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1 Using this pack

This pack consists of Natural Deduction problems, intended to be used alongside
The Logic Manual by Volker Halbach. The pack covers Natural Deduction
proofs in propositional logic (£1), predicate logic (£2) and predicate logic with
identity (£=). The vast majority of these problems ask for the construction of
a Natural Deduction proof; there are also worked examples explaining in more
detail the proof strategies for some connectives, as well as some questions about
Natural Deduction which are more unusual.

The pack hopefully offers more questions to practice with than any student
should need, but the sheer number of problems in the pack can be daunting.
For this reason there is also a ‘core’ set of questions aimed at covering the most
crucial skills needed to tackle a Natural Deduction proof.

Next to each problem is a number in brackets indicating the number of steps
in my solution. This can be taken as a rough measure of the difficulty of the
problem, although it should be emphasised that this is not always perfect: some
long proofs can be methodical, while some short proofs can be counter-intuitive.

For each of these problems I provide a proof and an explanation of the
strategy behind the proof. I use additional notation to annotate the Natural
Deduction proofs in two ways. First, next to each horizontal line in a proof I
label which rule has been applied. Where a connective has a pair of introduction
rules (such as VIntrol and VIntro2) or a pair of elimination rules (such as Alntrol
and Alntro2), I only distinguish between the first and second versions in the
solutions for the earlier problems; in the later stages it should be clear which
version has been applied. Second, for longer proofs, I sometimes use a number
to mark both a discharged assumption and the point in the proof when that
assumption is discharged. When an assumption has been discharged by =Intro I
label the assumption with a superscript =. These are not formal components of
a proof, but they should help in explaining how the proof has been constructed.

The solutions I provide are never the only possible solutions. Usually I aim
to provide the shortest possible solution, but in some cases I also present possible
alternative proofs.

At the very end of the pack there are extra problems focused on ways in
which Natural Deduction can be altered or extended, either by adding new
rules or replacing existing rules.

If this pack is viewed as a PDF, it is possible to click on any problem to go
directly to its solution. Clicking on the solution’s header will take you back to
the problem list. When using a printed copy of the document, these hyperlinks
are unlikely to work as intended.

A changelog for the pack and an archive of past versions are maintained at
github.com/Alastair-Carr/Natural-Deduction-Pack; if you have any com-
ments, questions or suggestions, do not hesitate to contact me there.


https://github.com/Alastair-Carr/Natural-Deduction-Pack

2 Summary of rules
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3 Worked examples

3.1 Implication

We can use the rules for implication and conjunction to prove the following
theorem:

F(P—=Q) = (PAR) = (QAR)

The easiest way to start is by working from the bottom upwards, especially
since we aren’t given any premises to work from.

We know that the theorem we want to prove is an implication: it is a state-
ment of the form ¢ — 1. That means we can prove it by assuming ¢, giving a
proof of ¢ and then applying —Intro (discharging all of our assumptions of ¢).
Here, ¢ corresponds to P — @ and 1 corresponds to (PAR) — (Q A R), so our
proof will look like this:

[P — Q]

(PAR) = (QAR)
(P = Q)= (PAR) = (QAR))

—Intro

What is shown above isn’t a proof, but a way of helping us put the proof
together. We know that we can assume P — @ as many times as we like,
because our final —Intro step will discharge all our assumptions of P — Q.

(PAR) — (Q A R) is also an implication, so we can prove it by assuming
P A R and proving Q A R:

[P — Ql, [P AR]
Qnn

(PAR) = (QAR)
(P—= Q)= ((PAR) = (QAR))

—Intro

—Intro

We can provide a proof of Q A R by providing a proof of ) and a proof of R
and then applying the Alntro rule:

[P— QL [PAR] [P—Ql[PAR]

Q

Alntro

QMR
(PAR) — (QAR)
(P—=Q) = (PAR) = (QAR))

—Intro

—Intro



Now we have two branches to consider. Note that we can use our assumptions
of P — @ and P A R in both branches: our applications of —Intro discharge all
occurrences of P — @ and P A R above them in the proof.

We’ll consider the right branch first, because it’s the more straightforward
branch. We can easily obtain R by using our assumption of P A R and applying
AElim; we don’t even need to use our assumption of P — Q.

[P — Q[P AR]
: [P AR ol
———— AElim
Q Q AR Alntro
—Intro

(PAR) = (QAR)
(P—=Q)—= ((PAR) = (QAR))

—Intro

The left branch requires two steps. Applying AElim on P A R gives us P.
Using this P and our assumption of P — @ allows us to prove Q by —Elim:

[P A R]
———— AElim
P [P - Q] —Elim m AElim
Q Q AR R Alntro
—Intro

(PAR) = (QAR)
(P=Q) = (PAR) = (QAR))

—Intro
This gives us a complete proof.

3.2 Universal quantifier

Using the introduction and elimination rules for the universal quantifier we can
construct a proof of the following:

Ve—Vy(Pzy — Quy) - VYa—Vy—-Pzy

Our conclusion is a universal statement, so we can prove it by applying
the VIntro rule. In order to apply the VIntro rule we need to prove that
Va—Vy(Pry — Quy) F Va—Vy—Pzxy is true when any arbitrary constant is
substituted for x; we will choose a for our arbitrary constant, but we need to
ensure that a appears in no undischarged assumptions when we apply the VIntro
rule. This means our proof will look like this:

Va—Vy(Pzy — Qzy)

_Vy~Pay VInt
Vr—Vy-Pzy e



How do we get from Va—Vy(Pxy — Quy) to -VyPay? —VyPay is a negated
statement, so we can prove it by assuming VyPay and showing it leads to a
contradiction.

Where can we find a contradiction? Neither the assumption VyPay nor
our premise Vz—Vy(Pzy — Qxy) has a negation as their main connective, but
from Vx—Vy(Pzy — Qzy) we can derive (by VElim) —Vy(Pay — Qay), which
is a negated statement. This means we can obtain a contradiction if we can
somehow derive Vy(Pay — Qay) from our assumption of VyPay and our premise
Va—Vy(Pry — Qzy).

Note that the assumption VyPay contains a, but if we can derive a contra-
diction from it and successfully apply —Intro this assumption will be discharged
before we apply VIntro. If it is left undischarged by the time we reach the final
step of the proof, we won’t be able to apply VIntro.

Va-Vy(Pzy — Quy), [Vy—Pay]

: Vo-Vy(Pry — Quy)
Vy(Pay — Qay) —Vy(Pay — Qay)
—Vy—-Pay

Vr—Vy-Pzy

VElim

—Intro

VIntro

To prove Vy(Pay — Qay) we need to apply VIntro, meaning we need to show
that the statement is true for any arbitrary constant which could replace y. We
cannot choose a as our arbitrary constant, because a appears in Vy(Pay — Qay).
Instead we will choose b: if we can derive Pab — Qab without b appearing in any
undischarged assumptions, we can apply VIntro and derive Vy(Pay — Qay):

Vz-Vy(Pry — Qzy), [Vy—Pay]

Pab — Qab Va—Vy(Pzy — Quy)

Vintro VElim
Vy(Pay — Qay) —Vy(Pay — Qay)
—Intro
—Vy—Pay "
— = VInt
Vax—-Vy—-Pxy e

Proving Pab — Qab is a simple case of assuming Pab and proving Qab. Note
that Pab contains b, but we plan to apply —Intro and discharge it before we
reach the VIntro step where we go from arbitrary b to universal y.

Vz—Vy(Pzy — Qxy), [Vy—Payl, [Pab]

Qab
—Intro

Pab — Qab int Va—Vy(Pzy — Qzy) .
ntro 1m
Vy(Pay — Qay) —Vy(Pay — Qay)

—Vy—Pay
Vr—Vy-Pzy

—Intro

Vintro



We don’t have a direct way of proving Qab, but the two assumptions we’'ve
made do give us a contradiction. From Vy—Pay we can derive —~Pab, which
contradicts our assumption of Pab. From this contradiction we can apply —=Elim
and derive Qab. It turns out that in this part of the proof we don’t need to use
our premise Yo—Vy(Pzy — Qxy) again.

[Vy—Pay]
[Pab]  —Pab |
- _Elim
_ Qab Int
Pab — Qab e Vo-Vy(Pry — Qry)
VIntro VElim

Vy(Pay — Qay) —Vy(Pay — Qay)
—Vy—-Pay

VElim

—Intro
m VIntro

This gives us a complete proof, but it’s worth verifying at this stage that
both of our applications of VIntro are allowed.

The first time we apply VIntro, we move from Pab — Qab to Vy(Pay —
Qay). b doesn’t appear in Vy(Pay — Qay) or any undischarged assumptions in
the proof of Vy(Pay — Qay); Pab has already been discharged by this point.

The second time we apply VIntro, we move from =Vy—Pay to Vx—-Vy—-Pzxy.
a doesn’t appear in Yx—Vy—Pxy or any undischarged assumptions in the proof
of Yx—Vy—Pxy; both Pab and Vy—Pay have been discharged by this point.

3.3 Existential quantifier

We can use the introduction and elimination rules for the existential quantifier
to construct a proof of the following:

Jx(Pz A Qx),~Fz(Qx A Rx) - 3z(Px A —Rx)

The first thing to take note of is our existential premise Jz(PzAQx). In order
to make use of it we need to apply JElim at the end of the proof, discharging
assumptions where z is instantiated with an arbitrary constant. We’ll choose a
as our arbitrary constant; we can use it because it doesn’t appear in our premises
(Jz(Px A Qz) and —32(Qx A Rx)) or in the conclusion (Jz(Pz A —Rz)). We'll
also make sure that if a appears in any other assumptions, the assumptions are
discharged by the time we apply JElim.

This means our proof will take the following form:

[Pa A Qa),—3z(Qx A Rx)

Jz(Pz A Q) dz(Px A —Rzx)
Jz(Px A —Rx)

JElim



Our conclusion is also an existential statement, so we can prove it by applying
JIntro. There is an infinite number of different statements which we could derive
Jz(Px A =Rzx) from (Pb A —Rb and Pcigg A = Rcigg are two examples) but a
is the only constant we have any assumptions about, so it seems likely that we
will derive 3z(Px A —Rx) from Pa A —Ra:

[Pa A Qa], ~3z(Qx N Rx)
Pa A —Ra

Jz(Pzx A Q) Jz(Pxz A —Rx)
Jz(Px A —Rzx)

JIntro

JElim

This is a conjunction, so using our premise and our assumption we need to
provide a proof of Pa and a proof of —Ra:

[Pa A Qal], [Pa A Qal,
-J2(Qx A Rz) —3Jz(Qx A Rzx)

Pa —Ra
Pa AN -Ra
Jz(Pz A Qx) Jz(Pz A —Rzx)
Jx(Pzx A —Rx)

Alntro
JIntro

JElim

On the left-hand side, Pa is very easy to prove: it can be derived from our
assumption of Pa A Qa by AElim:

[Pa A Qal,
-3z(Qz A Rz)
[Pa A Qad] - :
Pa i ~la Alntro
_Pan-Ra 0
Jz(Pzx A Q) Jz(Pz A —Rzx) n
Elim
Jz(Px A -Rzx)

On the right-hand side, —Ra is a negated statement. This means we can
prove it by assuming Ra and deriving a contradiction.

Our other premise =3z (Qx A Rx) is a negated statement, so if we can prove
Jz(Qx A Rx) we have the contradiction we need:



[Pa A Qal, [Ral,

—3x(Qx A Rx)
[Pa A Qal) - Jx(Qxr A Rx) —3Jx(Qz A Rx) :
Pa " -Ra AL h
PaN-Ra
Jz(Pz A Qx) Jx(Pzx A —Rx)
Jx(Px A —Rzx)
Jz(Qx A Rx) can be derived from Qa A Ra by Jntro:
[Pa A Qal, [Ral,
—3z(Qz A Rz)
Qa A Ra
— I
[Pa A Qal] Jz(Qz A Rx) -3z(Qz A Rx)
AE -1
Pa —Ra .
PaN-Ra
Jz(Pzx A Q) Jz(Pzx A —~Rx)

Jx(Pz A —~Rx)

Qa A Ra is a conjunction, so we need to provide a proof of Qa and a proof
of Ra. It turns out we don’t need to use our premise =3z(Qz A Rx) again. We
can obtain Qa from our assumption of Pa A Qa, and we have Ra because we
have assumed it in order to derive ~Ra:

[Pa A Qal)
Qa e [Ra]
Qa N Ra EIM
[Pa A Qal Jz(Qx A Rx) —3z(Qz A Rz)
Pa ME —Ra o
PaN=Ra
Jz(Pz A Q) Jx(Px A —Rzx) e

Jz(Px A —~Rx)

This gives us a complete proof. Our assumption of Ra is discharged when
we apply —Intro and derive —=Ra. This means that by the time we apply JElim,
the only undischarged assumption left in the proof which involves a is Pa A Ra.
This means that at the end of the proof we are allowed to apply JElim and
discharge our two assumptions of Pa A Qa.

10



4 Practice problems

4.1 Core

Knowing the rules

These seven proofs cover all of the Natural Deduction rules, and can be used
to diagnose how familiar you are with the rules themselves and the strategies
which correspond to them.

Learning the rules by heart is dull, but the best way is through practice.
The later sections of the pack should have enough problems for each connective
to establish a familiarity with them. If the seven proofs below prove to be
straightforward, the later sections also have more challenging problems for each
connective.

. (PP QFQVR (3)
2. Va(Px V Px) b VaPx (3)
3. 3zPx + Jz(Pz V Qx) (3)
4. =P F —((PL A P2) A Ps) (3)
5. -PVQFP—Q (3)
6. Qa,~QbFa=aA-a=b (4)
7.F(PAQ) < (QAP) (7)

Making substitutions

The usual strategy for a proof involving quantifiers is to use the elimination rules
to turn quantified statements into statements involving constants, manipulate
those statements using the connective rules, and then turn those statements
back into quantified statements with the introduction rules.

Once you've cracked how the quantifier rules work (including the nasty
JElim), the challenge becomes knowing which constants to substitute. Some-
times you will need to use your premises multiple times, making different sub-
stitutions each time. The proofs below test this; many more can be found in
the quantifier sections of the pack.

8. VaVy(Rxy — Ryz) b VaVy(Rxy + Ryzx) (7)
9. VaIyRay F VaIyIz(Ray A Ryz) (8)
10. VaVyVz((Rzy A Rxz) — Ryz),VrRzx b+ VaVy(Rxy — Ryz) (9)

11



Indirect proofs

Sometimes you find that, no matter how hard you try, you can’t obtain the
proof you want. This might be because you need an indirect proof: you prove
a sentence ¢ by assuming —¢ and showing that it leads to a contradiction.

Indirect kinds of proofs have often appeared in past papers. Part of the chal-
lenge is spotting them in the first place. Having to derive a disjunction without
having any disjunctive premises is often a hint (- PV =P is the classic example).
Similarly, you're likely to need an indirect proof to derive an existential state-
ment from premises with no existential quantifiers (such as =Vx Pz - Jx—Px).
Sometimes they can be harder to spot, which means it can be a good idea just
to try an indirect proof if nothing else seems to be working.

There is a kind of indirect proof which is especially common. You prove ¢
by constructing a proof of the following shape:

[v]!
¢ [_‘d)]Q Intro®
_‘1/} —Intro
0 SO
d) - 1m

Instead of simply proving ¢, you show that ¢ follows from ¢ and then from
—1p. The tricky part now is knowing which 1 to assume: usually you should
look for a 1) which ¢ very easily follows from, but often there are many s which
result in proofs which work.

The examples below are all indirect proofs, including at least one with the
special shape above. Many more indirect proofs are located in later sections of
the pack, not always in obvious places.

11. =P 5 Q+PVQ (5)
12.F(@—=R) = Q) —Q (5)
13. —VaVyRazy b Ja—VyRaxy (7)
14. Pa, Qb+ 3z(Pz A Qx) V IzTy—z =y (9)

12



Conjunction

PQFPAQ

(PLAP)APsE Py

PAQFQAP

QAP R-FPA(RAQ)

P APy, (QiANQ2)ARFE (PLAQ2) AR
PAQARE(RAP)AQ

13



4.3 Implication

l.-P—>P (1)
2.FP—(Q— P) (2)
3. P—-Q,Q—R+-P—R (3)
4. FP-(P—=Q)—Q) (3)
5 (P—-Q) = (P—>RFQ—(P—R) (3)
6. ( P—>Q)—=PFQ—P (3)
7. P> (Q—=RHFQ—(P—R) (4)
8. P»(Q—R),P—-QFP—R (4)
9. (P-P)—»QF(Q@—R)—R 4)
10. F(P—-(Q@ - R)) - ((P— Q) — (P — R)) (6)
Mixed problems with conjunction
11. PAQFP —Q (2)
12.-PNQ— P (2)
13. P (QAR) P —Q (3)
4. (PANQ)—» Q)= (Q—P)FQ—P (3)
15. (PANQ)— RFP— (Q—R) (4)
16. (P> Q)A(P—-R)FP— (QAR) (6)
17. P (QAR)F (P = Q)A(P— R) (7)

Bonus challenge

Provide a Natural Deduction proof of the following which consists of no more
than eight steps:

(PLANPy)ANPs)ANPy) ANPs =P APy

(Here, a ‘step’ is considred to be any application of any rule, so the number
of steps is equivalent to the number of times a horizontal line is drawn.)

14



4.4 Disjunction

1. PVvQFQVP (3)

2. PVQ+FPV(QVR) (4)

3. (PVQ)VRFPV(QVR) (7)

4. (PVQ)V(RVP)F(PVP)V(RVQ) (11)
Mixed problems with conjunction

5. PA(QVR)F (PAQ)V (PAR) (8)

6. (PVQ)A(PVR)FPV(QAR) (8)

7. (PAQ)V(PARFPA(QVR) (9)

8. PV(QAR)F (PVQ)A(PVR) (9)
Mixed problems with implication

9. (P=-Q)VQFP—-Q (2)
10. PVQF(P—-Q)—Q (3)
11. (P—-Q)—» (P—-R)F(PVR)— (Q@ = R) (6)
12. (P> Q)V(P—-RFP—(QVR) (7)
Mixed problems with conjunction and implication

3. P=>QANQ—>P)FH(PVQ)—=(PAQ) (8)
4. (PVQ)— (PANQ)H(P—=Q)N(Q— P) (9)
5. (Q—=>RANQVP)FH(P—=Q)— (RANQ) (10)

15



4.5

1.
2.
3.

Biconditional
P&QFHQ< P
P(P+ Q)+ RFQ+ R
P+ Q)< (Q<P)

Mixed problems

4.

© ® N o

10.
11.
12.
13.

(PVQ)+ QFP—Q

(PANQ)« PFP—Q
P—-QF(PVQ) <Q
P—-QF(PAQ)+ P
(P=-Q)N(Q—>P)FP+Q
F(PAQR)— ((P—Q)—P)
F((P=Q) e P)= (P Q)
(PVQ)+< Q)+ PFP+Q

P> (Q+< RF(PAQ)«+ (PAR)
F(PV(QAR)) < (PVQ)A(PVR)

16



4.6 Negation
Negation introduction

1. PF——P
2. =P+ ~(PAQ)

. P—-PF~P
(P> Q)F-Q
 A(PAQ)FP = -Q

3

4

5

6. P> QF—-Q — P
T E(PAP)V(@QA-Q)
8. ~(PVQ)F-PA-Q

9

. =PV-QF ~(PAQ)

Ex falso quodlibet
10. - PP — Q

11. PA-PFQ

12. PVQHF-P—>Q

13. P> Q,PA-QFR

14. PVQ,P+ Q,~(PAQ)F R

Indirect proofs

15. =~P+ P
16. - PV P

17. ~(=PV-Q)F PAQ
18. «(PAQ)F —PV-Q

Mixed problems

19. ~«(P—-Q)FP

20. (P—-Q)—PFP

2l. P+ —QFP+Q

2. (P-Q)—-QF-Q—P

17



23. “PA-QF —=(PVQ) (6)
24. PV (P = Q) (6)
25. F(P—-Q)V(Q— R) (7)
26. -P = Q,RV-Q,P— (Q1VQ2),"RAN-Q2F Q1 9)
27. P> (QVR)F(P—-Q)V(P—R) (11)
28. F=(PAQ) < (mPV-Q) (12)

Bonus challenge 1

First, provide a proof of the following without using —Elim:
Second, provide a proof of the following without using —Intro:

Pk —-P

Bonus challenge 2

Provide two different proofs of the following;:
—PA-—QFPAQ

The first proof should consist only of five steps (five applications of Natural
Deduction rules).

In the second proof, you may only discharge assumptions using —Elim in the
final step of the proof. In other words, you may make any number of applications
of =Elim which don’t discharge assumptions, but an application of —=Elim may
only discharge assumptions if no rules are applied below it.

