
The Natural Deduction Pack

Alastair Carr

March 2018

Contents

1 Using this pack 2

2 Summary of rules 3

3 Worked examples 5
3.1 Implication . 5
3.2 Universal quantifier . 6
3.3 Existential quantifier . 8

4 Practice problems 11
4.1 Core . 11
4.2 Conjunction . 13
4.3 Implication . 14
4.4 Disjunction . 15
4.5 Biconditional . 16
4.6 Negation . 17
4.7 Universal quantifier . 19
4.8 Existential quantifier . 21
4.9 Identity . 23
4.10 Additional challenges . 24

5 Solutions 26
5.1 Core . 26
5.2 Conjunction . 35
5.3 Implication . 36
5.4 Disjunction . 42
5.5 Biconditional . 50
5.6 Negation . 55
5.7 Universal quantifier . 71
5.8 Existential quantifier . 86
5.9 Identity . 106
5.10 Additional challenges . 117

1

1 Using this pack

This pack consists of Natural Deduction problems, intended to be used alongside
The Logic Manual by Volker Halbach. The pack covers Natural Deduction
proofs in propositional logic (L1), predicate logic (L2) and predicate logic with
identity (L=). The vast majority of these problems ask for the construction of
a Natural Deduction proof; there are also worked examples explaining in more
detail the proof strategies for some connectives, as well as some questions about
Natural Deduction which are more unusual.

The pack hopefully offers more questions to practice with than any student
should need, but the sheer number of problems in the pack can be daunting.
For this reason there is also a ‘core’ set of questions aimed at covering the most
crucial skills needed to tackle a Natural Deduction proof.

Next to each problem is a number in brackets indicating the number of steps
in my solution. This can be taken as a rough measure of the difficulty of the
problem, although it should be emphasised that this is not always perfect: some
long proofs can be methodical, while some short proofs can be counter-intuitive.

For each of these problems I provide a proof and an explanation of the
strategy behind the proof. I use additional notation to annotate the Natural
Deduction proofs in two ways. First, next to each horizontal line in a proof I
label which rule has been applied. Where a connective has a pair of introduction
rules (such as ∨Intro1 and ∨Intro2) or a pair of elimination rules (such as ∧Intro1
and ∧Intro2), I only distinguish between the first and second versions in the
solutions for the earlier problems; in the later stages it should be clear which
version has been applied. Second, for longer proofs, I sometimes use a number
to mark both a discharged assumption and the point in the proof when that
assumption is discharged. When an assumption has been discharged by =Intro I
label the assumption with a superscript =. These are not formal components of
a proof, but they should help in explaining how the proof has been constructed.

The solutions I provide are never the only possible solutions. Usually I aim
to provide the shortest possible solution, but in some cases I also present possible
alternative proofs.

At the very end of the pack there are extra problems focused on ways in
which Natural Deduction can be altered or extended, either by adding new
rules or replacing existing rules.

If this pack is viewed as a PDF, it is possible to click on any problem to go
directly to its solution. Clicking on the solution’s header will take you back to
the problem list. When using a printed copy of the document, these hyperlinks
are unlikely to work as intended.

A changelog for the pack and an archive of past versions are maintained at
github.com/Alastair-Carr/Natural-Deduction-Pack; if you have any com-
ments, questions or suggestions, do not hesitate to contact me there.

2

https://github.com/Alastair-Carr/Natural-Deduction-Pack

2 Summary of rules

Propositional logic L1

Conjunction

...
φ

...
ψ
∧Intro

φ ∧ ψ

...
φ ∧ ψ

∧Elim1
φ

...
φ ∧ ψ

∧Elim2
ψ

Implication

[φ]

...
ψ →Intro

φ→ ψ

...
φ

...
φ→ ψ →Elim
ψ

Disjunction

...
φ
∨Intro1

φ ∨ ψ

...
ψ
∨Intro2

φ ∨ ψ

...
φ ∨ ψ

[φ]

...
χ

[ψ]

...
χ
∨Elimχ

Biconditional

[φ]

...
ψ

[ψ]

...
φ ↔Intro

φ↔ ψ

...
φ

...
φ↔ ψ ↔Elim1
ψ

...
ψ

...
φ↔ ψ ↔Elim2
φ

Negation

[φ]

...
ψ

[φ]

...
¬ψ ¬Intro¬φ

[¬φ]

...
ψ

[¬φ]

...
¬ψ ¬Elim

φ

3

Predicate logic L2

Universal quantifier

...

φ[t/v]
∀Intro∀vφ

provided the constant t does not
occur in φ or in any undischarged
assumption in the proof of φ[t/v]

...
∀vφ

∀Elim
φ[t/v]

Existential quantifier

...

φ[t/v]
∃Intro∃vφ

...
∃vφ

[φ [t/v]]

...
ψ
∃Elim

ψ

provided the constant t does not
occur in ∃vφ, or in ψ, or in any
undischarged assumption other
than φ [t/v] in the proof of ψ

Predicate logic with identity L=

[t = t]
=Intro

...

...

φ[s/v]

...
s = t

=Elim
φ[t/v]

...

φ[s/v]

...
t = s

=Elim
φ[t/v]

4

3 Worked examples

3.1 Implication

We can use the rules for implication and conjunction to prove the following
theorem:

` (P → Q)→ ((P ∧R)→ (Q ∧R))

The easiest way to start is by working from the bottom upwards, especially
since we aren’t given any premises to work from.

We know that the theorem we want to prove is an implication: it is a state-
ment of the form φ→ ψ. That means we can prove it by assuming φ, giving a
proof of ψ and then applying →Intro (discharging all of our assumptions of φ).
Here, φ corresponds to P → Q and ψ corresponds to (P ∧R)→ (Q∧R), so our
proof will look like this:

[P → Q]

...

(P ∧R)→ (Q ∧R)
→Intro

(P → Q)→ ((P ∧R)→ (Q ∧R))

What is shown above isn’t a proof, but a way of helping us put the proof
together. We know that we can assume P → Q as many times as we like,
because our final →Intro step will discharge all our assumptions of P → Q.

(P ∧ R) → (Q ∧ R) is also an implication, so we can prove it by assuming
P ∧R and proving Q ∧R:

[P → Q], [P ∧R]

...
Q ∧R

→Intro
(P ∧R)→ (Q ∧R)

→Intro
(P → Q)→ ((P ∧R)→ (Q ∧R))

We can provide a proof of Q∧R by providing a proof of Q and a proof of R
and then applying the ∧Intro rule:

[P → Q], [P ∧R]

...
Q

[P → Q], [P ∧R]

...
R

∧Intro
Q ∧R

→Intro
(P ∧R)→ (Q ∧R)

→Intro
(P → Q)→ ((P ∧R)→ (Q ∧R))

5

Now we have two branches to consider. Note that we can use our assumptions
of P → Q and P ∧R in both branches: our applications of →Intro discharge all
occurrences of P → Q and P ∧R above them in the proof.

We’ll consider the right branch first, because it’s the more straightforward
branch. We can easily obtain R by using our assumption of P ∧R and applying
∧Elim; we don’t even need to use our assumption of P → Q.

[P → Q], [P ∧R]

...
Q

[P ∧R]
∧Elim

R
∧Intro

Q ∧R
→Intro

(P ∧R)→ (Q ∧R)
→Intro

(P → Q)→ ((P ∧R)→ (Q ∧R))

The left branch requires two steps. Applying ∧Elim on P ∧ R gives us P .
Using this P and our assumption of P → Q allows us to prove Q by →Elim:

[P ∧R]
∧Elim

P [P → Q]
→Elim

Q

[P ∧R]
∧Elim

R
∧Intro

Q ∧R
→Intro

(P ∧R)→ (Q ∧R)
→Intro

(P → Q)→ ((P ∧R)→ (Q ∧R))

This gives us a complete proof.

3.2 Universal quantifier

Using the introduction and elimination rules for the universal quantifier we can
construct a proof of the following:

∀x¬∀y(Pxy → Qxy) ` ∀x¬∀y¬Pxy

Our conclusion is a universal statement, so we can prove it by applying
the ∀Intro rule. In order to apply the ∀Intro rule we need to prove that
∀x¬∀y(Pxy → Qxy) ` ∀x¬∀y¬Pxy is true when any arbitrary constant is
substituted for x; we will choose a for our arbitrary constant, but we need to
ensure that a appears in no undischarged assumptions when we apply the ∀Intro
rule. This means our proof will look like this:

∀x¬∀y(Pxy → Qxy)

...
¬∀y¬Pay

∀Intro∀x¬∀y¬Pxy

6

How do we get from ∀x¬∀y(Pxy → Qxy) to ¬∀yPay? ¬∀yPay is a negated
statement, so we can prove it by assuming ∀yPay and showing it leads to a
contradiction.

Where can we find a contradiction? Neither the assumption ∀yPay nor
our premise ∀x¬∀y(Pxy → Qxy) has a negation as their main connective, but
from ∀x¬∀y(Pxy → Qxy) we can derive (by ∀Elim) ¬∀y(Pay → Qay), which
is a negated statement. This means we can obtain a contradiction if we can
somehow derive ∀y(Pay → Qay) from our assumption of ∀yPay and our premise
∀x¬∀y(Pxy → Qxy).

Note that the assumption ∀yPay contains a, but if we can derive a contra-
diction from it and successfully apply ¬Intro this assumption will be discharged
before we apply ∀Intro. If it is left undischarged by the time we reach the final
step of the proof, we won’t be able to apply ∀Intro.

∀x¬∀y(Pxy → Qxy), [∀y¬Pay]

...

∀y(Pay → Qay)

∀x¬∀y(Pxy → Qxy)
∀Elim

¬∀y(Pay → Qay)
¬Intro¬∀y¬Pay

∀Intro∀x¬∀y¬Pxy

To prove ∀y(Pay → Qay) we need to apply ∀Intro, meaning we need to show
that the statement is true for any arbitrary constant which could replace y. We
cannot choose a as our arbitrary constant, because a appears in ∀y(Pay → Qay).
Instead we will choose b: if we can derive Pab→ Qab without b appearing in any
undischarged assumptions, we can apply ∀Intro and derive ∀y(Pay → Qay):

∀x¬∀y(Pxy → Qxy), [∀y¬Pay]

...
Pab→ Qab

∀Intro
∀y(Pay → Qay)

∀x¬∀y(Pxy → Qxy)
∀Elim

¬∀y(Pay → Qay)
¬Intro¬∀y¬Pay

∀Intro∀x¬∀y¬Pxy

Proving Pab→ Qab is a simple case of assuming Pab and proving Qab. Note
that Pab contains b, but we plan to apply →Intro and discharge it before we
reach the ∀Intro step where we go from arbitrary b to universal y.

∀x¬∀y(Pxy → Qxy), [∀y¬Pay], [Pab]

...
Qab

→Intro
Pab→ Qab

∀Intro
∀y(Pay → Qay)

∀x¬∀y(Pxy → Qxy)
∀Elim

¬∀y(Pay → Qay)
¬Intro¬∀y¬Pay

∀Intro∀x¬∀y¬Pxy

7

We don’t have a direct way of proving Qab, but the two assumptions we’ve
made do give us a contradiction. From ∀y¬Pay we can derive ¬Pab, which
contradicts our assumption of Pab. From this contradiction we can apply ¬Elim
and derive Qab. It turns out that in this part of the proof we don’t need to use
our premise ∀x¬∀y(Pxy → Qxy) again.

[Pab]

[∀y¬Pay]
∀Elim¬Pab

¬Elim
Qab

→Intro
Pab→ Qab

∀Intro
∀y(Pay → Qay)

∀x¬∀y(Pxy → Qxy)
∀Elim

¬∀y(Pay → Qay)
¬Intro¬∀y¬Pay

∀Intro∀x¬∀y¬Pxy

This gives us a complete proof, but it’s worth verifying at this stage that
both of our applications of ∀Intro are allowed.

The first time we apply ∀Intro, we move from Pab → Qab to ∀y(Pay →
Qay). b doesn’t appear in ∀y(Pay → Qay) or any undischarged assumptions in
the proof of ∀y(Pay → Qay); Pab has already been discharged by this point.

The second time we apply ∀Intro, we move from ¬∀y¬Pay to ∀x¬∀y¬Pxy.
a doesn’t appear in ∀x¬∀y¬Pxy or any undischarged assumptions in the proof
of ∀x¬∀y¬Pxy; both Pab and ∀y¬Pay have been discharged by this point.

3.3 Existential quantifier

We can use the introduction and elimination rules for the existential quantifier
to construct a proof of the following:

∃x(Px ∧Qx),¬∃x(Qx ∧Rx) ` ∃x(Px ∧ ¬Rx)

The first thing to take note of is our existential premise ∃x(Px∧Qx). In order
to make use of it we need to apply ∃Elim at the end of the proof, discharging
assumptions where x is instantiated with an arbitrary constant. We’ll choose a
as our arbitrary constant; we can use it because it doesn’t appear in our premises
(∃x(Px ∧Qx) and ¬∃x(Qx ∧Rx)) or in the conclusion (∃x(Px ∧ ¬Rx)). We’ll
also make sure that if a appears in any other assumptions, the assumptions are
discharged by the time we apply ∃Elim.

This means our proof will take the following form:

∃x(Px ∧Qx)

[Pa ∧Qa],¬∃x(Qx ∧Rx)

...

∃x(Px ∧ ¬Rx)
∃Elim

∃x(Px ∧ ¬Rx)

8

Our conclusion is also an existential statement, so we can prove it by applying
∃Intro. There is an infinite number of different statements which we could derive
∃x(Px ∧ ¬Rx) from (Pb ∧ ¬Rb and Pc169 ∧ ¬Rc169 are two examples) but a
is the only constant we have any assumptions about, so it seems likely that we
will derive ∃x(Px ∧ ¬Rx) from Pa ∧ ¬Ra:

∃x(Px ∧Qx)

[Pa ∧Qa],¬∃x(Qx ∧Rx)

...
Pa ∧ ¬Ra ∃Intro
∃x(Px ∧ ¬Rx)

∃Elim
∃x(Px ∧ ¬Rx)

This is a conjunction, so using our premise and our assumption we need to
provide a proof of Pa and a proof of ¬Ra:

∃x(Px ∧Qx)

[Pa ∧Qa],

¬∃x(Qx ∧Rx)

...
Pa

[Pa ∧Qa],

¬∃x(Qx ∧Rx)

...
¬Ra ∧Intro

Pa ∧ ¬Ra ∃Intro
∃x(Px ∧ ¬Rx)

∃Elim
∃x(Px ∧ ¬Rx)

On the left-hand side, Pa is very easy to prove: it can be derived from our
assumption of Pa ∧Qa by ∧Elim:

∃x(Px ∧Qx)

[Pa ∧Qa]
∧Elim

Pa

[Pa ∧Qa],

¬∃x(Qx ∧Rx)

...
¬Ra ∧Intro

Pa ∧ ¬Ra ∃Intro
∃x(Px ∧ ¬Rx)

∃Elim
∃x(Px ∧ ¬Rx)

On the right-hand side, ¬Ra is a negated statement. This means we can
prove it by assuming Ra and deriving a contradiction.

Our other premise ¬∃x(Qx∧Rx) is a negated statement, so if we can prove
∃x(Qx ∧Rx) we have the contradiction we need:

9

∃x(Px ∧Qx)

[Pa ∧Qa]
∧E

Pa

[Pa ∧Qa], [Ra],

¬∃x(Qx ∧Rx)

...

∃x(Qx ∧Rx) ¬∃x(Qx ∧Rx)
¬I¬Ra ∧I

Pa ∧ ¬Ra ∃I
∃x(Px ∧ ¬Rx)

∃E
∃x(Px ∧ ¬Rx)

∃x(Qx ∧Rx) can be derived from Qa ∧Ra by ∃Intro:

∃x(Px ∧Qx)

[Pa ∧Qa]
∧E

Pa

[Pa ∧Qa], [Ra],

¬∃x(Qx ∧Rx)

...
Qa ∧Ra

∃I
∃x(Qx ∧Rx) ¬∃x(Qx ∧Rx)

¬I¬Ra ∧I
Pa ∧ ¬Ra ∃I
∃x(Px ∧ ¬Rx)

∃E
∃x(Px ∧ ¬Rx)

Qa ∧ Ra is a conjunction, so we need to provide a proof of Qa and a proof
of Ra. It turns out we don’t need to use our premise ¬∃x(Qx ∧Rx) again. We
can obtain Qa from our assumption of Pa ∧ Qa, and we have Ra because we
have assumed it in order to derive ¬Ra:

∃x(Px ∧Qx)

[Pa ∧Qa]
∧E

Pa

[Pa ∧Qa]
∧E

Qa [Ra]
∧I

Qa ∧Ra
∃I

∃x(Qx ∧Rx) ¬∃x(Qx ∧Rx)
¬I¬Ra ∧I

Pa ∧ ¬Ra ∃I
∃x(Px ∧ ¬Rx)

∃E
∃x(Px ∧ ¬Rx)

This gives us a complete proof. Our assumption of Ra is discharged when
we apply ¬Intro and derive ¬Ra. This means that by the time we apply ∃Elim,
the only undischarged assumption left in the proof which involves a is Pa∧Ra.
This means that at the end of the proof we are allowed to apply ∃Elim and
discharge our two assumptions of Pa ∧Qa.

10

4 Practice problems

4.1 Core

Knowing the rules

These seven proofs cover all of the Natural Deduction rules, and can be used
to diagnose how familiar you are with the rules themselves and the strategies
which correspond to them.

Learning the rules by heart is dull, but the best way is through practice.
The later sections of the pack should have enough problems for each connective
to establish a familiarity with them. If the seven proofs below prove to be
straightforward, the later sections also have more challenging problems for each
connective.

1. (P → P)↔ Q ` Q ∨R (3)

2. ∀x(Px ∨ Px) ` ∀xPx (3)

3. ∃xPx ` ∃x(Px ∨Qx) (3)

4. ¬P1 ` ¬((P1 ∧ P2) ∧ P3) (3)

5. ¬P ∨Q ` P → Q (3)

6. Qa,¬Qb ` a = a ∧ ¬a = b (4)

7. ` (P ∧Q)↔ (Q ∧ P) (7)

Making substitutions

The usual strategy for a proof involving quantifiers is to use the elimination rules
to turn quantified statements into statements involving constants, manipulate
those statements using the connective rules, and then turn those statements
back into quantified statements with the introduction rules.

Once you’ve cracked how the quantifier rules work (including the nasty
∃Elim), the challenge becomes knowing which constants to substitute. Some-
times you will need to use your premises multiple times, making different sub-
stitutions each time. The proofs below test this; many more can be found in
the quantifier sections of the pack.

8. ∀x∀y(Rxy → Ryx) ` ∀x∀y(Rxy ↔ Ryx) (7)

9. ∀x∃yRxy ` ∀x∃y∃z(Rxy ∧Ryz) (8)

10. ∀x∀y∀z((Rxy ∧Rxz)→ Ryz),∀xRxx ` ∀x∀y(Rxy → Ryx) (9)

11

Indirect proofs

Sometimes you find that, no matter how hard you try, you can’t obtain the
proof you want. This might be because you need an indirect proof: you prove
a sentence φ by assuming ¬φ and showing that it leads to a contradiction.

Indirect kinds of proofs have often appeared in past papers. Part of the chal-
lenge is spotting them in the first place. Having to derive a disjunction without
having any disjunctive premises is often a hint (` P ∨¬P is the classic example).
Similarly, you’re likely to need an indirect proof to derive an existential state-
ment from premises with no existential quantifiers (such as ¬∀xPx ` ∃x¬Px).
Sometimes they can be harder to spot, which means it can be a good idea just
to try an indirect proof if nothing else seems to be working.

There is a kind of indirect proof which is especially common. You prove φ
by constructing a proof of the following shape:

[ψ]1

...
φ [¬φ]2

¬Intro1¬ψ
...
φ [¬φ]2

¬Elim2

φ

Instead of simply proving φ, you show that φ follows from ψ and then from
¬ψ. The tricky part now is knowing which ψ to assume: usually you should
look for a ψ which φ very easily follows from, but often there are many ψs which
result in proofs which work.

The examples below are all indirect proofs, including at least one with the
special shape above. Many more indirect proofs are located in later sections of
the pack, not always in obvious places.

