a non-zero semisimple Artinian ring, and so has an identity, e + N , by 3.21 . Then
R = N +Re. So 0 = r(R) = r(N) ∩ r(Re) = E′ ∩ r(Re). Since NE = 0 always, so

E′ ∩ r(Re) = E ∩ r(Re) = r(Re)

as E is an essential right ideal. So the result follows by 3.20. �

Ref: Orders in Quasi-Frobenius rings, Journal of Algebra, 1971, pages 329-345.

Corollary 5.20. Any Quasi-Frobenius Ring has an identity.

5.5 The Goldie Dimension of a Module

In this section we shall assume that for all modules MR, mR = 0⇒ m = 0. For example
this always holds when R is unital and MR is a unital R module.

Definition 5.21. UR is said to be uniform, if U 6= 0, and U1 ∩ U2 6= 0 for any Ui
submodules of UR.

Clearly irreducible submodules are uniform, and if R is a domain, then RR is uniform.

Proposition 5.22. UR is uniform, if and only if U 6= 0 and for any non zero u1, u2 ∈ U ,
there exists r1, r2 ∈ R such that u1r1 = u2r2 6= 0.

Lemma 5.23. Let MR 6= 0 be finite dimensional. Then M contains a uniform submodule.

Proof. If M not uniform, it contains a direct sum M1 ⊕M2. If M1 not uniform, then it
contains a direct sum M11 ⊕M12 . So we have a direct sum M11 ⊕M12 ⊕M2. This cannot
continue forever, as finite dimensional. �

Theorem 5.24. Let MR 6= 0 be finite dimensional. Then there exist uniform submodules
U1, ..., Un of M such that their sum is direct, and U1 ⊕ ...⊕ Un is essential in M .

Proof. By the above, M contains a uniform submodule U1. If U1 is not essential, then
there exists 0 6= X1 such that U1 ∩ X1 = 0. Choose U2 uniform in X1. If U1 ⊕ U2 not
essential, then etc. Since M contains no infinite dimensional direct sum, this process must
terminate. �
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Think of uniform as analog here, of irreducible modules in Artinian case. We will now
investigate the number n of uniform submodules in the direct sum.

Proposition 5.25. Let MR be a module containing a direct sum of uniform submodules
S = U1 ⊕ ...⊕ Un, which is essential in M . Suppose that for all i we have submodules Vi
with 0 6= Vi ⊂ Ui. Then V1 ⊕ ...⊕ Vn is also essential in M .

Proof. Let S1 = V1 ⊕ U2 ⊕ ...⊕ Un. It is sufficient to show that S1 is essential in M . Let
0 6= X be a submodule of M . Then X ∩S 6= 0. Choose 0 6= x = u1 + ...+un with ui ∈ Ui.
If u1 = 0, then x ∈ S1 ∩X. If u1 6= 0, then by 5.22, there exists r ∈ R with 0 6= u1r ∈ V1.
Then 0 6= xr = u1r + u2r + ...+ unr ∈ S1 ∩X. �

Recall: If V is a finite dimensional vector space, then any two basis have the same number
of elements. For two bases x1, ..., xk, and y1, ..., yl look at x2, ..., xn. We must have at
least one of yi not a linear combination of x2, .., xk. Say y1. So y1, x2, ..., xk are linearly
independent, and we can write x1 as a linear combination, so forms a basis. If k > l, then
y1, ..., yl, ..., xk is a basis, which is tosh. By symmetry, we also can’t have k < l. So k = l.

Theorem 5.26. Let MR have finite (Goldie) dimension. Then the integer n of 5.24 is
an invariant of the module.

Proof. Suppose that S = U1 ⊕ · · · ⊕ Uk, and T = V1 ⊕ · · · ⊕ Vl are both direct sums of
uniform submodules which are essential in M . Consider S1 = U2 ⊕ · · · ⊕ Un. Suppose
for a contradiction that S1 ∩ Vj 6= 0 for all j. Then S1 is essential : for any submodule
K 6= 0, K ∩ Vj 6= 0 for some Vj , thus (K ∩ Vi) ∩ (S1 ∩ Vi) 6= 0, so K ∩ S1 6= 0. But
S1 is not essential as S1 ∩ U1 = 0. Therefore there exists some Vi with S1 ∩ Vi = 0.
Without loss of generality, this is V1, so the sum S2 := (V1 ∩ U1) ⊕ U2 ⊕ · · · ⊕ Uk is
direct, and is essential by the above. Continuing this way, removing U2, the submodule
(V1∩U1)⊕U3⊕· · ·⊕Uk intersects trivially some Vi, for i 6= 1, and by the same reasoning
S3 = (V1 ∩ U1) ⊕ (V2 ∩ U2) ⊕ U3 ⊕ · · · ⊕ Uk is direct and essential. If k > l, then
(V1 ∩ U1) ⊕ (V2 ∩ U2) ⊕ · · · ⊕ (Vl ∩ Ul) ⊕ · · · ⊕ Uk is essential in M , which is impossible,
as Uk ∩ Vi for some i, so the sum is not direct. Therefore, k ≤ l, and by symmetry k ≥ l,
thus k = l. �

Definition 5.27. Let MR be finite dimensional. Then the invariant n ∈ N is called the
Goldie (or Uniform) dimension. It is denoted by dimM . We define dimM = 0 for M = 0,
and dimM =∞ if not finite Goldie dimensional.