18



4.7 Universal quantifier

Unary predicates

1. VzPzx - VyPy (2)
2. +Va(Px — Px) (2)
3. Vz(Pa — Qz) F Pa — V2Qz (4)
4. VzPx ANVyQy b Vz(Pz A Qz) (5)
5. Vz(Pz — Qx) - Yy1 Py1 — Vy2Qyo (5)
6. Vz(Pz A Qz) F YyPy AVyQy (5)
7. Va(Pz — Qz),Y2-Qx F Ya—Px (5)
8. Va1 Py V VraQus b Va(Px V Q) (6)
9. YaVy(Pz — Qy) F Va(Pz — ¥2Q%) (6)
10. Vz(Px — Qx),Vz(Qx — Rx) - Vz(Px — Rx) (6)
11. Va(Pz V Qz), ~VzPx - ~V2-Qu (6)
12. Va(Pz A Q) - Yavy(Pz A Qy) (7)
Binary predicates

13. Va¥yRay b VaRoo (3)
14. Vz—-VyRzy - -VaVyRazy (3)
15. Ve Rxx - Ve—-Vy—-Rzy (4)
16. Vz—Rzx F —VaVy(Rxy V Ryz) (5)
17. =Vax—VyRyzx - Va—Vy—Rzy (6)
18. VzRzx - VaVy(Rzy — —Vz—(Rzz A Rzy)) (6)
19. VaVyRzxy - Va(Rxx A VyRyx) (7)
20. VaVyRzy F VaVy(Rxy A Ryx) (7)
21. VaVy(Rzy — Ryz),VaVy—(Rzy A Ryx) F VaVy—Rxy (9)
22. VaVy(Qzy — Qyx),VaVy(—Qzy V -Qyx) F VaVy—Qxy (9)
23. Vz—Vy—-Rxy b Voe—-VyVz—(Rxy A Ryz) (11)

24. VaVy(Rxy — Ryz),VaVyVz((Rzy A Ryz) — Rxz),Va—Vy—Rxy
- VaRox (13)

19



25. Va—Rxx,VaVyVz((Rxy A Ryz) — Rxz)
F VaVyVz—((Rzy A Ryz) A Rzx)

26. VaVyVz((Rxy A Rxz) — Ryz),VxRxx
F VavVyVz((Rxy A Ryz) — Rxz)

20
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4.8

Existential quantifier

Unary predicates

1.
2.

N ok @

dxPx + JyPy

-3z Px + Jz—-Px

Jz1(Pa — Qx1) F Pa — Jx2Quxs
Jz(Px A Qx) F JyPy A F2Q=
Jx(Px VvV Qx) F JyPy VvV I2Q=
JxPx VvV IyQy - Fz(Pz V Qz)

Pa — JzQz + Jz(Pa — Qx)

Binary predicates

8.

9.
10.
11.
12.
13.
14.

F 323y(Rxy — Ryzx)

drdyRxy - JrdyRyx

JzRza b J23y(Rxy A Ryx)
—JrxdyRzxy - ~JyRyy

F —323y(Rxy A —~Ray)

F JzRxx V Jz(Rxx — —3JyRyz)

Rab A Rbe, ~Qa, Qc F I23y((—Qx A Qy) A Rxy)

Ternary predicates

15.

Jx3y—Fz—~Pryz - ~Fr—Jy3z Pyzx

Mixed quantifier problems

16.
17.
18.
19.
20.
21.
22.

-3z Pz - Vz-Px

Jx—-Pz - -VaxPx

—VaxPz - Jz-Px

Ve—-Px - -3z Pz

Va(JyPy — Qx) F VaIy(Py — Qx)
Va—Vy(Pzry — Qzy) F VaIyPaxy
Va(Pzzx V VyQzxy) b Ve (JyPay V Q)
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23. Jz(Pzx AVyQuzy) - Jz(JyPxy A Qzx) (
24. FVxIdyRay V ~VrRxx (7
25. VedyRry — ~JzRxx, JxVyRyx - Va—-Rxx (
26. Vo(Pr — JyRyx) - 32Rza V Vo Px (10
27. VaVyVz(Ray V Rzy V Rzzx) b JxIyVz(Rza V Rzy) (17

Bonus challenge

Construct a Natural Deduction proof with the following two features:

e The proof consists of a single application of dElim, and no applications of
any other rules.

e By the end of the proof, one assumption is discharged and one is left
undischarged.
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4.9 Identity

1. F3zdyx =y (3)

2.a=b-(b=bAb=c)F-a=c (4)

. Fa=beVe(r=a—>2x=0) (7)

4. F JVyr =y < VaVyz =y (9)
Unary predicates

5. Pa,~Pbk-a=10 (2)

6. PbAQbVr(Pxr —xz=a)F Qa (5)

7. aVy(Py <> x =y) F JaVy(Py —» z =y) (6)

8. Va(xr=aVa=>),IxPr+ -Pa— Pb (7)

9. Jz(Px A Qz A Rax), Pb A Qb,YaVy((Pz A Qx) A (Py A Qy) — = =vy)

- Rab (®)

10. VaVy(Pzx Az =y — =Qy) F V2= (Pz A Qz) 9)
Binary predicates

11. VaVy(Rxy < x = y) - Ve Rz (5)

12. Vz—=Rzxz, Rab - Jzdy—x =y (5)

13. dzdyRzxy, IxVyx = y + VaVyRxy 9)

14. F Ve Pxx <> VaVy(-Pzy — -z = y) (13)

15. Vz3y(Rxy A Py),Vz—-Rxx b —VaVy(Px — (Py — = y)) (14)
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4.10 Additional challenges
Admissible rules

In this question we consider alternative rules which could be added to the system
of Natural Deduction.

We say a rule is ‘admissible’ if we can add it to the system of Natural De-
duction without changing which conclusions we can derive from which premises.
In other words, a rule is not admissible if there is a set of sentences I' and a
sentence ¢ such that ¢ is provable from I' with the rule, but ¢ is not provable
from I' in the original unaugmented system of Natural Deduction.

Which of the rules below are admissible? In each case, justify your answer:
provide a proof of ¢ from I" which would not be possible in the unaugmented
system of Natural Deduction; or show that any proof of ¢ from I using the new
rule can be rewritten using only the original Natural Deduction rules.

(4]
1. :
pAY X
X *1
2. :
-0 ﬂ;b Y,
[V — ¢]
3. :
% X3
(9]
4. :
%
(;5 v ’lﬁ *4
(¢ — 9]
5. :
% .
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Contraposition

Construct proofs of the following without using the —Intro rule:

1. 2(Q — P)F —P (3)
2. b —(PA-P) (5)
Show that:

3. Any application of —Intro can be replaced by a subproof without —Intro

Consider the rule (called contraposition) with the following representation:

(=]

¢
¢ =1

In the remaining questions of this section, we will explore how powerful the
contraposition rule is.

Write I' k¢ ¢ if there is a proof of ¢ from I in an alternate Natural Deduction
system where the rule above can be used, and all original Natural Deduction
rules except —Intro, —Intro and —Elim can be used.

We continue to write I' = ¢ if there is a proof of ¢ from I' in the original
system of Natural Deduction (i.e. with —Intro, =Elim and —Intro but without

C

contraposition).
Show that:
4. IfI'to ¢ then '+ ¢
5. == PtFc P = =(Q — Q) (1)
6. "P=>-(Q—-QFc(@—Q) —P (2)
7. (Q@—Q)—>PtcP (2)
8. ——Plk¢ P (4)
9. An application of —Elim can be replaced by contraposition and —Elim

10. An application of —Intro can be replaced by contraposition and —Intro
Using your answers to questions 3, 9 and 10, or otherwise, show that:

11. T+ ¢ then T F¢ ¢
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5 Solutions

5.1 Core
Core 1

L
PP " (P P)eQ

+—Elim
m VIntro

Our conclusion @ V R is a disjunction, so we can either prove it by proving
@ or by proving R. We're probably not going to be able to prove R since it
doesn’t appear in our premise (P — P) <> Q, so instead we’ll try and prove Q.

Our premise (P — P) + @ is a biconditional, which means that if we can
prove P — P we can use <>Elim to derive ). By assuming P, and then using
—Intro to discharge this assumption of P, we can provide this proof of P — P.

Core 2
Va(Px V Pz)
— % VElim
PaV Pa [Pa] [Pad]
VElim
Pa Vintro
VxPx

Our conclusion Vx Pz is a universal statement. We can derive it from Pa
using VIntro, as long as the constant a appears in no undischarged assumptions
by the time we apply VIntro.

Our premise Vz(Pz V Px) lets us derive PaV Pa, a disjunction. Deriving Pa
from PaV Pa requires a slightly bizarre use of VElim: we make two assumptions
of Pa and then immediately discharge them with VElim to derive Pa in one
step. Because these assumptions of Pa have been discharged, we are free to
apply VIntro and derive the conclusion VxPzx.
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Core 3

[Pa]
m ViIntro
JxPzx Fx(PzV Qx) j;j:
Jz(Px V Q)

Our premise Jx Pz is an existential statement, which means we need to use
the dreaded JElim rule. We will use this rule at the very end of the proof to
discharge an assumption of Pa.

From this assumption of Pa we can use VIntro to derive Pa V Qa, and then
JIntro to derive the conclusion Jz(Px V Q).

Our use of JElim at the end of the proof is allowed because the constant a
doesn’t appear in our premise 3z Pz, our conclusion Jx(Px V Qx) or any other
assumptions we made when proving 3z(Pz V Q).

Core 4

[(Py A P2) N\ Ps]
PLAP,
Pl AElim —|P1
ﬁ((Pl A\ P2) A\ Pg,)

AElim

—Intro

Our conclusion =((P; A P2) A Ps) is a negation, so we prove it by assuming
(Py A Py) A P3 and deriving a contradiction. Our premise —P; is a negated
statement, so we have a contradiction if we have a proof of P;.

We can prove P; from our assumption of (P A P») A P3 by using AElim twice.
Then with our premise —P; we can apply —Intro, discharge our assumption of
(Pl/\PQ)/\Pg and derive _|((P1/\P2)/\P3).

Core 5
P2 [P
-PVQ Q Qr
Q VElim?!
mﬁlntro2

Our conclusion P — @ is an implication, so we prove it by assuming P and
deriving @ from it. Our premise =P V @ is a disjunction, so we can use VElim
to split the proof into a case where we can assume =P and a case where we can
assume Q.

The right-hand case is easy. We want to prove () and we have an assumption
of @, so we don’t need to do anything else. In the left-hand case, we can use
our assumptions of P and —P to derive () by —Elim. Now we have established
Q is true in both cases, we can use —Intro to derive P — Q.
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Core 6

Alntro

Our conclusion a = a A —a = b is a conjunction, so we need to provide two
proofs: a proof of ¢ = a and a proof of —a = b.

The left-hand proof is easy. We can assume a = a and immediately discharge
it using =Intro.

The right-hand proof is a proof of a negated statement, so we assume a = b
and try to derive a contradiction from it. Since one of our premises —Pb is
a negated statement, we have the contradiction we need if we can prove Pb.
We prove Pb by using =Elim together with our other premise Pa and our
assumption of a = b.

Core 7
M AElim M AElim QA P] AElim QAP AElim
Q r Alntro P Alntro
QNP PAQ +~Intro
(PAQ) < (QAP)

The conclusion (P A Q) < (Q A P) is a biconditional, so we prove it by
providing a proof of @ A P from assumptions of P A Q and a poof of P AQ from
assumptions of Q A P.

Both of the sides of the proof work similarly. We use AElim with our as-
sumption to obtain P and @, and then we use Alntro to derive @ A P on the
left and P A @ on the right.
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Core 8

VaVy(Rxy — Ryx) e VaVy(Rxy — Ryx)
Vy(Ray — Rya) Vy(Rby — Ryb)
Rab — Rba * [Rab] Rba — Rab [Rbal
Rba -F Rab -F
Rab < Rba

VI
Vy(Ray < Rya) o
VaVy(Rxy < Ryx)

This is a past paper question from 2015. Our conclusion VaVy(Rzxy <> Ryx)
is a universal statement, which we can derive from Vy(Ray <> Rya). This in
turn we can derive from Rab <> Rba. In order to prove this, we need to provide
a proof of Rba from Rab and of Rab from Rba.

On the left-hand side we assume Rab and derive Rab — Rba from our
premise VaVy(Rxy — Ryx), which gives us Rba. The right-hand side is similar:
we assume Rba and derive Rba — Rab from the premise, which gives us Rab.
Both of these assumptions are discharged when we apply «>Intro, so we are free
to apply VIntro.

Core 9
[Rab)?> [Rbc]*
g TV
vadyRy VElim J2(fab A Rbz) JIntro
VrdyRry JyRby Jy3z(Ray A Ryz)
JyRay " Jy3z(Ray A Ryz) - Bt
Jy3z(Ray A Ryz) intee "
VaIy3z(Rzy A Ryz)

This is adapted from a past paper question from 2012. Our conclusion
Va3y3z(Rry A Ryz) is a universal statement, so we can prove it by proving
Jy3z(Ray A Ryz) as long as a doesn’t appear in any undischarged assumptions
by the time we apply VIntro.

From our premise Vz3yRxy we can derive the existential statement JyRay,
which lets us discharge an assumption of Rab by JElim (as long as b doesn’t
appear in any other undischarged assumptions when we apply JElim). However,
Rab alone isn’t enough to derive JyIz(Ray A Ryz). We need to use the premise
a second time to derive JyRby, which lets us discharge an assumption of Rbc.
With these assumptions of Rab and Rbc we can derive Jy3z(Ray A Ryz).

We need to be careful about the order in we apply the JElim steps. If we
tried to discharge Rab before Rbc, we wouldn’t be allowed to, because at that
stage b still appears in an undischarged assumption. Instead we use JyRay first
to discharge Rbc, and then use JyRay to discharge Rab.
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Core 10
VaVyVz((Rzy A Rxz) — Ryz)

VElim
VrRzz YyVz((Ray A Raz) — Ryz) VE;:
[Rab] ~ Raa :/El Vz((Rab A Raz) » Rbz) ' "
Rab A Raa " (Rab A Raa) — Rba .
—Elim
% —Intro
Rab — Rba

VIntro

Vy(Ray — Rya)
VaVy(Rxy — Ryx)

VIntro

Our conclusion VaVy(Rxy — Ryx) features two universal quantifiers; we can
prove it by proving Rab — Rba without a or b appearing in any undischarged
assumptions. To do this we assume Rab and prove Rba.

We can’t obtain Rba from Rab alone, but from one of our premises we can
derive Raa, which allows us to derive RabA Rba. From our other premise we can
obtain (RabA Rba) — Rba, giving us the proof of Rba we need. Our assumption
of Rab is discharged when we apply —Intro, so we are free to apply VIntro and
derive our conclusion.

Core 11
L.
VIntro
PVQ H(PVQP
—|P —Intro —|P N Q
Q —Elim
VIntro 2

PVQ -V

PV Q —Elim

We want to try to prove PV @ but our premise =P — ) doesn’t give us a
direct proof of P or a direct proof of Q. We will need to assume —(P V Q) and
show that it leads to a contradiction.

We start by assuming P. From this, we can derive PV @, which contradicts
our assumption of =(P V Q). Even though we have a contradiction, we can’t
immediately conclude P V @, because our assumption of P is undischarged.
Instead, we apply —Intro to discharge P and prove —P.

This is where our premise comes in. We have proved —P, and our premise
-P — @ allows us to derive (). From this, we can derive P V ) again, so
assuming —(P V Q) again leads to a contradiction. From this contradiction we
can discharge our assumptions of —=(P V @) and derive PV Q.
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Core 12

Q) ;QP Blim
TR —Intro! (Q— R)—Q? —Elim
Q o Elim?
Q —L; 1im
(CEY e T

There are many ways of carrying out this proof; shown above is one of the
shortest possible methods. To prove ((Q — R) — @) — Q, an implication, we
assume ((Q — R) — Q) and provide a proof of Q. We can’t provide a direct
proof of @), so instead we assume =@ and show that it leads to a contradiction.

Since —Q is itself a negated statement, we can show that it leads to a con-
tradiction if we can show it leads to Q. We have assumed (Q — R) — @, which
is an implication with @ as its consequent. This means that if we can derive
@ — R from —(Q, we will be able to obtain ) and hence a contradiction.

Deriving @ — R from —@Q isn’t too tricky. Since @ — R is an implication,
we can assume @, and ) and —@Q together give us R by —Elim.

We could have tried to prove ((Q — R) — Q) — Q by assuming —(((Q —
R) = Q) — Q) and deriving a contradiction from that. Doing this will result
in a longer proof, but it is still possible. Two examples below illustrate this
approach.
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48

(@R -Q =@~ F(R-R)-Q=Q! |
QP -Q e
R,
Q-r" (@—R) ~ QP
Q —E
(@Q=R-@Q-Q " H(Q@=R =@ =
(=R =Q —~Q
Q= RP (=R QP2
@ -t Q e
" (@=2R-Q@-0Q F(Q=R) Q= QP |
QR ~(Q—R) i
Q —I -
(Q=R) ~Q) ~Q F(Q@—R’) = Q) = QP

(Q—=R)—=Q)—=Q

-E



Core 13

[VyRay)!
——— VElim 9
Rab [~ Rab]
—VyRay
——— dIntro 3
Jz—VyRxy [~z —VyRxy]

—Elim?

VaVyRxy —VaVyRzy
Jx-VyRzy

—Elim?

This is a very awkward proof. Our conclusion is dz—VyRzy, but we can-
not prove it directly by JIntro. Instead we assume —3x—VyRzxy and derive a
contradiction from it. Since our premise ~VzVyRxy is a negated statement, we
have a contradiction if we can derive VaVyRzy from —Jz—-VyRzxy.

We can derive VzVyRzry from Rab, provided that neither a nor b appears in
any undischarged assumptions by the time we’ve derived Rab. But we have no
way of proving Rab directly either; instead we need to make another indirect
proof, assuming —Rab and deriving a contradiction from that.

Since ~3x—VyRxy is a negated statement, we have a contradiction if we can
derive dx—VyRzy from —Rab. This time we do have a way of proving Jz—VyRxy
from —Rab directly: it follows from —VyRay. This in turn is a negated state-
ment, so we can derive it if we assume VyRay and derive a contradiction from
it. We do this by deriving Rab, which contradicts our assumption of —=Rab.
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Core 14

Qb [a=1]
—————— —FElim
Pa Qa .
Pa A Qa ;Inttm
Jz(Pz A Qx) e :
VIntro
Jx(Pzx A Qx)V IzTy—z =y [-(3Fx(Pz A Qx) V IxTy—z = y)]
Jp— —Intro
JIntro
_Fa=y Jnt
JzxIy—x =y e it
Vintro
Jx(Pzx A Qx)V IxTy—xz =y [-(Fz(Pz A Qx) V JaxTy—x = y)]

—Elim

Jx(Pr A Qx)V IzTy—z =y

Our conclusion Jz(Pz A Q) V JxIy—x = y is a disjunction and we have no disjunctive premises. This means we probably
need to prove dx(Px A Qz) V JxTy—x = y indirectly: we assume —(Jz(Px A Qz) V Fzy—x = y) and show that it leads to a
contradiction.

We start by assuming a = b, since this lets us easily prove Qa, Pa A Qa and Jx(Px A Qz). From there we derive
Jz(Pz A Q) V JxJy—x =y, which contradicts our assumption of =(Jz(Pzx A Qz) V JxTy—z = y). With this contradiction we
use —Intro to discharge a = b and derive —a = b.

From —a = b we can also obtain our conclusion. By applying JIntro twice we can derive dx3y—x = y, and from there we
can derive dx(Pz A Qx) V JzJy—x = y. Finally we assume —(3z(Pz A Qx) V JzJy—x = y) again and apply —Elim, discharging
both assumptions of —~(3z(Pz A Qz) V JxIy—x = y) and giving us the conclusion Jz(Px A Qx) V JxTy—x = y.



5.2 Conjunction

Conjunction 1

Conjunction 2

r Q
PAQ

Alntro

(P APy)APs

DA D, /\Ell/\]zliml
7P2 im
Conjunction 3
P P
gQ AElim2 A AElim1
Q AP Alntro
Conjunction 4
AP
Q AP R L AElim1
AElim2 ———— Alntro
P R A Q Alnt
PA(RAQ)
Conjunction 5
M AElim1 M AElim?2
Py Q2 (@QiNQ2)NR
P /\Ql Alntro ——— AElim2
1
Alntro
(PPANQ2) AR
Conjunction 6
PAQAR)
T QAR "™ PAQAR) PA(QAR)
R AElim2 ———— AEliml Qi AElim2
RAP Alntro AElim1
Intr
(RAP)AQ fintre
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5.3 Implication

Implication 1

[P]
P—P

—Intro

This proof relies on a special case of the —Intro rule: both ¢ and i are the
same. That means when we apply the rule we discharge P and put P on both
sides of the arrow.

Implication 2

[P]
Q—P
P—(Q—P)

—Intro

—Intro

In the first step of this proof, we discharge all assumptions of @, but don’t
actually discharge any assumptions. We can go straight from P to Q — P. It’s
in the second step that we discharge our original assumption of P.

Implication 3

Pl P=Q
T%Ehm Q—)R

—Intro

—Elim

P—R

Here we can freely assume P, and we want to try to get to R. This is nice
and easy P takes us to @ because we have P — () as a premise, and then @
takes us to R because we have () — R as a premise. The final application of
—Intro discharges our assumption of P.

Implication 4

—[P]2 [g - Q]l —Elim
m —Intro!

—Intro?

P> ((P—=-Q)—Q
In order to prove P — ((P — Q) — @), we have to prove (P — Q) — @,
and we're allowed to freely assume P. In order to prove (P — Q) — @, we have
to prove @, and we're allowed to freely assume P — (). With assumptions of

both P and P — Q we can use —Elim to get Q. Then the two —Intro steps
discharge the two assumptions of P — @ and P.
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Implication 5

Q]
P>Q "™ (P5Q (PR
A —Intro e
Q — (P — R)

Our conclusion is @ — (P — R), so we should try to prove P — R from
assumptions of (. In the first step of the proof, we apply —Intro without
discharging anything: @ takes us straight to P — @Q. After that, our big
premise gets us to P — R, and our final application of —Intro discharges Q.