11. ¬P → Q ` P ∨Q (5)

12. ` ((Q→ R)→ Q)→ Q (5)

13. ¬∀x∀yRxy ` ∃x¬∀yRxy (7)

14. Pa,Qb ` ∃x(Px ∧Qx) ∨ ∃x∃y¬x = y (9)

12

4.2 Conjunction

1. P,Q ` P ∧Q (1)

2. (P1 ∧ P2) ∧ P3 ` P2 (2)

3. P ∧Q ` Q ∧ P (3)

4. Q ∧ P,R ` P ∧ (R ∧Q) (4)

5. P1 ∧ P2, (Q1 ∧Q2) ∧R ` (P1 ∧Q2) ∧R (6)

6. P ∧ (Q ∧R) ` (R ∧ P) ∧Q (7)

13

4.3 Implication

1. ` P → P (1)

2. ` P → (Q→ P) (2)

3. P → Q,Q→ R ` P → R (3)

4. ` P → ((P → Q)→ Q) (3)

5. (P → Q)→ (P → R) ` Q→ (P → R) (3)

6. (P → Q)→ P ` Q→ P (3)

7. P → (Q→ R) ` Q→ (P → R) (4)

8. P → (Q→ R), P → Q ` P → R (4)

9. (P → P)→ Q ` (Q→ R)→ R (4)

10. ` (P → (Q→ R))→ ((P → Q)→ (P → R)) (6)

Mixed problems with conjunction

11. P ∧Q ` P → Q (2)

12. ` P ∧Q→ P (2)

13. P → (Q ∧R) ` P → Q (3)

14. ((P ∧Q)→ Q)→ (Q→ P) ` Q→ P (3)

15. (P ∧Q)→ R ` P → (Q→ R) (4)

16. (P → Q) ∧ (P → R) ` P → (Q ∧R) (6)

17. P → (Q ∧R) ` (P → Q) ∧ (P → R) (7)

Bonus challenge

Provide a Natural Deduction proof of the following which consists of no more
than eight steps:

(((P1 ∧ P2) ∧ P3) ∧ P4) ∧ P5 ` P1 ∧ P1

(Here, a ‘step’ is considred to be any application of any rule, so the number
of steps is equivalent to the number of times a horizontal line is drawn.)

14

4.4 Disjunction

1. P ∨Q ` Q ∨ P (3)

2. P ∨Q ` P ∨ (Q ∨R) (4)

3. (P ∨Q) ∨R ` P ∨ (Q ∨R) (7)

4. (P ∨Q) ∨ (R ∨ P1) ` (P ∨ P1) ∨ (R ∨Q) (11)

Mixed problems with conjunction

5. P ∧ (Q ∨R) ` (P ∧Q) ∨ (P ∧R) (8)

6. (P ∨Q) ∧ (P ∨R) ` P ∨ (Q ∧R) (8)

7. (P ∧Q) ∨ (P ∧R) ` P ∧ (Q ∨R) (9)

8. P ∨ (Q ∧R) ` (P ∨Q) ∧ (P ∨R) (9)

Mixed problems with implication

9. (P → Q) ∨Q ` P → Q (2)

10. P ∨Q ` (P → Q)→ Q (3)

11. (P → Q)→ (P → R) ` (P ∨R)→ (Q→ R) (6)

12. (P → Q) ∨ (P → R) ` P → (Q ∨R) (7)

Mixed problems with conjunction and implication

13. (P → Q) ∧ (Q→ P) ` (P ∨Q)→ (P ∧Q) (8)

14. (P ∨Q)→ (P ∧Q) ` (P → Q) ∧ (Q→ P) (9)

15. (Q→ R) ∧ (Q ∨ P) ` (P → Q)→ (R ∧Q) (10)

15

4.5 Biconditional

1. P ↔ Q ` Q↔ P (3)

2. P, (P ↔ Q)↔ R ` Q↔ R (5)

3. ` (P ↔ Q)↔ (Q↔ P) (7)

Mixed problems

4. (P ∨Q)↔ Q ` P → Q (3)

5. (P ∧Q)↔ P ` P → Q (3)

6. P → Q ` (P ∨Q)↔ Q (4)

7. P → Q ` (P ∧Q)↔ P (4)

8. (P → Q) ∧ (Q→ P) ` P ↔ Q (5)

9. ` (P ∧Q)→ ((P → Q)→ P) (5)

10. ` ((P → Q)↔ P)→ (P ↔ Q) (6)

11. ((P ∨Q)↔ Q)↔ P ` P ↔ Q (7)

12. P → (Q↔ R) ` (P ∧Q)↔ (P ∧R) (13)

13. ` (P ∨ (Q ∧R))↔ ((P ∨Q) ∧ (P ∨R)) (18)

16

4.6 Negation

Negation introduction

1. P ` ¬¬P (1)

2. ¬P ` ¬(P ∧Q) (2)

3. P → ¬P ` ¬P (2)

4. ¬(P → Q) ` ¬Q (2)

5. ¬(P ∧Q) ` P → ¬Q (3)

6. P → Q ` ¬Q→ ¬P (3)

7. ` ¬((P ∧ ¬P) ∨ (Q ∧ ¬Q)) (4)

8. ¬(P ∨Q) ` ¬P ∧ ¬Q (5)

9. ¬P ∨ ¬Q ` ¬(P ∧Q) (5)

Ex falso quodlibet

10. ¬P ` P → Q (2)

11. P ∧ ¬P ` Q (3)

12. P ∨Q ` ¬P → Q (3)

13. P → Q,P ∧ ¬Q ` R (4)

14. P ∨Q,P ↔ Q,¬(P ∧Q) ` R (6)

Indirect proofs

15. ¬¬P ` P (1)

16. ` P ∨ ¬P (4)

17. ¬(¬P ∨ ¬Q) ` P ∧Q (5)

18. ¬(P ∧Q) ` ¬P ∨ ¬Q (6)

Mixed problems

19. ¬(P → Q) ` P (3)

20. (P → Q)→ P ` P (4)

21. P ↔ ¬¬Q ` P ↔ Q (5)

22. (P → Q)→ Q ` ¬Q→ P (5)

17

23. ¬P ∧ ¬Q ` ¬(P ∨Q) (6)

24. ` P ∨ (P → Q) (6)

25. ` (P → Q) ∨ (Q→ R) (7)

26. ¬P → Q,R ∨ ¬Q,P → (Q1 ∨Q2),¬R ∧ ¬Q2 ` Q1 (9)

27. P → (Q ∨R) ` (P → Q) ∨ (P → R) (11)

28. ` ¬(P ∧Q)↔ (¬P ∨ ¬Q) (12)

Bonus challenge 1

First, provide a proof of the following without using ¬Elim:

¬¬¬P ` ¬P

Second, provide a proof of the following without using ¬Intro:

P ` ¬¬P

Bonus challenge 2

Provide two different proofs of the following:

¬¬P ∧ ¬¬Q ` P ∧Q

The first proof should consist only of five steps (five applications of Natural
Deduction rules).

In the second proof, you may only discharge assumptions using ¬Elim in the
final step of the proof. In other words, you may make any number of applications
of ¬Elim which don’t discharge assumptions, but an application of ¬Elim may
only discharge assumptions if no rules are applied below it.

18

4.7 Universal quantifier

Unary predicates

1. ∀xPx ` ∀yPy (2)

2. ` ∀x(Px→ Px) (2)

3. ∀x(Pa→ Qx) ` Pa→ ∀zQz (4)

4. ∀xPx ∧ ∀yQy ` ∀z(Pz ∧Qz) (5)

5. ∀x(Px→ Qx) ` ∀y1Py1 → ∀y2Qy2 (5)

6. ∀z(Pz ∧Qz) ` ∀yPy ∧ ∀yQy (5)

7. ∀x(Px→ Qx),∀x¬Qx ` ∀x¬Px (5)

8. ∀x1Px1 ∨ ∀x2Qx2 ` ∀x(Px ∨Qx) (6)

9. ∀x∀y(Px→ Qy) ` ∀x(Px→ ∀zQz) (6)

10. ∀x(Px→ Qx),∀x(Qx→ Rx) ` ∀x(Px→ Rx) (6)

11. ∀x(Px ∨Qx),¬∀xPx ` ¬∀x¬Qx (6)

12. ∀x(Px ∧Qx) ` ∀x∀y(Px ∧Qy) (7)

Binary predicates

13. ∀x∀yRxy ` ∀xRxx (3)

14. ∀x¬∀yRxy ` ¬∀x∀yRxy (3)

15. ∀xRxx ` ∀x¬∀y¬Rxy (4)

16. ∀x¬Rxx ` ¬∀x∀y(Rxy ∨Ryx) (5)

17. ¬∀x¬∀yRyx ` ∀x¬∀y¬Rxy (6)

18. ∀xRxx ` ∀x∀y(Rxy → ¬∀z¬(Rxz ∧Rzy)) (6)

19. ∀x∀yRxy ` ∀x(Rxx ∧ ∀yRyx) (7)

20. ∀x∀yRxy ` ∀x∀y(Rxy ∧Ryx) (7)

21. ∀x∀y(Rxy → Ryx),∀x∀y¬(Rxy ∧Ryx) ` ∀x∀y¬Rxy (9)

22. ∀x∀y(Qxy → Qyx),∀x∀y(¬Qxy ∨ ¬Qyx) ` ∀x∀y¬Qxy (9)

23. ∀x¬∀y¬Rxy ` ∀x¬∀y∀z¬(Rxy ∧Ryz) (11)

24. ∀x∀y(Rxy → Ryx),∀x∀y∀z((Rxy ∧Ryz)→ Rxz),∀x¬∀y¬Rxy
` ∀xRxx (13)

19

25. ∀x¬Rxx,∀x∀y∀z((Rxy ∧Ryz)→ Rxz)
` ∀x∀y∀z¬((Rxy ∧Ryz) ∧Rzx) (16)

26. ∀x∀y∀z((Rxy ∧Rxz)→ Ryz),∀xRxx
` ∀x∀y∀z((Rxy ∧Ryz)→ Rxz) (17)

20

4.8 Existential quantifier

Unary predicates

1. ∃xPx ` ∃yPy (2)

2. ¬∃xPx ` ∃x¬Px (3)

3. ∃x1(Pa→ Qx1) ` Pa→ ∃x2Qx2 (4)

4. ∃x(Px ∧Qx) ` ∃yPy ∧ ∃zQz (6)

5. ∃x(Px ∨Qx) ` ∃yPy ∨ ∃zQz (6)

6. ∃xPx ∨ ∃yQy ` ∃z(Pz ∨Qz) (7)

7. Pa→ ∃xQx ` ∃x(Pa→ Qx) (9)

Binary predicates

8. ` ∃x∃y(Rxy → Ryx) (3)

9. ∃x∃yRxy ` ∃x∃yRyx (4)

10. ∃xRxx ` ∃x∃y(Rxy ∧Ryx) (4)

11. ¬∃x∃yRxy ` ¬∃yRyy (4)

12. ` ¬∃x∃y(Rxy ∧ ¬Rxy) (6)

13. ` ∃xRxx ∨ ∃x(Rxx→ ¬∃yRyx) (8)

14. Rab ∧Rbc,¬Qa,Qc ` ∃x∃y((¬Qx ∧Qy) ∧Rxy) (12)

Ternary predicates

15. ∃x∃y¬∃z¬Pxyz ` ¬∃x¬∃y∃zPyzx (8)

Mixed quantifier problems

16. ¬∃xPx ` ∀x¬Px (3)

17. ∃x¬Px ` ¬∀xPx (3)

18. ¬∀xPx ` ∃x¬Px (4)

19. ∀x¬Px ` ¬∃xPx (4)

20. ∀x(∃yPy → Qx) ` ∀x∃y(Py → Qx) (6)

21. ∀x¬∀y(Pxy → Qxy) ` ∀x∃yPxy (7)

22. ∀x(Pxx ∨ ∀yQxy) ` ∀x(∃yPxy ∨Qxx) (7)

21

23. ∃x(Pxx ∧ ∀yQxy) ` ∃x(∃yPxy ∧Qxx) (7)

24. ` ∀x∃yRxy ∨ ¬∀xRxx (7)

25. ∀x∃yRxy → ¬∃xRxx,∃x∀yRyx ` ∀x¬Rxx (8)

26. ∀x(Px→ ∃yRyx) ` ∃zRza ∨ ¬∀xPx (10)

27. ∀x∀y∀z(Rxy ∨Rzy ∨Rzx) ` ∃x∃y∀z(Rzx ∨Rzy) (17)

Bonus challenge

Construct a Natural Deduction proof with the following two features:

• The proof consists of a single application of ∃Elim, and no applications of
any other rules.

• By the end of the proof, one assumption is discharged and one is left
undischarged.

22

4.9 Identity

1. ` ∃x∃yx = y (3)

2. a = b,¬(b = b ∧ b = c) ` ¬a = c (4)

3. ` a = b↔ ∀x(x = a→ x = b) (7)

4. ` ∃x∀yx = y ↔ ∀x∀yx = y (9)

Unary predicates

5. Pa,¬Pb ` ¬a = b (2)

6. Pb ∧Qb,∀x(Px→ x = a) ` Qa (5)

7. ∃x∀y(Py ↔ x = y) ` ∃x∀y(Py → x = y) (6)

8. ∀x(x = a ∨ x = b),∃xPx ` ¬Pa→ Pb (7)

9. ∃x(Px ∧Qx ∧Rax), P b ∧Qb,∀x∀y((Px ∧Qx) ∧ (Py ∧Qy)→ x = y)
` Rab (8)

10. ∀x∀y(Px ∧ x = y → ¬Qy) ` ∀z¬(Pz ∧Qz) (9)

Binary predicates

11. ∀x∀y(Rxy ↔ x = y) ` ∀xRxx (5)

12. ∀x¬Rxx,Rab ` ∃x∃y¬x = y (5)

13. ∃x∃yRxy, ∃x∀yx = y ` ∀x∀yRxy (9)

14. ` ∀xPxx↔ ∀x∀y(¬Pxy → ¬x = y) (13)

15. ∀x∃y(Rxy ∧ Py),∀x¬Rxx ` ¬∀x∀y(Px→ (Py → x = y)) (14)

23

4.10 Additional challenges

Admissible rules

In this question we consider alternative rules which could be added to the system
of Natural Deduction.

We say a rule is ‘admissible’ if we can add it to the system of Natural De-
duction without changing which conclusions we can derive from which premises.
In other words, a rule is not admissible if there is a set of sentences Γ and a
sentence φ such that φ is provable from Γ with the rule, but φ is not provable
from Γ in the original unaugmented system of Natural Deduction.

Which of the rules below are admissible? In each case, justify your answer:
provide a proof of φ from Γ which would not be possible in the unaugmented
system of Natural Deduction; or show that any proof of φ from Γ using the new
rule can be rewritten using only the original Natural Deduction rules.

1.
...

φ ∧ ψ

[φ]

...
χ
?1χ

2.

...
¬φ

...
φ→ ψ

?2¬ψ

3.

[ψ → φ]

...
φ
?3

φ

4.

[¬φ]

...
ψ

?4
φ ∨ ψ

5.

[φ→ ψ]

...
φ
?5

φ

24

Contraposition

Construct proofs of the following without using the ¬Intro rule:

1. ¬(Q→ P) ` ¬P (3)

2. ` ¬(P ∧ ¬P) (5)

Show that:

3. Any application of ¬Intro can be replaced by a subproof without ¬Intro

Consider the rule (called contraposition) with the following representation:

[¬ψ]

...
¬φ

C
φ→ ψ

In the remaining questions of this section, we will explore how powerful the
contraposition rule is.

Write Γ `C φ if there is a proof of φ from Γ in an alternate Natural Deduction
system where the rule above can be used, and all original Natural Deduction
rules except →Intro, ¬Intro and ¬Elim can be used.

We continue to write Γ ` φ if there is a proof of φ from Γ in the original
system of Natural Deduction (i.e. with ¬Intro, ¬Elim and →Intro but without
contraposition).

Show that:

4. If Γ `C φ then Γ ` φ

5. ¬¬P `C ¬P → ¬(Q→ Q) (1)

6. ¬P → ¬(Q→ Q) `C (Q→ Q)→ P (2)

7. (Q→ Q)→ P `C P (2)

8. ¬¬P `C P (4)

9. An application of ¬Elim can be replaced by contraposition and →Elim

10. An application of →Intro can be replaced by contraposition and ¬Intro

Using your answers to questions 3, 9 and 10, or otherwise, show that:

11. If Γ ` φ then Γ `C φ

25

5 Solutions

5.1 Core

Core 1

[P]
→Intro

P → P (P → P)↔ Q
↔Elim

Q
∨Intro

Q ∨R

Our conclusion Q ∨R is a disjunction, so we can either prove it by proving
Q or by proving R. We’re probably not going to be able to prove R since it
doesn’t appear in our premise (P → P)↔ Q, so instead we’ll try and prove Q.

Our premise (P → P) ↔ Q is a biconditional, which means that if we can
prove P → P we can use ↔Elim to derive Q. By assuming P , and then using
→Intro to discharge this assumption of P , we can provide this proof of P → P .

Core 2

∀x(Px ∨ Px)
∀Elim

Pa ∨ Pa [Pa] [Pa]
∨Elim

Pa ∀Intro∀xPx

Our conclusion ∀xPx is a universal statement. We can derive it from Pa
using ∀Intro, as long as the constant a appears in no undischarged assumptions
by the time we apply ∀Intro.

Our premise ∀x(Px∨Px) lets us derive Pa∨Pa, a disjunction. Deriving Pa
from Pa∨Pa requires a slightly bizarre use of ∨Elim: we make two assumptions
of Pa and then immediately discharge them with ∨Elim to derive Pa in one
step. Because these assumptions of Pa have been discharged, we are free to
apply ∀Intro and derive the conclusion ∀xPx.

26

Core 3

∃xPx

[Pa]
∨Intro

Pa ∨Qa
∃Intro

∃x(Px ∨Qx)
∃Elim

∃x(Px ∨Qx)

Our premise ∃xPx is an existential statement, which means we need to use
the dreaded ∃Elim rule. We will use this rule at the very end of the proof to
discharge an assumption of Pa.

From this assumption of Pa we can use ∨Intro to derive Pa∨Qa, and then
∃Intro to derive the conclusion ∃x(Px ∨Qx).

Our use of ∃Elim at the end of the proof is allowed because the constant a
doesn’t appear in our premise ∃xPx, our conclusion ∃x(Px ∨Qx) or any other
assumptions we made when proving ∃x(Px ∨Qx).

Core 4

[(P1 ∧ P2) ∧ P3]
∧Elim

P1 ∧ P2 ∧Elim
P1 ¬P1 ¬Intro
¬((P1 ∧ P2) ∧ P3)

Our conclusion ¬((P1 ∧ P2) ∧ P3) is a negation, so we prove it by assuming
(P1 ∧ P2) ∧ P3 and deriving a contradiction. Our premise ¬P1 is a negated
statement, so we have a contradiction if we have a proof of P1.

We can prove P1 from our assumption of (P1∧P2)∧P3 by using ∧Elim twice.
Then with our premise ¬P1 we can apply ¬Intro, discharge our assumption of
(P1 ∧ P2) ∧ P3 and derive ¬((P1 ∧ P2) ∧ P3).

Core 5

¬P ∨Q
[P]2 [¬P]1

¬Elim
Q [Q]1

∨Elim1

Q
→Intro2

P → Q

Our conclusion P → Q is an implication, so we prove it by assuming P and
deriving Q from it. Our premise ¬P ∨Q is a disjunction, so we can use ∨Elim
to split the proof into a case where we can assume ¬P and a case where we can
assume Q.

The right-hand case is easy. We want to prove Q and we have an assumption
of Q, so we don’t need to do anything else. In the left-hand case, we can use
our assumptions of P and ¬P to derive Q by ¬Elim. Now we have established
Q is true in both cases, we can use →Intro to derive P → Q.

27

Core 6

[a = a]=

Qa [a = b]
=Elim

Qb ¬Qb
¬Intro¬a = b

∧Intro
a = a ∧ ¬a = b

Our conclusion a = a ∧ ¬a = b is a conjunction, so we need to provide two
proofs: a proof of a = a and a proof of ¬a = b.

The left-hand proof is easy. We can assume a = a and immediately discharge
it using =Intro.

The right-hand proof is a proof of a negated statement, so we assume a = b
and try to derive a contradiction from it. Since one of our premises ¬Pb is
a negated statement, we have the contradiction we need if we can prove Pb.
We prove Pb by using =Elim together with our other premise Pa and our
assumption of a = b.

Core 7

[P ∧Q]
∧Elim

Q

[P ∧Q]
∧Elim

P
∧Intro

Q ∧ P

[Q ∧ P]
∧Elim

P

[Q ∧ P]
∧Elim

Q
∧Intro

P ∧Q
↔Intro

(P ∧Q)↔ (Q ∧ P)

The conclusion (P ∧ Q) ↔ (Q ∧ P) is a biconditional, so we prove it by
providing a proof of Q∧P from assumptions of P ∧Q and a poof of P ∧Q from
assumptions of Q ∧ P .

Both of the sides of the proof work similarly. We use ∧Elim with our as-
sumption to obtain P and Q, and then we use ∧Intro to derive Q ∧ P on the
left and P ∧Q on the right.

