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Humans and other vertebrates occasionally show a preference for items remembered to be costly or
experienced when the subject was in a poor condition (this is known as a sunk-costs fallacy or state-
dependent valuation). Whether these mechanisms shared across vertebrates are the result of
convergence toward an adaptive solution or evolutionary relicts reflecting common ancestral traits
is unknown. Here we show that state-dependent valuation also occurs in an invertebrate, the desert
locust Schistocerca gregaria (Orthoptera: Acrididae). Given the latter’s phylogenetic and
neurobiological distance from those groups in which the phenomenon was already known, we
suggest that state-dependent valuation mechanisms are probably ecologically rational solutions to
widespread problems of choice.

A
nimal decision-making is often mod-

eled using the assumption that choices

are based on the fitness consequences

that each choice yields. Fitness gains, in turn,

depend on both the intrinsic properties of the

options and the state of the subject at the time

of the choice. Recently, however, studies in hu-

mans and other vertebrates (1, 2) have shown

that understanding the adaptive significance of

learning mechanisms may be the key to pro-

gress in functional modeling of decision-

making, because preferences more closely

reflect the subject_s state at the time of learning

than at the time of choice. Classical learning

models (3) do not address the subject_s state,

but recent treatments of evaluative incentive

behavior do (4) and are compatible with the

approach taken here.

A recent theoretical model linking learning

to decision-making (5) proposes that anomalies

of choice behavior in which past investments

rather than expected returns dominate preference

(examples include Sunk Costs,Work Ethics, and

the Concorde Fallacy) result from a decelerated

function of value (fitness or utility) versus ob-

jective payoff, combined with a mechanism

of choice that is dependent on the remem-

bered benefit previously yielded by each op-

tion (Fig. 1). Although some utility functions

can be accelerated or sigmoid, because

Bdesperados[ in dire states would accrue less

marginal gains from resources than would

better-off individuals, most surviving organisms

operate beyond this extreme zone, and hence

the assumption of decelerated gains has very

wide justification. In summary, if two sources

(L and H) yielding the same objective payoff

(M
L
0 M

H
; M, magnitude) are systematically

encountered when the individual is in different

states (low or high reserves for L and H,

respectively), then the source encountered when

needs are greater (L) will yield larger value

gains (V
L
9 V

H
). According to the model, al-

though gains depend jointly on payoff magni-

tude and present state, it is the remembered

gains, rather than remembered payoff magni-

tudes or states, that drive future preferences.

The adaptive advantages of such a mecha-

nism are not obvious because, at least under

experimental conditions, they can produce ir-

rational preferences: Starlings can prefer a more

delayed over a more immediate reward even

when having explicit knowledge of the delays

involved (6), and rats can frantically operate a

lever or chain that causes food or water rewards

even when being neither hungry nor thirsty (7).

Supporting evidence for incentive or state-

dependent learning comes from the mammal

and bird species that have been studied so far,

but there is an open question as to whether this

mechanism of learned value assignment was an

early vertebrate acquisition or a wider phenom-

enon perhaps universally present because it

confers selective advantages.

We tested whether such state-dependent

valuation learning occurs in a grasshopper, an

animal with a simpler nervous system (8) than

that of the vertebrates in which these effects are

known. Grasshoppers make particularly good

test subjects for studying and modeling indi-

vidual decision-making because they forage for

themselves and are capable of learning (9, 10).

Additionally, much is known about how changes

in their nutritional state affect their feeding

behavior (11).

We manipulated nutritional state both at the

time of learning and at the time of preference

testing. We trained grasshoppers so that they

encountered each of two options under different

nutritional states: low (option L) and high

(option H). Each option consisted of an odor

(lemon grass or peppermint) paired during

learning with a food item (a small piece of

seedling wheat). Food items were of the same

size and quality in both options, and each odor

was always associated with the same state for

each subject. Individuals received an equal

number of reinforced trials with each option

over a 3-day training regime (fig. S1). After

training was completed, individual grasshop-

pers were presented with a choice between the

two options. Half of the subjects had the test

in the low state and the other half in the high

state (12).