Implication 6

@
P>Q " (PsQ) P

—Elim

P —Intro
Q—P

Our conclusion is Q — P, so we can assume () and need to prove P. Our
premise (P — @) — P is an implication with P as its consequent, so we know
we can derive P if we can provide a proof of P — ). This follows from @ by
—Intro (another time when we apply —Intro without discharging anything), so
we can then apply —Elim to derive P. Finally we apply —Intro to discharge Q@
and derive Q — P.

Implication 7

[P] r — (Q - R) —Elim
Q—R Q]

—Elim

—Intro

P— R
Q— (P—R)

Here we can freely assume P and @, and we need to get to R. Our premise
gets us from the P we’ve assumed to Q — R, and then the @ we’ve assumed
takes us to R.

—Intro

Implication 8

[P] P (Q - R) —Elim M —Elim
Q—R

—Elim

—Intro

P—R
In this proof the conclusion is quite simple. Having to prove P — R means
we can only assume P and only need to get to R. But this time we have two
premises, and the P we’ve assumed works with both the premises: it gives us
both the @ — R on the left and the @ on the right that we need to get to R.
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Implication 9

[P} —Intro
P—P (P—-P)—Q .
—Elim
Q Q>R
R —Elim
Qo R SR ™

This is a past paper question from 2009. In order to prove (Q — R) — R, we
can freely assume (Q — R and need to derive R. Because we can freely assume
@ — R, we know that we can get R if we can somehow prove ). Because our
premise is (P — P) — @, we know that we can get ) if we can somehow prove
P — P. P — P is easy to prove: we assume P, and then apply —Intro to
discharge the assumption of P and prove P — P. This then gives us ), which
then gives us R.

Implication 10

[Pl [P = (@~ R) [P]' [P — QP
—Elim ————— —Elim
Q—R Q
—Elim
—Intro®
PR —Intro?

(P—>Q)— (P—R)
(P>(Q—>R)—>(P—=Q) = (P—=R)

—Intro®

This proof looks nasty, but it turns out to be systematic. First of all we look
at how the conclusion is composed: P — (Q — R) is the antecendent (so we
can freely assume that) and (P — Q) — (P — R) on the consequent, so that’s
what we need to prove.

(P — Q) — (P — R) is what we need to prove first. That means we can
freely assume P — @, and we need to prove P — R. To prove P — R, we can
freely assume P, and need to derive R.

So all this has allowed us to freely assume P — (Q — R), P — @ and P.
The P and P — @ together give us Q, which you can see on the right. The P
and the P — (Q — R) give us Q — R, which you can see on the left. Together,
the @ and the @ — R give us R. Then it’s just a case of working backwards
from there, building up the conclusion and systematically discharging all the
assumptions we’ve made with three —Intro steps.

Implication 11

PAQ

AElim

—Intro

P—=Q

This is a simpler proof than it might look: P A @ takes us straight to @,
which then takes us to P — @) without us needing to discharge anything.
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Implication 12

[P A Q]
___r
PANQ— P

AElim

—Intro

Recall that, according to the bracketing conventions, P A Q — P is an
abbreviation of (P A ) — P. This is an implication, meaning we can freely
assume the antecedent P A Q and need to derive the consequent P. We can
get from P A @ to P in one step using AElim. Then all we need to do is apply
—Intro discharge the P A @ and derive P A Q — P.

Implication 13

[P] P—-(QAR)
QAR

—Elim

AElim

—Intro

P—qQ

Here we can freely assume P and need to get to . Our assumption of P
allows us to get at the @ A R in the premise, which then gives us Q.

Implication 14

PAQL
T AElim
Pr@ Q" (PAQ @ Q=P
Q—P

Although our conclusion  — P is an implication, we won’t prove it by
assuming @ and deriving P from it. Instead, notice that our premise (PAQ) —
Q) — (Q — P) is an implication with @ — P as its consequent. This means
that if we can prove (P A Q) — @ we can derive Q — P directly by —Elim.
(P A Q) — @ can be proved by assuming P A @ and deriving @ by AElim.
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Implication 15

FP e
PAQ (PAQ)— R
—Elim
Q R —Intro* ]
—P N (Q = R) —Intro

Because our conclusion P — (@ — R) is an implication, we know that we
need to prove Q — R from assumptions of P. In order to prove Q — R, we need
to prove R and can freely assume (. Our assumptions of P and @ together give
us P A Q; that, combined with the premise, gives us R. Then we apply —Intro
twice to discharge our assumptions of P and Q.

Implication 16

(P—=Q NP —R) (P—=Q NP —-R)
[P] P Q AElim [P] PSR AElim
—Elim —Elim
Q Alntro
% —Intro
P— (QAR)

The main connective in the conclusion P — (QAR) is an arrow. That means
we can freely assume P and need to get to @ A R. To get to Q A R, we need
two separate proofs: one of @) and one of R. Both of these work in a similar
way. We split open the original premise (P — Q) A (P — R) to get conditionals
P — @ and P — R, and then we use our assumption of P to give us both @
and R.

Implication 17

Pl P—-(QAR
[P] QA;Q ) o [Pl P (QAR) o
AElim Q AR AElm
m —Intro PSR —Intro
Alntro

(P—=>Q)N(P— R)

Because the conclusion (P — Q) A (P — R) is a conjunction, we know we
need to do two proofs: one proof of what’s on the left, and one proof of what’s on
the right. In each proof we can freely assume P (which we know we’ll discharge
each time we apply —Intro), which works with the premise (P — (Q A R)) to
give us @ A R, and from there the @ and the R we need.
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Bonus challenge

Using only the introduction and elimination rules for conjunction, any proof of
Py A Py from (((Py A P2) A P3) A Py) A Ps must consist of at least nine steps:

(((Py ANPy) NP3) AN Py) A\ Ps - (((Py APy) NP3) ANPy) A Ps -
(PLAP)ANP3)A\ Py y ((PLAP)AP3)APy -
(P, A Py) A Ps 1 (P APy)) A P3 1
————— AElim — D5 ~p  NElim
PAP, PAP,

D /\Ehm D /\Ellm
Pl L Alntro

P NP

The problem is that the derivation of P from (((P1 A P2) A Ps) A Py) A Ps
takes four steps, and we have to repeat this derivation if we want to derive
Py A Py

Using the rules for implication, we can shorten the proof so that this long
derivation is only carried out once:

(((Py AN Py) NP3) A Py) A Ps

Elim
(AP AP AP

(PLAPy) NP3 (1] [P

- A . o~ /\Ellm I ——— /\IIltro
PLANP PP
——— AElim ———— — —Intro

P P — (P1 A Pl) -
P AP, —Elim

This means we have a proof of P; A Py from (((P1 A P2) A Ps) A Py) A Ps
taking only seven steps.
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5.4 Disjunction

Disjunction 1

[P]
Pv Q W VIntro2 Q VP zi;t':rol
Q VP im

Our premise PV @ splits the proof up into two cases: one where P is true
and one where @ is true. Both of these are cases of Q V P.

Disjunction 2

PvVQ PV(QVR) 7 PV(QVR) Enl.m
PV(QVR) Ve

Our premise PV @ splits the proof up into two cases: one where P is true
and one where @ is true. Both of these are cases of PV (Q V R).
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Disjunction 3

Q]
[P} 1 m VIntrol [R]2
[P vV Q}Q m VIntrol m \/Infr012 Q VR VIntro2
(PVQ)VR PV(QVR) VR BV (QV R) z:l”

PV(QVR)

This proof works similarly to the previous proofs, but there are two splits: (P V Q) V R splits the proof into a PV @ case
and an R case, and then the former case splits into a case of P and a case of @. In all three cases we apply the VIntro rules
to obtain PV (Q V R).

Disjunction 4

[P} I1 [Q] VvI2 [R] vIl [Pl]
PvPlv RV Q RV Q PV P I
Pvol PvPyvEva) " PV VRV Q) zlz RvP] (PVvPOVv(EVG) 2 PPV (RVO) XEI

(PVQ)V(RV Py) (PVP)V(RVQ) (PVP)V(RVQ)
(PVP)V(RVQ) VE

VvI2

This proof is large, but very systematic: the premise (P V Q) V (R V Py) splits the proof into two further disjunctions,
(PV Q) and (RV Py), and then these disjunctions split the cases further into cases of P, @, R and P;. All four of these are
cases where the conclusion (P V P;)V (RV Q) is true.
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Disjunction 5

PA(QVR) PA(QVR)
————— AElim IR Y Elim
P Q P :
[ ] Alntro Alntro
PA(QVR) PAQ PAR
—————— AElim VIntro VIntro
OVR (PAQ)V(PAR) (PAQ)V (PAR)

VElim

(PAQ)V (PAR)

Our premise PA(QV R) gives us two sentences to work with: a disjunction QV R and the sentence-letter P alone. QV R splits
the proof into a case where @ is true (in the middle) and a case where R is true (on the right). These are, respectively, cases of
P AQ and P AR, because we get the P for free from our original premise. Therefore both cases are cases of (PAQ)V (P AR).

Disjunction 6

Q° R
(PVQ)A(PVR) [P]* QAR M
(PVQ)A(PVR) [P]? PVR M B QAR M PV QAR M
2V Q AElim m VIntro Py (Q "R ] VElim'
Py (Q A R) VElim

Our premise (P V Q) A (P V R) is a conjunction, so it gives us two sentences we can use: PV @ and PV R. Working from
the bottom up, we can use PV @ first to split the proof into a case where P is true and a case where @ is true. In the former
case, we can go straight from P to PV (Q A R). In the latter case we need to split the proof again: PV R splits the proof into
a case where P is true (and therefore the conclusion PV (Q A R) is true), and a case where R is true. In this final case @ is
true as well: we’re still part of the case where @ is true, and our assumption of () gets discharged in the final step of the proof.
Because we have both @ and R, we can prove @ A R and therefore have a case where PV (Q A R) is true.
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Disjunction 7

[P A Q] AElim [P A R] i
PAQ}E Q [P A R] . fm
AElim ———— VIntro ———=—— AElim ——— ViIntro
r Q v R Alntro r Q v R Alntro
(PANQ)V (PAR) PA(QVR) PA(QVR) .
VEIlim
PA(QVR)

The premise splits this proof into a case where P A @ is true and a case where P A R is true. In the former case, from @
we can derive @ V R, so it is a case where P A (Q V R) is true. Very similarly in the latter case, from R we can derive Q V R,
so PA(QV R) is also true.

Disjunction 8

[QAR]  [QAR]
[P] [P} AElim AElim
P v Q Vintro m VIntro m Vintro m ViIntro
Alntro Alntro
Pv(QAR) (PVQ)AN(PVR) (PVQ)AN(PVR) .
VElim

(PVQ)A(PVR)

The premise splits this proof into a case where P is true and a case where @ A R is true. In the first case P leads to both
PV @ and PV R, giving the conclusion (PV Q) A (PV R). In the second case, ) and R lead, respectively, to PV Q and PV R,
also giving the conclusion.



Disjunction 9

Q]
P-QVQ [P=Q P—-Q
P—-qQ

—Intro

VElim

Our premise (P — @) V @ provides one case where P — @ is true. This
is the conclusion, so we don’t need to do anything else. In other case, we can
freely assume Q. From this we can apply VIntro to derive P — @ in one step,
so the conclusion is true in both cases.

Disjunction 10

—[P] [P - Q] —Elim
Py Q Q [Q] VElim
A —Intro
(P—Q)—Q

Our conclusion (P — @) — @ is an implication, so we prove it by assuming
P — @ and providing a proof of (). Because our premise PV @ is a disjunction,
we can split the proof into a case where P is true and a case where @ is true.
In the case where Q) is true, we don’t need to do anything. In the case where P
is true, we use our assumption of P — @ to derive Q by —Elim, meaning we
have a proof of @ in both cases.

We could also have carried out the proof in a slightly different way and
applied VElim at the very end:

—[P] [P - Q] —Elim
# —Intro L —Intro
Pv@ Po@-@ M Po@ o T
(P—Q)—Q

Note that in this proof we apply —Intro in both branches, so the proof is
slightly longer. When using VElim it is often possible to apply it at more than
one point of the proof, but applying VElim as early as possible usually leads to
shorter proofs.
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Disjunction 11

Q]
P>Q "™ (P5Q = (P—R)
PSR R e
[PV R R EIm R
VElim
Q i R —Intro
—Intro

(PVR)—= (Q — R)

The conclusion (P V R) — (Q — R) is an implication. This means to prove it we need to prove @ — R, and we can freely
assume PV R. Q — R is an implication as well; this means we can freely assume ) and need to prove R. PV R splits the
proof into two cases: in one case we have P and in the other we have R, and in both cases we need to prove R.

The right case is easy: R is just true. In the left case, proving R from P is more complex. To prove @ — R, we need
to get to R and we can freely assume (. This is very helpful: @ gives us P — @, which then (thanks to our premise
(P— Q) — (P — R)) gives us P — R. That, with the P we have, gives us R.

Disjunction 12

W i 2 P F] —Elim
(P R Q) y (P . R) m VIntro Q VR z;nl‘?ro
Q \/ R 1m
m —Intro

Our conclusion is an implication, so we can freely assume P and need to work towards QV R. Our premise (P — Q)V(P — R)
splits the proof into a case where P — @ is true and a case where P — R is true. These cases yield, respectively, @ and R
(because P is assumed in both cases) and therefore both yield Q V R.
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Disjunction 13

PN Q—P) (Po>QQANQ—=P)
AElim AElim
P Q [P] —Elim Q - P —Elim
[P] Q P
[P v Q] PA Q Alntro PA Q N Alntro
P A Q VElim

—Intro

(PVQ) = (PAQ)

Because our conclusion is an implication, we can freely assume PV ) and need to prove P A Q. PV @ splits the proof into
a case where P is true and a case where @ is true. Our premise tells us that P implies Q and that @ implies P. This means
that in the case where P is true we can derive () and in the case where () is true we can derive P. Therefore P A (@ is true in
both cases.

Disjunction 14

[P] Q]
———  VIntro — " viIntro
PVvQ (PVQ) = (PAQ)  PvQ ™ (PvQ) = (PAQ)
PA Q —Elim PA Q —Elim
AElim AElim
P _ Q —Intro W —Intro

Alntro

(P=Q)N(Q—P)

Our conclusion is a conjunction, so there are two proofs we have to make: one proof of P — @ and another proof of Q — P.
In the left proof, because we are proving P — @, we can start from P and need to work towards Q. P gives us PV @, which
(thanks to our premise, (PV Q) — (PAQ)) gives us P A Q and therefore (). On the other side, @ also gives us PV @, allowing
us to derive P in the same way as in the left proof.
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Disjunction 15

(Q - R) n (Q v P) AElim w —Elim
QP @ @ _ "M @omaQve  @QomAQVP)  [PIPoQ
Q - Q—-Rr QvP Q] _
R —Elim VElim
Alntro
RA Q —Intro

(P—=Q) = (RAQ)

Here our conclusion is an implication; we can freely assume P — ) and need to derive R A Q). To derive R A @@ we need to
derive R (which we do on the left-hand side) and @ (which we derive on the right-hand side). Our premise is a conjunction,
so we can derive two helpful sentences from it: @ V P and Q — R.

On the right-hand side (where we try to derive Q) we make use of @ V P. We have one case where we can assume @, and
another case where we can assume P. In the latter case we can use our assumption of P — @) to derive @, so () is true in

both cases. On the left-hand side, we prove @) using the same technique we used on the right-hand side, and then use Q@ — R
(which we have derived from our premise) to derive R.



5.5 Biconditional
Biconditional 1

M +Elim1 M +—Elim2
Q P

Q P ++Intro

The conclusion is a biconditional, so there are two proofs we need to give:
one from P to @@ and one from @) to P. Both of these can be done in one step,
because we have P <> (Q as a premise. Our initial assumptions of P and @) are
discharged in the final step.

Biconditional 2

[62]713 <>Intro [R] (P < Q) © R Elim2
PoQ (P Q)< R P PeQ o
R +<Elim1 <Elim1
Q SR <+Intro

On the left we have a proof from @) to R and on the right we have a proof
from R to (). The right-hand side is fairly straightforward: we can use R with
our premise (P <> @) <> R to obtain P < @, and we can then use that with
our other premise P to obtain ). The left-hand side has a less intuitive step:
we use our assumption of @ (which will be discharged in the final step) and
our premise P to go straight to P <> (); when doing this, no assumptions are
discharged. P > @ and our premise (P <> @) <> R then give us R.

Biconditional 3

Q] [P+ Q] [P] [P+ Q] [P] [Q ¢ P] Q] [Q ¢ P]

—E2 +—E1 —E2 +—E1
P Q Q P
1 —I

Q< P P<—>C.2H
(P Q)< (@ P)

I

This is a past paper question from 2014. We have to prove a biconditional:
on the left we need to go from P < @) to @ <> P, and on the right we need to go
in the other direction. Because in both cases we need to prove a biconditional,
the proof splits again: we need to prove P from @ and @ from P on the left,
and @ from P and P from @ on the right. All four of these can be achieved in
one step because of the assumptions we have of P <> @ and ) <+ P, which are
discharged in the final step.
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Biconditional 4

L
PvQ " (PVQ) = Q

+Elim

—Intro

P—Q

This proof is a one-way implication; we can freely assume P and need to work
towards Q. P gives us PV @, and this combined with our premise (PV Q) < Q
gives us Q.

Biconditional 5

[Pl (PAQ) & P
PAQ

+~Elim

AElim

—Intro

P—=qQ

Here we are proving P — (), which means we can freely assume P and have
to derive Q. P and our premise (P A Q) <> P allow us to derive P A @), which
then gives us Q.

Biconditional 6

PvQl Q @, Qo
Q VEIlim P v Q ntro
(P v Q) PN Q ++Intro

Here we need to prove @ from PV @ on the left and PV @ from @ on the
right. The right-hand side is easy: P V @ can be derived from @ in a single
step. On the left-hand side the proof is more complex. Our assumption of PV @
(which is discharged in the final step) splits the proof two cases. In one, @ is
true, which is what we need to derive. In the other, P is true; this, together
with the premise P — @, lets us prove Q).

Biconditional 7

Pl P»Q
[PAQ]  [P] e
T AElim W Alntro

(P A Q) ) <+ Intro

The conclusion (PAQ) <> P asks us to provide two proofs: a proof of P from
P A Q (this is on the left and is a simple case of AElim) and a proof of P A @
from P. For this latter proof, we use our assumption of P with the premise
P — @ to give us @, and then join that with our assumption of P to obtain
PAQ.
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Biconditional 8

(P=QrQ—=P) P>QrQ=P)
il Q o [P} —Elim Q o F o —Elim

Q P
P+ Q

++Intro

This is a past paper question from 2013. Our premise (P — Q) A (Q — P)
gives us two sentences we can use: P — @ allows us to prove @ from P on the
left-hand side and @ — P allows us to prove P from @ on the right-hand side.

Biconditional 9

[P/\Q} AEl Q —Intro
P im P*)Q ntr
Intro

P-Qer M

—Intro

(PAQ) = ((P=Q) < P)

The conclusion of this proof, (P A Q) — (P — Q) + P), is a conditional:
this means we can assume P A @ and need to obtain (P — Q) <> P. Obtaining
(P — Q) < P turns out to be quite easy. Although we are allowed to assume
P — @ in our proof of P (on the left) and we are allowed to assume P in our
proof of P — @ (on the right), we don’t need either of these. Both P and
P — @ follow from P A @ alone.

Biconditional 10

[P} [(P - Q) < P] +~Elim [Q] —Intro
P Q [P} —Elim Ll Q [(P - Q) i P] +Elim
Q
P o Q < Intro
—Intro

(P=@Q) e P)=(PQ)

The conclusion of this proof is a conditional. This means we can assume
(P = Q) « P and need to derive P + Q. To prove P +> @ we need two proofs:
a proof of @ from P (on the left) and a proof of P from @ (on the right). On
the left, our assumption of P together with our assumption of (P — Q) < @
gives us P — @, and we can use this with another assumption of P to get Q.
On the right, from @ we can prove P — @, and this in combination with the
assumption of (P — Q) +> P allows us to prove P.
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Biconditional 11

@l

Pl P (PVQeQeP Q] PVQ

PVQ PV eQ T PVQeQ” (PVQeQeP
Q P

P& Q

For this proof we need to prove @ from assumptions of P on the left-hand side and P from @ on the right-hand side. On
the left-hand side, P can be used with the premise ((PV Q) < Q) + P to derive (P V Q) <> Q. In one step we can prove
PV Q from P, and that means we can apply <+Elim to derive Q.

On the right-hand side, (P V Q) +> @ is fairly easy to derive: we have @ on one side and PV @ (which follows from @ in
one step) on the other side, which means we can derive (P V Q) <> @ without discharging any assumptions. This can be used
with the premise ((PV Q) < @) <> P to derive P.