28

Core 8

∀x∀y(Rxy → Ryx)
∀E

∀y(Ray → Rya)
∀E

Rab→ Rba [Rab]
→E

Rba

∀x∀y(Rxy → Ryx)
∀E

∀y(Rby → Ryb)
∀E

Rba→ Rab [Rba]
→E

Rab ↔I
Rab↔ Rba ∀I

∀y(Ray ↔ Rya)
∀I

∀x∀y(Rxy ↔ Ryx)

This is a past paper question from 2015. Our conclusion ∀x∀y(Rxy ↔ Ryx)
is a universal statement, which we can derive from ∀y(Ray ↔ Rya). This in
turn we can derive from Rab↔ Rba. In order to prove this, we need to provide
a proof of Rba from Rab and of Rab from Rba.

On the left-hand side we assume Rab and derive Rab → Rba from our
premise ∀x∀y(Rxy → Ryx), which gives us Rba. The right-hand side is similar:
we assume Rba and derive Rba → Rab from the premise, which gives us Rab.
Both of these assumptions are discharged when we apply↔Intro, so we are free
to apply ∀Intro.

Core 9

∀x∃yRxy
∀Elim∃yRay

∀x∃yRxy
∀Elim∃yRby

[Rab]2 [Rbc]1
∧Intro

Rab ∧Rbc ∃Intro
∃z(Rab ∧Rbz)

∃Intro
∃y∃z(Ray ∧Ryz)

∃Elim1

∃y∃z(Ray ∧Ryz)
∃Elim2

∃y∃z(Ray ∧Ryz)
∀Intro

∀x∃y∃z(Rxy ∧Ryz)

This is adapted from a past paper question from 2012. Our conclusion
∀x∃y∃z(Rxy ∧ Ryz) is a universal statement, so we can prove it by proving
∃y∃z(Ray ∧Ryz) as long as a doesn’t appear in any undischarged assumptions
by the time we apply ∀Intro.

From our premise ∀x∃yRxy we can derive the existential statement ∃yRay,
which lets us discharge an assumption of Rab by ∃Elim (as long as b doesn’t
appear in any other undischarged assumptions when we apply ∃Elim). However,
Rab alone isn’t enough to derive ∃y∃z(Ray∧Ryz). We need to use the premise
a second time to derive ∃yRby, which lets us discharge an assumption of Rbc.
With these assumptions of Rab and Rbc we can derive ∃y∃z(Ray ∧Ryz).

We need to be careful about the order in we apply the ∃Elim steps. If we
tried to discharge Rab before Rbc, we wouldn’t be allowed to, because at that
stage b still appears in an undischarged assumption. Instead we use ∃yRay first
to discharge Rbc, and then use ∃yRay to discharge Rab.

29

Core 10

[Rab]
∀xRxx ∀Elim
Raa

∧Intro
Rab ∧Raa

∀x∀y∀z((Rxy ∧Rxz)→ Ryz)
∀Elim

∀y∀z((Ray ∧Raz)→ Ryz)
∀Elim

∀z((Rab ∧Raz)→ Rbz)
∀Elim

(Rab ∧Raa)→ Rba
→Elim

Rba →Intro
Rab→ Rba ∀Intro

∀y(Ray → Rya)
∀Intro

∀x∀y(Rxy → Ryx)

Our conclusion ∀x∀y(Rxy → Ryx) features two universal quantifiers; we can
prove it by proving Rab → Rba without a or b appearing in any undischarged
assumptions. To do this we assume Rab and prove Rba.

We can’t obtain Rba from Rab alone, but from one of our premises we can
derive Raa, which allows us to derive Rab∧Rba. From our other premise we can
obtain (Rab∧Rba)→ Rba, giving us the proof of Rba we need. Our assumption
of Rab is discharged when we apply →Intro, so we are free to apply ∀Intro and
derive our conclusion.

Core 11

[P]1
∨Intro

P ∨Q [¬(P ∨Q)]2
¬Intro1¬P ¬P → Q

→Elim
Q

∨Intro
P ∨Q [¬(P ∨Q)]2

¬Elim2

P ∨Q

We want to try to prove P ∨Q but our premise ¬P → Q doesn’t give us a
direct proof of P or a direct proof of Q. We will need to assume ¬(P ∨Q) and
show that it leads to a contradiction.

We start by assuming P . From this, we can derive P ∨Q, which contradicts
our assumption of ¬(P ∨ Q). Even though we have a contradiction, we can’t
immediately conclude P ∨ Q, because our assumption of P is undischarged.
Instead, we apply ¬Intro to discharge P and prove ¬P .

This is where our premise comes in. We have proved ¬P , and our premise
¬P → Q allows us to derive Q. From this, we can derive P ∨ Q again, so
assuming ¬(P ∨Q) again leads to a contradiction. From this contradiction we
can discharge our assumptions of ¬(P ∨Q) and derive P ∨Q.

30

Core 12

[Q]1 [¬Q]2
¬Elim

R
→Intro1

Q→ R [(Q→ R)→ Q]3
→Elim

Q [¬Q]2
¬Elim2

Q
→Intro3

((Q→ R)→ Q)→ Q

There are many ways of carrying out this proof; shown above is one of the
shortest possible methods. To prove ((Q → R) → Q) → Q, an implication, we
assume ((Q → R) → Q) and provide a proof of Q. We can’t provide a direct
proof of Q, so instead we assume ¬Q and show that it leads to a contradiction.

Since ¬Q is itself a negated statement, we can show that it leads to a con-
tradiction if we can show it leads to Q. We have assumed (Q→ R)→ Q, which
is an implication with Q as its consequent. This means that if we can derive
Q→ R from ¬Q, we will be able to obtain Q and hence a contradiction.

Deriving Q → R from ¬Q isn’t too tricky. Since Q → R is an implication,
we can assume Q, and Q and ¬Q together give us R by ¬Elim.

We could have tried to prove ((Q → R) → Q) → Q by assuming ¬(((Q →
R) → Q) → Q) and deriving a contradiction from that. Doing this will result
in a longer proof, but it is still possible. Two examples below illustrate this
approach.

31

[Q]2

[Q]1
→I

((Q→ R)→ Q)→ Q [¬(((Q→ R)→ Q)→ Q)]4
¬Intro1¬Q

¬E
R

→I2

Q→ R [((Q→ R)→ Q)]3
→E

Q
→I3

((Q→ R)→ Q)→ Q [¬(((Q→ R)→ Q)→ Q)]4
¬E4

((Q→ R)→ Q)→ Q

[Q]1 [¬Q]4
¬E

R
→I1

Q→ R

[Q→ R]3 [((Q→ R)→ Q)]2
→E

Q
→I2

((Q→ R)→ Q)→ Q [¬(((Q→ R)→ Q)→ Q)]5
¬I3¬(Q→ R)

¬E4

Q
→I

((Q→ R)→ Q)→ Q [¬(((Q→ R)→ Q)→ Q)]5
¬E5

((Q→ R)→ Q)→ Q

32

Core 13

[∀yRay]1
∀Elim

Rab [¬Rab]2
¬Intro1¬∀yRay

∃Intro∃x¬∀yRxy [¬∃x¬∀yRxy]3
¬Elim2

Rab ∀Intro∀yRay
∀Intro∀x∀yRxy ¬∀x∀yRxy

¬Elim3

∃x¬∀yRxy

This is a very awkward proof. Our conclusion is ∃x¬∀yRxy, but we can-
not prove it directly by ∃Intro. Instead we assume ¬∃x¬∀yRxy and derive a
contradiction from it. Since our premise ¬∀x∀yRxy is a negated statement, we
have a contradiction if we can derive ∀x∀yRxy from ¬∃x¬∀yRxy.

We can derive ∀x∀yRxy from Rab, provided that neither a nor b appears in
any undischarged assumptions by the time we’ve derived Rab. But we have no
way of proving Rab directly either; instead we need to make another indirect
proof, assuming ¬Rab and deriving a contradiction from that.

Since ¬∃x¬∀yRxy is a negated statement, we have a contradiction if we can
derive ∃x¬∀yRxy from ¬Rab. This time we do have a way of proving ∃x¬∀yRxy
from ¬Rab directly: it follows from ¬∀yRay. This in turn is a negated state-
ment, so we can derive it if we assume ∀yRay and derive a contradiction from
it. We do this by deriving Rab, which contradicts our assumption of ¬Rab.

33

Core 14

Pa

Qb [a = b]
=Elim

Qa
∧Intro

Pa ∧Qa
∃Intro

∃x(Px ∧Qx)
∨Intro

∃x(Px ∧Qx) ∨ ∃x∃y¬x = y [¬(∃x(Px ∧Qx) ∨ ∃x∃y¬x = y)]
¬Intro¬a = b ∃Intro∃y¬a = y

∃Intro∃x∃y¬x = y
∨Intro

∃x(Px ∧Qx) ∨ ∃x∃y¬x = y [¬(∃x(Px ∧Qx) ∨ ∃x∃y¬x = y)]
¬Elim

∃x(Px ∧Qx) ∨ ∃x∃y¬x = y

Our conclusion ∃x(Px ∧Qx) ∨ ∃x∃y¬x = y is a disjunction and we have no disjunctive premises. This means we probably
need to prove ∃x(Px ∧ Qx) ∨ ∃x∃y¬x = y indirectly: we assume ¬(∃x(Px ∧ Qx) ∨ ∃x∃y¬x = y) and show that it leads to a
contradiction.

We start by assuming a = b, since this lets us easily prove Qa, Pa ∧ Qa and ∃x(Px ∧ Qx). From there we derive
∃x(Px ∧Qx) ∨ ∃x∃y¬x = y, which contradicts our assumption of ¬(∃x(Px ∧Qx) ∨ ∃x∃y¬x = y). With this contradiction we
use ¬Intro to discharge a = b and derive ¬a = b.

From ¬a = b we can also obtain our conclusion. By applying ∃Intro twice we can derive ∃x∃y¬x = y, and from there we
can derive ∃x(Px∧Qx)∨∃x∃y¬x = y. Finally we assume ¬(∃x(Px∧Qx)∨∃x∃y¬x = y) again and apply ¬Elim, discharging
both assumptions of ¬(∃x(Px ∧Qx) ∨ ∃x∃y¬x = y) and giving us the conclusion ∃x(Px ∧Qx) ∨ ∃x∃y¬x = y.

34

5.2 Conjunction

Conjunction 1

P Q
∧Intro

P ∧Q

Conjunction 2

(P1 ∧ P2) ∧ P3
∧Elim1

P1 ∧ P2 ∧Elim2
P2

Conjunction 3

P ∧Q
∧Elim2

Q

P ∧Q
∧Elim1

P
∧Intro

Q ∧ P

Conjunction 4

Q ∧ P
∧Elim2

P

R

Q ∧ P
∧Elim1

Q
∧Intro

R ∧Q
∧Intro

P ∧ (R ∧Q)

Conjunction 5

P1 ∧ P2 ∧Elim1
P1

(Q1 ∧Q2) ∧R
∧Elim1

Q1 ∧Q2
∧Elim2

Q2
∧Intro

P1 ∧Q1

(Q1 ∧Q2) ∧R
∧Elim2

R
∧Intro

(P1 ∧Q2) ∧R

Conjunction 6

P ∧ (Q ∧R)
∧Elim2

Q ∧R
∧Elim2

R

P ∧ (Q ∧R)
∧Elim1

P ∧Intro
R ∧ P

P ∧ (Q ∧R)
∧Elim2

Q ∧R
∧Elim1

Q
∧Intro

(R ∧ P) ∧Q

35

5.3 Implication

Implication 1

[P]
→Intro

P → P

This proof relies on a special case of the →Intro rule: both φ and ψ are the
same. That means when we apply the rule we discharge P and put P on both
sides of the arrow.

Implication 2

[P]
→Intro

Q→ P
→Intro

P → (Q→ P)

In the first step of this proof, we discharge all assumptions of Q, but don’t
actually discharge any assumptions. We can go straight from P to Q→ P . It’s
in the second step that we discharge our original assumption of P .

Implication 3

[P] P → Q
→Elim

Q Q→ R
→Elim

R →Intro
P → R

Here we can freely assume P , and we want to try to get to R. This is nice
and easy P takes us to Q because we have P → Q as a premise, and then Q
takes us to R because we have Q → R as a premise. The final application of
→Intro discharges our assumption of P .

Implication 4

[P]2 [P → Q]1
→Elim

Q
→Intro1

(P → Q)→ Q
→Intro2

P → ((P → Q)→ Q

In order to prove P → ((P → Q) → Q), we have to prove (P → Q) → Q,
and we’re allowed to freely assume P . In order to prove (P → Q)→ Q, we have
to prove Q, and we’re allowed to freely assume P → Q. With assumptions of
both P and P → Q we can use →Elim to get Q. Then the two →Intro steps
discharge the two assumptions of P → Q and P .

36

Implication 5

[Q]
→Intro

P → Q (P → Q)→ (P → R)
→Elim

P → R →Intro
Q→ (P → R)

Our conclusion is Q → (P → R), so we should try to prove P → R from
assumptions of Q. In the first step of the proof, we apply →Intro without
discharging anything: Q takes us straight to P → Q. After that, our big
premise gets us to P → R, and our final application of →Intro discharges Q.

Implication 6

[Q]
→Intro

P → Q (P → Q)→ P
→Elim

P →Intro
Q→ P

Our conclusion is Q → P , so we can assume Q and need to prove P . Our
premise (P → Q)→ P is an implication with P as its consequent, so we know
we can derive P if we can provide a proof of P → Q. This follows from Q by
→Intro (another time when we apply→Intro without discharging anything), so
we can then apply →Elim to derive P . Finally we apply →Intro to discharge Q
and derive Q→ P .

Implication 7

[P] P → (Q→ R)
→Elim

Q→ R [Q]
→Elim

R →Intro
P → R →Intro

Q→ (P → R)

Here we can freely assume P and Q, and we need to get to R. Our premise
gets us from the P we’ve assumed to Q → R, and then the Q we’ve assumed
takes us to R.

Implication 8

[P] P → (Q→ R)
→Elim

Q→ R

[P] P → Q
→Elim

Q
→Elim

R →Intro
P → R

In this proof the conclusion is quite simple. Having to prove P → R means
we can only assume P and only need to get to R. But this time we have two
premises, and the P we’ve assumed works with both the premises: it gives us
both the Q→ R on the left and the Q on the right that we need to get to R.

37

Implication 9

[P]
→Intro

P → P (P → P)→ Q
→Elim

Q [Q→ R]
→Elim

R →Intro
(Q→ R)→ R

This is a past paper question from 2009. In order to prove (Q→ R)→ R, we
can freely assume Q→ R and need to derive R. Because we can freely assume
Q → R, we know that we can get R if we can somehow prove Q. Because our
premise is (P → P)→ Q, we know that we can get Q if we can somehow prove
P → P . P → P is easy to prove: we assume P , and then apply →Intro to
discharge the assumption of P and prove P → P . This then gives us Q, which
then gives us R.

Implication 10

[P]1 [P → (Q→ R)]3
→Elim

Q→ R

[P]1 [P → Q]2
→Elim

Q
→Elim

R
→Intro1

P → R
→Intro2

(P → Q)→ (P → R)
→Intro3

(P → (Q→ R))→ (P → Q)→ (P → R)

This proof looks nasty, but it turns out to be systematic. First of all we look
at how the conclusion is composed: P → (Q → R) is the antecendent (so we
can freely assume that) and (P → Q)→ (P → R) on the consequent, so that’s
what we need to prove.

(P → Q) → (P → R) is what we need to prove first. That means we can
freely assume P → Q, and we need to prove P → R. To prove P → R, we can
freely assume P , and need to derive R.

So all this has allowed us to freely assume P → (Q → R), P → Q and P .
The P and P → Q together give us Q, which you can see on the right. The P
and the P → (Q→ R) give us Q→ R, which you can see on the left. Together,
the Q and the Q → R give us R. Then it’s just a case of working backwards
from there, building up the conclusion and systematically discharging all the
assumptions we’ve made with three →Intro steps.

Implication 11

P ∧Q
∧Elim

Q
→Intro

P → Q

This is a simpler proof than it might look: P ∧ Q takes us straight to Q,
which then takes us to P → Q without us needing to discharge anything.

38

Implication 12

[P ∧Q]
∧Elim

P →Intro
P ∧Q→ P

Recall that, according to the bracketing conventions, P ∧ Q → P is an
abbreviation of (P ∧ Q) → P . This is an implication, meaning we can freely
assume the antecedent P ∧ Q and need to derive the consequent P . We can
get from P ∧Q to P in one step using ∧Elim. Then all we need to do is apply
→Intro discharge the P ∧Q and derive P ∧Q→ P .

Implication 13

[P] P → (Q ∧R)
→Elim

Q ∧R
∧Elim

Q
→Intro

P → Q

Here we can freely assume P and need to get to Q. Our assumption of P
allows us to get at the Q ∧R in the premise, which then gives us Q.

Implication 14

[P ∧Q]
∧Elim

Q
→Intro

(P ∧Q)→ Q ((P ∧Q)→ Q)→ (Q→ P)
→Elim

Q→ P

Although our conclusion Q → P is an implication, we won’t prove it by
assuming Q and deriving P from it. Instead, notice that our premise ((P ∧Q)→
Q) → (Q → P) is an implication with Q → P as its consequent. This means
that if we can prove (P ∧ Q) → Q we can derive Q → P directly by →Elim.
(P ∧Q)→ Q can be proved by assuming P ∧Q and deriving Q by ∧Elim.

39

Implication 15

[P]2 [Q]1
∧Intro

P ∧Q (P ∧Q)→ R
→Elim

R
→Intro1

Q→ R
→Intro2

P → (Q→ R)

Because our conclusion P → (Q → R) is an implication, we know that we
need to prove Q→ R from assumptions of P . In order to prove Q→ R, we need
to prove R and can freely assume Q. Our assumptions of P and Q together give
us P ∧Q; that, combined with the premise, gives us R. Then we apply →Intro
twice to discharge our assumptions of P and Q.

Implication 16

[P]

(P → Q) ∧ (P → R)
∧Elim

P → Q
→Elim

Q

[P]

(P → Q) ∧ (P → R)
∧Elim

P → R
→Elim

R
∧Intro

Q ∧R
→Intro

P → (Q ∧R)

The main connective in the conclusion P → (Q∧R) is an arrow. That means
we can freely assume P and need to get to Q ∧ R. To get to Q ∧ R, we need
two separate proofs: one of Q and one of R. Both of these work in a similar
way. We split open the original premise (P → Q)∧ (P → R) to get conditionals
P → Q and P → R, and then we use our assumption of P to give us both Q
and R.

Implication 17

[P] P → (Q ∧R)
→Elim

Q ∧R
∧Elim

Q
→Intro

P → Q

[P] P → (Q ∧R)
→Elim

Q ∧R
∧Elim

R →Intro
P → R

∧Intro
(P → Q) ∧ (P → R)

Because the conclusion (P → Q) ∧ (P → R) is a conjunction, we know we
need to do two proofs: one proof of what’s on the left, and one proof of what’s on
the right. In each proof we can freely assume P (which we know we’ll discharge
each time we apply →Intro), which works with the premise (P → (Q ∧ R)) to
give us Q ∧R, and from there the Q and the R we need.

40

Bonus challenge

Using only the introduction and elimination rules for conjunction, any proof of
P1 ∧ P1 from (((P1 ∧ P2) ∧ P3) ∧ P4) ∧ P5 must consist of at least nine steps:

(((P1 ∧ P2) ∧ P3) ∧ P4) ∧ P5
∧Elim

((P1 ∧ P2) ∧ P3) ∧ P4
∧Elim

(P1 ∧ P2) ∧ P3
∧Elim

P1 ∧ P2 ∧Elim
P1

(((P1 ∧ P2) ∧ P3) ∧ P4) ∧ P5
∧Elim

((P1 ∧ P2) ∧ P3) ∧ P4
∧Elim

(P1 ∧ P2) ∧ P3
∧Elim

P1 ∧ P2 ∧Elim
P1 ∧Intro

P1 ∧ P1

The problem is that the derivation of P1 from (((P1 ∧ P2) ∧ P3) ∧ P4) ∧ P5

takes four steps, and we have to repeat this derivation if we want to derive
P1 ∧ P1.

Using the rules for implication, we can shorten the proof so that this long
derivation is only carried out once:

(((P1 ∧ P2) ∧ P3) ∧ P4) ∧ P5
∧Elim

((P1 ∧ P2) ∧ P3) ∧ P4
∧Elim

(P1 ∧ P2) ∧ P3
∧Elim

P1 ∧ P2 ∧Elim
P1

[P1] [P1]
∧Intro

P1 ∧ P1 →Intro
P1 → (P1 ∧ P1)

→Elim
P1 ∧ P1

This means we have a proof of P1 ∧ P1 from (((P1 ∧ P2) ∧ P3) ∧ P4) ∧ P5

taking only seven steps.