We considered four possible outcomes. The

first of these, Magnitude Priority, states that if

choices depend on the intrinsic properties of the

options, no systematic preference will be

observed between odors because the food items

were identical. The second, Value Priority,

states that if choices are controlled by past

gains, preference should be for the option

experienced in the low state during training,

Fig. 1. Putative mecha-
nisms of valuation learning
as a function of a subject’s
state. The ordinate is a cur-
rency that is assumed to
correlate to adaptive value,
and the abscissa is ametric of
objective state, here assumed
to be the level of accumu-
lated reserves. The plot illus-
trates consequences for a
subject that encounters two
food sources (L and H), each
when the subject is in either
of two states: low or high,
respectively. The magnitudes
of the outcomes are labeled
ML and MH and are rep-

resented as arrows causing positive state displacements. The value (or benefit) of each outcome (VL and
VH) is the vertical displacement that corresponds to each change in state. The first derivative (marginal rate)
of the value-versus-state function at each initial state is indicated by the slopes of the tangents SL and SH.
The inset shows that the subject’s representation of the magnitude of rewards (m) may differ from the
objective metrics of the outcomes (in the example, ML 0 MH but mL 9 mH). Models of learning may use M,
S, V, or m as being directly responsible for value assignment.
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regardless of state at the time of choice. The

third, State Priority, stipulates that if options are

valued by association with the desirability of

the state they evoke, the option preferred should

be that experienced in the high state during

training, regardless of state during choice. The

fourth, State-Option Association, stipulates that

choice should favor the source met under the

same state at the time of training. Thus, subjects

may choose option L under state low and op-

tion H under state high.

A majority of the grasshoppers preferred

option L (the stimulus to which the grass-

hoppers were trained when in a state of low

reserves) regardless of their state at the time

of testing (Fig. 2). Averaged across all test

subjects, the mean preference (TSE) for option
L was 0.71 T 0.06. These results indicate a

significant preference for option L (t
1,15

0 3.60,

P G 0.01; one sample t test against indiffer-

ence). Preference was not affected by the state

of the subject at the time of testing (Fig. 2) or

by odor bias, and the state-by-odor interac-

tion was not significant Eanalysis of variance

(ANOVA): F
1,15

0 0.09, P 9 0.77; F
1,15

0 0.01,

P 9 0.92; and F
1,15

0 0.01, P 9 0.91, re-

spectively^. There also was no left arm–right

arm positioning effect (paired-samples t test:

t
1,15

0 0.17, P 9 0.86). Next, we considered

whether the speed of learning during training,

as measured by latencies to contact and eat the

reward, might have anticipated the preference

results. A repeated-measures ANOVA indi-

cated that latencies to start eating decreased

across the 3 days of training (F
2,15

0 15.00, P G
0.01; fig. S2), but averaged over time, the la-

tencies between the L and H options were

similar (F
1,15

0 0.08, P 9 0.78), and no sig-

nificant option-by-day interaction was observed

(F
2,15

0 0.91, P 9 0.42). Finally, we considered

the possibility that each grasshopper preferred

the option for which it had a shorter latency

during training (regardless of whether shorter

latencies were exhibited for the L or H option)

(12). We found, however, no association be-

tween latencies and choices (Pearson_s correla-
tion index, r 0 0.19, P 0 0.48).

Our experiment supports the idea that in this

insect, the benefit gained at the time of training

affects later preference evenwhen themagnitudes

of the rewards are equal (namely, Value Priority).

The Value Priority outcome can be mediated by

two very different mechanisms that could be

labeled Perception Distortion and Remembered

Value. Perception Distortion states that the

energetic state at the time of training influences

the distal mechanisms of perception, so that the

memory of the properties of the options is altered:

Equal payoffs are perceived as being different (In

Fig. 1, m
L
9 m

H
). Under the Remembered Value

mechanism, the memory for the magnitudes is

accurate, but the animal attaches different sub-

jective attractiveness to each option, depending

on its state while learning. These considerations

may apply to similar anomalies of decision-

making in all animals, including humans.