Biconditional 12

[P AQ] . [P A R) B
[P AQ) P P - (Q + R) [P A R] = P P—(Q<«< R) e
[PAQ Q OOR ~E [PAR| R OoR
NE B P AE Q —E
P R/\I AT
PAR PAQ(—)I

(PAQ) < (PAR)

This is a past paper question from 2012. In order to prove the biconditional (P A Q) <+ (P A R), we need to prove P A R
from assumptions of P A Q and we need to prove P A @) from assumptions of P A R. On the left-hand side, our assumption
of P A Q@ allows us to obtain P. This, combined with our premise P — (Q > R), gives us @ <> R. We can use this with @
(which we also obtain from P A Q) to obtain R; this and P give us P A R. The right-hand side works the same way, except we
work from @ < R and R to derive Q.
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Biconditional 13

[Q A R] 5 QAR Q] [R] AL
[P] [P] e TR (PV @) APV R) (P] QAR
—_—— VI —— vI ——— VI VI A VI
PV R PV R PVvQ PV R [(PVQ)A(PV R) [P] . PV R PV (QAR) PV (QAR)
[PV((QAR)] (PVQ)A(PVR) (PVvQ)AN(PVR) PVQ A PV(Q/\R)v PV (QAR)
PV A(PVR) Ve V(@A)

(PV(QAR)) < (PVQ)A(PVR))

This is a past paper question from 2010. It breaks down into two proofs: a proof of (PV Q) A (P V R) from PV (Q A R)
and a proof of PV (Q A R) from (PV Q) A (PV R).

On the left-hand side, our assumption of PV (@ A R) splits the proof further into a case where P is true and a case where
Q A R is true. In the first case P leads to both PV @ and PV R, giving (PV Q) A (P V R). In the second case, @ and R lead,
respectively, to PV @ and PV R, also giving (PV Q) A (P V R).

On the right-hand side, our assumption of (P V @) A (P V R) is a conjunction, giving us PV Q and PV R. PV Q splits
this part of the proof into a case where P is true and a case where @ is true. In the former case, we can derive PV (Q A R)
from P. In the latter case we use PV R to split the proof again into a case where P is true (and therefore the conclusion
PV (QAR) is true), and a case where R is true. In this final case @ is true as well: we’re still part of the case where @ is true,
and our assumption of ) gets discharged in the final step of the proof. Because we have both @ and R, we can prove Q A R
and therefore have a case where PV (Q A R) is true.



5.6 Negation
Negation 1

P [-P]
—|—|P

—Intro

In order to prove ——P (in other words, to prove that it is not the case
that —P) we start by assuming —P and show that it leads to a contradiction.
Showing it leads to a contradiction is very easy: —P contradicts our premise P.
Applying —Intro allows us to discharge our assumption of =P and prove ——P.

Negation 2

[P A Q] .
7P AElIIim —\P
~(PAQ)

To prove =(P A Q), we start by assuming P A @ and try to derive a contra-
diction from it. P A Q gives us P, which contradicts our premise —P.

—Intro

Negation 3
[P] P——-P
[P] -P
-P

—Elim

—Intro

To prove P, we start by assuming P and try to derive a contradiction from
it. Our premise P — —P doesn’t contradict P straight away, but because we’'ve
assumed P we can apply —Elim to obtain —P; this then contradicts P and
allows us to apply —Intro.

Negation 4

& —Intro
P—Q (P — Q)
-Q
To prove =@, we start by assuming @ and try to derive a contradiction. We

can derive P — @ from @ in one step without discharging any assumptions;
this then contradicts our premise - (P — Q).

—Intro
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Negation 5

Pl
PAQ "M w(PAQ)
—Intro
i —Intro
P— —Q

Our conclusion P — =@ is a conditional statement, so we assume P and
try to derive =Q). To derive =@, we assume ) and try to prove a contradiction.
Our premise —(P A @) is a negated statement, so we have a contradiction if we
can prove P A Q. Because we have assumptions of P and @, we can indeed
derive P A Q. This gives us the contradiction we need to apply —Intro, derive
=@ and discharge our assumption of ). Finally we apply —Intro to discharge
our assumption of P and prove our conclusion.

Negation 6
Pl PoQ
————— —Elim
Q [jQ] —Intro
Q%‘PP —Intro

Our conclusion =) — —P is a conditional statement. This means we can
assume —(@) and need to prove =P. To prove =P we can assume P and need
to derive a contradiction. Our assumption of P and the premise P — @ let us
prove @, which contradicts our assumption of =@). P is discharged in the —Intro
step, while =@ is discharged in the —Intro step.
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Negation 7

[P A—P] [P A=P] A-Q  [QA-Q]
——p  ABlim ———— AElim 0 AElim ~0 AElim
(PA=P)V(QA-Q) ~((PA-P)V@A~Q) " HPA-P)V@A-Q)
~(PA=P)V(QA—Q)) (PA=P)V@A-Q]
~((PA=P)V(QA-Q))

Our conclusion =((P A —=P)V (Q A —Q)) is a negated statement, so we can prove it by assuming (P A —=P) V (Q A =Q) and
deriving a contradiction from it. This is a disjunction, so it splits the proof into a case where P A =P is true and a case where
Q N —Q is true.

In both of these cases, it is easy to find a contradiction: in the left-hand case P contradicts =P and in the right-hand case
@ contradicts —Q. However, when we apply —Intro and derive =((P A =P) V (@ A —Q)) within each case we can’t discharge
our assumption of (P A —P)V (Q A =Q), since it appears further down in the proof.

Instead what we have to do after applying VElim (discharging PA-P and QA—Q) is assume —((PA-P)V(QA—Q)) a second
time. Then we can apply —Intro, derive =((PA—P)V (Q A—Q)) again and discharge both assumptions of (PA—-P)V (Q A—Q).



Negation 8

[P]
P\/Q\/Intro —\(P\/Q) m\/lntro —|(P\/Q)
—Intro —Intro

Alntro

Our conclusion is a conjunction, so we need to provide two proofs: a proof of
=P and a proof of =@. On the left-hand side we assume P and try to derive a
contradiction. Our premise —(P V @) is a negated statement, so we can get the
contradiction we need by deriving PV @ from P. Similarly, on the right-hand
side we derive PV @ from our assumption of Q.

Negation 9
M AElim w AElim
P [_‘P] —Intro Q [_‘Q] —Intro
PV -Q ~(PAQ) -PhR)

Our premise =P V =@ is a disjunction, which splits the proof into a case
where we can assume =P and a case where we can assume —(). In both cases
we need to prove (P A @), which we do by assuming P A @ and showing it
leads to a contradiction. From P A Q) we can prove P, which contradicts =P on
the left-hand side, and @), which contradicts =@ on the right-hand side.

Negation 10

m —Intro

To prove P — @ we start from an assumption of P and need to derive Q.
P contradicts our premise =P, and this allows us to apply —Elim and prove Q.
No assumptions are discharged until the next step, where —Intro discharges P.

Negation 11

P AP AElim P AP
P -P
Q

Here, as in the previous problem, we prove () from a contradiction. This is
provided from our premise alone: from P A =P we can prove both P and —P,
which contradict each other.

AElim

—Elim
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Negation 12

[P] [_|P —Elim
Py Q Q [Q] VElim
L —Intro
-P—-Q

This is similar to a past paper problem from 2013. In order to prove =P — @,
we can freely assume —P and need to prove (). Our premise PV @ gives us
two cases to consider: one we assume ) (which is great, because that’s what
we need to prove) and one where we assume P. P contradicts our assumption
of =P, allowing us to derive Q.

Negation 13

Pr-Q
P "M pLQ PA-Q

—Elim ——— AElim

Q —Q
R

—Elim

In order to prove R (which doesn’t appear in any of our premises) we need
to find a contradiction. P A =Q and P — @ together provide one: P A =Q lets
us prove P, and with this and P — @ we can prove ). This contradicts the =@
which also follows from P A —=(Q).

Negation 14

Pl PoQ Q) PoQ
P Q P Q)
pvQ  pPrg M prg
PAQ R Ne)
R -E

R doesn’t appear in any of our premises, so we prove it by finding a contra-
diction. Of our three premises, =(P A Q) is a negated statement, so it makes
sense to try to prove P A @ in order to find the contradiction we need. PV @
splits the proof into two cases: one where P is true and one where @ is true.
In both of these cases we apply the other premise P < @ to obtain the other
sentence-letter and hence derive P A Q. This contradicts —(P A @), allowing us
to derive R.
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Negation 15

P

—Elim

Here we cannot provide a proof of P directly. Instead, we prove P by as-
suming - P and showing it leads to a contradiction. =P contradicts our premise
== P, meaning we can apply —Elim; this discharges our assumption of =P and
provides a proof of P.

Negation 16

G
Pv-P Vintro [—\(P\/ —\P)]2
P —Intro!
— VIntro 2
Pv-P [-(PV —P)]
Py op —Elim?

This proof is counter-intuitive, relying on a special technique. Our conclusion
PV —P is a disjunction, but we cannot show it is true by proving either disjunct:
we have no proof of P and no proof of =P. Instead, we must assume that PV—-P
is false (in other words, we assume —(P V —P)) and derive a contradiction from
that.

But we still have a problem: even if we assume —(PV —P), what do we have
which it contradicts? This proof has no premises. We have to rely on a slightly
counter-intuitive trick. We assume —(P V —P) and try to derive a contradiction
from it, but initially we also assume P. From P we can prove PV —P, which
contradicts =(P V —P).

But we can’t go right ahead and apply —Elim to prove PV =P, because that
would leave our assumption of P undischarged. So instead what we do is use
the contradiction to apply —Intro, discharging P and proving —P.

From —P, we can apply VIntro to prove PV —P again. Assuming —(PV—P)
leads to a contradiction again, but this time our only undischarged assumption
is =(P V —P) itself. We're free to apply —Elim, discharge our two assumptions
of =(P VvV =P) and prove PV —P.

The following is a possible alternative proof:

[P]! [-P]?
Pv—P " (v -P)? PV-P [~(PV —P)]

—Intro! —Elim?
—|P ntro 1m

.3
PV P Elim

VIntro

This kind of structure is possible for many indirect proofs, but it tends to
produce longer proofs than the technique above.
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Negation 17
[-P] [-Q]

7—\P\/—|Q VIntro —\(—\P\/—\Q) o 7—\P\/—|Q VIntro —\(—|P\/—\Q) .
P —Elim —Elim

PAQ

Alntro

In order to prove P A Q we need to provide a proof of P and a proof of
@. On the left-hand side we can’t prove P directly, so instead we assume —P
and show that this leads to a contradiction. From —P we can derive =P V =@,
which contradicts our premise =(=P V —Q). The contradiction allows us to
apply —Elim, discharge our assumption of =P and derive P. Similarly on the
right-hand side we assume —@) and show it leads to a contradiction in order to
derive Q.

We could also prove PAQ by assuming —(PAQ) and deriving a contradiction
from it. This proof is slightly longer: we have to assume P and @ as well as
—(P A @), and use three contradictions to discharge these three assumptions.
This alternate proof is shown below:

M Alntro
PAQ RGN0 N
=P e
~Pv _‘Q - _\(_‘P v _‘Q) —Intro
—Q
m VIntro —\(—\P Vv —\Q) o
PA Q —Elim
Negation 18
R
"PV-Q  [(PV-Q)
P Q
PAQ (PAQ)
-Q B
-Pv-Q " ~(-PV-Q)
PV -Q -

This is a past paper question from 2015. We want to try to prove =PV =@,
but our premise —(P A @) doesn’t give a direct proof of either =P or —Q. We
will need to assume —(—P V —Q) and show it leads to a contradiction.

First we can assume —P. This lets us derive =P V =@, which contradicts
our assumption of =(—=P V —=Q). Applying —Elim, we discharge our assumption
of =P and prove P.

P and —(P A Q) together imply —@Q. Assuming @ gives us P A @, which
contradicts our premise (P A @) and allows us to apply —Intro, discharge @
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and prove =@). From this we can prove =P V —(Q again, which provides another
contradiction with our assumption of (=P V =Q). Finally we discharge all of
our assumptions of =(=P V —=Q) and derive =P V —Q.

Negation 19

7[P] Q[“P} —Elim
m —Intro —\(P _) Q) .
P

The premise ~(P — @) doesn’t allow us to prove P directly. Instead, we
assume —P and try to derive a contradiction from it. What kind of contradiction
should we be looking for? Our premise, =(P — @), is a negated sentence, so
we will have a contradiction if we manage to prove P — Q.

Proving P — @ from an assumption of =P is something we’ve already done
in problem 9. To prove P — @, we can assume P and need to derive Q). P
and —P together is a contradiction, allowing us to apply —Elim and derive Q.
Applying —Intro then gives us P — @, discharging P and providing a sentence
which contradicts =(P — (). We can then apply —Elim, discharge =P and
prove P.

Negation 20

—Elim

It might be surprising that we need to use a negation rule in this proof:
neither the premise (P — @) — P nor the conclusion P have any negation
symbols in them. But we cannot prove P directly from (P — Q) — P; again,
we need to assume —P and show that it leads to a contradiction.

Assuming =P allows us to derive P — Q: this is because assuming P (which
gets discharged by —Intro) allows us to apply —Elim and derive Q. Having
proved P — @, our premise (P — Q) — P allows us to derive P. With P and
our assumption of =P, we have a contradiction. This means we can discharge
our assumptions of =P and derive P.
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Negation 21
[P] P —Q @ [-Q]

——————— < Elim ————— = —Intro
[—\Q} —\—|Q —\—\Q P < —\—\Q

Q —Elim < Elim

P Q < Intro

This is a past paper question from 2011. In order to prove P < @, we
need to provide a proof of () from assumptions of P and a proof of P from
assumptions of Q).

On the left-hand side, we can use our assumption of P with the premise P <>
=@ to derive =—Q. From ——(Q we can prove (@) indirectly: an assumption of
=@ contradicts =@, so we can discharge =) and derive Q.

On the right-hand side, the premise P <> ——@ only helps us if we have a
proof of =—@). Fortunately we can derive this from @: assuming —Q leads to
a contradiction, so we can apply —Intro, discharge the =@ and put an extra
negation symbol on the front. Having ——() then allows us to prove P.

Negation 22

7[13} Q[_‘P] —Elim
m —Intro (P N Q) N Q -
Q [_|Q —Elim
P
W —Intro

Our conclusion is a conditional statement, so we assume =@ and try to prove
P. Our premise (P — Q) — @ gives us no way of proving P directly, so we
have to assume —P and try to derive a contradiction.

Because our assumption =) is a negated statement, it makes sense to try to
prove @ in order to contradict it. Our premise is (P — @) — @, so we know
we can prove (@ if we can provide a proof of P — Q.

We do this by assuming P; from this and our other assumption of =P we
can derive @) by —Elim. Applying —Intro for the first time discharges our as-
sumption of P and lets us prove P — Q; we then make use of our premise
to derive @, which contradicts our assumption of =@. Applying —Elim a sec-
ond time discharges our assumption of =P and lets us prove P. Finally, we
apply —Intro a second time to discharge our assumption of =@} and prove the
conclusion —-Q — P.
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Negation 23

LT I R
PvQl ~(PvQ) " =PV
PV (Ve o

This is a past paper question from 2014. To show —(P V Q) we start by
assuming P V @) and try to derive a contradiction; this assumption of P V @
splits the proof into a case where we can assume P and a case where we can
assume ). In both of these cases, contradictions are easy to get: our premise
—P A —=Q gives us =P (which contradicts P on the left-hand side) and also gives
us =@ (which contradicts @ on the right-hand side).

These contradictions allow us to apply —Elim and prove =(P V Q), but they
don’t allow us to discharge our assumption of P V @), because it appears in a
different branch of the proof. What we need to do is assume P V @Q again after
applying VElim. Then we have another contradiction which lets us discharge
both assumptions of PV @Q and prove (P V Q).

Negation 24

o
PV(P=Q) ~ HPV(P=Q)
-P Pl
LHI
_PoQ
PV (P—=Q) CPVP =)
PV (P—Q)

This is another indirect proof of a disjunction: by assuming —=(PV (P — Q)),
the negation of what we want to prove, we try to derive a contradiction. We
start by assuming P, which lets us prove PV (P — @), and therefore gives rise
to a contradiction. This contradiction allows us to apply —Intro, discharge our
assumption of P and derive = P.

From —P, it is possible to derive P — @): assuming P for a second time gives
us a contradiction and allows us to derive @), and we can then apply —Intro to
derive P — @ and discharge this second assumption of P. P — @ lets us prove
PV(P — Q), so we have a contradiction again. This second contradiction allows
us to discharge our assumptions of =(P V (P — @)) and prove PV (P — Q).
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Negation 25

[Q] —Intro
P = Q VIntro
PoQV@=R) "™ F(PoQV@-R)
_|Q R [ —Elim
Q R —Intro -
(P=Q)V(Q—R) (P = Q) V(Q— R))

—Elim

(P = Q)V(Q—R)

We prove our conclusion (P — Q) V (P — R) by assuming its negation and trying to derive a contradiction, but this time
the very first thing we do is assume Q.

If @ is true, which we assume initially, we can derive P — @ and then we can derive (P — Q) V (P — R). We then get a
contradiction, so we discharge our assumption of ) and prove —Q. From —@Q we can derive @ — R and then (P — Q)V(P — R)
again, so our assumption of =((P — Q)V (P — R)) still leads to a contradiction. This means we can discharge our assumptions
of =((P - Q) V (P — R)) and prove (P — Q) V (P — R).

The proof would still have worked if we had initially assumed P — @: this is because from —(P — Q) we can derive =Q),
from which we can then prove @ — R. Carrying out the proof this way is a tiny bit longer (requiring eight steps instead of
seven), but it is reliable: to prove ¢ V 9 in general by indirect proof, it will always work to start by assuming ¢. The alternate
proof is shown below:
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PoQve=0 " H(Pr-Qve-R)] @
S " g
_‘Q [ —Elim
R
m —Intro -
(P=Q)V(Q—~R) H(P=QVE—-R)
(P=Q)V(Q—R)
Negation 26
—RA=Q2
[R]! R
Rv-Q — -Q " Q' | [PP oP-Q
—|Q VE Q - —E —RA _‘QQ .
p B P—(@v@) [Q° Qo .
Q1V Q2 [@:1]° Q1

O VE?
This is a past paper question from 2010. Although it contains many different sentence letters, it is possible to work through
it methodically.
First of all, we can use the premise =R A =@z to derive =R and —Q3. —R is useful because one of our other premises is
RV —Q; we can use this to derive =@ by —Elim and VElim.
This allows us to establish P by indirect proof. If we assume —P, the premise =P — @ allows us to derive ), but because
we’ve already proved =@ we have a contradiction. Therefore we can discharge =P and derive P. With P, we can use our last
premise P — (@1 V @Q2) to derive Q1 V Q2. Finally we use our proof of =Qs to derive @; using —Elim and VElim.
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Negation 27

Q] L [R]
[Pl P—(QVR) P—Q I PR 1 I
OVER ~“E B SovPo R PoQvron
P=>Q)Vv (PR VEp s @) v (P R))
=1
-P [P]
-E
Poq !
Fovrom (P2 Qv P R

(P—-Q)V(P—R)

This proof turns out to be a lot nastier than it might look at first. The premise P — (Q V R) and an assumption of P give
us @ V R, meaning we work with one case where we can assume ) and another case where we can assume R. Both of these
assumptions bring us easily to (P — Q) V (P — R), but even after applying VElim we haven’t discharged our assumption of
P.

This turns out to be another proof where we prove a disjunction indirectly. If we assume —((P — Q) V (P — R)), we get a
contradiction and we can derive - P (discharging our assumption of P). From —P we can prove P — ), which gets us back to
our conclusion (P — Q) V (P — R) and contradicts our assumption of =((P — @) V (P — R)). Applying —Elim a final time
discharges our assumptions of =((P — Q) V (P — R)) and lets us prove (P — Q) V (P — R).
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Negation 28

[-P]
~Pv-q " =PV QP )
: L, 7 (P Q) (P A QP
P A —(P A P A P A
Q - [=( Q)] 12 2 AE [—\P]6 \ a) AE [—\Q]G .
v ! [F(-PV-QPF  [FPV-Ql —Prg) ! ~rr
~PV-Q F ~(PAQ) Ve
1

~(PAQ) & (-PV-Q)

This is a past paper question from 2010. It breaks down into two proofs: a proof of =PV —=Q from —(P A @) and a proof
of =(P A Q) from =PV —Q.

On the left-hand side we want to try to prove =P V =@, but our assumption —(P A Q) doesn’t give a direct proof of either
—P or =Q. We need to assume =(—P V —Q) and show it leads to a contradiction. First we can assume —P. This lets us derive
- PV =@, which contradicts our assumption of =(=P V =Q).

Applying —Elim, we discharge our assumption of =P and prove P. P and —(P A Q) together imply —@Q. Assuming @ gives
us P A @, which contradicts our assumption =(P A Q) and allows us to apply —Intro, discharge @ and prove —@Q. From this
we can prove ~P V =@ again, which provides another contradiction with our assumption of =(—=P V —=Q). Finally we discharge
all of our assumptions of ~(=P V =@Q) and derive =P V =Q.

On the right-hand side, the proof is slightly easier. Our assumption =P V =@ is a disjunction, splitting the proof into a
case where we can assume =P and a case where we can assume —(@Q). In both cases we need to prove =(P A @), which we do
by assuming P A @ and showing it leads to a contradiction. From P A @Q we can prove P, which contradicts =P in one case,
and @, which contradicts =@ in the other cases. In both cases we discharge P A @ and derive =(P A Q).