41

5.4 Disjunction

Disjunction 1

P ∨Q
[P]

∨Intro2
Q ∨ P

[Q]
∨Intro1

Q ∨ P
∨Elim

Q ∨ P

Our premise P ∨ Q splits the proof up into two cases: one where P is true
and one where Q is true. Both of these are cases of Q ∨ P .

Disjunction 2

P ∨Q
[P]

∨Intro1
P ∨ (Q ∨R)

[Q]
∨Intro1

Q ∨R
∨Intro2

P ∨ (Q ∨R)
∨Elim

P ∨ (Q ∨R)

Our premise P ∨ Q splits the proof up into two cases: one where P is true
and one where Q is true. Both of these are cases of P ∨ (Q ∨R).

42

Disjunction 3

(P ∨Q) ∨R
[P ∨Q]2

[P]1
∨Intro1

P ∨ (Q ∨R)

[Q]1
∨Intro1

Q ∨R
∨Intro2

P ∨ (Q ∨R)
∨Elim1

P ∨ (Q ∨R)

[R]2
∨Intro2

Q ∨R
∨Intro2

P ∨ (Q ∨R)
∨Elim2

P ∨ (Q ∨R)

This proof works similarly to the previous proofs, but there are two splits: (P ∨Q) ∨R splits the proof into a P ∨Q case
and an R case, and then the former case splits into a case of P and a case of Q. In all three cases we apply the ∨Intro rules
to obtain P ∨ (Q ∨R).

Disjunction 4

(P ∨ Q) ∨ (R ∨ P1)

[P ∨ Q]

[P]
∨I1

P ∨ P1 ∨I1
(P ∨ P1) ∨ (R ∨ Q)

[Q]
∨I2

R ∨ Q
∨I2

(P ∨ P1) ∨ (R ∨ Q)
∨E

(P ∨ P1) ∨ (R ∨ Q)

[R ∨ P1]

[R]
∨I1

R ∨ Q
∨I2

(P ∨ P1) ∨ (R ∨ Q)

[P1]
∨I2

P ∨ P1 ∨I1
(P ∨ P1) ∨ (R ∨ Q)

∨E
(P ∨ P1) ∨ (R ∨ Q)

∨E
(P ∨ P1) ∨ (R ∨ Q)

This proof is large, but very systematic: the premise (P ∨ Q) ∨ (R ∨ P1) splits the proof into two further disjunctions,
(P ∨ Q) and (R ∨ P1), and then these disjunctions split the cases further into cases of P , Q, R and P1. All four of these are
cases where the conclusion (P ∨ P1) ∨ (R ∨Q) is true.

43

Disjunction 5

P ∧ (Q ∨R)
∧Elim

Q ∨R

P ∧ (Q ∨R)
∧Elim

P [Q]
∧Intro

P ∧Q
∨Intro

(P ∧Q) ∨ (P ∧R)

P ∧ (Q ∨R)
∧Elim

P [R]
∧Intro

P ∧R ∨Intro
(P ∧Q) ∨ (P ∧R)

∨Elim
(P ∧Q) ∨ (P ∧R)

Our premise P∧(Q∨R) gives us two sentences to work with: a disjunction Q∨R and the sentence-letter P alone. Q∨R splits
the proof into a case where Q is true (in the middle) and a case where R is true (on the right). These are, respectively, cases of
P ∧Q and P ∧R, because we get the P for free from our original premise. Therefore both cases are cases of (P ∧Q)∨ (P ∧R).

Disjunction 6

(P ∨Q) ∧ (P ∨R)
∧Elim

P ∨Q
[P]2

∨Intro
P ∨ (Q ∧R)

(P ∨Q) ∧ (P ∨R)
∧Elim

P ∨R
[P]1

∨Intro
P ∨ (Q ∧R)

[Q]2 [R]1
∧Intro

Q ∧R
∨Intro

P ∨ (Q ∧R)
∨Elim1

P ∨ (Q ∧R)
∨Elim2

P ∨ (Q ∧R)

Our premise (P ∨Q) ∧ (P ∨R) is a conjunction, so it gives us two sentences we can use: P ∨Q and P ∨R. Working from
the bottom up, we can use P ∨Q first to split the proof into a case where P is true and a case where Q is true. In the former
case, we can go straight from P to P ∨ (Q∧R). In the latter case we need to split the proof again: P ∨R splits the proof into
a case where P is true (and therefore the conclusion P ∨ (Q ∧ R) is true), and a case where R is true. In this final case Q is
true as well: we’re still part of the case where Q is true, and our assumption of Q gets discharged in the final step of the proof.
Because we have both Q and R, we can prove Q ∧R and therefore have a case where P ∨ (Q ∧R) is true.

44

Disjunction 7

(P ∧Q) ∨ (P ∧R)

[P ∧Q]
∧Elim

P

[P ∧Q]
∧Elim

Q
∨Intro

Q ∨R
∧Intro

P ∧ (Q ∨R)

[P ∧R]
∧Elim

P

[P ∧R]
∧Elim

R ∨Intro
Q ∨R

∧Intro
P ∧ (Q ∨R)

∨Elim
P ∧ (Q ∨R)

The premise splits this proof into a case where P ∧Q is true and a case where P ∧ R is true. In the former case, from Q
we can derive Q ∨R, so it is a case where P ∧ (Q ∨R) is true. Very similarly in the latter case, from R we can derive Q ∨R,
so P ∧ (Q ∨R) is also true.

Disjunction 8

P ∨ (Q ∧R)

[P]
∨Intro

P ∨Q
[P]

∨Intro
P ∨R

∧Intro
(P ∨Q) ∧ (P ∨R)

[Q ∧R]
∧Elim

Q
∨Intro

P ∨Q

[Q ∧R]
∧Elim

R ∨Intro
P ∨R

∧Intro
(P ∨Q) ∧ (P ∨R)

∨Elim
(P ∨Q) ∧ (P ∨R)

The premise splits this proof into a case where P is true and a case where Q ∧R is true. In the first case P leads to both
P ∨Q and P ∨R, giving the conclusion (P ∨Q)∧ (P ∨R). In the second case, Q and R lead, respectively, to P ∨Q and P ∨R,
also giving the conclusion.

45

Disjunction 9

(P → Q) ∨Q [P → Q]

[Q]
→Intro

P → Q
∨Elim

P → Q

Our premise (P → Q) ∨ Q provides one case where P → Q is true. This
is the conclusion, so we don’t need to do anything else. In other case, we can
freely assume Q. From this we can apply ∨Intro to derive P → Q in one step,
so the conclusion is true in both cases.

Disjunction 10

P ∨Q
[P] [P → Q]

→Elim
Q [Q]

∨Elim
Q

→Intro
(P → Q)→ Q

Our conclusion (P → Q)→ Q is an implication, so we prove it by assuming
P → Q and providing a proof of Q. Because our premise P ∨Q is a disjunction,
we can split the proof into a case where P is true and a case where Q is true.
In the case where Q is true, we don’t need to do anything. In the case where P
is true, we use our assumption of P → Q to derive Q by →Elim, meaning we
have a proof of Q in both cases.

We could also have carried out the proof in a slightly different way and
applied ∨Elim at the very end:

P ∨Q

[P] [P → Q]
→Elim

Q
→Intro

(P → Q)→ Q

[Q]
→Intro

(P → Q)→ Q
∨Elim

(P → Q)→ Q

Note that in this proof we apply →Intro in both branches, so the proof is
slightly longer. When using ∨Elim it is often possible to apply it at more than
one point of the proof, but applying ∨Elim as early as possible usually leads to
shorter proofs.

46

Disjunction 11

[P ∨R]

[Q]
→Intro

P → Q (P → Q)→ (P → R)
→Elim

P → R [P]
→Elim

R [R]
∨Elim

R →Intro
Q→ R

→Intro
(P ∨R)→ (Q→ R)

The conclusion (P ∨R)→ (Q→ R) is an implication. This means to prove it we need to prove Q→ R, and we can freely
assume P ∨ R. Q → R is an implication as well; this means we can freely assume Q and need to prove R. P ∨ R splits the
proof into two cases: in one case we have P and in the other we have R, and in both cases we need to prove R.

The right case is easy: R is just true. In the left case, proving R from P is more complex. To prove Q → R, we need
to get to R and we can freely assume Q. This is very helpful: Q gives us P → Q, which then (thanks to our premise
(P → Q)→ (P → R)) gives us P → R. That, with the P we have, gives us R.

Disjunction 12

(P → Q) ∨ (P → R)

[P] [P → Q]
→Elim

Q
∨Intro

Q ∨R

[P] [P → R]
→Elim

R ∨Intro
Q ∨R

∨Elim
Q ∨R

→Intro
P → (Q ∨R)

Our conclusion is an implication, so we can freely assume P and need to work towardsQ∨R. Our premise (P → Q)∨(P → R)
splits the proof into a case where P → Q is true and a case where P → R is true. These cases yield, respectively, Q and R
(because P is assumed in both cases) and therefore both yield Q ∨R.

47

Disjunction 13

[P ∨Q]

[P]

(P → Q) ∧ (Q→ P)
∧Elim

P → Q [P]
→Elim

Q
∧Intro

P ∧Q

(P → Q) ∧ (Q→ P)
∧Elim

Q→ P [Q]
→Elim

P [Q]
∧Intro

P ∧Q
∨Elim

P ∧Q
→Intro

(P ∨Q)→ (P ∧Q)

Because our conclusion is an implication, we can freely assume P ∨Q and need to prove P ∧Q. P ∨Q splits the proof into
a case where P is true and a case where Q is true. Our premise tells us that P implies Q and that Q implies P . This means
that in the case where P is true we can derive Q and in the case where Q is true we can derive P . Therefore P ∧Q is true in
both cases.

Disjunction 14

[P]
∨Intro

P ∨Q (P ∨Q)→ (P ∧Q)
→Elim

P ∧Q
∧Elim

Q
→Intro

P → Q

[Q]
∨Intro

P ∨Q (P ∨Q)→ (P ∧Q)
→Elim

P ∧Q
∧Elim

P →Intro
Q→ P

∧Intro
(P → Q) ∧ (Q→ P)

Our conclusion is a conjunction, so there are two proofs we have to make: one proof of P → Q and another proof of Q→ P .
In the left proof, because we are proving P → Q, we can start from P and need to work towards Q. P gives us P ∨Q, which
(thanks to our premise, (P ∨Q)→ (P ∧Q)) gives us P ∧Q and therefore Q. On the other side, Q also gives us P ∨Q, allowing
us to derive P in the same way as in the left proof.

48

Disjunction 15

(Q→ R) ∧ (Q ∨ P)
∧Elim

Q ∨ P [Q]

[P] [P → Q]
→Elim

Q
∨Elim

Q

(Q→ R) ∧ (Q ∨ P)
∧Elim

Q→ R
→Elim

R

(Q→ R) ∧ (Q ∨ P)
∧Elim

Q ∨ P [Q]

[P] [P → Q]
→Elim

Q
∨Elim

Q
∧Intro

R ∧Q
→Intro

(P → Q) → (R ∧Q)

Here our conclusion is an implication; we can freely assume P → Q and need to derive R ∧Q. To derive R ∧Q we need to
derive R (which we do on the left-hand side) and Q (which we derive on the right-hand side). Our premise is a conjunction,
so we can derive two helpful sentences from it: Q ∨ P and Q→ R.

On the right-hand side (where we try to derive Q) we make use of Q ∨ P . We have one case where we can assume Q, and
another case where we can assume P . In the latter case we can use our assumption of P → Q to derive Q, so Q is true in
both cases. On the left-hand side, we prove Q using the same technique we used on the right-hand side, and then use Q→ R
(which we have derived from our premise) to derive R.

49

5.5 Biconditional

Biconditional 1

[P] P ↔ Q
↔Elim1

Q

[Q] P ↔ Q
↔Elim2

P
↔Intro

Q↔ P

The conclusion is a biconditional, so there are two proofs we need to give:
one from P to Q and one from Q to P . Both of these can be done in one step,
because we have P ↔ Q as a premise. Our initial assumptions of P and Q are
discharged in the final step.

Biconditional 2

[Q] P
↔Intro

P ↔ Q (P ↔ Q)↔ R
↔Elim1

R

P

[R] (P ↔ Q)↔ R
↔Elim2

P ↔ Q
↔Elim1

Q
↔Intro

Q↔ R

On the left we have a proof from Q to R and on the right we have a proof
from R to Q. The right-hand side is fairly straightforward: we can use R with
our premise (P ↔ Q) ↔ R to obtain P ↔ Q, and we can then use that with
our other premise P to obtain Q. The left-hand side has a less intuitive step:
we use our assumption of Q (which will be discharged in the final step) and
our premise P to go straight to P ↔ Q; when doing this, no assumptions are
discharged. P ↔ Q and our premise (P ↔ Q)↔ R then give us R.

Biconditional 3

[Q] [P ↔ Q]
↔E2

P

[P] [P ↔ Q]
↔E1

Q
↔I

Q↔ P

[P] [Q↔ P]
↔E2

Q

[Q] [Q↔ P]
↔E1

P
↔I

P ↔ Q
↔I

(P ↔ Q)↔ (Q↔ P)

This is a past paper question from 2014. We have to prove a biconditional:
on the left we need to go from P ↔ Q to Q↔ P , and on the right we need to go
in the other direction. Because in both cases we need to prove a biconditional,
the proof splits again: we need to prove P from Q and Q from P on the left,
and Q from P and P from Q on the right. All four of these can be achieved in
one step because of the assumptions we have of P ↔ Q and Q↔ P , which are
discharged in the final step.

50

Biconditional 4

[P]
∨Intro

P ∨Q (P ∨Q)↔ Q
↔Elim

Q
→Intro

P → Q

This proof is a one-way implication; we can freely assume P and need to work
towards Q. P gives us P ∨Q, and this combined with our premise (P ∨Q)↔ Q
gives us Q.

Biconditional 5

[P] (P ∧Q)↔ P
↔Elim

P ∧Q
∧Elim

Q
→Intro

P → Q

Here we are proving P → Q, which means we can freely assume P and have
to derive Q. P and our premise (P ∧Q) ↔ P allow us to derive P ∧Q, which
then gives us Q.

Biconditional 6

[P ∨Q]

[P] P → Q
→Elim

Q [Q]
∨Elim

Q

[Q]
∨Intro

P ∨Q
↔Intro

(P ∨Q)↔ Q

Here we need to prove Q from P ∨Q on the left and P ∨Q from Q on the
right. The right-hand side is easy: P ∨ Q can be derived from Q in a single
step. On the left-hand side the proof is more complex. Our assumption of P ∨Q
(which is discharged in the final step) splits the proof two cases. In one, Q is
true, which is what we need to derive. In the other, P is true; this, together
with the premise P → Q, lets us prove Q.

Biconditional 7

[P ∧Q]
∧Elim

P

[P]

[P] P → Q
→Elim

Q
∧Intro

P ∧Q
↔Intro

(P ∧Q)↔ P

The conclusion (P ∧Q)↔ P asks us to provide two proofs: a proof of P from
P ∧ Q (this is on the left and is a simple case of ∧Elim) and a proof of P ∧ Q
from P . For this latter proof, we use our assumption of P with the premise
P → Q to give us Q, and then join that with our assumption of P to obtain
P ∧Q.

51

Biconditional 8

(P → Q) ∧ (Q→ P)
∧Elim

P → Q [P]
→Elim

Q

(P → Q) ∧ (Q→ P)
∧Elim

Q→ P [Q]
→Elim

P
↔Intro

P ↔ Q

This is a past paper question from 2013. Our premise (P → Q) ∧ (Q→ P)
gives us two sentences we can use: P → Q allows us to prove Q from P on the
left-hand side and Q→ P allows us to prove P from Q on the right-hand side.

Biconditional 9

[P ∧Q]
∧Elim

P

[P ∧Q]
∧Elim

Q
→Intro

P → Q
↔Intro

(P → Q)↔ P
→Intro

(P ∧Q)→ ((P → Q)↔ P)

The conclusion of this proof, (P ∧ Q) → ((P → Q) ↔ P), is a conditional:
this means we can assume P ∧Q and need to obtain (P → Q)↔ P . Obtaining
(P → Q) ↔ P turns out to be quite easy. Although we are allowed to assume
P → Q in our proof of P (on the left) and we are allowed to assume P in our
proof of P → Q (on the right), we don’t need either of these. Both P and
P → Q follow from P ∧Q alone.

Biconditional 10

[P] [(P → Q)↔ P]
↔Elim

P → Q [P]
→Elim

Q

[Q]
→Intro

P → Q [(P → Q)↔ P]
↔Elim

P
↔Intro

P ↔ Q
→Intro

((P → Q)↔ P)→ (P ↔ Q)

The conclusion of this proof is a conditional. This means we can assume
(P → Q)↔ P and need to derive P ↔ Q. To prove P ↔ Q we need two proofs:
a proof of Q from P (on the left) and a proof of P from Q (on the right). On
the left, our assumption of P together with our assumption of (P → Q) ↔ Q
gives us P → Q, and we can use this with another assumption of P to get Q.
On the right, from Q we can prove P → Q, and this in combination with the
assumption of (P → Q)↔ P allows us to prove P .

52

Biconditional 11

[P]
∨I

P ∨Q
[P] ((P ∨Q)↔ Q)↔ P

↔E
(P ∨Q)↔ Q

↔E
Q

[Q]

[Q]
∨I

P ∨Q
↔I

(P ∨Q)↔ Q ((P ∨Q)↔ Q)↔ P
↔E

P
↔I

P ↔ Q

For this proof we need to prove Q from assumptions of P on the left-hand side and P from Q on the right-hand side. On
the left-hand side, P can be used with the premise ((P ∨ Q) ↔ Q) ↔ P to derive (P ∨ Q) ↔ Q. In one step we can prove
P ∨Q from P , and that means we can apply ↔Elim to derive Q.

On the right-hand side, (P ∨Q) ↔ Q is fairly easy to derive: we have Q on one side and P ∨Q (which follows from Q in
one step) on the other side, which means we can derive (P ∨Q)↔ Q without discharging any assumptions. This can be used
with the premise ((P ∨Q)↔ Q)↔ P to derive P .

Biconditional 12

[P ∧Q]
∧E

P

[P ∧Q]
∧E

Q

[P ∧Q]
∧E

P P → (Q↔ R)
→E

Q↔ R
↔E

R ∧I
P ∧R

[P ∧R]
∧E

P

[P ∧R]
∧E

R

[P ∧R]
∧E

P P → (Q↔ R)
→E

Q↔ R
↔E

Q
∧I

P ∧Q
↔I

(P ∧Q)↔ (P ∧R)

This is a past paper question from 2012. In order to prove the biconditional (P ∧Q)↔ (P ∧ R), we need to prove P ∧ R
from assumptions of P ∧ Q and we need to prove P ∧ Q from assumptions of P ∧ R. On the left-hand side, our assumption
of P ∧ Q allows us to obtain P . This, combined with our premise P → (Q ↔ R), gives us Q ↔ R. We can use this with Q
(which we also obtain from P ∧Q) to obtain R; this and P give us P ∧R. The right-hand side works the same way, except we
work from Q↔ R and R to derive Q.

53

Biconditional 13

[P ∨ (Q ∧ R)]

[P]
∨I

P ∨ R

[P]
∨I

P ∨ R
∧I

(P ∨ Q) ∧ (P ∨ R)

[Q ∧ R]
∧E

Q
∨I

P ∨ Q

[Q ∧ R]
∧E

R
∨I

P ∨ R
∧I

(P ∨ Q) ∧ (P ∨ R)
∨E

(P ∨ Q) ∧ (P ∨ R)

[(P ∨ Q) ∧ (P ∨ R)]
∧E

P ∨ Q

[P]
∨I

P ∨ (Q ∧ R)

[(P ∨ Q) ∧ (P ∨ R)]
∧E

P ∨ R

[P]
∨I

P ∨ (Q ∧ R)

[Q] [R]
∧I

Q ∧ R
∨I

P ∨ (Q ∧ R)
∨E

P ∨ (Q ∧ R)
∨E

P ∨ (Q ∧ R)
↔I

(P ∨ (Q ∧ R)) ↔ ((P ∨ Q) ∧ (P ∨ R))

This is a past paper question from 2010. It breaks down into two proofs: a proof of (P ∨Q) ∧ (P ∨ R) from P ∨ (Q ∧ R)
and a proof of P ∨ (Q ∧R) from (P ∨Q) ∧ (P ∨R).

