

Plane stress versus plane strain. Transformation equations. Principal strains and maximum shear strains. Mohr's circle for plane strain. Measurement of strain and strain rosettes.

Plane stress versus plane strain

	Plane Stress	Plane Strain
Stresses	σ _z =0, τ _{xz} =0, τ _{yz} =0 σ _x , σ _y , τ _{xy} may be non-zero.	τ _{xz} =0, τ _{yz} =0 σ _x , σ _y , σ _z , τ _{xy} may be non-zero.
Strains	$\gamma_{xz}=0, \gamma_{yz}=0$ $\varepsilon_x, \varepsilon_y, \varepsilon_z, \gamma_{xy}$ may be non-zero.	$ε_z=0$, $γ_{xz}=0$, $γ_{yz}=0$ $ε_x$, $ε_y$, $γ_{xy}$ may be non-zero.

Plane stress and plane strain do not ordinarily occur simultaneously. One exception is when $\sigma_z = 0$ and $\sigma_x = -\sigma_y$, since Hooke's Law gives $\varepsilon_z = 0$.

Transformation Equations for Plane Strain

We want to derive equations for the normal strains ε_{x1} and ε_{y1} and the shear strain γ_{x1y1} associated with the x_1y_1 axes, which are rotated counterclockwise through an angle θ from the *xy* axes.

Consider the change in length and orientation of the diagonal of a rectangular element in the *xy* plane after strains ε_x , ε_y , and γ_{xy} are applied.

Diagonal increases in length in the x_1 direction by ε_v dy sin θ .

Diagonal rotates counterclockwise by α_2 .

$$\alpha_2 ds = \varepsilon_y dy \, \cos \theta$$
$$\alpha_2 = \varepsilon_y \frac{dy}{ds} \cos \theta$$

Diagonal increases in length in the x_1 direction by γ_{xy} dx cos θ .

Diagonal rotates clockwise by α_3 .

$$\alpha_3 ds = \gamma_{xy} \, dy \, \sin \theta$$
$$\alpha_3 = \gamma_{xy} \frac{dy}{ds} \sin \theta$$

4

The total increase in the length of the diagonal is:

$$\Delta(ds) = \varepsilon_x dx \, \cos\theta + \varepsilon_y dy \, \sin\theta + \gamma_{xy} dy \, \cos\theta$$

The normal strain ε_{x1} is the change in length over the original length:

$$\varepsilon_{x1} = \frac{\Delta(ds)}{ds} = \varepsilon_x \frac{dx}{ds} \cos\theta + \varepsilon_y \frac{dy}{ds} \sin\theta + \gamma_{xy} \frac{dy}{ds} \cos\theta$$

$$\frac{ds}{\theta} \frac{dy}{ds} = \cos\theta \qquad \frac{dy}{ds} = \sin\theta$$

So, the normal strain ε_{x1} is: $\varepsilon_{x1} = \varepsilon_x \cos^2 \theta + \varepsilon_y \sin^2 \theta + \gamma_{xy} \sin \theta \cos \theta$

The normal strain ε_{y1} can be found by substituting θ +90° into the equation for ε_{x1} .

To find the shear strain γ_{x1y1} , we must find the decrease in angle of lines in the material that were initially along the x_1y_1 axes.

To find α , we just sum α_1 , α_2 , and α_3 , taking the direction of the rotation into account.

$$\alpha = -\alpha_1 + \alpha_2 - \alpha_3$$

$$\alpha = -\varepsilon_x \frac{dx}{ds} \sin \theta + \varepsilon_y \frac{dy}{ds} \cos \theta - \gamma_{xy} \frac{dy}{ds} \sin \theta$$

$$\alpha = -\varepsilon_x \sin \theta \cos \theta + \varepsilon_y \sin \theta \cos \theta - \gamma_{xy} \sin^2 \theta$$

$$\alpha = -(\varepsilon_x - \varepsilon_y) \sin \theta \cos \theta - \gamma_{xy} \sin^2 \theta$$

To find the angle β , we can substitute θ +90 into the equation for α , but we must insert a negative sign, since α is counterclockwise and β is clockwise.

$$\beta = (\varepsilon_x - \varepsilon_y)\sin(\theta + 90)\cos(\theta + 90) + \gamma_{xy}\sin^2(\theta + 90)$$
$$\beta = -(\varepsilon_x - \varepsilon_y)\sin\theta\cos\theta + \gamma_{xy}\cos^2\theta$$

So, the shear strain γ_{x1y1} is:

$$\gamma_{x1y1} = \alpha + \beta$$

$$\gamma_{x1y1} = -(\varepsilon_x - \varepsilon_y)\sin\theta\cos\theta - \gamma_{xy}\sin^2\theta - (\varepsilon_x - \varepsilon_y)\sin\theta\cos\theta - \gamma_{xy}\cos^2\theta$$

$$\gamma_{x1y1} = -2(\varepsilon_x - \varepsilon_y)\sin\theta\cos\theta - \gamma_{xy}(\sin^2\theta - \cos^2\theta)$$

$$\frac{\gamma_{x1y1}}{2} = -(\varepsilon_x - \varepsilon_y)\sin\theta\cos\theta - \frac{\gamma_{xy}}{2}(\sin^2\theta - \cos^2\theta)$$