In grasshoppers, there is evidence favoring

the Perception Distortion mechanism, because

preference for the option experienced when re-

serves are low could be explained by peripheral

gustatory responses underlying feeding behav-

ior. In these animals, as time since the last feed

increases, nutrient levels in the hemolymph

drop, and as a consequence, mouthpart taste

receptors become increasingly sensitive to key

depleted nutrients (13, 14). This means that at a

neurological level, a grasshopper with low

reserves will receive greater feedback when it

contacts a food item (15–17). Similarly, through

digestive adaptations, individuals may extract

more nutrients from identical food items when

in greater need (18), and later choices may be

governed by the memory of the postabsorptive

gain (or the sensory adaptation consequent on

the gains) and not of the objective features of

the food items. The latter route for Perception

Distortion could in theory also apply to ver-

tebrates, but the available evidence does not

point in this direction, at least for starlings. In

their case, peripheral adjustments leading to

either distorted representations or distorted per-

ceptions due to rapid absorptive adaptations are

both unlikely. This is because in learned

valuation effects, starlings_ preference between

equally delayed rewards is not accompanied by

alterations in the pecking rate (suggesting that

neither the perception of the magnitude of the

reward nor timing was altered) (1, 5, 6).

Thus, although similar behavioral outcomes

are observed in starlings and grasshoppers, it is

possible that different underlying mechanisms

drive state-dependent learned valuation in each

species. This difference supports the view that

state-dependent learned valuation has intrinsic,

although not yet identified, adaptive advantages

and has probably emerged and persisted in

distant species via convergent evolution.

State-dependent valuation may be computa-

tionally more efficient than remembering the

attributes of each option and weighing them

against current nutritional state. This may re-

duce errors and help when decisions need to be

made quickly and where neural constraints

limit the amount of information that can be

processed (19, 20). State-dependent valuation

can cause suboptimal choices if there is a

difference between the choice circumstances

and the circumstances for learning about each

option, as in our experiment. In particular, for

there to be a cost, there must be a correlation

between state and the probability of encounter

with each option when options are met singly.

This would occur because when these options

are met simultaneously and a choice takes

place, information about past gains could be

misleading. Outside these probably rare circum-

stances, themechanisms do not favor suboptimal

alternatives (21). It could be argued that even if

state-dependent valuation causes frequent and

costly suboptimal choices in nature, it may

persist because of neural or psychological

constraints or because the cost associated with

the development of a different mechanism is

higher than the cost of using such a metric. The

latter possibility cannot be discarded, but we do

not favor it as a working hypothesis.

Ultimately, it would be ideal to measure the

prevalence of different learning and choice

circumstances in natural environments, but until

that becomes possible, progress can be made by

modeling the theoretical ecological worlds

under which state-dependent valuation would

be evolutionarily stable when used in com-

petition with animals that form preferences

based on the absolute properties of their options.
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and means (TSE) (gray circles) with respect to
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percentage of choices for option L was signifi-
cantly higher than indifference.
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An Equivalence Principle for the
Incorporation of Favorable Mutations
in Asexual Populations
Matthew Hegreness,1,2* Noam Shoresh,1* Daniel Hartl,2 Roy Kishony1,3†

Rapid evolution of asexual populations, such as that of cancer cells or of microorganisms
developing drug resistance, can include the simultaneous spread of distinct beneficial mutations.
We demonstrate that evolution in such cases is driven by the fitness effects and appearance times
of only a small minority of favorable mutations. The complexity of the mutation-selection process is
thereby greatly reduced, and much of the evolutionary dynamics can be encapsulated in two
parameters—an effective selection coefficient and effective rate of beneficial mutations. We
confirm this theoretical finding and estimate the effective parameters for evolving populations of
fluorescently labeled Escherichia coli. The effective parameters constitute a simple description and
provide a natural standard for comparing adaptation between species and across environments.