On the left-hand side, our assumption of P ∨ (Q ∧R) splits the proof further into a case where P is true and a case where
Q∧R is true. In the first case P leads to both P ∨Q and P ∨R, giving (P ∨Q)∧ (P ∨R). In the second case, Q and R lead,
respectively, to P ∨Q and P ∨R, also giving (P ∨Q) ∧ (P ∨R).

On the right-hand side, our assumption of (P ∨ Q) ∧ (P ∨ R) is a conjunction, giving us P ∨ Q and P ∨ R. P ∨ Q splits
this part of the proof into a case where P is true and a case where Q is true. In the former case, we can derive P ∨ (Q ∧ R)
from P . In the latter case we use P ∨ R to split the proof again into a case where P is true (and therefore the conclusion
P ∨ (Q∧R) is true), and a case where R is true. In this final case Q is true as well: we’re still part of the case where Q is true,
and our assumption of Q gets discharged in the final step of the proof. Because we have both Q and R, we can prove Q ∧ R
and therefore have a case where P ∨ (Q ∧R) is true.

54

5.6 Negation

Negation 1

P [¬P]
¬Intro¬¬P

In order to prove ¬¬P (in other words, to prove that it is not the case
that ¬P) we start by assuming ¬P and show that it leads to a contradiction.
Showing it leads to a contradiction is very easy: ¬P contradicts our premise P .
Applying ¬Intro allows us to discharge our assumption of ¬P and prove ¬¬P .

Negation 2

[P ∧Q]
∧Elim

P ¬P ¬Intro
¬(P ∧Q)

To prove ¬(P ∧Q), we start by assuming P ∧Q and try to derive a contra-
diction from it. P ∧Q gives us P , which contradicts our premise ¬P .

Negation 3

[P]

[P] P → ¬P
¬Elim¬P

¬Intro¬P

To prove ¬P , we start by assuming P and try to derive a contradiction from
it. Our premise P → ¬P doesn’t contradict P straight away, but because we’ve
assumed P we can apply →Elim to obtain ¬P ; this then contradicts P and
allows us to apply ¬Intro.

Negation 4

[Q]
→Intro

P → Q ¬(P → Q)
¬Intro¬Q

To prove ¬Q, we start by assuming Q and try to derive a contradiction. We
can derive P → Q from Q in one step without discharging any assumptions;
this then contradicts our premise ¬(P → Q).

55

Negation 5

[P] [Q]
∧Intro

P ∧Q ¬(P ∧Q)
¬Intro¬Q

→Intro
P → ¬Q

Our conclusion P → ¬Q is a conditional statement, so we assume P and
try to derive ¬Q. To derive ¬Q, we assume Q and try to prove a contradiction.
Our premise ¬(P ∧Q) is a negated statement, so we have a contradiction if we
can prove P ∧ Q. Because we have assumptions of P and Q, we can indeed
derive P ∧ Q. This gives us the contradiction we need to apply ¬Intro, derive
¬Q and discharge our assumption of Q. Finally we apply →Intro to discharge
our assumption of P and prove our conclusion.

Negation 6

[P] P → Q
→Elim

Q [¬Q]
¬Intro¬P →Intro¬Q→ ¬P

Our conclusion ¬Q → ¬P is a conditional statement. This means we can
assume ¬Q and need to prove ¬P . To prove ¬P we can assume P and need
to derive a contradiction. Our assumption of P and the premise P → Q let us
prove Q, which contradicts our assumption of ¬Q. P is discharged in the ¬Intro
step, while ¬Q is discharged in the →Intro step.

56

Negation 7

[(P ∧ ¬P) ∨ (Q ∧ ¬Q)]

[P ∧ ¬P]
∧Elim

P

[P ∧ ¬P]
∧Elim¬P ¬Intro

¬((P ∧ ¬P) ∨ (Q ∧ ¬Q))

[Q ∧ ¬Q]
∧Elim

Q

[Q ∧ ¬Q]
∧Elim¬Q
¬Intro

¬((P ∧ ¬P) ∨ (Q ∧ ¬Q))
∨Elim

¬((P ∧ ¬P) ∨ (Q ∧ ¬Q)) [(P ∧ ¬P) ∨ (Q ∧ ¬Q)]
¬Intro

¬((P ∧ ¬P) ∨ (Q ∧ ¬Q))

Our conclusion ¬((P ∧ ¬P) ∨ (Q ∧ ¬Q)) is a negated statement, so we can prove it by assuming (P ∧ ¬P) ∨ (Q ∧ ¬Q) and
deriving a contradiction from it. This is a disjunction, so it splits the proof into a case where P ∧¬P is true and a case where
Q ∧ ¬Q is true.

In both of these cases, it is easy to find a contradiction: in the left-hand case P contradicts ¬P and in the right-hand case
Q contradicts ¬Q. However, when we apply ¬Intro and derive ¬((P ∧ ¬P) ∨ (Q ∧ ¬Q)) within each case we can’t discharge
our assumption of (P ∧ ¬P) ∨ (Q ∧ ¬Q), since it appears further down in the proof.

Instead what we have to do after applying ∨Elim (discharging P∧¬P and Q∧¬Q) is assume ¬((P∧¬P)∨(Q∧¬Q)) a second
time. Then we can apply ¬Intro, derive ¬((P ∧¬P)∨ (Q∧¬Q)) again and discharge both assumptions of (P ∧¬P)∨ (Q∧¬Q).

57

Negation 8

[P]
∨Intro

P ∨Q ¬(P ∨Q)
¬Intro¬P

[Q]
∨Intro

P ∨Q ¬(P ∨Q)
¬Intro¬Q

∧Intro¬P ∧ ¬Q

Our conclusion is a conjunction, so we need to provide two proofs: a proof of
¬P and a proof of ¬Q. On the left-hand side we assume P and try to derive a
contradiction. Our premise ¬(P ∨Q) is a negated statement, so we can get the
contradiction we need by deriving P ∨Q from P . Similarly, on the right-hand
side we derive P ∨Q from our assumption of Q.

Negation 9

¬P ∨ ¬Q

[P ∧Q]
∧Elim

P [¬P]
¬Intro

¬(P ∧Q)

[P ∧Q]
∧Elim

Q [¬Q]
¬Intro

¬(P ∧Q)
∨Elim

¬(P ∧Q)

Our premise ¬P ∨ ¬Q is a disjunction, which splits the proof into a case
where we can assume ¬P and a case where we can assume ¬Q. In both cases
we need to prove ¬(P ∧ Q), which we do by assuming P ∧ Q and showing it
leads to a contradiction. From P ∧Q we can prove P , which contradicts ¬P on
the left-hand side, and Q, which contradicts ¬Q on the right-hand side.

Negation 10

[P] ¬P
¬Elim

Q
→Intro

P → Q

To prove P → Q we start from an assumption of P and need to derive Q.
P contradicts our premise ¬P , and this allows us to apply ¬Elim and prove Q.
No assumptions are discharged until the next step, where →Intro discharges P .

Negation 11

P ∧ ¬P ∧Elim
P

P ∧ ¬P ∧Elim¬P ¬Elim
Q

Here, as in the previous problem, we prove Q from a contradiction. This is
provided from our premise alone: from P ∧ ¬P we can prove both P and ¬P ,
which contradict each other.

58

Negation 12

P ∨Q
[P] [¬P]

¬Elim
Q [Q]

∨Elim
Q

→Intro¬P → Q

This is similar to a past paper problem from 2013. In order to prove ¬P → Q,
we can freely assume ¬P and need to prove Q. Our premise P ∨ Q gives us
two cases to consider: one we assume Q (which is great, because that’s what
we need to prove) and one where we assume P . P contradicts our assumption
of ¬P , allowing us to derive Q.

Negation 13

P ∧ ¬Q
∧Elim

P P → Q
→Elim

Q

P ∧ ¬Q
∧Elim¬Q

¬Elim
R

In order to prove R (which doesn’t appear in any of our premises) we need
to find a contradiction. P ∧ ¬Q and P → Q together provide one: P ∧ ¬Q lets
us prove P , and with this and P → Q we can prove Q. This contradicts the ¬Q
which also follows from P ∧ ¬Q.

Negation 14

P ∨Q
[P]

[P] P ↔ Q
↔E

Q
∧I

P ∧Q

[Q] P ↔ Q
↔E

P [Q]
∧I

P ∧Q
∨E

P ∧Q ¬(P ∧Q)
¬E

R

R doesn’t appear in any of our premises, so we prove it by finding a contra-
diction. Of our three premises, ¬(P ∧ Q) is a negated statement, so it makes
sense to try to prove P ∧ Q in order to find the contradiction we need. P ∨ Q
splits the proof into two cases: one where P is true and one where Q is true.
In both of these cases we apply the other premise P ↔ Q to obtain the other
sentence-letter and hence derive P ∧Q. This contradicts ¬(P ∧Q), allowing us
to derive R.

59

Negation 15

[¬P] ¬¬P
¬Elim

P

Here we cannot provide a proof of P directly. Instead, we prove P by as-
suming ¬P and showing it leads to a contradiction. ¬P contradicts our premise
¬¬P , meaning we can apply ¬Elim; this discharges our assumption of ¬P and
provides a proof of P .

Negation 16

[P]1
∨Intro

P ∨ ¬P [¬(P ∨ ¬P)]2
¬Intro1¬P ∨Intro

P ∨ ¬P [¬(P ∨ ¬P)]2
¬Elim2

P ∨ ¬P

This proof is counter-intuitive, relying on a special technique. Our conclusion
P ∨¬P is a disjunction, but we cannot show it is true by proving either disjunct:
we have no proof of P and no proof of ¬P . Instead, we must assume that P ∨¬P
is false (in other words, we assume ¬(P ∨¬P)) and derive a contradiction from
that.

But we still have a problem: even if we assume ¬(P ∨¬P), what do we have
which it contradicts? This proof has no premises. We have to rely on a slightly
counter-intuitive trick. We assume ¬(P ∨¬P) and try to derive a contradiction
from it, but initially we also assume P . From P we can prove P ∨ ¬P , which
contradicts ¬(P ∨ ¬P).

But we can’t go right ahead and apply ¬Elim to prove P ∨¬P , because that
would leave our assumption of P undischarged. So instead what we do is use
the contradiction to apply ¬Intro, discharging P and proving ¬P .

From ¬P , we can apply ∨Intro to prove P ∨¬P again. Assuming ¬(P ∨¬P)
leads to a contradiction again, but this time our only undischarged assumption
is ¬(P ∨ ¬P) itself. We’re free to apply ¬Elim, discharge our two assumptions
of ¬(P ∨ ¬P) and prove P ∨ ¬P .

The following is a possible alternative proof:

[P]1
∨Intro

P ∨ ¬P [¬(P ∨ ¬P)]3
¬Intro1¬P

[¬P]2
∨Intro

P ∨ ¬P [¬(P ∨ ¬P)]3
¬Elim2

P
¬Elim3

P ∨ ¬P

This kind of structure is possible for many indirect proofs, but it tends to
produce longer proofs than the technique above.

60

Negation 17

[¬P]
∨Intro¬P ∨ ¬Q ¬(¬P ∨ ¬Q)

¬Elim
P

[¬Q]
∨Intro¬P ∨ ¬Q ¬(¬P ∨ ¬Q)

¬Elim
Q

∧Intro
P ∧Q

In order to prove P ∧ Q we need to provide a proof of P and a proof of
Q. On the left-hand side we can’t prove P directly, so instead we assume ¬P
and show that this leads to a contradiction. From ¬P we can derive ¬P ∨ ¬Q,
which contradicts our premise ¬(¬P ∨ ¬Q). The contradiction allows us to
apply ¬Elim, discharge our assumption of ¬P and derive P . Similarly on the
right-hand side we assume ¬Q and show it leads to a contradiction in order to
derive Q.

We could also prove P∧Q by assuming ¬(P∧Q) and deriving a contradiction
from it. This proof is slightly longer: we have to assume P and Q as well as
¬(P ∧ Q), and use three contradictions to discharge these three assumptions.
This alternate proof is shown below:

[P] [Q]
∧Intro

P ∧Q [¬(P ∧Q)]
¬Intro¬P ∨Intro¬P ∨ ¬Q ¬(¬P ∨ ¬Q)

¬Intro¬Q
∨Intro¬P ∨ ¬Q ¬(¬P ∨ ¬Q)

¬Elim
P ∧Q

Negation 18

[¬P]
∨I¬P ∨ ¬Q [¬(¬P ∨ ¬Q)]

¬E
P [Q]

∧I
P ∧Q ¬(P ∧Q)

¬I¬Q
∨I¬P ∨ ¬Q [¬(¬P ∨ ¬Q)]

¬E¬P ∨ ¬Q

This is a past paper question from 2015. We want to try to prove ¬P ∨¬Q,
but our premise ¬(P ∧Q) doesn’t give a direct proof of either ¬P or ¬Q. We
will need to assume ¬(¬P ∨ ¬Q) and show it leads to a contradiction.

First we can assume ¬P . This lets us derive ¬P ∨ ¬Q, which contradicts
our assumption of ¬(¬P ∨¬Q). Applying ¬Elim, we discharge our assumption
of ¬P and prove P .

P and ¬(P ∧ Q) together imply ¬Q. Assuming Q gives us P ∧ Q, which
contradicts our premise ¬(P ∧ Q) and allows us to apply ¬Intro, discharge Q

61

and prove ¬Q. From this we can prove ¬P ∨¬Q again, which provides another
contradiction with our assumption of ¬(¬P ∨ ¬Q). Finally we discharge all of
our assumptions of ¬(¬P ∨ ¬Q) and derive ¬P ∨ ¬Q.

Negation 19

[P] [¬P]
¬Elim

Q
→Intro

P → Q ¬(P → Q)
¬Elim

P

The premise ¬(P → Q) doesn’t allow us to prove P directly. Instead, we
assume ¬P and try to derive a contradiction from it. What kind of contradiction
should we be looking for? Our premise, ¬(P → Q), is a negated sentence, so
we will have a contradiction if we manage to prove P → Q.

Proving P → Q from an assumption of ¬P is something we’ve already done
in problem 9. To prove P → Q, we can assume P and need to derive Q. P
and ¬P together is a contradiction, allowing us to apply ¬Elim and derive Q.
Applying →Intro then gives us P → Q, discharging P and providing a sentence
which contradicts ¬(P → Q). We can then apply ¬Elim, discharge ¬P and
prove P .

Negation 20

[P] [¬P]
¬Elim

Q
→Intro

P → Q (P → Q)→ P
→Elim

P [¬P]
¬Elim

P

It might be surprising that we need to use a negation rule in this proof:
neither the premise (P → Q) → P nor the conclusion P have any negation
symbols in them. But we cannot prove P directly from (P → Q) → P ; again,
we need to assume ¬P and show that it leads to a contradiction.

Assuming ¬P allows us to derive P → Q: this is because assuming P (which
gets discharged by →Intro) allows us to apply ¬Elim and derive Q. Having
proved P → Q, our premise (P → Q)→ P allows us to derive P . With P and
our assumption of ¬P , we have a contradiction. This means we can discharge
our assumptions of ¬P and derive P .

62

Negation 21

[¬Q]

[P] P ↔ ¬¬Q
↔Elim¬¬Q

¬Elim
Q

[Q] [¬Q]
¬Intro¬¬Q P ↔ ¬¬Q

↔Elim
P

↔Intro
P ↔ Q

This is a past paper question from 2011. In order to prove P ↔ Q, we
need to provide a proof of Q from assumptions of P and a proof of P from
assumptions of Q.

On the left-hand side, we can use our assumption of P with the premise P ↔
¬¬Q to derive ¬¬Q. From ¬¬Q we can prove ¬Q indirectly: an assumption of
¬Q contradicts ¬¬Q, so we can discharge ¬Q and derive Q.

On the right-hand side, the premise P ↔ ¬¬Q only helps us if we have a
proof of ¬¬Q. Fortunately we can derive this from Q: assuming ¬Q leads to
a contradiction, so we can apply ¬Intro, discharge the ¬Q and put an extra
negation symbol on the front. Having ¬¬Q then allows us to prove P .

Negation 22

[P] [¬P]
¬Elim

Q
→Intro

P → Q (P → Q)→ Q
→Elim

Q [¬Q]
¬Elim

P →Intro¬Q→ P

Our conclusion is a conditional statement, so we assume ¬Q and try to prove
P . Our premise (P → Q) → Q gives us no way of proving P directly, so we
have to assume ¬P and try to derive a contradiction.

Because our assumption ¬Q is a negated statement, it makes sense to try to
prove Q in order to contradict it. Our premise is (P → Q) → Q, so we know
we can prove Q if we can provide a proof of P → Q.

We do this by assuming P ; from this and our other assumption of ¬P we
can derive Q by ¬Elim. Applying →Intro for the first time discharges our as-
sumption of P and lets us prove P → Q; we then make use of our premise
to derive Q, which contradicts our assumption of ¬Q. Applying ¬Elim a sec-
ond time discharges our assumption of ¬P and lets us prove P . Finally, we
apply →Intro a second time to discharge our assumption of ¬Q and prove the
conclusion ¬Q→ P .

63

Negation 23

[P ∨Q]

[P ∨Q]

[P]

¬P ∧ ¬Q
∧Elim¬P

¬Elim
¬(P ∨Q)

[Q]

¬P ∧ ¬Q
∧Elim¬Q

¬Elim
¬(P ∨Q)

∨Elim
¬(P ∨Q)

¬Intro
¬(P ∨Q)

This is a past paper question from 2014. To show ¬(P ∨ Q) we start by
assuming P ∨ Q and try to derive a contradiction; this assumption of P ∨ Q
splits the proof into a case where we can assume P and a case where we can
assume Q. In both of these cases, contradictions are easy to get: our premise
¬P ∧¬Q gives us ¬P (which contradicts P on the left-hand side) and also gives
us ¬Q (which contradicts Q on the right-hand side).

These contradictions allow us to apply ¬Elim and prove ¬(P ∨Q), but they
don’t allow us to discharge our assumption of P ∨ Q, because it appears in a
different branch of the proof. What we need to do is assume P ∨Q again after
applying ∨Elim. Then we have another contradiction which lets us discharge
both assumptions of P ∨Q and prove ¬(P ∨Q).

Negation 24

[P]
∨I

P ∨ (P → Q) [¬(P ∨ (P → Q))]
¬I¬P [P]

¬E
Q

→I
P → Q

∨I
P ∨ (P → Q) [¬(P ∨ (P → Q))]

¬E
P ∨ (P → Q)

This is another indirect proof of a disjunction: by assuming ¬(P ∨(P → Q)),
the negation of what we want to prove, we try to derive a contradiction. We
start by assuming P , which lets us prove P ∨ (P → Q), and therefore gives rise
to a contradiction. This contradiction allows us to apply ¬Intro, discharge our
assumption of P and derive ¬P .

From ¬P , it is possible to derive P → Q: assuming P for a second time gives
us a contradiction and allows us to derive Q, and we can then apply →Intro to
derive P → Q and discharge this second assumption of P . P → Q lets us prove
P∨(P → Q), so we have a contradiction again. This second contradiction allows
us to discharge our assumptions of ¬(P ∨ (P → Q)) and prove P ∨ (P → Q).

64

Negation 25

[Q]
→Intro

P → Q
∨Intro

(P → Q) ∨ (Q→ R) [¬((P → Q) ∨ (Q→ R))]
¬Intro¬Q [Q]

¬Elim
R →Intro

Q→ R
∨Intro

(P → Q) ∨ (Q→ R) [¬((P → Q) ∨ (Q→ R))]
¬Elim

(P → Q) ∨ (Q→ R)

We prove our conclusion (P → Q) ∨ (P → R) by assuming its negation and trying to derive a contradiction, but this time
the very first thing we do is assume Q.

If Q is true, which we assume initially, we can derive P → Q and then we can derive (P → Q) ∨ (P → R). We then get a
contradiction, so we discharge our assumption of Q and prove ¬Q. From ¬Q we can derive Q→ R and then (P → Q)∨(P → R)
again, so our assumption of ¬((P → Q)∨(P → R)) still leads to a contradiction. This means we can discharge our assumptions
of ¬((P → Q) ∨ (P → R)) and prove (P → Q) ∨ (P → R).

The proof would still have worked if we had initially assumed P → Q: this is because from ¬(P → Q) we can derive ¬Q,
from which we can then prove Q → R. Carrying out the proof this way is a tiny bit longer (requiring eight steps instead of
seven), but it is reliable: to prove φ∨ψ in general by indirect proof, it will always work to start by assuming φ. The alternate
proof is shown below:

65

[P → Q]
∨Intro

(P → Q) ∨ (Q→ R) [¬((P → Q) ∨ (Q→ R))]
¬Intro

¬(P → Q)

[Q]
→Intro

P → Q
¬Intro¬Q [Q]

¬Elim
R →Intro

Q→ R
∨Intro

(P → Q) ∨ (Q→ R) [¬((P → Q) ∨ (Q→ R))]
¬Elim

(P → Q) ∨ (Q→ R)

Negation 26

R ∨ ¬Q
[R]1

¬R ∧ ¬Q2
∧E¬R

¬E¬Q [¬Q]1
∨E1

¬Q
[¬P]2 ¬P → Q

→E
Q

¬E2

P P → (Q1 ∨Q2)
→E

Q1 ∨Q2 [Q1]3
[Q2]3

¬R ∧ ¬Q2
∧E¬Q2

¬E
Q1

∨E3

Q1

This is a past paper question from 2010. Although it contains many different sentence letters, it is possible to work through
it methodically.