Bonus challenge 1

It is possible to derive =P from ———P using only one application of —Elim,
similar to the proof above of P from ——P:

-P

—Elim

Without —Elim, a proof is still possible. We start by assuming P and —P.
Together they give us a contradiction which lets us discharge —P and prove
——=P. This in turn contradicts our premise =——P, letting us discharge P and
prove —P.

PR PP
_|_\P —Intro _|_\_‘P
-P

Similarly, with —Intro we can derive =—P from P in only a single step, but
a longer proof is still possible using only —Elim. We start by assuming —=—P
and ——— P, which together give us a contradiction. This lets us discharge =—P
and derive =P, which contradicts our premise P. This contradiction lets us
discharge ———=P and prove -—P.

[P) [P

P _ . —Elim*
-—=P

In fact, any proof involving —Intro can be replaced with a larger proof involv-
ing —Elim. Removing —Intro would not make the system of Natural Deduction
any weaker. This concept is explored further in one of the additional challenges
at the end of this pack. However, it is not always possible to do the reverse
and replace —Elim by —Intro. Without —Elim we cannot (for example) prove P
from —=—P.
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Bonus challenge 2

One strategy for deriving P A @ from ——P A == is to provide two separate
proofs of P and ). Both of these are indirect proofs where we assume —P or
=) and derive a contradiction. This strategy provides a proof of only five steps,
satisfying the first constraint:

o MAE“I’“ , TPAR
il P - —Elim* ) B —Elim?
P/\Q Alntro

To satisfy the second constraint, we must provide a proof where —Elim only
discharges assumptions in the final step of the proof. Since we probably will
want to discharge assumptions using —Elim, we will have to make —Elim our
last step of the proof.

Since the very last line of the proof will be P A @), our conclusion, we know
this final —=Elim step can discharge assumptions of =(P A Q). Since we can’t
use —Elim to discharge anything else, we can’t assume —P or —=() and discharge
them later. We must assume P and @ at the start of the proof and derive PAQ.

We can then produce three contradictions in a row. The first contradiction
with =(P A Q) lets us derive =P, discharging P. This contradicts -—P and lets
us derive =@, discharging ). This contradicts ==, which lets us discharge
—(P A Q) and derive our conclusion.

This means we have at the following proof, satisfying the second constraint:

PofQr
PAQ " H(PAQIPE  —oPA—Q
il B P —Intro? M AElim
-0 PAO o0 —Elim?®

This is a specific instance of a general result in propositional logic. Whenever
we have to provide a proof of ¢, we can always do this by assuming —¢, showing
that it leads to a contradiction and applying —Elim at the end. If we do this,
we will never need to discharge any other assumptions using —Elim anywhere
else in the proof. However, this proof might not be the shortest possible proof

of ¢.

70



5.7 Universal quantifier

Universal 1

VrPx
Pa
VyPy

VElim
VIntro

This proof involves one simple application of each of the two universal quan-
tifier rules. The first step takes us from a universal statement (our premise
VxPx) to a specific statement (Pa). In order to use the universal introduction
rule, and go from a specific statement about one constant to a general statement,
that constant needs to be arbitrary: it needs to be possible for the proof still
to work if we replaced the constant with any other constant. This is the case
here: our constant a is arbitrary. It appears in no undischarged assumptions in
our proof (in fact, no assumptions at all). This means we are free to apply the
VIntro rule and prove VyPy.

Universal 2

[Pa]
Pa — Pa
Vo(Px — Px)

—Intro
VIntro

Working from the bottom upwards, we know we need to prove a universal
claim Vz(Px — Pz). We can derive that universal claim from a specific (but
arbitrary) case Pa — Pa. This is easy to prove: we can assume Pa, and then
move to Pa — Pa (also discharging Pa) by applying —Intro. Our move from
Pa — Pa to Vz(Px — Pux) is justified because, at the time we apply the
VIntro rule, a does not appear in any undischarged assumptions in the proof of
Pa — Pa.

Universal 3

Ve(Pa — Qx)
[Pa] ~ Pa—Qb "
ﬂ VIntro o
Vz2Qz
Pa—VaQz

Our conclusion Pa — Vz@Q)z is an implication. This means we can freely
assume Pa and need to provide a proof of VzQz. We can prove the universal
sentence VzQz by showing it is true for a specific but arbitrary constant.

The premise Vz(Pa — Qx) gives us Pa — Qb, which means that (with
an assumption of Pa) we have a proof of Qb. Because b hasn’t appeared in
any undischarged assumptions, we can generalise this to the universal VzQz.
Discharging Pa, we can then prove Pa — VzQz.

It is important to note that here we must use both a and b as our arbitrary
constants. The following proof would not work:
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Va(Pa — Qx)

VEli
[Pa) Pa — Qa "
—Elim
Qa w1
t
VZQZ n I'OI

- nt
Pa —VzQz e

Here, we are not justified in applying VIntro. The constant a appears in the
assumption Pa, which won’t be discharged until the final step of the proof.

Universal 4

Yz Pz AVyQy VaPr AVyQy
———————— AElim T VaQz AElim
vz P VElim VElim

Pa

Alntro

Pa A Qa
Vz(Pz A Qz)

VIntro

We need to prove a universal statement Vz(Pz A Qz), which we can do by
proving that the statement is true for a specific but arbitrary constant. In other
words, we need to prove Pa A Qa without a appearing in any undischarged
assumptions.

To prove Pa A Qa, we need to provide a proof of Pa and a proof of Qa. We
obtain Pa from Vz Px, which we derive by AElim from the premise Vz Pz AVyQy.
We obtain Qa from VyQy, which we also derive from the premise Vax Pz A VyQy.

Universal 5

Vy1Py1) Va(Pr — Qx)
VEIlim VElim
Pa Pa — Qa
Q —Elim
a
————— VlIntro
Vy2Qy2

—Intro

Yy Py1 — Vy2 Qo

Our conclusion Vy; Py; — Vy2Qys is an implication statement. This means
we can freely assume Vy; Py; and we need to try to prove VyaQys2. To prove
Vy2Qy2 we need to show it is true for an arbitrary constant. We need to try and
prove Qa. Our assumption of Vy; Py; gives us Pa, and our premise Va(Pz —
Qx) gives us Pa — Qa. Together, these allow us to derive Qa.
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Universal 6

Vz(Pz A Qz) Vz(PzAQz)
S PR Rlim ——————~— VElim
Pa A Qa PanQa

AElim ———— AElim
Pa Qa
VIntro

Vy Py VyQy
VyPy A VyQy

Our conclusion is a conjunction of two sentences, so we need to provide two
proofs: a proof of VyPy and a proof of VyQy. On the left-hand side, we can
derive Yy Py from a specific claim about an arbitrary constant, so we’ll try to
prove Pa. We can derive this from Pa A Qa, which we can derive from the
premise Vz(Pz A @Qz). The right-hand side works in a similar way: we use the
premise to derive Pa A Qa and then Qa, which gives us VyQy.

VIntro

Alntro

Universal 7

Vo (Px — Qx)
VElim
[Pal Pa — Qa r-Qx
—Elim VElim
Qa —Qa
—Intro
~Pa Vintro
Va—P.

Our conclusion Vx—Px is a universal statement, so we can prove it by pro-
viding a proof of —Pa without a appearing in any undischarged assumptions.
To prove = Pa, we need to derive a contradiction from assumptions of Pa. Note
that these assumptions of Pa will be discharged when we apply —Intro and
prove —Pa, so they won’t interfere with our application of VIntro.

Where can we find the contradiction we need? One of our premises Vz—Qx
gives us —Qa, so we have a contradiction if we can prove Qa. We do this by using
our other premise Va(Px — Q) to derive Pa — Qa; this and our assumption
of Pa allow us to prove Qa and obtain a contradiction.

Universal 8

[Vlexl] — [V$2Ql‘2] VElim
L VIntro 7@ VIntro
Va1 Pxy VVraQry PaV Qa PaV Qa _
PaV Qa Vit
Vz(Px V Q) vinere

In order to prove Vz(Pz V Qx) we can prove Pa V Qa is true without a
appearing in any undischarged assumptions.

Our premise Va1 Pxy VVzaQxs is a disjunction. We can apply VElim at the
bottom of the proof to split the proof into two cases: one where we can freely
assume Yz Pr; and one where we can freely assume VxoQzo. On both sides we
need to prove Pa V Qa.
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On the left-hand side, our assumption of V1 Pxy gives us Pa. From this, we
can derive Pa V Qa by applying VIntro. The right-hand side works in a similar
way: VraQxa gives us Qa, then PaV Qa.

Universal 9

VaVy(Px — Qy)
Vy(Pa — Qy)
[Pa] Pa — Qb
Qb
VzQz
Pa —VzQz
Ve (Px — V2Qz)

VElim

VElim

—Elim
VIntro

—Intro

VIntro

Our conclusion Vz(Pz — VzQz) is a universal statement, so we can prove
it by deriving Pa — VzQz as long as a doesn’t appear in any undischarged
assumptions. This is an implication, so we can prove it by assuming Pa and
deriving VzQz. We can VzQz from Qb, as long as b doesn’t appear in any
undischarged assumptions when we apply the VIntro step; note that we cannot
use Qa for this because our assumption of Pa won’t be discharged when we
move to VzQz.

So how do we get from an assumption of Pa to Qb? We use our premise
VaVy(Pz — Qy) to derive Yy(Pa — Qy) and then Pa — @Qb. This means our
assumption of Pa gives us the Qb we need.

Universal 10

Vo(Pr — Qx)
[Pal Pa — Qa . Vo (Qxr — Rx)

Our conclusion is a universal statement, so we need to prove it is true for an
arbitrary instantiation. We can do this by proving Pa — Ra without a appear-
ing in any undischarged assumptions. Pa — Ra is a conditional statement, so
we can prove it by assuming Pa and trying to derive Ra.

We get from Pa to Ra with the help of our two premises. From Vz(Pz —
Qz) we can derive Pa — Qa, which (with our assumption of Pa) lets us prove
Qa. From Vr(Qx — Rx) we can derive Qa — Ra, which lets us prove Ra.
The application of —Intro discharges Pa, leaving no undischarged assumptions
containing a; this means we’re free to apply universal introduction and derive
the conclusion.
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Universal 11

Ve-Qa]
———— = VElim
Va(Pz V Qx) . [Qal —-Qa ;

PaV Qa Elim [Pal) Pa Tl

P VElim
a Vintro
VaxPx —VaPx |
—Intro

—Vr-Qx

Our conclusion —Vz—Qx is a negated statement, so we prove it by assuming
Vz—Qzx and deriving a contradiction. One of our premises is —Vx Pz, which
is also a negated statement, so we will have the contradiction we need if we
prove Yz Px. A way of proving Yz Px is to prove Pa without a appearing in any
undischarged assumptions.

Our other premise Vz(Pz V Qx) is a disjunction, splitting the proof into a
case where Pa is true and a case where Qa is true. In both cases we need to prove
Pa; in the former case this is trivial. In the latter case, proving Pa requires
making use of our assumption Vr—Qz. This gives us =Qa, which contradicts
Qa and lets us derive Pa by —Elim.

Universal 12

ParQa Pb A Qb
— /\Ellm T

AElim
Pa

Alntro

Pa N Qb
Vy(Pa A Qy)
VaVy(Px A Qy)

VIntro

VIntro

Here our conclusion VaVy(Px AQy) features two universal quantifiers, mean-
ing we need to apply VIntro twice. We can derive VaVy(Pz A Qy) from Vy(Pa A
Qy) (provided a appears in no undischarged assumptions in the proof of Vy(PaA
Qy)) but we cannot derive Yy(Pa A Qy) from Pa A Qa. This is because the con-
stant a appears in Vy(Pa A Qy); this means we need to use two constants.

We will derive Yy(Pa A Qy) from Pa A Qb and make sure that neither a nor
b appear in any undischarged assumptions. Our premise Vz(Px A Qx) gives us
both Pa A Qa and Pb A @b, which allow us to obtain Pa and Qb by AElim.
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Universal 13

VaVyRxy
Elim
VyRay
VElim
Raa VIntro
VrxRxx

Our conclusion Vx Rxx is a universal statement, so we can prove it by proving
Raa without a appearing in any undischarged assumptions. We obtain Raa from
our premise VaVyRxy and two applications of VElim; in both case the variable
is replaced by a.

Universal 14

[VzVyRxy] Vr—VyRzxy
——— % VElim —————> VElim
YyRay —VyRay

—VaVyRzy

Our conclusion —VzVyRxy is a negated statement, so we prove it by assum-
ing VaVyRzxy and deriving a contradiction from it. Our premise Vz—VyRzxy
isn’t a negated statement itself, but we can apply VElim to obtain the negated
statement —VyRay from it. Since we can obtain VyRay from our assumption of
VaVyRxy, we have the contradiction we need.

Universal 15

VeRxx ) [Vy—Ray] )
Raa VElim “Raa VElim
—Vy—-Ray

Vr—-Vy-Ray

—Intro

VIntro

Our conclusion Vx—Vy—Ray is a universal statement, so we can derive it
by proving —Vy—Ray without a appearing in any undischarged assumptions.
This is a negated statement, so we prove it by assuming Vy—Ray and deriving
a contradiction from it. Neither our premise VxRzx nor our assumption of
Vy—Ray are negated statements, so we can’t use them to obtain a contradiction
immediately. However, from VxRzx we can derive Raa and from Vy—Ray w
can derive = Raa, giving us the contradiction we need.
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Universal 16

Vavy(Rey v Ryx)]
Vy(Ray v Rya) "
Raa V Raa [RCLCL] [Raa] VElim m VElim
Raa _'Raa —=Intro
—Va¥y(Rxy V Ryz)

Our conclusion —VaVy(Rzy V Ryx) is a negated statement, so we derive
it by assuming VaVy(Rxy V Ryx) and deriving a contradiction from it. Our
premise Vr—Rzx isn’t a negated statement we can use in a contradiction, but
by applying VElim we can obtain —Rzz; this means we have a contradiction if
we can somehow prove Raa.

From our assumption of VaVy(Rzy V Ryz) we can apply VElim twice to
obtain Raa — Raa. This gives us Raa through a slightly bizarre application of
VElim where Raa is trivially true in both cases. With Raa and —Raa we have
the contradiction we need to apply —Intro and prove —VazVy(Rzy V Ryz).

Universal 17

LyRyd] . Dy-Rayl
Rab - Rab ntro
_TVyRyb
Vax—-VyRyx e —Vr-VyRyz -
—Vy—Ray e
———~ VIntro
Vr—Vy-Rzy

Our conclusion Vx—Vy—Rxy is a universal statement, so we will try to prove
—Vy—Ray (making sure that a doesn’t appear in any undischarged assumptions
in the proof of =Vy—Ray). —Vy—Ray is a negated statement, so we can prove
it by assuming Vy—Ray and showing that it leads to a contradiction. Since our
premise ~Vz—VyRyz is a negated statement, we will have the contradiction we
need if we can prove Vx—VyRyz.

Vz—-VyRyz is a universal statement, so we can prove it by proving —VyRyb
(as long as b doesn’t appear in any undischarged assumptions in the proof
of =VyRyb). This is a negated statement, so we can prove it by assuming
VyRyb and deriving a contradiction from it. VyRyb gives us Rab, and our other
assumption of Yy—Ray gives us —Rab, so we have the contradiction we need.

Note that VyRyb is discharged before we apply the first VIntro step, and
Vy—Ray is discharged before we apply the second VIntro step, so both applica-
tions are permitted.
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Universal 18

YeRzx VElim
Raa [Rab] : [Vz—(Raz A Rzb)] .
Raa N Rab fintre —(Raa A Rab) . .
—Intro
—Vz—(Raz A Rzb)
—Intro

Rab — —Vz—(Raz N Rzb)
Yy(Ray — —Vz—(Raz A\ Rzy))
VaVy(Rzy — —Vz—-(Rzz A Rzy))

VIntro

VIntro

Our conclusion is a universal statement with two quantifiers, so we can
prove it by proving Rab — —Vz—(Raz A Rzb), as long as a and b don’t appear
in any undischarged assumptions. This is a conditional statement, so we prove
it by assuming Rab and deriving —=Vz—(Raz A Rzb). This in turn is a negated
statement, so we can assume Vz—(Raz A Rzb) and need to show it leads to a
contradiction.

From Vz—(Raz A Rzb) we can derive the negated statement —(Raa A Rab), so
we have a contradiction if we can derive Raa A Rab. We can obtain Raa A Rab
from our premise (which gives us Raa) and our assumption of Rab. Vz—(Raz A
R2zb) and Rab are both discharged before the end of the proof, so we are free to
apply the two VIntro steps.

We could also have carried out the proof in a slightly different way, using
VaxRxx to derive Rbb and using the assumption of Vz—(Raz A Rzb) to derive
—(Rab A Rbb). This would still have given us the contradiction we needed.

Universal 19

VaVyRxy vl
VaVyRry VyRby m
————— VElim VElim
Vylay VElim _Rba_ VIntro
Raa VyRya nt
Raa AN VyRya it e
Va(Rxx A VyRyx) e

Our conclusion Va(Rxzx AVyRyz) is a negated statement, so we can prove it
by proving Raa AVyRya without a appearing in any undischarged assumptions.
Raa AVyRya is a conjunction, so we need to provide a proof of Raa and a proof
of VyRya. On the left-hand side, we can derive Raa from our premise VxVyRxy
by applying VElim twice.

On the right-hand side, we need to prove the universal statement VyRya,
which we can prove by providing a proof of Rba without b appearing in any
undischarged assumptions. Note that we cannot derive VyRya from Raa, even
if @ appears in no undischarged assumptions in the proof of Raa; this is because
the constant a occurs in VyRya. We can prove Rba from the premise VzVyRxy
by applying VElim twice.
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Universal 20

VaVyRxy . VaVyRxy VBl
VyRay L VyRby
Rab Rba
Rab A Rba
Vy(Ray N Rya)

VaVy(Rxzy A Ryz)

VElim
Alntro
Vintro

VIntro

Our conclusion VaVy(Rxy A Ryz) is a universal statement, which we can
derive from Vy(Ray A Rya) (as long as a appears in no undischarged assump-
tions). This in turn we can derive from Rab A Rba (as long as b appears in
no undischarged assumptions). Note that we would not be able to move from
Raa A Raa to Vy(Ray A Rya), because a still appears in Vy(Ray A Rya); we have
to use two separate constants.

To prove Rab A Rba, we need to provide a proof of Rab and a proof of
Rba. Both of these can be derived from our premise VaVyRzy through two
applications of VElim.
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Universal 21

VaVy(Rxy — Ryx)

Vy(Ray — Rya) ]j:hm
[Rab] Rab— Rba ™ VaVy—(Ray A Ryx) .
[Rab] Rba o TR Vy—(Ray N Rya) vhnllm
Rab A Rba —(Rab A Rba) e
~Rab VIntro
vy_‘Ray VIntro
VaVy—Rxy

This is adapted from a past paper question from 2009. Owur conclusion
VaVy—Rxy has two universal quantifiers, so we can prove it by proving —Rab,
provided a and b appear in no undischarged assumptions. —Rab is a negation,
so we prove it by assuming Rab and showing it leads to a negation. The premise
VaVy-(Rzy A Ryx) gives us ~(RabA Rba), so we have the contradiction we need
if we can provide a proof of Rab A Rba.

To do this we need to provide proofs of Rab and Rba. We have a proof of
Rab because we’ve assumed it (it will be discharged when we apply —Elim). We
use our other premise VaVy(Rzy — Ryz) to derive Rab — Rba, meaning we
can obtain Rba with our assumption of Rab and —Elim.

80



18

Universal 22

Vavy(Qry — Qyx)

VElim
vy(Qay — Qya)
Vavy(-Qzxy V =Qyzx) . [Qab] Qab — Qba .
1m — 1m
vy(_‘Qay v _\an) VElim Qba [_‘Qba] —Intro
=Qab Vv —Qba [~Qab] =Qab
~Qab VElim
———— ViIntro
M VIntro
VaVy—-Qzy

Our conclusion VzVy—Qxy features two universal quantifiers, so we can prove it by proving =Qab and applying VIntro twice.
One of our premises VaVy(—Qzy V -Qyz) gives us the disjunction ~Qab V —Qba, splitting the proof into a case where we can
assume —Qab and a case where we can assume —Qba.

In the first case, ~Qab is exactly what we want to prove. In the other case, we can prove —Qab by assuming Qab and
showing it leads to a contradiction. Since the disjunction gives us an assumption of —=Qba, it makes sense to try and prove
Qba in order to give us the contradiction we need. We do this using our other premise VaVy(Qzy — Qyzx), which gives us
Qab — Qba.
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Universal 23

VyVz—(Ray A Ryz)]?

VElim
[Rab)? [Rbc]! Vz—(Rab A Rbz) .
—————————— Alntr im
RabARbe " " —(Rab A Rbc)
—Intro!
- Rbe Ve-Vy-Rxy
7vy—\Rby Vintro 7—|\V’y—\Rby VElu:l
_Rab_ e YedWy-Rey
Yy-Ray e —Vy—Ray . tl:;
—VyVz—(Ray N Ryz) .
ntr
Vae-VyVz-(Rxy A Ryz) ¢

Our conclusion Vz—VyVz—(Rxy A Ryz) is a universal statement, so we prove it by proving —VyVz—(Ray A Ryz) without
a appearing in any undischarged assumptions. This is a negated statement, so we need to derive a contradiction from an
assumption of VyVz—(Ray A Ryz). Since our premise Vz—Vy—Rzy gives us -Vy—Ray, we have the contradiction we need if we
can prove Yy—Ray.