S
pontaneous beneficial mutations are the

fuel for adaptation, the source of evolu-

tionary novelty, and one of the least

understood aspects of biology. Although adapta-

tion is everywhere—cancer invading tissues,

bacteria escaping drugs, viruses switching from

livestock to humans—beneficial mutations are

notoriously difficult to study (1, 2). Theoretical

and experimental advances have been made in

recent years by focusing on the distribution of

fitness effects of spontaneous beneficial mutations

(3–8). Mapping the options for improvement

available to single organisms, however, is insuf-

ficient for understanding the adaptive course of an

entire population, especially in asexual popula-

tions of microorganisms or cancer cells where

multiple mutations often spread simultaneously

(9–16). Here, we use modeling and experimen-

tal results to show that the seeming additional

complication of having multiple lineages

competing within a population leads in fact to

a drastic simplification: Regardless of the

distribution of mutational effects available to

individuals, a population_s adaptive dynamics

can be approximated by an equivalent model in

which all favorable mutations confer the same

fitness advantage, which we call the effective

selection coefficient. We provide experimental

estimates of the effective selection coefficient

and the corresponding effective rate of benefi-

cial mutations for laboratory populations of

Escherichia coli, and we demonstrate the

predictive power of these effective parameters.

First, we use numerical simulations to demon-

strate the simplification that emerges in a popula-

tion large enough and a mutation rate high enough

that clonal interference (17–19)—competition

among lineages carrying favorable mutations—is

common. In an evolving population, most

beneficial mutations are rapidly lost to random

genetic drift (20, 21). Of the remaining mutant

lineages, some increase in frequency slightly,

only to decline as more fit lineages appear and

expand in the population (10, 16, 17, 22). The

evolutionary path taken by the population as a

whole is determined by successful mutations that

escape stochastic loss and whose frequencies rise

above some minimal level. Using a population

genetics model that includes mutation, selection,

drift, as well as clonal interference (23), we

explore the distribution of these successful

mutations for several underlying distributions of

beneficial mutations (Fig. 1), including an expo-

nential distribution as suggested by Gillespie_s
(8) and Orr_s (3) use of extreme value theory.

The salient feature of Fig. 1 is that very dissim-

ilar underlying distributions—exponential, uni-

form, lognormal, even an arbitrary distribution—

all yield a similar distribution of successful

mutations (24). Moreover, the distribution of

successful mutations has a simple form, peaked

around a single value. This fitness value is

typical of those mutations whose effects are not

so small that they are lost through competition

with more fit lineages, but are also not so large

that they are impossibly rare. The unimodal

shape motivates the hypothesis that an equivalent

model that allows mutations with only a single

selective value might approximate the behavior

of the entire distribution of beneficial mutations.

We investigate whether the adaptive dynam-

ics observed in evolving E. coli populations can

be reproduced by an equivalentmodel with only a

single value, a Dirac delta function of mutational

effects. We rely on a classic strategy for

characterizing beneficial mutations in coevolving

subpopulations that differ initially only by

selectively neutral marker. The spread of muta-

tions is monitored through changes in the marker

ratio (22, 25–29). Our experimental technique

uses constitutively expressed variants of GFP

(green fluorescent protein)—YFP (yellow fluo-

rescent protein) and CFP (cyan fluorescent

protein)—as neutral markers. All experimental

populations start with equal numbers of YFP

and CFP E. coli cells (N
Y
and N

C
) and evolve

for 300 generations through serial transfers

while adapting to glucose minimal medium.

The expected behavior of the marker-ratio

trajectories depends upon the rate at which

beneficial mutations appear in a population. When

beneficial mutations are rare, mutant lineages arise

and fix one at a time (8, 17). The spread of each

individual mutant lineage shows as a line of
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Fig. 1. Successful muta-
tions cluster around a sin-
gle value, irrespective of
the shape of the under-
lying mutational distribu-
tion. Probability density of
four underlying distribu-
tions: (A) exponential; (B)
uniform; (C) lognormal;
(D) arbitrary. (Insets) The
corresponding distributions
of successful mutations, defined here as those whose lineages constitute at least 10% of the population at any
time before the ancestral genotype diminishes to less than 1%. All simulations were done with beneficial
mutation rate of mb 0 10j5 and population size Ne 0 2 � 106 and were replicated 1000 times (23).
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