First of all, we can use the premise ¬R ∧ ¬Q2 to derive ¬R and ¬Q2. ¬R is useful because one of our other premises is
R ∨ ¬Q; we can use this to derive ¬Q by ¬Elim and ∨Elim.

This allows us to establish P by indirect proof. If we assume ¬P , the premise ¬P → Q allows us to derive Q, but because
we’ve already proved ¬Q we have a contradiction. Therefore we can discharge ¬P and derive P . With P , we can use our last
premise P → (Q1 ∨Q2) to derive Q1 ∨Q2. Finally we use our proof of ¬Q2 to derive Q1 using ¬Elim and ∨Elim.

66

Negation 27

[P] P → (Q ∨ R)
→E

Q ∨ R

[Q]
→I

P → Q
∨I

(P → Q) ∨ (P → R)

[R]
→I

P → R ∨I
(P → Q) ∨ (P → R)

∨E
(P → Q) ∨ (P → R) [¬((P → Q) ∨ (P → R))]

¬I¬P [P]
¬E

Q
→I

P → Q
∨I

(P → Q) ∨ (P → R) [¬((P → Q) ∨ (P → R))]
¬E

(P → Q) ∨ (P → R)

This proof turns out to be a lot nastier than it might look at first. The premise P → (Q∨R) and an assumption of P give
us Q ∨ R, meaning we work with one case where we can assume Q and another case where we can assume R. Both of these
assumptions bring us easily to (P → Q) ∨ (P → R), but even after applying ∨Elim we haven’t discharged our assumption of
P .

This turns out to be another proof where we prove a disjunction indirectly. If we assume ¬((P → Q)∨ (P → R)), we get a
contradiction and we can derive ¬P (discharging our assumption of P). From ¬P we can prove P → Q, which gets us back to
our conclusion (P → Q) ∨ (P → R) and contradicts our assumption of ¬((P → Q) ∨ (P → R)). Applying ¬Elim a final time
discharges our assumptions of ¬((P → Q) ∨ (P → R)) and lets us prove (P → Q) ∨ (P → R).

67

Negation 28

[¬P]1

∨I¬P ∨ ¬Q [¬(¬P ∨ ¬Q)]3

¬E1

P [Q]2

∧I
P ∧ Q [¬(P ∧ Q)]7

¬I2¬Q
∨I¬P ∨ ¬Q [¬(¬P ∨ ¬Q)]3

¬E3

¬P ∨ ¬Q

[¬P ∨ ¬Q]7

[P ∧ Q]4

∧E
P [¬P]6

¬I4¬(P ∧ Q)

[P ∧ Q]5

∧E
Q [¬Q]6

¬I5¬(P ∧ Q)
∨E6

¬(P ∧ Q)
↔I7¬(P ∧ Q) ↔ (¬P ∨ ¬Q)

This is a past paper question from 2010. It breaks down into two proofs: a proof of ¬P ∨ ¬Q from ¬(P ∧Q) and a proof
of ¬(P ∧Q) from ¬P ∨ ¬Q.

On the left-hand side we want to try to prove ¬P ∨ ¬Q, but our assumption ¬(P ∧Q) doesn’t give a direct proof of either
¬P or ¬Q. We need to assume ¬(¬P ∨¬Q) and show it leads to a contradiction. First we can assume ¬P . This lets us derive
¬P ∨ ¬Q, which contradicts our assumption of ¬(¬P ∨ ¬Q).

Applying ¬Elim, we discharge our assumption of ¬P and prove P . P and ¬(P ∧Q) together imply ¬Q. Assuming Q gives
us P ∧ Q, which contradicts our assumption ¬(P ∧ Q) and allows us to apply ¬Intro, discharge Q and prove ¬Q. From this
we can prove ¬P ∨¬Q again, which provides another contradiction with our assumption of ¬(¬P ∨¬Q). Finally we discharge
all of our assumptions of ¬(¬P ∨ ¬Q) and derive ¬P ∨ ¬Q.

On the right-hand side, the proof is slightly easier. Our assumption ¬P ∨ ¬Q is a disjunction, splitting the proof into a
case where we can assume ¬P and a case where we can assume ¬Q. In both cases we need to prove ¬(P ∧ Q), which we do
by assuming P ∧Q and showing it leads to a contradiction. From P ∧Q we can prove P , which contradicts ¬P in one case,
and Q, which contradicts ¬Q in the other cases. In both cases we discharge P ∧Q and derive ¬(P ∧Q).

68

Bonus challenge 1

It is possible to derive ¬P from ¬¬¬P using only one application of ¬Elim,
similar to the proof above of P from ¬¬P :

[¬¬P] ¬¬¬P
¬Elim¬P

Without ¬Elim, a proof is still possible. We start by assuming P and ¬P .
Together they give us a contradiction which lets us discharge ¬P and prove
¬¬P . This in turn contradicts our premise ¬¬¬P , letting us discharge P and
prove ¬P .

[P]2 [¬P]1
¬Intro1¬¬P ¬¬¬P

¬Intro2¬P

Similarly, with ¬Intro we can derive ¬¬P from P in only a single step, but
a longer proof is still possible using only ¬Elim. We start by assuming ¬¬P
and ¬¬¬P , which together give us a contradiction. This lets us discharge ¬¬P
and derive ¬P , which contradicts our premise P . This contradiction lets us
discharge ¬¬¬P and prove ¬¬P .

P

[¬¬P]1 [¬¬¬P]2
¬Elim1

¬P
¬Elim2

¬¬P

In fact, any proof involving ¬Intro can be replaced with a larger proof involv-
ing ¬Elim. Removing ¬Intro would not make the system of Natural Deduction
any weaker. This concept is explored further in one of the additional challenges
at the end of this pack. However, it is not always possible to do the reverse
and replace ¬Elim by ¬Intro. Without ¬Elim we cannot (for example) prove P
from ¬¬P .

69

Bonus challenge 2

One strategy for deriving P ∧ Q from ¬¬P ∧ ¬¬Q is to provide two separate
proofs of P and Q. Both of these are indirect proofs where we assume ¬P or
¬Q and derive a contradiction. This strategy provides a proof of only five steps,
satisfying the first constraint:

[¬P]1
¬¬P ∧ ¬¬Q

∧Elim¬¬P
¬Elim1

P

[¬Q]2
¬¬P ∧ ¬¬Q

∧Elim¬¬Q
¬Elim2

Q
∧Intro

P ∧Q

To satisfy the second constraint, we must provide a proof where ¬Elim only
discharges assumptions in the final step of the proof. Since we probably will
want to discharge assumptions using ¬Elim, we will have to make ¬Elim our
last step of the proof.

Since the very last line of the proof will be P ∧Q, our conclusion, we know
this final ¬Elim step can discharge assumptions of ¬(P ∧ Q). Since we can’t
use ¬Elim to discharge anything else, we can’t assume ¬P or ¬Q and discharge
them later. We must assume P and Q at the start of the proof and derive P ∧Q.

We can then produce three contradictions in a row. The first contradiction
with ¬(P ∧Q) lets us derive ¬P , discharging P . This contradicts ¬¬P and lets
us derive ¬Q, discharging Q. This contradicts ¬¬Q, which lets us discharge
¬(P ∧Q) and derive our conclusion.

This means we have at the following proof, satisfying the second constraint:

[P]1 [Q]2
∧Intro

P ∧Q [¬(P ∧Q)]3
¬Intro1¬P

¬¬P ∧ ¬¬Q
∧Elim¬¬P

¬Intro2¬Q
¬¬P ∧ ¬¬Q

∧Elim¬¬Q
¬Elim3

P ∧Q

This is a specific instance of a general result in propositional logic. Whenever
we have to provide a proof of φ, we can always do this by assuming ¬φ, showing
that it leads to a contradiction and applying ¬Elim at the end. If we do this,
we will never need to discharge any other assumptions using ¬Elim anywhere
else in the proof. However, this proof might not be the shortest possible proof
of φ.

70

5.7 Universal quantifier

Universal 1

∀xPx ∀Elim
Pa ∀Intro∀yPy

This proof involves one simple application of each of the two universal quan-
tifier rules. The first step takes us from a universal statement (our premise
∀xPx) to a specific statement (Pa). In order to use the universal introduction
rule, and go from a specific statement about one constant to a general statement,
that constant needs to be arbitrary: it needs to be possible for the proof still
to work if we replaced the constant with any other constant. This is the case
here: our constant a is arbitrary. It appears in no undischarged assumptions in
our proof (in fact, no assumptions at all). This means we are free to apply the
∀Intro rule and prove ∀yPy.

Universal 2

[Pa]
→Intro

Pa→ Pa ∀Intro
∀x(Px→ Px)

Working from the bottom upwards, we know we need to prove a universal
claim ∀x(Px → Px). We can derive that universal claim from a specific (but
arbitrary) case Pa → Pa. This is easy to prove: we can assume Pa, and then
move to Pa → Pa (also discharging Pa) by applying →Intro. Our move from
Pa → Pa to ∀x(Px → Px) is justified because, at the time we apply the
∀Intro rule, a does not appear in any undischarged assumptions in the proof of
Pa→ Pa.

Universal 3

[Pa]

∀x(Pa→ Qx)
∀Elim

Pa→ Qb
→Elim

Qb
∀Intro∀zQz

→Intro
Pa→ ∀zQz

Our conclusion Pa → ∀zQz is an implication. This means we can freely
assume Pa and need to provide a proof of ∀zQz. We can prove the universal
sentence ∀zQz by showing it is true for a specific but arbitrary constant.

The premise ∀x(Pa → Qx) gives us Pa → Qb, which means that (with
an assumption of Pa) we have a proof of Qb. Because b hasn’t appeared in
any undischarged assumptions, we can generalise this to the universal ∀zQz.
Discharging Pa, we can then prove Pa→ ∀zQz.

It is important to note that here we must use both a and b as our arbitrary
constants. The following proof would not work:

71

[Pa]

∀x(Pa→ Qx)
∀Elim

Pa→ Qa
→Elim

Qa
∀Intro∀zQz

→Intro
Pa→ ∀zQz

Here, we are not justified in applying ∀Intro. The constant a appears in the
assumption Pa, which won’t be discharged until the final step of the proof.

Universal 4

∀xPx ∧ ∀yQy
∧Elim∀xPx ∀Elim

Pa

∀xPx ∧ ∀yQy
∧Elim∀xQx

∀Elim
Qa

∧Intro
Pa ∧Qa

∀Intro
∀z(Pz ∧Qz)

We need to prove a universal statement ∀z(Pz ∧ Qz), which we can do by
proving that the statement is true for a specific but arbitrary constant. In other
words, we need to prove Pa ∧ Qa without a appearing in any undischarged
assumptions.

To prove Pa∧Qa, we need to provide a proof of Pa and a proof of Qa. We
obtain Pa from ∀xPx, which we derive by ∧Elim from the premise ∀xPx∧∀yQy.
We obtain Qa from ∀yQy, which we also derive from the premise ∀xPx∧∀yQy.

Universal 5

[∀y1Py1]
∀Elim

Pa

∀x(Px→ Qx)
∀Elim

Pa→ Qa
→Elim

Qa
∀Intro∀y2Qy2

→Intro∀y1Py1 → ∀y2Qy2

Our conclusion ∀y1Py1 → ∀y2Qy2 is an implication statement. This means
we can freely assume ∀y1Py1 and we need to try to prove ∀y2Qy2. To prove
∀y2Qy2 we need to show it is true for an arbitrary constant. We need to try and
prove Qa. Our assumption of ∀y1Py1 gives us Pa, and our premise ∀x(Px →
Qx) gives us Pa→ Qa. Together, these allow us to derive Qa.

72

Universal 6

∀z(Pz ∧Qz)
∀Elim

Pa ∧Qa
∧Elim

Pa ∨Intro∀yPy

∀z(Pz ∧Qz)
∀Elim

Pa ∧Qa
∧Elim

Qa
∀Intro∀yQy
∧Intro∀yPy ∧ ∀yQy

Our conclusion is a conjunction of two sentences, so we need to provide two
proofs: a proof of ∀yPy and a proof of ∀yQy. On the left-hand side, we can
derive ∀yPy from a specific claim about an arbitrary constant, so we’ll try to
prove Pa. We can derive this from Pa ∧ Qa, which we can derive from the
premise ∀z(Pz ∧ Qz). The right-hand side works in a similar way: we use the
premise to derive Pa ∧Qa and then Qa, which gives us ∀yQy.

Universal 7

[Pa]

∀x(Px→ Qx)
∀Elim

Pa→ Qa
→Elim

Qa

∀x¬Qx
∀Elim¬Qa

¬Intro¬Pa ∀Intro∀x¬Px

Our conclusion ∀x¬Px is a universal statement, so we can prove it by pro-
viding a proof of ¬Pa without a appearing in any undischarged assumptions.
To prove ¬Pa, we need to derive a contradiction from assumptions of Pa. Note
that these assumptions of Pa will be discharged when we apply ¬Intro and
prove ¬Pa, so they won’t interfere with our application of ∀Intro.

Where can we find the contradiction we need? One of our premises ∀x¬Qx
gives us ¬Qa, so we have a contradiction if we can prove Qa. We do this by using
our other premise ∀x(Px → Qx) to derive Pa → Qa; this and our assumption
of Pa allow us to prove Qa and obtain a contradiction.

Universal 8

∀x1Px1 ∨ ∀x2Qx2

[∀x1Px1]
∀Elim

Pa ∨Intro
Pa ∨Qa

[∀x2Qx2]
∀Elim

Qa
∨Intro

Pa ∨Qa
∨Elim

Pa ∨Qa
∀Intro

∀x(Px ∨Qx)

In order to prove ∀x(Px ∨ Qx) we can prove Pa ∨ Qa is true without a
appearing in any undischarged assumptions.

Our premise ∀x1Px1 ∨∀x2Qx2 is a disjunction. We can apply ∨Elim at the
bottom of the proof to split the proof into two cases: one where we can freely
assume ∀x1Px1 and one where we can freely assume ∀x2Qx2. On both sides we
need to prove Pa ∨Qa.

73

On the left-hand side, our assumption of ∀x1Px1 gives us Pa. From this, we
can derive Pa ∨Qa by applying ∨Intro. The right-hand side works in a similar
way: ∀x2Qx2 gives us Qa, then Pa ∨Qa.

Universal 9

[Pa]

∀x∀y(Px→ Qy)
∀Elim

∀y(Pa→ Qy)
∀Elim

Pa→ Qb
→Elim

Qb
∀Intro∀zQz

→Intro
Pa→ ∀zQz

∀Intro
∀x(Px→ ∀zQz)

Our conclusion ∀x(Px → ∀zQz) is a universal statement, so we can prove
it by deriving Pa → ∀zQz as long as a doesn’t appear in any undischarged
assumptions. This is an implication, so we can prove it by assuming Pa and
deriving ∀zQz. We can ∀zQz from Qb, as long as b doesn’t appear in any
undischarged assumptions when we apply the ∀Intro step; note that we cannot
use Qa for this because our assumption of Pa won’t be discharged when we
move to ∀zQz.

So how do we get from an assumption of Pa to Qb? We use our premise
∀x∀y(Px → Qy) to derive ∀y(Pa → Qy) and then Pa → Qb. This means our
assumption of Pa gives us the Qb we need.

Universal 10

[Pa]

∀x(Px→ Qx)
∀Elim

Pa→ Qa
→Elim

Qa

∀x(Qx→ Rx)
∀Elim

Qa→ Ra
→Elim

Ra →Intro
Pa→ Ra ∀Intro
∀x(Px→ Rx)

Our conclusion is a universal statement, so we need to prove it is true for an
arbitrary instantiation. We can do this by proving Pa→ Ra without a appear-
ing in any undischarged assumptions. Pa → Ra is a conditional statement, so
we can prove it by assuming Pa and trying to derive Ra.

We get from Pa to Ra with the help of our two premises. From ∀x(Px →
Qx) we can derive Pa→ Qa, which (with our assumption of Pa) lets us prove
Qa. From ∀x(Qx → Rx) we can derive Qa → Ra, which lets us prove Ra.
The application of →Intro discharges Pa, leaving no undischarged assumptions
containing a; this means we’re free to apply universal introduction and derive
the conclusion.

74

Universal 11

∀x(Px ∨Qx)
∀Elim

Pa ∨Qa [Pa]

[Qa]

[∀x¬Qx]
∀Elim¬Qa

¬Elim
Pa

∨Elim
Pa ∀Intro∀xPx ¬∀xPx ¬Intro¬∀x¬Qx

Our conclusion ¬∀x¬Qx is a negated statement, so we prove it by assuming
∀x¬Qx and deriving a contradiction. One of our premises is ¬∀xPx, which
is also a negated statement, so we will have the contradiction we need if we
prove ∀xPx. A way of proving ∀xPx is to prove Pa without a appearing in any
undischarged assumptions.

Our other premise ∀x(Px ∨ Qx) is a disjunction, splitting the proof into a
case where Pa is true and a case where Qa is true. In both cases we need to prove
Pa; in the former case this is trivial. In the latter case, proving Pa requires
making use of our assumption ∀x¬Qx. This gives us ¬Qa, which contradicts
Qa and lets us derive Pa by ¬Elim.

Universal 12

∀x(Px ∧Qx)
∀Elim

Pa ∧Qa
∧Elim

Pa

∀x(Px ∧Qx)
∀Elim

Pb ∧Qb
∧Elim

Qb
∧Intro

Pa ∧Qb
∀Intro

∀y(Pa ∧Qy)
∀Intro

∀x∀y(Px ∧Qy)

Here our conclusion ∀x∀y(Px∧Qy) features two universal quantifiers, mean-
ing we need to apply ∀Intro twice. We can derive ∀x∀y(Px∧Qy) from ∀y(Pa∧
Qy) (provided a appears in no undischarged assumptions in the proof of ∀y(Pa∧
Qy)) but we cannot derive ∀y(Pa∧Qy) from Pa∧Qa. This is because the con-
stant a appears in ∀y(Pa ∧Qy); this means we need to use two constants.

We will derive ∀y(Pa∧Qy) from Pa∧Qb and make sure that neither a nor
b appear in any undischarged assumptions. Our premise ∀x(Px ∧Qx) gives us
both Pa ∧Qa and Pb ∧Qb, which allow us to obtain Pa and Qb by ∧Elim.

75

Universal 13

∀x∀yRxy
∀Elim∀yRay

∀Elim
Raa ∀Intro∀xRxx

Our conclusion ∀xRxx is a universal statement, so we can prove it by proving
Raa without a appearing in any undischarged assumptions. We obtain Raa from
our premise ∀x∀yRxy and two applications of ∀Elim; in both case the variable
is replaced by a.

Universal 14

[∀x∀yRxy]
∀Elim∀yRay

∀x¬∀yRxy
∀Elim¬∀yRay

¬Intro¬∀x∀yRxy

Our conclusion ¬∀x∀yRxy is a negated statement, so we prove it by assum-
ing ∀x∀yRxy and deriving a contradiction from it. Our premise ∀x¬∀yRxy
isn’t a negated statement itself, but we can apply ∀Elim to obtain the negated
statement ¬∀yRay from it. Since we can obtain ∀yRay from our assumption of
∀x∀yRxy, we have the contradiction we need.

Universal 15

∀xRxx ∀Elim
Raa

[∀y¬Ray]
∀Elim¬Raa ¬Intro¬∀y¬Ray

∀Intro∀x¬∀y¬Ray

Our conclusion ∀x¬∀y¬Ray is a universal statement, so we can derive it
by proving ¬∀y¬Ray without a appearing in any undischarged assumptions.
This is a negated statement, so we prove it by assuming ∀y¬Ray and deriving
a contradiction from it. Neither our premise ∀xRxx nor our assumption of
∀y¬Ray are negated statements, so we can’t use them to obtain a contradiction
immediately. However, from ∀xRxx we can derive Raa and from ∀y¬Ray w
can derive ¬Raa, giving us the contradiction we need.