We can derive Vy—Ray from —Rab as long as b doesn’t appear in any undischarged assumptions. Proving —Rab requires
assuming Rab and deriving another contradiction. To get this second contradiction, we need to use our premise again, but this
time we derive =Vy—Rby. We have a contradiction if we can prove Vy—Rby.

This in turn can be derived from —Rbc, as long as ¢ doesn’t appear in any undischarged assumptions. —Rbc can be proved
by assuming Rbc and showing that it leads to a contradiction.

We’ve now made three assumptions: Rab, Rac and VyVz—(Ray A Ryz). From the latter we can derive —(Rab A Rbc), which
gives us the first contradiction we need. Because this contradiction discharges Rbc, c is left in no undischarged assumptions and
we can derive Yy—Rby. Because the second contradiction discharges Rab, b is left in no undischarged assumptions and we are
free to derive Vy—Ray. Because the final contradiction discharges VyVz—(Ray A Ryz), a is left in no undischarged assumptions
and we can derive our conclusion.
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Universal 24

VaVy(Rzy — Ryx)

VElim

Vy(Ray — Rya) VaVyVz((Rey A Ryz) — Rwz)
[Rab] Rab — Rba ™ YyVz((Ray A Ryz) — Raz) V?hm
[Rab] Rba 7 Blim 2((Rab A Rbz) — Raz)
Rab A Rba (Rab A Rba) — Raa
Raa ol [~ Rad] -
—Rab T Yp—Vy—Ray
7VyﬂRay Vintro 7—|Vy—|Ray V}?lim
Raa oo o
VeRxx

This problem, adapted from a 2010 past paper question, is quite nasty. We want to prove VxRzx, so we know that we will
need to derive Raa (and make sure that a doesn’t appear in any undischarged assumptions in the proof of Raa). However, we
don’t have any way of proving Raa directly. Instead, we need to assume —Raa and show that this leads to a contradiction.

What kind of contradiction are we looking for? From Vax—Vy—Rxy, one of our premises, we can derive =Vy—Ray. This
means that if we can prove Yy—Ray we will have the contradiction we need. We can prove this by proving —Rab (as always,
making sure b doesn’t appear in any undischarged assumptions in its proof). This, in turn, we prove by assuming Rab and
showing it leads to a contradiction.

What can we do with an assumption of Rab? It turns out we can do quite a lot. From the premise VzVy(Rxy — Ryz) we can
derive Rab — Rba, which lets us derive Rba. From the premise VzVyVz((Rxy A Ryz) — Rxz) we can derive (RabA Rba) — Raa
(by replacing x and z with the same constant), which gives us Raa. This contradicts our assumption of = Raa, letting us
discharge Rab and derive -Rab. Now that all assumptions involving b have been discharged, we are free to derive Yy—Ray,
contradicting —Vy—Ray. This contradiction lets us discharge —Raa and derive Raa; finally we apply VIntro to derive the
conclusion VzRzx.
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Universal 25

VaVyVz((Rzy A Ryz) — Rzz)
VyVz((Ray A Ryz) — Raz)

vE
[(Rab A Rbc) A Real Vz((Rab A Rbz) — Raz) e VaVyVz((Rzy A Ryz) — Rxz) B
Rab A Rbc NE (Rab A Rbc) — Rac [(Rab A Rbc) A Rea) VyVz((Ray A Ryz) — Raz)
Rac —E Rea AE Vz((Rac A Rez) — Raz) e
Rac N Rea M (Rac A Rca) — Raa Voo Rrx
—E — " VE
Raa —Raa

—((Rab A Rbc) A Rea)
Vz=((Rab A Rbz) A Rza) "
VyVz—((Ray A Ryz) A Rza)
VaVyVz—((Rzy A Ryz) A Rzx)

This is adapted from a past paper question from 2014. In order to prove VaVyVz—((Rzy A Ryz) A Rzx) we can prove
—((Rab A Rbc) A Rea) without a, b or ¢ appearing in any undischarged assumptions; this is a negated statement, so we need to
derive a contradiction from assumptions of (Rab A Rbc) A Rea. Our premise Vz—Rxx could give us —Raa, ~Rbb and —Rce, so
we have a contradiction if we can prove Raa, Rbb or Rcc.

Although it is possible to prove any of them, Raa turns out to be the easiest to prove. From our assumption (RabA Rbc) A Rca
we can derive Rab A Rbc; we can use this with our premise to derive Rac. Our assumption provides Rca, so with both of them
we can derive Rac A Rca. In order to go from Rac A Rea to Raa, we need to use our premise to derive (Rac A Rea) — Raa.
Raa gives us the contradiction we need to discharge (Rab A Rbc) A Rea and derive =((Rab A Rbc) A Rea).
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Universal 26
VaVyVz((Rxy A Rxz) — Ryz)
[Rab A Rbc| VaRax YyVz((Ray A Raz) — Ryz)
AE

VE

Rab Raa F Vz((Rab A Raz) — Rbz) e VavyVz((Rey A Rez) — Ryz)
M e VyVz((Rby A Rbz) — R
Rab A Raa (Rab A Raa) — Rba [Rab A Rb] yvz((Rby A Rbz) — Ryz)
Rba —E Rbe NE Vz((Rba A Rbz) — Raz) .
Rba A Rbe M (Rba A Rbe) — Rac -
Rac -

(Rab A Rbe) — Rac
Vz((Rab A Rbz) — Raz) v
YyVz((Ray A Ryz) — Raz) .
VaVyVz((Rzy A Ryz) — Rxz)

This is adapted from a past paper question from 2011. In order to prove VaVyVz((Rxy A Ryz) — Rxz) we can prove
(Rab A Rbc) — Rac, as long as a, b and ¢ don’t appear in any undischarged assumptions. This is an implication, so we can
assume Rab A Rbc and need to derive Rac. This much is straightforward; more tricky is working out how to use our premises
to get from Rab A Rbc to Rac. YxRzxz allows us to derive Raa, Rbb or Rec if we want them; VaVyVz((Rzy A Rrz) — Ryz)
gives us many different sentences involving a, b and ¢. We need to work out which sentences we need.

Rac is the sentence we're aiming for, so ideally we want to use our premise VaVyVz((Rzy A Rxz) — Ryz) to derive a
conditional with Rac at the end. We could derive (Raa A Rac) — Rac, but this wouldn’t help us very much: in order to
use it we would need a proof of Rac, and a proof of Rac is what we're looking for in the first place. We could also try
(Rca A Ree) — Race, and this would work, but would lead to a proof which is much longer than necessary. So instead we will
use all three of our constants and derive (Rba A Rba) — Rac.

This means we need a proof of Rba A Rbe, which requires a proof of Rba and a proof of Rbc. Rbc is easy; it comes directly
from our assumption. Proving Rba requires using our big premise to derive another conditional, this time with Rba as the
consequent. (Rab A Raa) — Rba is the ideal conditional to derive, because we have both Rab (from our assumption) and Raa
(from our premise). This means we have a complete proof.



5.8 Existential quantifier

Existential 1

[Pal
——— dIntro
JxPx JyPy .
Hypy 1m

This proof involves one use of each rule for the existential quantifier. Al-
though there are only two steps, this proof exemplifies the unusual structure
which proofs involving the existential quantifier take: we eliminate any existen-
tial quantifiers at the bottom, and introduce them at the top. This means there
are two ways we can look at this proof: one from top to bottom and one from
bottom to top.

From top to bottom, we start by assuming Pa, and then apply dIntro to
derive JyPy. Following this we make use of our premise 3z Pz and apply JElim.
This allows us to discharge our assumptions of Pa, provided that a doesn’t
appear in any other undischarged assumptions, and doesn’t appear in either
JyPy or dxPx. All of these conditions are satisfied, so we are allowed to apply
JElim and discharge Pa.

From bottom to top, we can see our premise dxPx as giving us a ’'free’
assumption of Pa, provided that a is an arbitrary constant. a can’t appear in
Jx Pz or in what we ultimately plan to prove. It also can’t appear in any other
undischarged assumptions we use. It is this assumption of Pa which we use to
apply JIntro and derive our conclusion, 3y Py.

Existential 2

[Pal
——— JIntro
JxPx —-dzPx
—Intro
-Pa
——— JIntro
dx—Px

Our conclusion is an existential statement, so we can prove it from =Pa by
applying JIntro. = Pa is a negation, so we prove it by assuming Pa and showing
that it leads to a contradiction. Our premise —3x Pz is a negated statement,
so we have a contradiction if we can prove dxPx. We can derive this from our
assumption of Pa by applying JIntro, giving us the contradiction we need.

We could have used any constant in place of a in this proof, because the
two dIntro steps would still have worked. Although our choice of a here was
arbitrary, in other proofs we might not have so much flexibility.
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Existential 3
[Pa] [Pa— Q)
Qb
J22Qxo
Jz1(Pa — Qx1) Pa — JzoQxs
Pa — Jx2Qxo

—Elim
JIntro
—Intro

JElim

Our premise 3z1(Pa — Qx1) gives us a free assumption of Pa — @b which
we can use to derive our conclusion Pa — Jx2Qx2. Note that I've chosen to
use b as our arbitrary constant because we can’t use a: a can’t be our arbitrary
constant because it appears in 3x1(Pa — Qz1).

Our conclusion is a conditional, so we can assume Pa and need to try to
derive dxoQxo. With our assumptions of Pa and Pa — Qb we can derive Qb,
which means we can derive JzoQ o by JIntro.

In the proof above we apply JElim at the end of the proof to discharge
Pa — Qb; we could also have applied it before applying —Intro, as shown in
the proof below. Usually it is most straightforward to wait until the very end
of the proof before applying JElim, but in later examples we’ll see cases where
this isn’t possible.

[Pa] [Pa— Qb
Qb
Jz1(Pa — Q1) JxoQxo Fnro
J22Q °
Pa — 3x5Qxs

—Elim

lim

—Intro

Existential 4

[Pa A Qa] . [Pa A Qa
———— AElim — 5.
35;2/ JIntro %C(;Z JIntro
Jz(Pz A Qx) JyPy A 32Qz

JyPy A 32Qz

AElim

Alntro

JElim

Our premise 3z(Pz A Qz) is an existential statement, which gives us a free
assumption of Pa A Qa. We need to derive JyPy A 32Qz, so we need to provide
a proof of JyPy and a proof of 3zQz. On the left, our assumption of Pa A Qa
gives us Pa, which gives us JyPy; on the right, our assumption gives us Qa,
which gives us 32Qz. When we apply JElim, both assumptions of Pa A Qa are
discharged at once, which the rules governing dElim do allow.

Again it’s possible for us to apply JElim sooner than the end of the proof.
This results in a proof which is slightly longer, as shown below:
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[Pa A Qal) [Pa A Qal

im AElim
& EIIn/:i)l & JIntro
Jz(Pz A Qx) JyPy Jz(Pz A Qx) 32Qz
IElim IElim
JyPy JyP .
Alntro
JyPy A 3z2Qz

In this proof we apply JElim twice, and on both occasions we use a as our
arbitrary constant. This is allowed, but isn’t necessary: we could use a different
constant in each branch. In certain proofs we apply dElim twice in the same
branch, so that one application follows another; in these proofs we are obliged
to use different constants each time.

Existential 5

ﬂ JIntro [Qa} JIntro
_ WPy o FQz
[PaV Qa] FyPyV 32Qz "3y Py v 32Qz vEnli::
Jz(Px V Q) JyPy Vv 32Qz .

JyPy VvV 3z2Qz

Our premise is an existential statement, giving us a free assumption of Pa V
Qa. This is a disjunction, splitting the proof into a case where Pa is true and
a case where Qa is true. In the case where Pa is true we can derive dy Py and
hence our conclusion JyPy V 3zQz; in the other case we can derive JyPy and
can also derive the conclusion JyPyV 3zQz. Our assumptions of Pa and Qa are
discharged when we apply VElim, so they do not interfere with our application
of AElim.

Existential 6

ﬂ VIntro & VIntro
M JIntro M JIntro
[FzPx] Fz(PzV Qz) N [FyQy] Fz(PzV Qz) .
JxPx VvV JyQy Jz(Pz V Qz) J2(PzVvQz)
Jz(Pz V Qz) Vit

Our premise is a disjunction, splitting the proof into a case where 3xPx is
true (on the left) and a case where JyQy is true (on the right). On the left-hand
side we use our assumption of dxPx to discharge another assumption of Pa;
this gives us Pa V Qa and hence our conclusion 3z(Pz V Qz). The right-hand
side works similarly: JyQy gives us a free assumption of Qa, from which we can
derive Pa V Qa and 3z(PzV Qz).
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Existential 7

ﬂ —Intro
[Pa)?> Pa— 32Qx . Pa — Qb -
JxQx e Jz(Pa — Q) n_rol
Jz(Pa — Qx) St [-32(Pa — Qx)]3 ,
—Pa —Intro [Pa] .
L —Intro
Pa — Qc
—————— JIntro <
Jz(Pa — Q) [~3x(Pa — Qu)]* s
Jz(Pa — Qx) Tt

This proof is nastier than it might look at first. Our premise Pa — JzQx isn’t much help to us on its own, but with an
assumption of Pa it allows us to derive JxQx. This gives us a free assumption of @b which we can use to derive 3z(Pa — Qz);
we can’t assume Qa because it appears in Jz(Pa — Qz) and Pa (which won’t be discharged by the time we apply JElim).

From Qb we can straightforwardly derive Pa — Qb and then Jx(Pa — Qx), and we can then apply JElim to discharge Qb.
But there is a problem: our assumption of Pa still hasn’t been discharged, so we don’t have a complete proof of 3z(Pa — Qx).

It turns out that this is an indirect proof: we need to assume —3x(Pa — Qz) and show that this leads to a contradiction.
Our first assumption of —=3x(Pa — Qx) lets us discharge Pa and derive —Pa; from —Pa we can derive 3z(Pa — Qz) again.

One way of deriving 3z(Pa — Qx) is to assume Pa, derive Qc in one step by —Elim, and apply —Intro to discharge Pa
and derive Pa — Qc. Jx(Pa — Qz) again contradicts —3x(Pa — Qx), so we apply —Elim, discharge our assumptions of
—3z(Pa — Q) and derive Jz(Pa — Q).



Existential 8

[Raa)
Raa — Raa
Jy(Ray — Rya)
Jzdy(Raxy — Ryx)

—Intro
Jlntro

JIntro

The statement we want to prove is Jz3y(Rzy — Ryz). We can apply
dIntro twice to derive this from a number of different statements, but not all
of them will be useful. For example, we could derive 3z3y(Rzy — Ryz) from
Rab — Rba, but we have no way of providing a proof of Rab — Rba from no
premises.

Instead, we will derive 3z3y(Rzy — Ryx) from Raa — Raa. We can prove
Raa — Raa from no premises by assuming Raa and applying implication-
introduction, discharging the assumption.

Note that the rules of Natural Deduction do allow us to make the first IIntro
step and only replace some of the as with ys. This is a difference between JIntro
and VIntro: when applying the latter rule, all occurrences of the constant need
to be replaced with the variable.

Existential 9

[Rab]*
JIntro
_JyRyp
[ByRay)? 3x3yRyx n'ml
JxdyRxy JxdyRyx i
JElim?

JxdyRyx

In this proof our premise dz3dyRry contains two existential quantifiers. This
means we need to apply JElim twice. The way we do this is quite mechanical,
but produces an odd-looking proof structure.

Applying JElim with JzdyRxy at the bottom of the proof allows us to
discharge an assumption of JyRay. Applying JElim with JyRay allows us to
discharge an assumption of Rab. Using this assumption, we apply JIntro twice
to derive our conclusion Jz3dyRyzx.

It’s worth verifying that our JElim steps are allowed. The first application of
JElim (higher up in the proof) replaces y with b; it is allowed because b doesn’t
appear in dyRay, drdyRyzr or in any undischarged assumptions in the proof
of 3xdyRyx other than Rab, which is then discharged. Our second application
(at the bottom of the proof) replaces = with a; it is allowed because a doesn’t
appear in JzdyRzy, JrIyRyx or in any undischarged assumptions other than
JyRay, which is then discharged.

If we had used only one constant throughout the proof, the proof would not
have worked. An example of an incorrect proof is shown below:
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[Raa)t

HyRya, HI:ItrO

——— dIntro

[ByRay]® 3z3yRyx )

JxJyRxy JxdyRyx i
JElim?

JxdyRyx

Here, the first application of JElim (attempting to discharge Raa) is not
allowed, because the constant a appears in JyRay.

Existential 10

[Raa] [Raa)
Raa N\ Raa A;rll::r)o
Jy(Ray A Rya) e
JrRrxr Jxdy(Rey A Ryx)
Jz3y(Ray N\ Ryx) i

Our premise JxRxx allows us to discharge an assumption of Raa. This is
useful because we can use it twice to derive Raa A Raa, which allows us to derive
Jx3y(Rxy A Ryx) by Jntro.

Existential 11

M JIntro
JyRay
[FyRyy] JxIyRay j;j:
Jx3yRxy —JxdyRzy e
—JyRyy

Here our conclusion is a negated statement, meaning we need to derive a con-
tradiction from an assumption of JyRyy. Our premise ~JzdyRzry is a negated
statement, so we have a contradiction if we can derive Jx3yRxy. Applying
JElim to this assumption of JyRyy gives us an assumption of Raa. From this
assumption we can derive JxdyRzy, giving us the contradiction we need.

Unusually, we don’t apply dElim at the very end of the proof. When we
apply —Intro we need to discharge our assumption of dyRyy, so we need to
apply JElim before we apply —Intro.
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Existential 12

[Rab A —Rab]! [Rab A\ —Rab]*
T AElim W AElim
[3y(Ray A —Ray)]? —3Jx3Jy(Rxy A “Rxy) _ﬁhlltm
[3z3y(Rzy A ~Ray))? —~JaJy(Rey A -Ray) i
—Jz3y(Rzy N ~Ray) AEtim [323y(Rxy A ~Ray)]?

—Intro®

—JzIy(Rxy A ~Rxy)

Here our conclusion —3x3y(Rxy A ~Rxy) is a negated statement, so we prove it by assuming JaxTJy(Rxy A ~Rzxy) and
deriving a contradiction from it. With this assumption we can apply JElim to discharge an assumption of Jy(Ray A —=Ray),
provided a doesn’t appear in any other undischarged assumptions by the time we apply JElim. Jy(Ray A —Ray) in turn lets
us discharge an assumption of Rab A =Rab, provided b doesn’t appear in any other undischarged assumptions when we make
this JElim step.

With this assumption of Rab A —~Rab we have what we need to derive a contradiction: by AElim we can derive both Rab
and —Rab, which contradict each other. However, if we apply —Intro at this stage to derive =3z3y(Rxy A ~Rxy) we won’t be
able to discharge Jz3y(Rxy A —Rxy), because that assumption appears much further down in the proof.

This means we need to apply —Intro twice. First we apply —Intro at the top of the proof to derive —JzJy(Rxy A ~Rxy).
Then we apply JElim twice, using Jy(Ray A —Ray) to discharge Rab A =Rab and JzIy(Rzxy A —Rzy) to discharge Jy(Ray A
—Ray). Finally we assume Jz3y(Rxzy A ~Rxy) again, and apply —Intro a second time. This discharges both assumptions of
Jz3y(Rxy A ~Rxy) and provides a proof of the conclusion.
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Existential 13

[(3zRxx]!

JzRzx V Jz(Raxx — —JyRyx) v [~(3xRzx V 3x(Rrx — —JyRyx))]? ) [Raa)?

-1 Ell
—JdrxRxx dzRxx B

—JyRya
Raa — —3yRya -
Jz(Rzx — —JyRyz)
JzRzxx V Jx(Rxxr — —JyRyx) v [~(3xRzx V 3x(Rrx — —3yRyx))]?
JzRzxx V Jx(Rxxr — —JyRyx)

-E

What we want to prove is a disjunction, but we can’t provide a direct proof of either disjunct. This turns out to be
an indirect proof, of a very similar form to the proof of PV (P — Q) given in the negation section. We have to assume
—JzRxx V Jz(Rxx — —JyRyzx), the negation of our conclusion, and show that it leads to a contradiction.

We start by assuming 3z Rz, from which we can derive the conclusion 3z Rz V Iz (Rrz — —JyRyx). Assuming ~(JzRzzV
Jz(Rxx — —JyRyx)) gives us a contradiction, which lets us discharge 3zRzx and derive -3z Rxz.

We do the actual legwork of the proof when we derive Jz(Rzx — —JyRyx) from —3JxRxx. We can derive this from
Raa — —3yRya, which is an implication: so we assume Raa and derive =3y Rya.

This assumption of Raa allows us to derive xRz, which contradicts =3z Rxx and lets us derive =3y Rya by —Elim. This
means we can apply implication-introduction (discharging Raa), JIntro and VIntro to prove Iz Rxx V Jx(Rxx — —JyRyx).

Finally we assume —(3zRzz V Jz(Rzx — —JyRyx)) a second time, letting us discharge both occurrences of —(3xRxax V
Jz(Rxx — —JyRyz)) and derive IzRxx V Jx(Rrxax — —IyRyz) by —Elim.