Clearly dimM = 1 if and only if M 6= 0 and M is uniform. Goldie introduced this
dimension to prove his original theorems, but the modern proof which we have done
doesn’t use it. However, this still has many uses.
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6 Exercises

6.1 Questions

1. Suppose that R satisfies all ring axioms for a ring with identity, except that for all
x, y ∈ R, x+ y = y + x. Show that this axiom is implied by the rest.

2. Let R be a generalised Boolean ring: for any x ∈ R, x2 = x. Show that R is
commutative (first show that x+ x = 0 for all x ∈ R).

3. A left-identity for a ring R is e ∈ R with ex = x for all x ∈ R. Similarly a
right-identity is e ∈ R with xe = x for all x ∈ R.

(a) Show that if a ring has a left-identity and a right-identity, then these must be
the same element. Therefore, if an identity exists, it must be unique.

(b) Give an example of a ring R with infinitely many left-identities (try and find
a subring of a 2× 2 matrix ring).

4. Let R, S be rings, and θ : R→ S a homomorphism of rings. Show that ker(θ) is an
ideal of R, and θ(R) is a subring of S. Show that θ(R) need not be an ideal.

5. Show that for a division ring D (D has an identity, and every non-zero element is a
unit), D has no right ideals other than 0 and D.

6. (Converse) Let D be a ring with identity. Suppose that D has no right ideals other
than 0 and D. Show that D is a division ring. Show that, replacing the assumption
D has an identity with D2 6= 0, the same conclusion holds.

7. Let R be a ring with identity, and M a right R-module. Show there exist submodules
M1, M2 of M with M = M1 ⊕M2, where M1 is unital, and M2R = 0 (mr = 0 for
all r ∈ R and m ∈M2).

8. Let R be a ring with identity, with R = A ⊕ B a direct sum of right ideals. If
A is a two-sided ideal, does it then follow that B is also two-sided? Proof or
counterexample.

9. Let A and B be ideals of a ring R, with R = A⊕B. Show that R/A ∼= B as rings.

10. Show that f : H→M2(C),

f : a+ bi+ cj + dk 7→
(
a+ bi c+ di
−c+ di a− bi

)
,

is an injective ring homomorphism.

11. Show that a submodule of a finitely generated module need not be finitely generated.

12. Show that Q is not finitely generated as a Z-module.

13. Let R be a ring with identity, and M a unital cyclic right R module. Show that
M ∼= R/I for some right ideal I of R.

14. Let F be a field. Let A = F ⊕F , a ring under the standard operations. Show that:

(a) (0, F ) and (F, 0) are irreducible A-submodules.
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(b) (0, F ) and (F, 0) are isomorphic as F -modules, but not as A-modules.

15. Recall lemma 3.20, which says that if R is a ring with DCC on right ideals, 0 = l(R),
and R contains an element c ∈ R with r(c) = 0, then R contains an identity. The
following shows that the condition r(c) = 0 cannot be weakened to r(R) = 0.
(Baer’s Example) Let F be a finite field, and

R =

F 0 0
F 0 0
F F F


Show that R is a ring, and that l(R) = 0 = r(R), but that R does not have an
identity.

16. Let M be a right R-module, and θ ∈ End(M). Show that θ is an isomorphism when

(a) M is Artinian and θ is a monomorphism.
(b) M is Noetherian and θ is an epimorphism.

17. Show that both [
Z 4Z
Z Z

]
and

[
Z 2/2Z
0 2/2Z

]
are Noetherian rings.

18. Show that both [
Q Q
0 Q

]
and

[
R C
0 C

]
are Artinian rings.

19. Let
R =

[
Q R
0 R

]
Show that

(a)

N =

[
0 R
0 0

]
is an ideal of R.

(b) R/N ∼= Q⊕ R as rings.
(c) NR is irreducible.
(d) R is a right Artinian ring.
(e) R is not a finitely generated Q-module.
(f) R is not a left Artinian ring (consider RN).

20. Show that a finite direct sum of prime rings with identity is a semi-prime ring.

21. Let R be a semiprime ring. Show that

(a) If I is an ideal of R, then l(I) = r(I), and I + r(I) is a direct sum.
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(b) If M is a minimal right ideal of R then RM is a minimal ideal of R.

22. Let e be an idempotent of a semi-prime ring R. Prove that eR is a minimal right
ideal if and only if the ring eRe is a division ring. Deduce that eR is a minimal
right ideal if and only if Re is a minimal left ideal.

23. Let S 6= ∅ be a subset of a ring R. Show that

(a) r(S) /r R and l(S) /l R.
(b) If S /r R, then r(S) / R.
(c) rlr(S) = r(S) and lrl(S) = l(S).