76

Universal 16

[∀x∀y(Rxy ∨Ryx)]
∀Elim

∀y(Ray ∨Rya)
∀Elim

Raa ∨Raa [Raa] [Raa]
∨Elim

Raa
∀x¬Rxx ∀Elim¬Raa ¬Intro

¬∀x∀y(Rxy ∨Ryx)

Our conclusion ¬∀x∀y(Rxy ∨ Ryx) is a negated statement, so we derive
it by assuming ∀x∀y(Rxy ∨ Ryx) and deriving a contradiction from it. Our
premise ∀x¬Rxx isn’t a negated statement we can use in a contradiction, but
by applying ∀Elim we can obtain ¬Rxx; this means we have a contradiction if
we can somehow prove Raa.

From our assumption of ∀x∀y(Rxy ∨ Ryx) we can apply ∀Elim twice to
obtain Raa→ Raa. This gives us Raa through a slightly bizarre application of
∨Elim where Raa is trivially true in both cases. With Raa and ¬Raa we have
the contradiction we need to apply ¬Intro and prove ¬∀x∀y(Rxy ∨Ryx).

Universal 17

[∀yRyb]
∀Elim

Rab

[∀y¬Ray]
∀Elim¬Rab ¬Intro¬∀yRyb

∀Intro∀x¬∀yRyx ¬∀x¬∀yRyx
¬Intro¬∀y¬Ray

∀Intro∀x¬∀y¬Rxy

Our conclusion ∀x¬∀y¬Rxy is a universal statement, so we will try to prove
¬∀y¬Ray (making sure that a doesn’t appear in any undischarged assumptions
in the proof of ¬∀y¬Ray). ¬∀y¬Ray is a negated statement, so we can prove
it by assuming ∀y¬Ray and showing that it leads to a contradiction. Since our
premise ¬∀x¬∀yRyx is a negated statement, we will have the contradiction we
need if we can prove ∀x¬∀yRyx.
∀x¬∀yRyx is a universal statement, so we can prove it by proving ¬∀yRyb

(as long as b doesn’t appear in any undischarged assumptions in the proof
of ¬∀yRyb). This is a negated statement, so we can prove it by assuming
∀yRyb and deriving a contradiction from it. ∀yRyb gives us Rab, and our other
assumption of ∀y¬Ray gives us ¬Rab, so we have the contradiction we need.

Note that ∀yRyb is discharged before we apply the first ∀Intro step, and
∀y¬Ray is discharged before we apply the second ∀Intro step, so both applica-
tions are permitted.

77

Universal 18

∀xRxx ∀Elim
Raa [Rab]

∧Intro
Raa ∧Rab

[∀z¬(Raz ∧Rzb)]
∀Elim

¬(Raa ∧Rab)
¬Intro

¬∀z¬(Raz ∧Rzb)
→Intro

Rab→ ¬∀z¬(Raz ∧Rzb)
∀Intro

∀y(Ray → ¬∀z¬(Raz ∧Rzy))
∀Intro

∀x∀y(Rxy → ¬∀z¬(Rxz ∧Rzy))

Our conclusion is a universal statement with two quantifiers, so we can
prove it by proving Rab → ¬∀z¬(Raz ∧ Rzb), as long as a and b don’t appear
in any undischarged assumptions. This is a conditional statement, so we prove
it by assuming Rab and deriving ¬∀z¬(Raz ∧ Rzb). This in turn is a negated
statement, so we can assume ∀z¬(Raz ∧ Rzb) and need to show it leads to a
contradiction.

From ∀z¬(Raz∧Rzb) we can derive the negated statement ¬(Raa∧Rab), so
we have a contradiction if we can derive Raa ∧Rab. We can obtain Raa ∧Rab
from our premise (which gives us Raa) and our assumption of Rab. ∀z¬(Raz ∧
Rzb) and Rab are both discharged before the end of the proof, so we are free to
apply the two ∀Intro steps.

We could also have carried out the proof in a slightly different way, using
∀xRxx to derive Rbb and using the assumption of ∀z¬(Raz ∧ Rzb) to derive
¬(Rab ∧Rbb). This would still have given us the contradiction we needed.

Universal 19

∀x∀yRxy
∀Elim∀yRay

∀Elim
Raa

∀x∀yRxy
∀Elim∀yRby

∀Elim
Rba ∀Intro∀yRya

∧Intro
Raa ∧ ∀yRya

∀Intro
∀x(Rxx ∧ ∀yRyx)

Our conclusion ∀x(Rxx∧∀yRyx) is a negated statement, so we can prove it
by proving Raa∧∀yRya without a appearing in any undischarged assumptions.
Raa∧∀yRya is a conjunction, so we need to provide a proof of Raa and a proof
of ∀yRya. On the left-hand side, we can derive Raa from our premise ∀x∀yRxy
by applying ∀Elim twice.

On the right-hand side, we need to prove the universal statement ∀yRya,
which we can prove by providing a proof of Rba without b appearing in any
undischarged assumptions. Note that we cannot derive ∀yRya from Raa, even
if a appears in no undischarged assumptions in the proof of Raa; this is because
the constant a occurs in ∀yRya. We can prove Rba from the premise ∀x∀yRxy
by applying ∀Elim twice.

78

Universal 20

∀x∀yRxy
∀Elim∀yRay

∀Elim
Rab

∀x∀yRxy
∀Elim∀yRby

∀Elim
Rba ∧Intro

Rab ∧Rba ∀Intro
∀y(Ray ∧Rya)

∀Intro
∀x∀y(Rxy ∧Ryx)

Our conclusion ∀x∀y(Rxy ∧ Ryx) is a universal statement, which we can
derive from ∀y(Ray ∧ Rya) (as long as a appears in no undischarged assump-
tions). This in turn we can derive from Rab ∧ Rba (as long as b appears in
no undischarged assumptions). Note that we would not be able to move from
Raa∧Raa to ∀y(Ray∧Rya), because a still appears in ∀y(Ray∧Rya); we have
to use two separate constants.

To prove Rab ∧ Rba, we need to provide a proof of Rab and a proof of
Rba. Both of these can be derived from our premise ∀x∀yRxy through two
applications of ∀Elim.

79

Universal 21

[Rab]

[Rab]

∀x∀y(Rxy → Ryx)
∀Elim

∀y(Ray → Rya)
∀Elim

Rab→ Rba
→Elim

Rba
∧Intro

Rab ∧Rba

∀x∀y¬(Rxy ∧Ryx)
∀Elim

∀y¬(Ray ∧Rya)
∀Elim

¬(Rab ∧Rba)
¬Intro¬Rab ∀Intro∀y¬Ray

∀Intro∀x∀y¬Rxy

This is adapted from a past paper question from 2009. Our conclusion
∀x∀y¬Rxy has two universal quantifiers, so we can prove it by proving ¬Rab,
provided a and b appear in no undischarged assumptions. ¬Rab is a negation,
so we prove it by assuming Rab and showing it leads to a negation. The premise
∀x∀y¬(Rxy∧Ryx) gives us ¬(Rab∧Rba), so we have the contradiction we need
if we can provide a proof of Rab ∧Rba.

To do this we need to provide proofs of Rab and Rba. We have a proof of
Rab because we’ve assumed it (it will be discharged when we apply ¬Elim). We
use our other premise ∀x∀y(Rxy → Ryx) to derive Rab → Rba, meaning we
can obtain Rba with our assumption of Rab and →Elim.

80

Universal 22

∀x∀y(¬Qxy ∨ ¬Qyx)
∀Elim

∀y(¬Qay ∨ ¬Qya)
∀Elim¬Qab ∨ ¬Qba [¬Qab]

[Qab]

∀x∀y(Qxy → Qyx)
∀Elim

∀y(Qay → Qya)
∀Elim

Qab→ Qba
→Elim

Qba [¬Qba]
¬Intro¬Qab

∨Elim¬Qab
∀Intro∀y¬Qay
∀Intro∀x∀y¬Qxy

Our conclusion ∀x∀y¬Qxy features two universal quantifiers, so we can prove it by proving ¬Qab and applying ∀Intro twice.
One of our premises ∀x∀y(¬Qxy ∨ ¬Qyx) gives us the disjunction ¬Qab ∨ ¬Qba, splitting the proof into a case where we can
assume ¬Qab and a case where we can assume ¬Qba.

In the first case, ¬Qab is exactly what we want to prove. In the other case, we can prove ¬Qab by assuming Qab and
showing it leads to a contradiction. Since the disjunction gives us an assumption of ¬Qba, it makes sense to try and prove
Qba in order to give us the contradiction we need. We do this using our other premise ∀x∀y(Qxy → Qyx), which gives us
Qab→ Qba.

81

Universal 23

[Rab]2 [Rbc]1
∧Intro

Rab ∧Rbc

[∀y∀z¬(Ray ∧Ryz)]3
∀Elim

∀z¬(Rab ∧Rbz)
∀Elim

¬(Rab ∧Rbc)
¬Intro1¬Rbc ∀Intro∀y¬Rby

∀x¬∀y¬Rxy
∀Elim¬∀y¬Rby

¬Intro2¬Rab ∀Intro∀y¬Ray
∀x¬∀y¬Rxy

∀Elim¬∀y¬Ray
¬Intro3¬∀y∀z¬(Ray ∧Ryz)

∀Intro
∀x¬∀y∀z¬(Rxy ∧Ryz)

Our conclusion ∀x¬∀y∀z¬(Rxy ∧ Ryz) is a universal statement, so we prove it by proving ¬∀y∀z¬(Ray ∧ Ryz) without
a appearing in any undischarged assumptions. This is a negated statement, so we need to derive a contradiction from an
assumption of ∀y∀z¬(Ray ∧Ryz). Since our premise ∀x¬∀y¬Rxy gives us ¬∀y¬Ray, we have the contradiction we need if we
can prove ∀y¬Ray.

We can derive ∀y¬Ray from ¬Rab as long as b doesn’t appear in any undischarged assumptions. Proving ¬Rab requires
assuming Rab and deriving another contradiction. To get this second contradiction, we need to use our premise again, but this
time we derive ¬∀y¬Rby. We have a contradiction if we can prove ∀y¬Rby.

This in turn can be derived from ¬Rbc, as long as c doesn’t appear in any undischarged assumptions. ¬Rbc can be proved
by assuming Rbc and showing that it leads to a contradiction.

We’ve now made three assumptions: Rab, Rac and ∀y∀z¬(Ray ∧Ryz). From the latter we can derive ¬(Rab∧Rbc), which
gives us the first contradiction we need. Because this contradiction discharges Rbc, c is left in no undischarged assumptions and
we can derive ∀y¬Rby. Because the second contradiction discharges Rab, b is left in no undischarged assumptions and we are
free to derive ∀y¬Ray. Because the final contradiction discharges ∀y∀z¬(Ray ∧Ryz), a is left in no undischarged assumptions
and we can derive our conclusion.

82

Universal 24

[Rab]

[Rab]

∀x∀y(Rxy → Ryx)
∀Elim

∀y(Ray → Rya)
∀Elim

Rab→ Rba
→Elim

Rba
∧Intro

Rab ∧Rba

∀x∀y∀z((Rxy ∧Ryz)→ Rxz)
∀Elim

∀y∀z((Ray ∧Ryz)→ Raz)
∀Elim

∀z((Rab ∧Rbz)→ Raz)
∀Elim

(Rab ∧Rba)→ Raa
→Elim

Raa [¬Raa]
¬Intro¬Rab ∀Intro∀y¬Ray

∀x¬∀y¬Rxy
∀Elim¬∀y¬Ray

¬Elim
Raa ∀Intro∀xRxx

This problem, adapted from a 2010 past paper question, is quite nasty. We want to prove ∀xRxx, so we know that we will
need to derive Raa (and make sure that a doesn’t appear in any undischarged assumptions in the proof of Raa). However, we
don’t have any way of proving Raa directly. Instead, we need to assume ¬Raa and show that this leads to a contradiction.

What kind of contradiction are we looking for? From ∀x¬∀y¬Rxy, one of our premises, we can derive ¬∀y¬Ray. This
means that if we can prove ∀y¬Ray we will have the contradiction we need. We can prove this by proving ¬Rab (as always,
making sure b doesn’t appear in any undischarged assumptions in its proof). This, in turn, we prove by assuming Rab and
showing it leads to a contradiction.

What can we do with an assumption of Rab? It turns out we can do quite a lot. From the premise ∀x∀y(Rxy → Ryx) we can
derive Rab→ Rba, which lets us derive Rba. From the premise ∀x∀y∀z((Rxy∧Ryz)→ Rxz) we can derive (Rab∧Rba)→ Raa
(by replacing x and z with the same constant), which gives us Raa. This contradicts our assumption of ¬Raa, letting us
discharge Rab and derive ¬Rab. Now that all assumptions involving b have been discharged, we are free to derive ∀y¬Ray,
contradicting ¬∀y¬Ray. This contradiction lets us discharge ¬Raa and derive Raa; finally we apply ∀Intro to derive the
conclusion ∀xRxx.

83

Universal 25

[(Rab ∧Rbc) ∧Rca]
∧E

Rab ∧Rbc

∀x∀y∀z((Rxy ∧Ryz) → Rxz)
∀E

∀y∀z((Ray ∧Ryz) → Raz)
∀E

∀z((Rab ∧Rbz) → Raz)
∀E

(Rab ∧Rbc) → Rac
→E

Rac

[(Rab ∧Rbc) ∧Rca]
∧E

Rca ∧I
Rac ∧Rca

∀x∀y∀z((Rxy ∧Ryz) → Rxz)
∀E

∀y∀z((Ray ∧Ryz) → Raz)
∀E

∀z((Rac ∧Rcz) → Raz)
∀E

(Rac ∧Rca) → Raa
→E

Raa
∀x¬Rxx ∀E¬Raa ¬I

¬((Rab ∧Rbc) ∧Rca)
∀I

∀z¬((Rab ∧Rbz) ∧Rza)
∀I

∀y∀z¬((Ray ∧Ryz) ∧Rza)
∀I

∀x∀y∀z¬((Rxy ∧Ryz) ∧Rzx)

This is adapted from a past paper question from 2014. In order to prove ∀x∀y∀z¬((Rxy ∧ Ryz) ∧ Rzx) we can prove
¬((Rab∧Rbc)∧Rca) without a, b or c appearing in any undischarged assumptions; this is a negated statement, so we need to
derive a contradiction from assumptions of (Rab ∧Rbc) ∧Rca. Our premise ∀x¬Rxx could give us ¬Raa, ¬Rbb and ¬Rcc, so
we have a contradiction if we can prove Raa, Rbb or Rcc.

Although it is possible to prove any of them, Raa turns out to be the easiest to prove. From our assumption (Rab∧Rbc)∧Rca
we can derive Rab∧Rbc; we can use this with our premise to derive Rac. Our assumption provides Rca, so with both of them
we can derive Rac ∧ Rca. In order to go from Rac ∧ Rca to Raa, we need to use our premise to derive (Rac ∧ Rca) → Raa.
Raa gives us the contradiction we need to discharge (Rab ∧Rbc) ∧Rca and derive ¬((Rab ∧Rbc) ∧Rca).

84

Universal 26

[Rab ∧Rbc]
∧E

Rab
∀xRxx ∀E
Raa ∧I

Rab ∧Raa

∀x∀y∀z((Rxy ∧Rxz)→ Ryz)
∀E

∀y∀z((Ray ∧Raz)→ Ryz)
∀E

∀z((Rab ∧Raz)→ Rbz)
∀E

(Rab ∧Raa)→ Rba
→E

Rba

[Rab ∧Rbc]
∧E

Rbc ∧I
Rba ∧Rbc

∀x∀y∀z((Rxy ∧Rxz)→ Ryz)
∀E

∀y∀z((Rby ∧Rbz)→ Ryz)
∀E

∀z((Rba ∧Rbz)→ Raz)
∀E

(Rba ∧Rbc)→ Rac
→E

Rac →I
(Rab ∧Rbc)→ Rac

∀I
∀z((Rab ∧Rbz)→ Raz)

∀I
∀y∀z((Ray ∧Ryz)→ Raz)

∀I
∀x∀y∀z((Rxy ∧Ryz)→ Rxz)

This is adapted from a past paper question from 2011. In order to prove ∀x∀y∀z((Rxy ∧ Ryz) → Rxz) we can prove
(Rab ∧ Rbc) → Rac, as long as a, b and c don’t appear in any undischarged assumptions. This is an implication, so we can
assume Rab ∧Rbc and need to derive Rac. This much is straightforward; more tricky is working out how to use our premises
to get from Rab ∧ Rbc to Rac. ∀xRxx allows us to derive Raa, Rbb or Rcc if we want them; ∀x∀y∀z((Rxy ∧ Rxz) → Ryz)
gives us many different sentences involving a, b and c. We need to work out which sentences we need.

Rac is the sentence we’re aiming for, so ideally we want to use our premise ∀x∀y∀z((Rxy ∧ Rxz) → Ryz) to derive a
conditional with Rac at the end. We could derive (Raa ∧ Rac) → Rac, but this wouldn’t help us very much: in order to
use it we would need a proof of Rac, and a proof of Rac is what we’re looking for in the first place. We could also try
(Rca ∧ Rcc)→ Rac, and this would work, but would lead to a proof which is much longer than necessary. So instead we will
use all three of our constants and derive (Rba ∧Rba)→ Rac.

This means we need a proof of Rba ∧Rbc, which requires a proof of Rba and a proof of Rbc. Rbc is easy; it comes directly
from our assumption. Proving Rba requires using our big premise to derive another conditional, this time with Rba as the
consequent. (Rab ∧Raa)→ Rba is the ideal conditional to derive, because we have both Rab (from our assumption) and Raa
(from our premise). This means we have a complete proof.

85

5.8 Existential quantifier

Existential 1

∃xPx
[Pa]

∃Intro∃yPy
∃Elim∃yPy

This proof involves one use of each rule for the existential quantifier. Al-
though there are only two steps, this proof exemplifies the unusual structure
which proofs involving the existential quantifier take: we eliminate any existen-
tial quantifiers at the bottom, and introduce them at the top. This means there
are two ways we can look at this proof: one from top to bottom and one from
bottom to top.

From top to bottom, we start by assuming Pa, and then apply ∃Intro to
derive ∃yPy. Following this we make use of our premise ∃xPx and apply ∃Elim.
This allows us to discharge our assumptions of Pa, provided that a doesn’t
appear in any other undischarged assumptions, and doesn’t appear in either
∃yPy or ∃xPx. All of these conditions are satisfied, so we are allowed to apply
∃Elim and discharge Pa.

From bottom to top, we can see our premise ∃xPx as giving us a ’free’
assumption of Pa, provided that a is an arbitrary constant. a can’t appear in
∃xPx or in what we ultimately plan to prove. It also can’t appear in any other
undischarged assumptions we use. It is this assumption of Pa which we use to
apply ∃Intro and derive our conclusion, ∃yPy.

Existential 2

[Pa]
∃Intro∃xPx ¬∃xPx ¬Intro¬Pa ∃Intro∃x¬Px

Our conclusion is an existential statement, so we can prove it from ¬Pa by
applying ∃Intro. ¬Pa is a negation, so we prove it by assuming Pa and showing
that it leads to a contradiction. Our premise ¬∃xPx is a negated statement,
so we have a contradiction if we can prove ∃xPx. We can derive this from our
assumption of Pa by applying ∃Intro, giving us the contradiction we need.

We could have used any constant in place of a in this proof, because the
two ∃Intro steps would still have worked. Although our choice of a here was
arbitrary, in other proofs we might not have so much flexibility.

86

Existential 3

∃x1(Pa→ Qx1)

[Pa] [Pa→ Qb]
→Elim

Qb
∃Intro∃x2Qx2

→Intro
Pa→ ∃x2Qx2

∃Elim
Pa→ ∃x2Qx2

Our premise ∃x1(Pa→ Qx1) gives us a free assumption of Pa→ Qb which
we can use to derive our conclusion Pa → ∃x2Qx2. Note that I’ve chosen to
use b as our arbitrary constant because we can’t use a: a can’t be our arbitrary
constant because it appears in ∃x1(Pa→ Qx1).

Our conclusion is a conditional, so we can assume Pa and need to try to
derive ∃x2Qx2. With our assumptions of Pa and Pa → Qb we can derive Qb,
which means we can derive ∃x2Qx2 by ∃Intro.

In the proof above we apply ∃Elim at the end of the proof to discharge
Pa → Qb; we could also have applied it before applying →Intro, as shown in
the proof below. Usually it is most straightforward to wait until the very end
of the proof before applying ∃Elim, but in later examples we’ll see cases where
this isn’t possible.