The above is not the only way in which this proof could have been carried out. We could have begun, for example, by
assuming Raa. It would also be possible to carry out the proof by first assuming Jz(Rxax — —JyRyx), or by first assuming
—Raa.
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Existential 14

—Qa  [Qb] . RabARbe
“Qa N Qb Rab

(—=Qa A Qb) A Rab o
Jy((=Qa A Qy) A Ray)
Jz3y((-Qz A Qy) A Ray) [-F2Ty((-Qz A Qy) A Ray)] o

—Qb Qc Rab A Rbe
Al NE

—Qb A Qc Rbe
(=Qb A Qc) A Rbe
31
Jy((—=Qb A Qy) N Rby)
Ja3y((-Qz A Qy) A Ray) [-323y((-Qz A Qy) A Rzy)]
JzIy((=Qz A Qy) N Rxy)

NI

-

This is adapted from a past paper question from 2016. The good news is our premises have no quantifiers, but the bad
news is that we have no way of proving our conclusion Jz3y((—-Qx A Qy) A Rxy) directly from these premises.

What we will do first is assume Qb and derive the conclusion JxIy((—-Qx A Qy) A Rzxy) from this. Then we will assume
—-3J23y((—-Qz A Qy) A Rzy) and apply —Intro to discharge Qb and derive =Qb. We will then show that even with =Qb we can
derive Jz3y((—-Qx A Qy) A Rxy). At this point we will assume —3zIy((—-Qz A Qy) A Rxy) again and apply —Elim, discharging
both assumptions of ~3z3y((—-Qz A Qy) A Rxy) and providing a proof of JxTJy((—-Qx A Qy) A Rxy).

The proofs of FzIy((—-Qz A Qy) A Rxy) from Qb and from —Qb are fairly straightforward, and similar to each other. In
the first proof we aim to prove (—=Qa A @Qb) A Rab, which we can do easily with the conjunction rules, our premises and our
assumption of @b. In the second proof we aim to prove (—Qb A Qc) A Rbe, which we can do with our premises and proof of
—@b. Then both times we apply JIntro twice to arrive at JzIy((—Qz A Qy) A Rxy).
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Existential 15

7[Pabc]1 JIntro
_FzPaze 5,
Jy3IzPyzc [-3yTFz Pyzc)? .
—Pabe ., e
[3z—JyIz—Pyza)3 Jz-Pbz
3:-Pb- FBlim® [~32-Pabz]
[Fy—Iz—-Payz]’ —3Jr—IyIzPyzx ~atro”
Jxdy—Jz—Pryz —dr—3JydzPyzx St
—dr—3ydzPyzx Ftim?

This proof involves ternary predicates, lots of discharging of assumptions and three applications of JElim. The good news
is that the proof is quite systematic.

With our premise Jx3dy—3z—Pxyz we can apply JElim at the end of the proof to discharge assumptions of Jy—3z—-Payz, as
long as a doesn’t appear in any other undischarged assumptions by that stage. Jy—3z—Payz is itself an existential statement,
so we can use it to discharge assumptions of =3z—Pabz, as long as b doesn’t appear in any undischarged assumptions by the
time we make this application of JFElim.

What we want to prove is ~3z—3dy3dzPyzx, a negation, so we need to assume Jr—3y3zPyzx and show that this leads to a
contradiction. The assumption which our premise gives us is ~3z—Pabz, so we can obtain a contradiction by deriving 3z—Pabz.

Assuming Jz—JyIz Pyzx (which we have assumed for our first contradiction), we can apply JElim to discharge assumptions
of =3ydzPyzc, as long as ¢ doesn’t appear in any undischarged assumptions at this point. From this we need to derive
Jz—Pabz, which can be obtained from —Pabc. —Pabc is itself a negated statement, so we obtain it by assuming Pabc and
deriving a second contradiction. To do this derive Jy3zPyzc from Pabe, contradicting our assumption of =3y3zPyzc.



Existential 16

[Pal
——— JIntro
dxPx —-dz Pz
—Intro
~Pa VIntro
Vr—Pzx

This is the first of four proofs illustrating the duality between the universal
quantifier and the existential quantifier. The proofs aren’t very intuitive, but
the techniques appear in lots of harder proofs.

We can prove YVr— Pz by proving —=Pa as long as Pa doesn’t appear in any
undischarged assumptions. This is a negation, so we can derive it by assuming
Pa and deriving a contradiction. Our premise -3z Px is also a negated state-
ment, so we have a contradiction if we can prove JzPx. This follows from our
assumption of Pa by JIntro, so we have the contradiction we need.

Because our application of —Intro discharges our assumption of Pa, we are
free to apply VIntro in the last step and derive the conclusion Vz—Pz.

Existential 17

Pa [_‘Pa] —Intro
dz—-Px Ve Px “Elim
Ve Px

Our premise dz—Px is an existential statement, so by applying JElim at the
end of the proof we can discharge an assumption of —Pa (as long as a doesn’t
appear in any other undischarged assumptions).

Our conclusion =Vz Pz is a negated statement, so we prove it by assuming
Vz Pz and deriving a contradiction. Since Jx— Pz gives us an assumption of
- P, we have a contradiction if we can derive Pa. This follows from VxPx by
VElim.
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Existential 18

[~Pa]
——— JIntro
Jx—Px [ﬁﬂaﬁPx}
—Elim
Pa VIntro
VaxPx —VaxPx Elim
dz-Px

Our conclusion dz— Pz is an existential statement, but it turns out we have
no way of proving it directly. We have to assume —3x—Px and show that it
leads to a contradiction. Our premise —Vx Pz is a negated statement, so we
have the contradiction we need if we can derive VzPzx.

This is a universal statement, so we can prove it if we can prove Pa without
a appearing in any undischarged assumptions. Unfortunately, we have no way
of proving Pa directly either: we have to assume —Pa and show that this leads
to a contradiction.

Because —Jx— Pz is a negated statement, we have a contradiction if we can
derive dx—Px. This follows from —Pa by JIntro. Because the first application
of —Elim discharges —=Pa we are free to apply VIntro and derive Ve Pz. This
then gives us the contradiction which allows us to derive Jz—Pzx.

Existential 19

Va-Px
[Pa} WVElim
[FzPz] —~JzPx HE;:“O
-3z Px [FzPx] e
-3z Pz

Our conclusion —3z Pz is a negated statement, so we assume Jzx Pz and try
to derive a contradiction. dz Pz is an existential statement, so we can use it to
discharge a proof of Pa (as long as a doesn’t appear in any other undischarged
assumptions when we apply JElim).

Because we can derive —Pa from our premise Yz—Pz we have the contra-
diction we need, but applying —Intro at this stage won’t let us discharge Jz Px.
This means after applying dElim we assume JdzPx again and apply —Intro a
second time; this second application lets us derive the conclusion —3z Pz and
discharge both assumptions of JxPz.
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Existential 20

[Pb] Vz(3yPy — Q)
dIntro VElim
JyPy JyPy — Qa
or —Elim
Pb— Qa *I;‘I“j
Jy(Py —» Qa)
Vintro

Vady(Py — Qx)

This is a past paper question from 2011. The statement we want to prove
is Vedy(Py — Qx), a universal statement. This means we can prove it from
Jy(Py — Qa), as long as a doesn’t appear in any undischarged assumptions.
This is an existential statement, so there are lots of statements we can prove it
from. We'll try Pb — Qa.

Pb — Qa is an implication, so we prove it by assuming Pb and trying to
derive Qa. We can get to Qa with the help of our premise, Vz(JyPy — Qx).
From this we can derive JyPy — Qa, which is an implication with Qa as its
consequent. All we need to do is prove JyPy; fortunately this follows from our
assumption of Pb.

The proof would also have worked if we had assumed Pa at the very top
of the proof, and then derived Jy(Py — Qa) from Pa — Qa. Our VIntro step
would still have been allowed because the assumption of Pa would have been
discharged before applying VIntro. This alternate proof is shown below:

[Pa) Vz(JyPy — Q)
dIntro VElim
JyPy JyPy — Qa
or —Elim
Pa— Qa
——— — JIntro
Jy(Py — Qa)

VIntro

Vady(Py — Q)
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M JIntro
JyPay [~yPay]
Qab
Pab — Qab " Va-¥y(Pry — Quy) |
Vy(Pay > Qay) " " ¥y(Pay > Qay)
JyPay
m Vintro

This is a past paper question from 2013. Our conclusion Vax3yPzxy is a
universal statement, so we can prove it from JyPay as long as a doesn’t appear
in any undischarged assumptions. This is an existential statement, but we have
no way of proving it directly. Instead we have to assume -3y Pay and show that
it leads to a contradiction. Since our premise Vz—Vy(Pzy — Quy) gives us the
negated statement —Vy(Pay — Qay), we have the contradiction we need if we
can provide a proof of Yy(Pay — Qay).

Vy(Pay — Qay) is a universal statement, so we can prove it from Pab —
Qab, as long as b doesn’t appear in any undischarged assumptions. Remember
that the conditions for VIntro prevent us from using a twice. Pab — Qab is an
implication, so we can assume Pab and need to prove QQab. We can’t obtain
Qab from anything directly, but from our assumption of Pab we can obtain
JyPay, which contradicts our assumption of =3yPay. This lets us obtain Qab
by —Elim.

Existential 22

M Jlntro M VElim
Va(Pzz V VyQzy) JyPay Qaa
Paa vV VyQay vEtm JyPay V Qaa vintro JyPay V Qaa Vlnfm
JyPay V Qaa nteo vt
Va(JyPry V Qzx)

This is a past paper question from 2009. Our conclusion Va(JyPzyV Q) is
a universal statement, so we can prove it from JyPayV Qaa as long as a doesn’t
appear in any undischarged assumptions. Our premise VY (Pzx V VyQzy) gives
us Paa V YyQay, a disjunction splitting the proof into a case where Paa is true
and a case where VyQay is true. In the left-hand case we can obtain dyPay by
JIntro, and in the right-hand case we can obtain Qaa by VElim. This means
that in both cases we have proofs of JyPay V Qaa.
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Existential 23

[Paa A VyQay] [Paa AVyQay]
7 T ABlim A AElim
Paa JIntro YyQay VElim
JyPay Qaa Alnt
JyPay A Qaa - e
Az(Pzx AVyQry) Jx(JyPay N Qaa) . nl -
Elim
Jz(JyPay A Qaa)

This is a past paper question from 2009. Our premise Jz(Pzx A VyQuy)
is an existential statement, so we can apply JElim at the end of the proof to
discharge assumptions of Paa A VyQay, provided a doesn’t appear in any other
undischarged assumptions. Our conclusion Jx(JyPay A Qaa) is an existential
statement; since our premise is going to discharge assumptions involving a, it
makes sense to try to derive 3z(JyPay A Qaa) from JyPay A Qaa.

This is a conjunction, so we need to provide a proof of JyPay and a proof
of Qaa. Both of these can be derived from our assumption of Paa A VyQay.
From Paa we can derive JyPay by JIntro, and from VyQay we can derive Qaa
by VElim.
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Existential 24

[-VaRxx]
Vz3dyRxy V ~VaRrx vinero [~(VzIyRay V ~VzRzz)]
VeRzx
Raa
JyRay
VrIyRxy
VaIyRxy V -V Rrx vinero [-(VzdyRay V ~VaRxx)]
VaedyRxy V -VrRxrx

This is a past paper question from 2013. Our conclusion Vx3yRzy V —=VxRzxx is a disjunction which we are asked to prove
from no premises. This makes it pretty likely that we’ll need to carry out an indirect proof, assuming —(Va3yRzxy V Ve Rzx)
and showing that it leads to a contradiction.

We follow the usual strategy for indirectly proving disjunctions. First we assume one disjunct, -VxRzz, and derive the
conclusion Vz3yRxy V —Vax Rz from it. Using our assumption of =(VzIyRxy V —VzRax) we apply —~Elim and derive VzRxx.
With this proof of Vx Rzx we want to derive the other disjunct, VxdyRzxy.

This is a universal statement, so we can derive it from JyRay (as long as a doesn’t appear in any undischarged assumptions).
This in turn can be derived from Raa, which can be derived by VElim from VzRzx.

From Vz3yRzy we derive VeIyRay V —-VexRzx a second time and assume —(VzIyRzxy V —VzRzx) a second time. Finally
we apply —Elim, discharging both assumptions of =(Vz3yRzy V -VezRxx) and deriving VadyRxy V ~VaRzx.

An alternate proof, starting from Vz3yRxy, is shown below:

-Elim

VElim
JIntro

VIntro

—Elim

VeRxx]
[VI’HyR(Ey] . W VElim
VadyReyV VaRee " [~(VadyRey v ~YoRea)] : SyRay HI\:: .
“Vl’anyy Thntro V;L'Hnyy ntro
—Intro
_‘V.’ERZL'{E VIntro
VedyRxy V ~VxRxx [-(VzTyRay V ~VaxRzxz)]

—Elim

VrdyRxy V -VxRrx
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[Rbb] VaIyRxy vinero VaIyRry — —~JxRrx
JIntro —Elim

drRxx —JxRxx

—Intro

JxVyRyx Ve-Rxx vinero

Ve—-Rzx

JElim

This is adapted from a past paper question from 2010. Our premise JzVyRyx
is an existential statement, letting us discharge assumptions of VyRya, as long
as a doesn’t appear in any other undischarged assumptions by the end of the
proof.

We want to prove Yx—Rxx, which we can derive from —Rbb (as long as b
doesn’t appear in any undischarged assumptions when we apply VIntro). This
is a negated statement, so we prove it by assuming Rbb and showing that it
leads to a contradiction.

We don’t have any negated statements readily available, but our other
premise VadyRry — —JxRxx is a conditional with a negated consequent. This
means that if we can prove VxdyRzy we will be able to derive -3dxRxzx by
—Elim.

VzdyRxy follows from our assumption of VyRya, so we have a proof of
—JzxRxx. Since JxRxx follows from Rbb, we have the contradiction we need
to discharge Rbb and apply —Intro. This then lets us derive our conclusion
Vr—Rzz; finally an dElim step discharges our assumption of YyRya.
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[-Va Pz .
V23zRzx V —VaPx [~(Vz3zRzx V ~VxPx)]
VaPx B Va(Pr — JyRyx) e
Pa Pa — JyRya [Rba)
—E ar
JyRya JzRza .
JzRza
VadzRzx I
VaxdzRza V ~Va Pz [-(Vx3zRza V —Va Pz))

Vx3zRzx V ~VxPx o

This is adapted from a past paper question from 2013. This is another indirect proof of a disjunction, so we follow the
usual strategy of starting by assuming —Vx Pz, one of the disjuncts, deriving the conclusion by VIntro and then assuming the
negation of the conclusion to create a contradiction. With this contradiction we apply —Elim to derive VxPz.

The legwork of the proof lies in using our premise Vz(Px — JyRyx) to derive VaIz Rz from VzPx. VYx3zRzx is a universal
statement, which we can derive from 3zRza (as long as a doesn’t appear in any undischarged assumptions when we apply
VIntro). From Va Pz we can derive Pa and from Va(Pz — JyRyz) we can derive Pa — JyRya, meaning we can apply —Elim
to derive dyRya. This is almost what we need, but we need to apply JIntro and JElim to convert it to zRza.

With Vx3zRzx we can apply VIntro again to derive the conclusion. We assume the negation of the conclusion a second
time and apply —Elim to discharge both assumptions of =(Vz3zRzx V =VzPz) and derive Va3zRzx V —VaPx.
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VaVyVz(Rxy V Rzy V Rzx)
VYyVz(Ray V Rzy V Rza) v;E [Rab)! [~Rab]3 - [Reb] o
Vz(RabV RzbV Rza) [Rab \V Reb)? RcaV Rcb  RcaV Reb [Real?
RabV RcbV Rca r Rca V Rcb vE! Rca V Rcb z;z,
Rca V Rcb
Vz(Rza V Rzb)

JyVz(Rza V Rzy) 3131
JrIYVz(Rza V Rzy)

JrIyYVz(Rzx V Rzy)  [-323yVz(Rzx V Rzy)]*

-E3
Rab
Rab V Rbc
Vz(Rza V Rzb) .
IyVz(Rza V Rzy) .
JxIYVz(Rzx V Rzy) [-32TyVz(Rzz V Rzy))*
JxIYVz(Rzx V Rzy) h

Unfortunately, the above proof is too wide to fit on a single page.

The first thing we should notice is what’s similar between our premise and our conclusion. The premise is V&VyVz(Rxy V
Rzy V Rzx), so from it we can derive RabV RcbV Rea. The conclusion is dx3yVz(Rzx V Rzy), so we can derive it from
Rca V Rcb, provided ¢ doesn’t appear in any undischarged assumptions by the time we derive Rca V Rcb.



Deriving Rca V Rcb from Rab V Rcb V Rca is possible if we can provide a
proof of ~Rab. We don’t have a proof of —Rab, but instead we can simply
assume it. Deriving Rca V Reb then is a straightforward (if a little fiddly) case
of applying VElim and VIntro, applying —Elim in the Rab case. Notice that,
according to the bracketing conventions, RabV RcbV Rca is an abbreviation
of ((RabV Rcb) V Rca), which is why we need to use VElim once to discharge
assumptions of Rab and Rcb and a second time to discharge assumptions of
RabV Rcb and Rca.

After deriving Rca V Rcb, we still have = Rab undischarged. Hence we can
apply VIntro to obtain Vz(Rza V Rzb), but we wouldn’t be able to derive (for
example) VaVyVz(Rzx V Rzy).

Once we have Jx3yVz(Rzx V Rzy) (which is where the proof above splits in
two), we need to discharge our assumption of = Rab, so we assume —~JzIyVz(RzaV
Rzy) and discharge our assumption of =Rab by —Elim. We now have a proof of
Rab with no undischarged assumptions involving of a, b or ¢; hence we have
no problem deriving JxIyVz(Rzz V Rzy) a second time. Then we assume
—J23yVz(RzzV Rzy) once more, discharge both assumptions of ~3z3yVz(RzzV
Rzy) by —Elim, and derive Jz3yVz(Rzx V Rzy).

Bonus challenge

The following proof has the two features specified in the challenge:

JzP  [P]
P JElim

This requires us to apply —Elim in a bizarre way, but it is indeed allowed.
Recall the formulation of the FElim rule:

[4[t/v]

Jve
(0

The JElim rule lets us discharge all assumptions of ¢[t/v], where ¢[t/v] is
the result of replacing all occurrences of v (x in this case) in ¢ (P in this case)
with the constant ¢. But here there are no occurrences of x in P, P is what we
discharge. 1) happens to be P as well in this case, so P is what we conclude.

Furthermore, all additional conditions for FElim are satisfied: there are no
constants in the proof at all, so none appear in ¥ or ¢ or in any undischarged
assumptions in the proof of .

This is an absurd proof, but it highlights an unusual way in which the
quantifier rules can be applied. Similar proofs exist for dIntro and the two rules
for the universal quantifier:

JElim

VeP _ .
5P Jlntro P JElim ViP

JIntro
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5.9 Identity

Identity 1
la =al~
JIntro
Jya =
JIntro
JzIyx =

We aren’t given any premises, but we can apply =Intro to make and imme-
diately discharge the assumption a = a. From this, we can derive dx3dyz = y
by applying JIntro twice.

Identity 2
a=b [a=c 1
=Elim
b= b~ b=
Alntro
b=bAb=c ~(b=bAb=c
o =c —Intro

Our conclusion —a = ¢ is negated, so we can derive it by assuming a = ¢ and
showing it leads to a contradiction. Since one of our premises =(b=0bAb = ¢)
is negated, we have the contradiction we need if we can provide a proof of
b=bAb=c.

b = b is easy to prove: we can assume it and immediately discharge it by
=Intro. To obtain b = ¢, we apply =Elim using our premise ¢ = b and our
assumption of a = c.
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Identity 3
c=a] [a=1b

=Elim Vz(x =a — xz =b)]
C—b _Intro _ VElim
c=a—=c=0b [a = d] a=a—a=0b
VIntro —Elim
Vae(r =a—x=0) a=1b
< Intro

a=beVe(r=a—x=0>0)

Our conclusion is a biconditional, so we need to provide two proofs: one proof
of Va(r = a — 2 =) from a = b and one of a = b from Vz(x = a — x = b).

On the left-hand side, we want to derive the universal statement Va(x =
a — x =b). We can derive this from ¢ = a — ¢ = b, provided ¢ doesn’t appear
in any undischarged assumptions in our proof of ¢ = a — ¢ = b. Because of the
restrictions on VIntro we can’t use a or b instead of ¢: a and b both appear in
Va(z = a = & = b), and our assumption a = b won’t be discharged until the
end of the proof. ¢ = a — ¢ = b is an implication, so we assume ¢ = a and
apply =Elim using our assumption of a = b to derive ¢ = b.

On the right-hand side, we want to derive a = b. We can’t derive a = b
using the introduction rule for =, but our assumption of Vz(z = a — = b)
helps us: we can apply VElim to obtain a = a — a = b and then derive a = a
by =Intro, giving us a = b by —Elim.

Notice the symmetry in the proof we obtain: the left-hand side uses =FElim,
—Intro and VIntro while the right-hand side uses =Intro, —Elim and VElim.