24. Let R be a ring with identity, and P maximal in the set {r(I) | 0 6= I /r R}. Show
that P must be a prime ideal of R.

25. Let M be minimal right ideal and K a nil right ideal of a ring R. Show that
MK = 0.

26. Let S = {xa}a∈A be a set of vectors in a vector space V . Define what it means for
S to span V and for S to be linearly independent. Prove that every vector space
has a basis.

27. Show that a finitely generated module has a maximal submodule.

28. Let R be a ring which is not nil. Prove that the intersection of all prime ideals of
R is a nil ideal (Show that if x ∈ R is not nilpotent, then there exists a prime ideal
P with x 6∈ P ).

29. Let M be a right R-module with a submodule A. Show there exists a submodule
B of M such that A⊕B is essential in M .

30. Let R be a ring with identity, M a unital irreducible right R-module. Show that
M ∼= R/K, where K is maximal right ideal of R.

31. Suppose that M is a right R-module, and mR = 0 for m ∈ M only for m = 0.
Prove that the socle of M is the intersection of all its essential submodules.

32. Let R be a prime ring. Show that any two minimal right ideals of R are isomorphic
as right R-modules (If I and K are such then IK 6= 0).

33. Let R be a right Noetherian ring. Let I be an ideal of R such that R/I is a right
Artinian ring. Show that for all n ≥ 1, the ring R/In is right Artinian (see 0.4).

34. Let I be a right ideal of a ring R. Suppose that there exist prime ideals P1, ..., Pn
of R such that I ⊂ ∪ni=1Pi. Show that for some i, I ⊂ Pi (Use induction on n.
Consider terms such as IP2 · · ·Pn).

35. Let E be the right socle of a ring R. Prove that E2 = E3. Provide an example to
show that E 6= E2 in general.

36. Let R be a right Artinian ring. Show that E = l(N), where E is the right socle,
and N the nilpotent radical of R (view l(N) as a module over an appropriate ring).

37. Give an example of an Artinian ring where the left and right socles differ (see
example 3.18).
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38. Let R be a commutative Noetherian ring with identity. Prove that R is an Artinian
ring if and only if every prime ideal of R is a maximal ideal (Hint: {0} is a product
of prime ideals).

39. Show that a prime right Artinian ring must be a simple ring.

40. Show that a prime ideal in a right Artinian ring must be a maximal ideal.

41. Prove that a nil one-sided ideal in a right Artinian ring R must be nilpotent, by
using the fact that the ring R/N is a semisimple Artinian, where N is the nilpotent
radical of R.

42. Let M be a module of finite length. Let K be a submodule of M . Show that
|M | = |K|+ |M/K|, where |X| denotes the composition length of the module X.

43. Let R be a right Artinian ring. Let I be an ideal of R such that I = aR = Rb for
some a, b ∈ R. Show that I = bR = Rb (first show that for all x ∈ R, xR ∼= R/r(x),
and then use a composition length argument).

44. Show that a left Artinian and right Noetherian ring must necessarily be right Ar-
tinian too.

45. Let M be a (unital) irreducible module over a semisimple Artinian ring R. Show
that M ∼= I, where I is a minimal right ideal of R.

46. Show that the right singular ideal of a right Artinian ring R is l(E), where E is the
socle of R.

47. Find the quotient rings of [
Z 2Z
Z Z

]
and

[
Z Z
0 Z

]
.

48. Consider the matrix
c =

(
x+ a x2

0 0

)
,

in the ring M2(R), where R is the integral domain from example 4.16, and x + a,
x2 the elements considered there. Show that c is right regular but not left regular
in M2(R).

49. Prove that a non-zero ideal of a prime ring is essential as a right ideal.

50. Show that a prime right Goldie ring with a non-zero (right) socle must be simple
Artinian.

51. (Non-examinable) Let V be a vector space over Q, with basis {x1, x2, ...}. Let R be
the ring of endomorphisms of V . Consider the endomorphisms of V defined by

e(x1, x2, ...) = (x1, 0, x3, 0, x5, ...)

f(x1, x2, ...) = (0, x2, 0, x4, 0, ...)

t(x1, x2, ...) = (x1, 0, x2, 0, x3, ...)

u(x1, x2, ...) = (x1, x3, x5, ...)

t′(x1, x2, ...) = (0, x1, 0, x2, 0, x3, ...)

u′(x1, x2, ...) = (x2, x4, x6, ...)

Show that
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(a) e+ f = 11V .
(b) t = et and tu = e.
(c) tR = eR.
(d) t′u′ = f and t′ = ft′.
(e) t′R = fR.
(f) t and t′ are injective.
(g) {t, t′} is a free basis for RR.

Deduce that two free basis’ of R need not have the same number of elements (Recall
that a finite free basis of FR is f1, ..., fn ∈ F , where any element r ∈ R can be written
uniquely as r = f1r1 + · · ·+ fnrn). This shows that n need not be an invariant, as
it is in the commutative case.

Solutions are available upon request - send me an email.
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