Using trigonometric identities for $\sin\theta \cos\theta$, $\sin^2\theta$, and $\cos^2\theta$ gives the strain transformation equations ...

$$\begin{bmatrix} \varepsilon_{x1} \end{bmatrix} = \frac{\varepsilon_x + \varepsilon_y}{2} + \frac{\varepsilon_x - \varepsilon_y}{2} \cos 2\theta + \frac{\gamma_{xy}}{2} \sin 2\theta \\ \begin{bmatrix} \frac{\gamma_{x1y1}}{2} \end{bmatrix} = -\frac{\left(\varepsilon_x - \varepsilon_y\right)}{2} \sin 2\theta + \frac{\gamma_{xy}}{2} \cos 2\theta \end{bmatrix}$$

Now, compare the strain transformation equations to the stress transformation equations:

$$\boxed{\sigma_{x1}} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta}{\frac{\sigma_x - \sigma_y}{2} \sin 2\theta} = -\frac{(\sigma_x - \sigma_y)}{2} \sin 2\theta + \tau_{xy} \cos 2\theta$$

The equations have the same form, but with different variables:

So, the all the equations that we derived based on the stress transformation equations can be converted to equations for strains if we make the appropriate substitutions.

Principal Strains and Principal Angles

$$\varepsilon_{1,2} = \frac{\varepsilon_x + \varepsilon_y}{2} \pm \sqrt{\left(\frac{\varepsilon_x - \varepsilon_y}{2}\right)^2 + \left(\frac{\gamma_{xy}}{2}\right)^2} \qquad \tan 2\theta_p = \frac{\gamma_{xy}}{\varepsilon_x - \varepsilon_y}$$

Remember that $\varepsilon_z = 0$ (plane strain). Shear strains are zero on the principal planes. Principal stresses and principal strains occur in the same directions.

Maximum Shear Strains

$$\frac{\gamma_{\max}}{2} = \sqrt{\left(\frac{\varepsilon_x - \varepsilon_y}{2}\right)^2 + \left(\frac{\gamma_{xy}}{2}\right)^2} \qquad \tan 2\theta_s = -\left(\frac{\varepsilon_x - \varepsilon_y}{\gamma_{xy}}\right)$$

The maximum shear strains are associated with axes at 45° to the directions of the principal strains.

Example

An element of material in plane strain has $\epsilon_x = 340 \times 10^{-6}, \epsilon_y = 110 \times 10^{-6}, \gamma_{xy} = 180 \times 10^{-6}$

Find the principal strains, the (in-plane) maximum shear strains, and the strains on an element oriented at an angle θ =30°.

Equations give $\epsilon_1 = 371 \times 10^{-6}$ $\epsilon_2 = 79 \times 10^{-6}$ $\theta_p = 19.0^\circ \text{ and } 109.0^\circ$ $\gamma_{max} = 290 \times 10^{-6}$ $\theta_s = -26.0^\circ \text{ and } 64.0^\circ$

The transformation equations with θ =30° give $\varepsilon_{x1} = 360 \times 10^{-6}$ $\gamma_{x1y1} = -110 \times 10^{-6}$

Using $\varepsilon_x + \varepsilon_y = \varepsilon_{x1} + \varepsilon_{y1}$ gives $\varepsilon_{y1} = 90 \times 10^{-6}$

Measurement of Strain

• It is very difficult to measure normal and shear stresses in a body, particularly stresses at a point.

• It is relatively easy to measure the strains on the surface of a body (normal strains, that is, not shear strains).

• From three independent measurements of normal strain at a point, it is possible to find principal strains and their directions.

• If the material obeys Hooke's Law, the principal strains can be used to find the principal stresses.

• Strain measurement can be **direct** (using electrical-type gauges based on resistive, capacitive, inductive, or photoelectric principles) or **indirect** (using optical methods, such as photoelesticity, the Moiré technique, or holographic interferometry).

Resistance Strain Gauges

- Based on the idea that the resistance of a metal wire changes when the wire is subjected to mechanical strain (Lord Kelvin, 1856). When a wire is stretched, a **longer** length of **smaller** sectioned conductor results.
- The earliest strain gauges were of the "unbonded" type and used pillars, separated by the gauge length, with wires stretched between them.

• Later gauges were "bonded", with the resistance element applied directly to the surface of the strained member.

During the 1950s, foil-type gauges began to replace the wire-type. The foil-type gauges typically consist of a metal film element on a thin epoxy support and are made using printed-circuit techniques.

Foil-type gauges can be made in a number of configurations (examples from www.vishay.com):

planar three-element rosette (0°- 45°- 90°)

Gauge length is typically around 1 mm.

Performance of bonded metallic strain gauges depends on: grid material and configuration, backing material, bonding material and method, gauge protection, and associated electrical circuitry.