Identity 4
[Vya = y]! Vya = y]*
a = b VEhm [ ya VEhm
=Elim
g VIntro

b=y VInt [Pty =y VEli
[FavVyz = y)? VaVyz =y ml Vya =y B o

i -, ntr

VaVyr =y Ftim JaxVyxr =y ¢

& Intro?

dxVyr =y <> VaVyxr =y

This is a past paper question from 2009. Our conclusion is a biconditional,
so we need to provide a proof of VaVyxr = y from JzxVyxr = y and a proof of
JaVyx = y from VzVyx = y.

The right-hand side is easy: we use VElim to replace z with any constant
(a is used in the proof above) and then we use JIntro to replace that constant
with = again.

On the left-hand side, we have an existential assumption JxVyxr = y which
lets us discharge an assumption of Yya = y. We want to prove VaVyzr = vy,
which we can derive from b = ¢. We can’t derive it from anything involving a
because our assumption of Vya = y won’t be discharged when we apply VIntro.
We need to use our assumption of Vya = y twice, deriving a = b and a = c.
Then we can apply =Elim to derive b = c.
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Identity 5

7Pb =Elim —Pb

—a="b

—Intro

Our conclusion —a = b is a negation, so we derive it by assuming a = b and
trying to derive a contradiction. One of our premises = Pb is a negation, so we
have a contradiction if we can derive Pb.

To obtain Pb we need to make use of our assumption of a = b and apply
=Elim, replacing the a in Pa (our other premise) with b.

We could also have carried out the proof in a different way, applying =Elim
to obtain —Pa which contradicts Pa:

-Pb [a =D
——— — —FElim
Pa  —-Pa -
—a=15b
Identity 6
PoANQb  Vx(Pxr—x=a)
Pb A Qb Pb AElim Pb N b — VElim
——— AElim —Elim
Qb b=a e
Qa = 1m

Our conclusion is Qa. This doesn’t have any connectives or quantifiers in it,
so we know the last line of our proof won’t be an introduction rule. Qa doesn’t
appear explicitly in any of our premises, and we can’t derive it using —Elim
(assuming —Qa is no help).

However, we do have the premise PbA Qb, which gives us Qb; we can derive
Qa by =Elim if we can prove b = a. We can show b = a by —Elim, since our
first premise gives us Pb and our other premise gives us Vz(Px — x = a) gives
us Pb— b =a.
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Identity 7

Vy(Py < a = y)]
[Pb) ~ Pbra=0
a=1»
Pb—a=5b
Vy(Py = a=y)
JaVy(Py <>z =y) JaVy(Py — x=vy)
JaVy(Py — = = y)

VElim

+~Elim
—Intro
VIntro

Jlntro

JElim

This is a past paper question from 2011. It turns out we don’t need to use
any of the rules for identity, but we do need all four quantifier rules.

Because we have an existential premise J2Vy(Py <> = = y), we should look
at this first and apply JElim at the end of the proof to discharge Yy(Py < a = y)
(making sure that a doesn’t appear in any other undischarged assumptions by
the time we apply JElim).

Our conclusion JaVy(Py — x = y) is also an existential statement, and
it’s reasonable to suspect that we’ll derive it from Vy(Py — a = y) (that both
the premise and the conclusion refer to the same object). This is a universal
statement, so we’ll derive it from Pb — a = b. This is an implication, so we
assume Pb and try to derive a = b. We do this by <Elim using Pb <> a = b,
which can be derived from our assumption of Vy(Py < a = y).
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Identity 8

[P’ [e=a]!

Ve(r=aVaz=0»>) Pa - [~ Pal? [Pc)® [c=b]!
VE -E =K
c=aVc=b Pb vaE1
Pb
Jx Pz —~Pa— Pb ;EI
-Pa — Pb

One of our premises dzPx is an existential statement, so we should think
about that first. If we apply JElim at the end of the proof we can discharge
assumptions of Pc, as long as ¢ doesn’t appear in any undischarged assumptions.
We can’t use a or b because they both appear in our conclusion =Pa — Pb.

—Pa — Pb is an implication, so we derive it by assuming —Pa and deriving
Pb from it. Our premise Vz(x = a V x = b) is a universal statement. We can
derive lots of disjunctions from it, but not all of them will be useful. a = aVa =
b, for example, is something we could derive without any premises if we wanted
to: when we can use =Intro to assume and discharge a = a and then use VIntro
to derive a = a Va =0b.

c=aVc=>is useful: it splits the proof into a case where ¢ = a is true
and a case where ¢ = b is true. On the right-hand side, our assumptions of Pc
and ¢ = b let us derive Pb by =Elim. On the left-hand side, we can use =Elim
to derive Pa, which contradicts our other assumption of =Pa and lets us derive
Pb by —Elim.
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Identity 9

[Pc A Qc A Rac] Vavy((Pz A Q) A (Py A Qy) — x=y) VE
PbA Qb PcAQe METNY((POA QD) A (Py AQy) — b=1y) .

[Pc A Qc A Rac] - (PbAQb) A (PcAQc) (PbAQD)A(PcAQc)—>b=c .
Rac " b=c . -
Jz(Pz A Qz A Razx) Rab B
3E
Rab

This is a past paper question from 2010. Our premise Jz(Px A Qx A Rax) is an existential statement, so we will apply
JElim at the end of the proof to discharge assumptions of Pc A Qc A Rac and make sure that ¢ doesn’t appear in any other
undischarged assumptions. Not that we’re using ¢ as our constant here: we can’t use a or b because they appear in our
conclusion Rab, the existential premise dz(Px A Qx A Rax) and our other premise Pb A Qb.

We want to prove Rab; because our assumption Pc A Qc A Rac gives us Rac, we can obtain Rab using =Elim. To do this,
we need to show b = ¢. Our big premise VzVy((Pz A Qx) A (Py A Qy) — x = y) gives us (PbAQb) A (PcAQc) = b= c, so we
can prove b = ¢ by —Elim if we can prove (Pb A Qb) A (Pc A Qc). We can obtain this by Alntro and AElim from our premise
Pb A Qb and our assumption Pc A Qc A Rac.
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Identity 10

[Pa A Qal . VaVy(Px Az =y — —Qy) VElim

Pa [a - a]: Alntro vy(Pa na= vy— _‘Qy) VElim
[Pa A Qad] . PaNa=a PaNa=a— —Qa -
—— AElim —HElim

Qa —Qa
—Intro
—(Pa A Qa) '
- VIntrO
Vz-(Pz A Qz)

This is a past paper question from 2012. Our conclusion is a universal statement, so we can derive it from —(Pa A Qa) (as
long as a doesn’t appear in any undischarged assumptions by the end of the proof). This is a negated statement, so we assume
Pa A Qa and show that it leads to a contradiction.

We don’t have any negated statements immediately available which can give us the contradiction we need, but our premise
Yy(Pa A a =y — —Qy) can give us one. If we apply VElim twice, we can obtain Pa A a = a — —Qa, which is an abbreviation
of (Pa A a=a)— —Qa. This means that if we can prove Pa A a = a we can prove -Qa by —Elim.

Pa comes from our assumption of Pa A Qa and a = a can be assumed and discharged by =Intro, so a proof of Pa Aa =a
is easy to provide. With a proof of =Qa and a proof of Qa (which also follows from our assumption of Pa A Qa) we have the
contradiction we need.



Identity 11

VaVy(Rzy > © = y)

VElim
Vy(Ray <> a =y)
_ VElim
[a=a]~ Raa < a=a
+~Elim

Raa

———— VIntro

VxRxx

Our conclusion VxRzx is a universal statement, so we can derive it from
Raa (as long as a appears in no undischarged assumptions). By applying VElim
twice on our premise we can derive Raa <> a = a; this allows us to apply <>Elim
and derive Raa if we can provide a proof of a = a. =Intro gives us the proof of
a = a we need by allowing us to make and immediately discharge an assumption
of a = a.

Identity 12

Rab |a=0b 4
Rab [a=1Y g YEoRzz o
Raa —-Raa ntro
-a=1>
_ Hlntro
Jy—a =1y
p———_—___—_— HIntro
JxFy—z =1y

This is a past paper question from 2012. The conclusion Jx3y—x = y has
two existential quantifiers, so it’s likely we will derive it by applying Jlntro,
but we also need to determine which statement we should try to derive it from.
The constants a and b appear in the premise Rab, so =a = b would be a good
sentence to try and prove.

This is a negation, so we prove it by assuming a = b and showing that it leads
to a contradiction. There are actually lots of ways we can derive a contradiction
from this assumption and our premises Rab and Vz—Rzz. In the proof above,
we use =Elim and a = b to replace the b in Rab with a, giving Raa. Because
we can derive = Raa from VYx—Rzx, we have the contradiction we need.
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Identity 13

[Vya =y
[Rb]'  a=b " [yya =y
Rac o a=c —E\ﬁgim Lya =y’ VElim
Raa a = b1  Elim [Vya = y}d )
% VIntro
VyRbiy
[3y Rby)? VaVyRzy VIH%rol
JxJyRay VaVyRaxy | Ftim
JaVyx =y VaVyRxy . ki
Yoy Ry IElim

We have two existential premises, so we should think about those first. From JzVyz = y we can apply JElim to discharge

an assumption of Vya = y, and from Jzr3yRxy we can apply JElim twice to discharge an assumption of Rbc.

Our conclusion is VaVyRzy, a universal statement, so we derive it from Rbjc;. We can’t derive it from any statements
involving a, b or ¢ because they appear in our assumptions of Rbc and Vya = y, which won’t be discharged until the very end

of the proof.

Now all we need to do is move from our assumptions of Rbc and Vya = y to Rbyc;. This is easy to do using =Elim, because
our assumption of Yya = y tells us that everything is identical to a. First we replace the b and ¢ with Rbc with as, and then

we replace those as with by and c;.
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Identity 14

4
Vo Pzt [~Pab]? [a = b]* [VaVy(-Pzy = o =y)]*
———— VElim =Elim VElim
Paa —Paa Vy(-Pay — ~a=y)
—Intro! 3 VElim
—a = ntro? [-Paal -Paa — -a=a
-Pab— —-a=0> VIntro [a, = a,]: —a=a s —Elim
Vy(=Pay — —a = y) Paa ~Elim
Vintro ———— VIntro
VaVy(—Pzy — —x = y) VaPxx
~Intro*

VaPxx < VaVy(—~Pry — —x = y)

This is a past paper question from 2009. Our conclusion is a biconditional, so we need to provide a proof of VaVy(—~Pxy —
-z = y) from Vo Pzx and a proof of Ve Pxx VaVy(—~Pxy — —x = y).

On the left-hand side, we can derive Vx Pzx VaVy(—Pxy — —x = y) by deriving =Pab — —a = b and applying VIntro twice,
as long as neither a or b appear in any undischarged assumptions when we apply VIntro. =Pab — —a = b is an implication,
so we assume —Pab and try to derive ma = b. Because —a = b is a negated statement, we assume a = b and try to derive a
contradiction.

There are many ways we can derive a contradiction from Yz Pzx, - Pab and a = b. In the proof above, we use a = b to
replace the b in —=Pab with a, giving us =Paa. This contradicts Paa, which can be derived from VzPxzx.

On the right-hand side, we need to prove the universal statement Vo Pxx, which can be derived from Paa (as long as a
doesn’t appear in any undischarged assumptions when we apply VIntro). Sadly we don’t have any way of deriving Paa directly;
instead we prove it by deriving a contradiction from assumptions of = Paa.

From our assumption of VzPxx VaVy(—Pxzy — —x = y) we can derive =Paa — —a = a, so we can derive =a = a by —Elim.
This gives us the contradiction we need, because =Intro lets us make and immediately discharge an assumption of a = a.

Notice that this proof involves a particular symmetry: on the left-hand side we apply VIntro (twice), —Intro, —Intro, =Elim
and VElim; on the right-hand side we apply VElim (twice), —Elim, =Elim, =Intro and VIntro. Each time an introduction rule
appears on one side, the corresponding elimination rule appears on the other side.
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Identity 15

[VaVy(Pz — (Py — x = y))]1

VvE
[Rab A Pb)? . Vy(Pb — (Py — b=1y)) e
[Rbe A Pc]® T Pb— (Peob=0o)
[Rbe A Pc]? AR Pc e Pc—b=c .k -
Rbc b=c g Vr-Rxx VE
Va3y(Rzy A Py) v Rbb —Rbb
Vxdy(Rxy A Py Jy(Rby N Py -VaVy(Pxr — (Py > x =y ﬁ
2
Jy(Ray A Py) —VaVy(Pz — (Py — x = y)) - "

—VaVy(Pz — (Py — = =v))

This is a past paper question from 2012. Because our conclusion is a negated formula, we assume VaVy(Pz — (Py — 2 = y))
and show that it leads to a contradiction. However, our two premises are difficult to use. Vx—Rxx could give us ~Raa, - Rbb
or any of infinitely many other negated statements, so we can’t be certain which one will give us the contradiction we need.
Similarly Vz3y(Rxy A Py) could give us any number of different existential statements, and we can’t be certain how many
times we’ll need to use it.

For a hint we can look at our assumption of VaVy(Pz — (Py — « = y)). This is an implication involving two occurrences
of the predicate P. In order to derive the consequent by —Elim, we need two different things for which P holds. Each time
we apply VElim on Vz3y(Rzy A Py) we obtain an existential statement asserting the existence of one thing for which P holds.
This suggests we want to use VElim on Vz3y(Rxy A Py) twice.

So we derive Jy(Ray A Py) and apply JElim at the very end of the proof to discharge assumptions of Rab A Pb. Then
before the end of the proof we derive a second existential statement, Jy(Ray A Py), which we use to discharge assumptions
of Rbc A Pc. We're justified in doing this: note that by the very end of the proof, b appears in no undischarged assumptions
other than Rab A Pb because Rbc A Pc has already been discharged.

From these assumptions of Rab A Pb and Rbc A Pc we can derive Pb and Pc, which (using our assumption of VaVy(Pz —
(Py — x =1y))) gives us b = ¢. We could use b = ¢ with Rab to obtain Rac, but this isn’t very useful. Instead, we use b = ¢
with Rbc to obtain Rbb. Because we can derive —Rbb from Vz—Rxx, we have the contradiction we need.



5.10 Additional challenges
Admissible rules 1

The rule x1 is admissible. We can show that any proof making use of x1 can be
rewritten using AElim.

Suppose we have a proof involving one or more applications of x1. Each
application of x1 corresponds to a subproof of the following form:

(4]

SAD X

X *1

We can rewrite this subproof by moving the proof of ¢ A1 to the top of the
proof of x, and applying AElim to derive ¢:

b AW
p

AElim

X
We can repeat this process for each application of x1 (starting with the
smallest subproof) until we are left with a proof only using the original Natural
Deduction rules.

Admissible rules 2

The rule *2 is not admissible. P — @, —P F =@ is not possible in unaugmented
Natural Deduction, but is possible with *2:

-P P—Q )
—_— %
—Q
Admissible rules 3

The rule %3 is not admissible. P is not possible in unaugmented Natural
Deduction, but is possible with x3:

117



Admissible rules 4

The rule x4 is admissible. We can rewrite any proof using x4 as a proof using
—Intro, —Elim and VIntro.

Suppose we have a proof involving one or more applications of x4. Each
application corresponds to a subproof of the following form:

[=¢]

¥
oV Y
We replace the x4 step itself with an application of VIntro. At the top of
the subproof we assume ¢ and —(¢ V 1) and apply VIntro and —Intro to derive
. At the bottom of the subproof we assume —(¢ V v) again and apply —Elim
to discharge assumptions of (¢ V ¢) and derive ¢ V .
The resultant subproof will look like this:

*4

[¢]1 VIntro
oV Fove)
—\¢ —Intro
w VIntro
PV Y [Hleve)
_\¢ —Elim

This is a familiar proof structure: it is how we proved disjunctions such as
P Vv =P by indirect proof.

We can repeat this process for each application of x4 (starting with the
smallest subproof) until we are left with a proof only using the original Natural
Deduction rules.

Admissible rules 5

The rule x5 is admissible. We can rewrite any proof using x5 as a proof using
—Intro and —Elim.

Suppose we have a proof involving one or more applications of x5. Each
application corresponds to a subproof of the following form:

[ — ]

°,
¢

5
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At the top of the subproof we assume —¢ and ¢ and apply —Elim and —Intro
to derive ¢ — 1. At the bottom of the subproof we assume —¢ again and apply
—Elim to discharge assumptions of —¢ and derive ¢.

The resultant subproof will look like this:

7[(;5]1 [ﬁ(b]Q —Elim

—Introt

o=

p ek
5

We can repeat this process for each application of x5 (starting with the
smallest subproof) until we are left with a proof only using the original Natural
Deduction rules.

—Elim?

Contraposition 1

P PP

—Elim!
P

—Intro

Q—P -(Q — P)
-P

—Elim?

We cannot derive =P by —Intro, where we assume P and derive a contra-
diction from it. Instead we must prove —P indirectly, by assuming —-—P and
deriving a contradiction from that. ——P allows us to derive P (by assuming
=P and applying —Elim); from this we can derive  — P, which contradicts
our premise (@ — P).

Contraposition 2

P AP [(PASPPS(PASPIE [(PASPP
AP PAoP
P -P Elim?

We proceed in a similar fashion to the previous question. We cannot derive
—(P A—=P) by assuming P A—P and deriving a contradiction from it; instead we
must derive a contradiction from —=—(P A =P). Assuming =—(P A —P) lets us
derive PA—P, which in turn lets us derive P and =P, and hence a contradiction.
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Contraposition 3

First, we note that an application of —Intro corresponds to a subproof of the
following shape:

We replace all applications of —Intro in our proof of ¢ from T' (if there are
any) with subproofs of the following shape:

R e e
-, ‘\EIIHI -, “EllIIl

Y ¢

—Elim?

9

Contraposition 4

Suppose that I' F¢ ¢. This means that there is a proof of ¢ from I" which
potentially uses contraposition (but doesn’t use —Intro or —Elim).
If this proof involves no applications of contraposition, it is trivially true

that T' F ¢.
If the proof does involve at least one application of contraposition, this ap-
plication corresponds to a subproof of the following shape:

(=]

¢
¢ =1
We replace this subproof with a subproof of the following shape:

C

[~

62 -

—Elim'
v —1Intro®
- . 7 ntro
¢ — 1
We repeat this process for each application of contraposition, starting with
the smallest subproof. The resultant proof has no applications of contraposition,
but does have applications of —=Elim. Hence I' - ¢.
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Contraposition 5

——P
P =@~ Q)

C

Contraposition 6

[-P] P —~(Q—Q)
-(Q—Q)
(Q—Q)—P

To show that =P — —(Q — Q) F¢ (Q — Q) — P we are allowed to use
—Elim as well as contraposition. To derive (Q — @) — P by contraposition,
we need to provide a proof of =(Q — @) from an assumption of —=P. With =P
and our premise =P — —(Q — Q) we can derive =(Q — @) by —Elim.

—Elim

Contraposition 7

Q|
Q—-Q (@—-Q) P
P

—Elim

Usefully, contraposition still allows us to easily derive @) — @, but instead of
assuming and discharging @ (as we would in ordinary Natural Deduction), we
assume and discharge —@Q). We can then derive P by —Elim using our premise

(@—Q)—P.

Contraposition 8

~P
P2 P5-Q=@Q)
Q! “Q-Q
Q=0 Q==r"

The proof above combines our proofs from the previous three questions.
This is not the shortest possible derivation of P from ——P; the proof below is
shorter, but is perhaps less obvious:

———P c
—Elim
P

— " ¢
il i PﬁﬁP%P —Elim
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Contraposition 9

We note that each —Elim step corresponds to a subproof of the following shape:

(-] [~d]
Y -
——— —Elim
¢
We replace all applications of —Elim with subproofs of the following shape:
[~¢]?
[ :
- .
v = (P —P) 1
Elim
P -P—=P)
Pop° EREY
3 —Elim

Contraposition 10

Each application of —Intro corresponds to a subproof of the following shape:

(4]

1/} — Intro
b=

We replace each of these subproofs with a subproof of the following shape:

122



Contraposition 11

To demonstrate that I' ¢ ¢ whenever I' - ¢ we need to be able to convert any
proof in ordinary Natural Deduction to a proof with contraposition but without
—Intro, —Intro or —Elim.

We do this in three steps:

1. Replace —Intro steps with —Intro and contraposition
2. Replace —Intro steps (including any new ones made in step 1) with —Elim

3. Replace —Elim steps (including any new ones made in step 2) with con-
traposition and —Elim

This is by no means the only way of tackling this question, but given our
answers to previous questions it is one of the easiest strategies. Question 10
showed us how to carry out step 1. Question 3 showed us how to carry out step
2. Finally, question 9 showed us how to carry out step 3.

After carrying out all three steps, we are left without any applications of
—Intro, —Elim or —Intro, but we may have applications of —Elim and contra-
position. This is a proof satisfying the requirements for I' ¢/ ¢.

Hence if I' - ¢ then ' ¢ ¢.

This is a striking result: if we add the contraposition rule to Natural Deduc-
tion, we can dispense not only with —Intro but also with —=Elim and —Intro.

This not the only technique we could have used. For example, we could have
replaced —Intro steps with contraposition and —Elim using the (monstrous)
subproof below:

[+—¢]* .
~¢=>-(P=P) [P
~PP T PP
P-p° (PP =0
(b —
[~y
" b — (P> P)
P PSP
PopC (P%P)%—'gﬁcE
-6 -
o= °
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