It is possible to derive an equation relating strain ε and the change in resistance of the gauge ΔR :

$$\mathcal{E} = \frac{1}{F} \frac{\Delta R}{R}$$
 $F =$ gauge factor (related to Poisson's ratio and resistivity)
 $R =$ resistance of the gauge

A typical strain gauge might have F = 2.0 and $R = 120 \Omega$ and be used to measure microstrain (10⁻⁶).

$$\Delta R = \varepsilon F R = (10^{-6})(2.0)(120) = 0.00024 \Omega$$

This is a resistance change of 0.0002%, meaning that something more sensitive than an ohmmeter is required to measure the resistance change. Some form of bridge arrangement (such as a Wheatstone bridge) is most widely used.

Strain Rosettes and Principal Strains and Stresses

A "0°-60°-120°" strain gauge rosette is bonded to the surface of a thin steel plate. Under one loading condition, the strain measurements are $\varepsilon_A = 60 \ \mu\epsilon$, $\varepsilon_B = 135 \ \mu\epsilon$, $\varepsilon_C = 264 \ \mu\epsilon$. Find the principal strains, their orientations, and the principal stresses.

X

A

60°

We can use more than one approach to find the principal stresses: transformation equations alone, Mohr's circle alone, or a combination.

(Based on Hibbeler, ex. 15.20 & 15.21)

Transformation equations

From the measured strains, find ε_x , ε_y , and γ_{xy} .

$$\begin{split} & \varepsilon_{A} = 60 \ \mu\varepsilon, \ \theta_{A} = 0^{\circ} \\ & \varepsilon_{B} = 135 \ \mu\varepsilon, \ \theta_{B} = 60^{\circ} \\ & \varepsilon_{C} = 264 \ \mu\varepsilon, \ \theta_{C} = 120^{\circ} \\ & \varepsilon_{A} = 60 = \varepsilon_{x} \cos^{2} 0^{\circ} + \varepsilon_{y} \sin^{2} 0^{\circ} + \gamma_{xy} \sin 0^{\circ} \cos 0^{\circ} \\ & \varepsilon_{A} = 60 = \varepsilon_{x} \\ & \varepsilon_{B} = 135 = \varepsilon_{x} \cos^{2} 60^{\circ} + \varepsilon_{y} \sin^{2} 60^{\circ} + \gamma_{xy} \sin 60^{\circ} \cos 60^{\circ} \\ & \varepsilon_{B} = 135 = 0.25 \ \varepsilon_{x} + 0.75 \ \varepsilon_{y} + 0.433 \ \gamma_{xy} \\ & \varepsilon_{C} = 264 = \varepsilon_{x} \cos^{2} 120^{\circ} + \varepsilon_{y} \sin^{2} 120^{\circ} + \gamma_{xy} \sin 120^{\circ} \cos 120^{\circ} \\ & \varepsilon_{C} = 264 = 0.25 \ \varepsilon_{x} + 0.75 \ \varepsilon_{y} - 0.433 \ \gamma_{xy} \end{split}$$

3 equations, 3 unknowns Solve to find $\varepsilon_x = 60 \ \mu\epsilon$, $\varepsilon_y = 246 \ \mu\epsilon$, $\gamma_{xy} = -149 \ \mu\epsilon$ Use ε_x , ε_y , and γ_{xy} in the equations for principal strains to find $\varepsilon_1 = 272 \ \mu\epsilon$, $\theta_{p1} = -70.6^\circ$, $\varepsilon_2 = 34 \ \mu\epsilon$, $\theta_{p2} = 19.4^\circ$.

Alternatively, use ε_x , ε_y , and γ_{xy} to construct the Mohr's circle for (in-plane) strains and find principal strains and angles.

To find the principal stresses, use Hooke's Law for plane stress ($\sigma_z = 0$)

$$\sigma_{x} = \frac{E}{1 - v^{2}} (\varepsilon_{x} + v\varepsilon_{y}) \qquad \begin{array}{l} \varepsilon_{x} = \varepsilon_{1} = 272 \times 10^{-6} \\ \varepsilon_{y} = \varepsilon_{2} = 34 \times 10^{-6} \end{array}$$

$$\sigma_{y} = \frac{E}{1 - v^{2}} (\varepsilon_{y} + v\varepsilon_{x}) \qquad \begin{array}{l} E = 210 \text{ GPa} \\ v = 0.3 \end{array}$$

So, the principal stresses are: $\sigma_x = \sigma_1 = 65 \text{ MPa}$ $\sigma_y = \sigma_2 = 26 \text{ MPa}$

Solve the equations to get c = 153, R = 119, and $2\theta = 141.3^{\circ}$ When you solve for 2θ , you may get -38.7° . But we have drawn the diagram above such that 2θ is positive, so you should take $2\theta = -38.7^{\circ} + 180^{\circ} = 141.3^{\circ}$.

Next, draw the Mohr's circle and find principal strains as before. Finally, find principal stresses using Hooke's Law.