∃x1(Pa→ Qx1)

[Pa] [Pa→ Qb]
→Elim

Qb
∃Intro∃x2Qx2
∃Elim∃x2Qx2

→Intro
Pa→ ∃x2Qx2

Existential 4

∃x(Px ∧Qx)

[Pa ∧Qa]
∧Elim

Pa ∃Intro∃yPy

[Pa ∧Qa]
∧Elim

Qa
∃Intro∃zQz
∧Intro∃yPy ∧ ∃zQz

∃Elim∃yPy ∧ ∃zQz

Our premise ∃x(Px ∧Qx) is an existential statement, which gives us a free
assumption of Pa∧Qa. We need to derive ∃yPy∧∃zQz, so we need to provide
a proof of ∃yPy and a proof of ∃zQz. On the left, our assumption of Pa ∧Qa
gives us Pa, which gives us ∃yPy; on the right, our assumption gives us Qa,
which gives us ∃zQz. When we apply ∃Elim, both assumptions of Pa ∧Qa are
discharged at once, which the rules governing ∃Elim do allow.

Again it’s possible for us to apply ∃Elim sooner than the end of the proof.
This results in a proof which is slightly longer, as shown below:

87

∃x(Px ∧Qx)

[Pa ∧Qa]
∧Elim

Pa ∃Intro∃yPy
∃Elim∃yPy

∃x(Px ∧Qx)

[Pa ∧Qa]
∧Elim

Qa
∃Intro∃zQz
∃Elim∃yPy

∧Intro∃yPy ∧ ∃zQz

In this proof we apply ∃Elim twice, and on both occasions we use a as our
arbitrary constant. This is allowed, but isn’t necessary: we could use a different
constant in each branch. In certain proofs we apply ∃Elim twice in the same
branch, so that one application follows another; in these proofs we are obliged
to use different constants each time.

Existential 5

∃x(Px ∨Qx)

[Pa ∨Qa]

[Pa]
∃Intro∃yPy

∨Intro∃yPy ∨ ∃zQz

[Qa]
∃Intro∃zQz

∨Intro∃yPy ∨ ∃zQz
∨Elim∃yPy ∨ ∃zQz

∃Elim∃yPy ∨ ∃zQz

Our premise is an existential statement, giving us a free assumption of Pa∨
Qa. This is a disjunction, splitting the proof into a case where Pa is true and
a case where Qa is true. In the case where Pa is true we can derive ∃yPy and
hence our conclusion ∃yPy ∨ ∃zQz; in the other case we can derive ∃yPy and
can also derive the conclusion ∃yPy∨∃zQz. Our assumptions of Pa and Qa are
discharged when we apply ∨Elim, so they do not interfere with our application
of ∃Elim.

Existential 6

∃xPx ∨ ∃yQy
[∃xPx]

[Pa]
∨Intro

Pa ∨Qa
∃Intro

∃z(Pz ∨Qz)
∃Elim

∃z(Pz ∨Qz)
[∃yQy]

[Qa]
∨Intro

Pa ∨Qa
∃Intro

∃z(Pz ∨Qz)
∃Elim

∃z(Pz ∨Qz)
∨Elim

∃z(Pz ∨Qz)

Our premise is a disjunction, splitting the proof into a case where ∃xPx is
true (on the left) and a case where ∃yQy is true (on the right). On the left-hand
side we use our assumption of ∃xPx to discharge another assumption of Pa;
this gives us Pa ∨ Qa and hence our conclusion ∃z(Pz ∨ Qz). The right-hand
side works similarly: ∃yQy gives us a free assumption of Qa, from which we can
derive Pa ∨Qa and ∃z(Pz ∨Qz).

88

Existential 7

[Pa]2 Pa→ ∃xQx
→Elim∃xQx

[Qb]1
→Intro

Pa→ Qb
∃Intro

∃x(Pa→ Qx)
∃Elim1

∃x(Pa→ Qx) [¬∃x(Pa→ Qx)]3
¬Intro2¬Pa [Pa]

¬Elim
Qc

→Intro
Pa→ Qc

∃Intro
∃x(Pa→ Qx) [¬∃x(Pa→ Qx)]3

¬Elim3

∃x(Pa→ Qx)

This proof is nastier than it might look at first. Our premise Pa → ∃xQx isn’t much help to us on its own, but with an
assumption of Pa it allows us to derive ∃xQx. This gives us a free assumption of Qb which we can use to derive ∃x(Pa→ Qx);
we can’t assume Qa because it appears in ∃x(Pa→ Qx) and Pa (which won’t be discharged by the time we apply ∃Elim).

From Qb we can straightforwardly derive Pa→ Qb and then ∃x(Pa→ Qx), and we can then apply ∃Elim to discharge Qb.
But there is a problem: our assumption of Pa still hasn’t been discharged, so we don’t have a complete proof of ∃x(Pa→ Qx).

It turns out that this is an indirect proof: we need to assume ¬∃x(Pa→ Qx) and show that this leads to a contradiction.
Our first assumption of ¬∃x(Pa→ Qx) lets us discharge Pa and derive ¬Pa; from ¬Pa we can derive ∃x(Pa→ Qx) again.

One way of deriving ∃x(Pa → Qx) is to assume Pa, derive Qc in one step by ¬Elim, and apply →Intro to discharge Pa
and derive Pa → Qc. ∃x(Pa → Qx) again contradicts ¬∃x(Pa → Qx), so we apply ¬Elim, discharge our assumptions of
¬∃x(Pa→ Qx) and derive ∃x(Pa→ Qx).

89

Existential 8

[Raa]
→Intro

Raa→ Raa ∃Intro
∃y(Ray → Rya)

∃Intro
∃x∃y(Rxy → Ryx)

The statement we want to prove is ∃x∃y(Rxy → Ryx). We can apply
∃Intro twice to derive this from a number of different statements, but not all
of them will be useful. For example, we could derive ∃x∃y(Rxy → Ryx) from
Rab → Rba, but we have no way of providing a proof of Rab → Rba from no
premises.

Instead, we will derive ∃x∃y(Rxy → Ryx) from Raa→ Raa. We can prove
Raa → Raa from no premises by assuming Raa and applying implication-
introduction, discharging the assumption.

Note that the rules of Natural Deduction do allow us to make the first ∃Intro
step and only replace some of the as with ys. This is a difference between ∃Intro
and ∀Intro: when applying the latter rule, all occurrences of the constant need
to be replaced with the variable.

Existential 9

∃x∃yRxy
[∃yRay]2

[Rab]1
∃Intro∃yRyb
∃Intro∃x∃yRyx
∃Elim1

∃x∃yRyx
∃Elim2

∃x∃yRyx

In this proof our premise ∃x∃yRxy contains two existential quantifiers. This
means we need to apply ∃Elim twice. The way we do this is quite mechanical,
but produces an odd-looking proof structure.

Applying ∃Elim with ∃x∃yRxy at the bottom of the proof allows us to
discharge an assumption of ∃yRay. Applying ∃Elim with ∃yRay allows us to
discharge an assumption of Rab. Using this assumption, we apply ∃Intro twice
to derive our conclusion ∃x∃yRyx.

It’s worth verifying that our ∃Elim steps are allowed. The first application of
∃Elim (higher up in the proof) replaces y with b; it is allowed because b doesn’t
appear in ∃yRay, ∃x∃yRyx or in any undischarged assumptions in the proof
of ∃x∃yRyx other than Rab, which is then discharged. Our second application
(at the bottom of the proof) replaces x with a; it is allowed because a doesn’t
appear in ∃x∃yRxy, ∃x∃yRyx or in any undischarged assumptions other than
∃yRay, which is then discharged.

If we had used only one constant throughout the proof, the proof would not
have worked. An example of an incorrect proof is shown below:

90

∃x∃yRxy
[∃yRay]2

[Raa]1
∃Intro∃yRya
∃Intro∃x∃yRyx
∃Elim1

∃x∃yRyx
∃Elim2

∃x∃yRyx

Here, the first application of ∃Elim (attempting to discharge Raa) is not
allowed, because the constant a appears in ∃yRay.

Existential 10

∃xRxx

[Raa] [Raa]
∧Intro

Raa ∧Raa ∃Intro
∃y(Ray ∧Rya)

∃Intro
∃x∃y(Rxy ∧Ryx)

∃Elim
∃x∃y(Rxy ∧Ryx)

Our premise ∃xRxx allows us to discharge an assumption of Raa. This is
useful because we can use it twice to derive Raa∧Raa, which allows us to derive
∃x∃y(Rxy ∧Ryx) by ∃Intro.

Existential 11

[∃yRyy]

[Raa]
∃Intro∃yRay
∃Intro∃x∃yRxy
∃Elim∃x∃yRxy ¬∃x∃yRxy

¬Intro¬∃yRyy

Here our conclusion is a negated statement, meaning we need to derive a con-
tradiction from an assumption of ∃yRyy. Our premise ¬∃x∃yRxy is a negated
statement, so we have a contradiction if we can derive ∃x∃yRxy. Applying
∃Elim to this assumption of ∃yRyy gives us an assumption of Raa. From this
assumption we can derive ∃x∃yRxy, giving us the contradiction we need.

Unusually, we don’t apply ∃Elim at the very end of the proof. When we
apply ¬Intro we need to discharge our assumption of ∃yRyy, so we need to
apply ∃Elim before we apply ¬Intro.

91

Existential 12

[∃x∃y(Rxy ∧ ¬Rxy)]3
[∃y(Ray ∧ ¬Ray)]2

[Rab ∧ ¬Rab]1
∧Elim

Rab

[Rab ∧ ¬Rab]1
∧Elim¬Rab ¬Intro

¬∃x∃y(Rxy ∧ ¬Rxy)
∃Elim1

¬∃x∃y(Rxy ∧ ¬Rxy)
∃Elim2

¬∃x∃y(Rxy ∧ ¬Rxy) [∃x∃y(Rxy ∧ ¬Rxy)]3
¬Intro3¬∃x∃y(Rxy ∧ ¬Rxy)

Here our conclusion ¬∃x∃y(Rxy ∧ ¬Rxy) is a negated statement, so we prove it by assuming ∃x∃y(Rxy ∧ ¬Rxy) and
deriving a contradiction from it. With this assumption we can apply ∃Elim to discharge an assumption of ∃y(Ray ∧ ¬Ray),
provided a doesn’t appear in any other undischarged assumptions by the time we apply ∃Elim. ∃y(Ray ∧ ¬Ray) in turn lets
us discharge an assumption of Rab ∧ ¬Rab, provided b doesn’t appear in any other undischarged assumptions when we make
this ∃Elim step.

With this assumption of Rab ∧ ¬Rab we have what we need to derive a contradiction: by ∧Elim we can derive both Rab
and ¬Rab, which contradict each other. However, if we apply ¬Intro at this stage to derive ¬∃x∃y(Rxy ∧ ¬Rxy) we won’t be
able to discharge ∃x∃y(Rxy ∧ ¬Rxy), because that assumption appears much further down in the proof.

This means we need to apply ¬Intro twice. First we apply ¬Intro at the top of the proof to derive ¬∃x∃y(Rxy ∧ ¬Rxy).
Then we apply ∃Elim twice, using ∃y(Ray ∧ ¬Ray) to discharge Rab ∧ ¬Rab and ∃x∃y(Rxy ∧ ¬Rxy) to discharge ∃y(Ray ∧
¬Ray). Finally we assume ∃x∃y(Rxy ∧ ¬Rxy) again, and apply ¬Intro a second time. This discharges both assumptions of
∃x∃y(Rxy ∧ ¬Rxy) and provides a proof of the conclusion.

92

Existential 13

[∃xRxx]1
∨I

∃xRxx ∨ ∃x(Rxx→ ¬∃yRyx) [¬(∃xRxx ∨ ∃x(Rxx→ ¬∃yRyx))]3
¬I1¬∃xRxx

[Raa]2
∃I∃xRxx ¬E¬∃yRya

→I2

Raa→ ¬∃yRya
∃I

∃x(Rxx→ ¬∃yRyx)
∨I

∃xRxx ∨ ∃x(Rxx→ ¬∃yRyx) [¬(∃xRxx ∨ ∃x(Rxx→ ¬∃yRyx))]3
¬E3

∃xRxx ∨ ∃x(Rxx→ ¬∃yRyx)

What we want to prove is a disjunction, but we can’t provide a direct proof of either disjunct. This turns out to be
an indirect proof, of a very similar form to the proof of P ∨ (P → Q) given in the negation section. We have to assume
¬∃xRxx ∨ ∃x(Rxx→ ¬∃yRyx), the negation of our conclusion, and show that it leads to a contradiction.

We start by assuming ∃xRxx, from which we can derive the conclusion ∃xRxx∨∃x(Rxx→ ¬∃yRyx). Assuming ¬(∃xRxx∨
∃x(Rxx→ ¬∃yRyx)) gives us a contradiction, which lets us discharge ∃xRxx and derive ¬∃xRxx.

We do the actual legwork of the proof when we derive ∃x(Rxx → ¬∃yRyx) from ¬∃xRxx. We can derive this from
Raa→ ¬∃yRya, which is an implication: so we assume Raa and derive ¬∃yRya.

This assumption of Raa allows us to derive ∃xRxx, which contradicts ¬∃xRxx and lets us derive ¬∃yRya by ¬Elim. This
means we can apply implication-introduction (discharging Raa), ∃Intro and ∨Intro to prove ∃xRxx ∨ ∃x(Rxx→ ¬∃yRyx).

Finally we assume ¬(∃xRxx ∨ ∃x(Rxx → ¬∃yRyx)) a second time, letting us discharge both occurrences of ¬(∃xRxx ∨
∃x(Rxx→ ¬∃yRyx)) and derive ∃xRxx ∨ ∃x(Rxx→ ¬∃yRyx) by ¬Elim.

The above is not the only way in which this proof could have been carried out. We could have begun, for example, by
assuming Raa. It would also be possible to carry out the proof by first assuming ∃x(Rxx → ¬∃yRyx), or by first assuming
¬Raa.

93

Existential 14

¬Qa [Qb]
∧I¬Qa ∧Qb

Rab ∧Rbc ∧E
Rab

∧I
(¬Qa ∧Qb) ∧Rab

∃I
∃y((¬Qa ∧Qy) ∧Ray)

∃I
∃x∃y((¬Qx ∧Qy) ∧Rxy) [¬∃x∃y((¬Qx ∧Qy) ∧Rxy)]

¬I¬Qb Qc
∧I¬Qb ∧Qc

Rab ∧Rbc ∧E
Rbc

∧I
(¬Qb ∧Qc) ∧Rbc

∃I
∃y((¬Qb ∧Qy) ∧Rby)

∃I
∃x∃y((¬Qx ∧Qy) ∧Rxy) [¬∃x∃y((¬Qx ∧Qy) ∧Rxy)]

¬E
∃x∃y((¬Qx ∧Qy) ∧Rxy)

This is adapted from a past paper question from 2016. The good news is our premises have no quantifiers, but the bad
news is that we have no way of proving our conclusion ∃x∃y((¬Qx ∧Qy) ∧Rxy) directly from these premises.

What we will do first is assume Qb and derive the conclusion ∃x∃y((¬Qx ∧ Qy) ∧ Rxy) from this. Then we will assume
¬∃x∃y((¬Qx ∧Qy) ∧Rxy) and apply ¬Intro to discharge Qb and derive ¬Qb. We will then show that even with ¬Qb we can
derive ∃x∃y((¬Qx∧Qy)∧Rxy). At this point we will assume ¬∃x∃y((¬Qx∧Qy)∧Rxy) again and apply ¬Elim, discharging
both assumptions of ¬∃x∃y((¬Qx ∧Qy) ∧Rxy) and providing a proof of ∃x∃y((¬Qx ∧Qy) ∧Rxy).

The proofs of ∃x∃y((¬Qx ∧ Qy) ∧ Rxy) from Qb and from ¬Qb are fairly straightforward, and similar to each other. In
the first proof we aim to prove (¬Qa ∧ Qb) ∧ Rab, which we can do easily with the conjunction rules, our premises and our
assumption of Qb. In the second proof we aim to prove (¬Qb ∧ Qc) ∧ Rbc, which we can do with our premises and proof of
¬Qb. Then both times we apply ∃Intro twice to arrive at ∃x∃y((¬Qx ∧Qy) ∧Rxy).

94

Existential 15

∃x∃y¬∃z¬Pxyz
[∃y¬∃z¬Payz]5

[∃x¬∃y∃z¬Pyzx]3

[Pabc]1
∃Intro∃zPazc ∃Intro∃y∃zPyzc [¬∃y∃zPyzc]2

¬Intro1¬Pabc ∃Intro∃z¬Pbz
∃Elim2

∃z¬Pbz [¬∃z¬Pabz]4
¬Intro3¬∃x¬∃y∃zPyzx

∃Elim4

¬∃x¬∃y∃zPyzx
∃Elim5

¬∃x¬∃y∃zPyzx

This proof involves ternary predicates, lots of discharging of assumptions and three applications of ∃Elim. The good news
is that the proof is quite systematic.

With our premise ∃x∃y¬∃z¬Pxyz we can apply ∃Elim at the end of the proof to discharge assumptions of ∃y¬∃z¬Payz, as
long as a doesn’t appear in any other undischarged assumptions by that stage. ∃y¬∃z¬Payz is itself an existential statement,
so we can use it to discharge assumptions of ¬∃z¬Pabz, as long as b doesn’t appear in any undischarged assumptions by the
time we make this application of ∃Elim.

What we want to prove is ¬∃x¬∃y∃zPyzx, a negation, so we need to assume ∃x¬∃y∃zPyzx and show that this leads to a
contradiction. The assumption which our premise gives us is ¬∃z¬Pabz, so we can obtain a contradiction by deriving ∃z¬Pabz.

Assuming ∃x¬∃y∃zPyzx (which we have assumed for our first contradiction), we can apply ∃Elim to discharge assumptions
of ¬∃y∃zPyzc, as long as c doesn’t appear in any undischarged assumptions at this point. From this we need to derive
∃z¬Pabz, which can be obtained from ¬Pabc. ¬Pabc is itself a negated statement, so we obtain it by assuming Pabc and
deriving a second contradiction. To do this derive ∃y∃zPyzc from Pabc, contradicting our assumption of ¬∃y∃zPyzc.

95

Existential 16

[Pa]
∃Intro∃xPx ¬∃xPx ¬Intro¬Pa ∨Intro∀x¬Px

This is the first of four proofs illustrating the duality between the universal
quantifier and the existential quantifier. The proofs aren’t very intuitive, but
the techniques appear in lots of harder proofs.

We can prove ∀x¬Px by proving ¬Pa as long as Pa doesn’t appear in any
undischarged assumptions. This is a negation, so we can derive it by assuming
Pa and deriving a contradiction. Our premise ¬∃xPx is also a negated state-
ment, so we have a contradiction if we can prove ∃xPx. This follows from our
assumption of Pa by ∃Intro, so we have the contradiction we need.

Because our application of ¬Intro discharges our assumption of Pa, we are
free to apply ∀Intro in the last step and derive the conclusion ∀x¬Px.

Existential 17

∃x¬Px

[∀xPx]
∀Elim

Pa [¬Pa]
¬Intro¬∀xPx ∃Elim¬∀xPx

Our premise ∃x¬Px is an existential statement, so by applying ∃Elim at the
end of the proof we can discharge an assumption of ¬Pa (as long as a doesn’t
appear in any other undischarged assumptions).

Our conclusion ¬∀xPx is a negated statement, so we prove it by assuming
∀xPx and deriving a contradiction. Since ∃x¬Px gives us an assumption of
¬P , we have a contradiction if we can derive Pa. This follows from ∀xPx by
∀Elim.

96

Existential 18

[¬Pa]
∃Intro∃x¬Px [¬∃x¬Px]

¬Elim
Pa ∀Intro∀xPx ¬∀xPx ¬Elim∃x¬Px

Our conclusion ∃x¬Px is an existential statement, but it turns out we have
no way of proving it directly. We have to assume ¬∃x¬Px and show that it
leads to a contradiction. Our premise ¬∀xPx is a negated statement, so we
have the contradiction we need if we can derive ∀xPx.

This is a universal statement, so we can prove it if we can prove Pa without
a appearing in any undischarged assumptions. Unfortunately, we have no way
of proving Pa directly either: we have to assume ¬Pa and show that this leads
to a contradiction.

Because ¬∃x¬Px is a negated statement, we have a contradiction if we can
derive ∃x¬Px. This follows from ¬Pa by ∃Intro. Because the first application
of ¬Elim discharges ¬Pa we are free to apply ∀Intro and derive ∀xPx. This
then gives us the contradiction which allows us to derive ∃x¬Px.

Existential 19

[∃xPx]

[Pa]
∀x¬Px ∀Elim¬Pa

¬Intro¬∃xPx
∃Elim¬∃xPx [∃xPx]

¬Intro¬∃xPx

Our conclusion ¬∃xPx is a negated statement, so we assume ∃xPx and try
to derive a contradiction. ∃xPx is an existential statement, so we can use it to
discharge a proof of Pa (as long as a doesn’t appear in any other undischarged
assumptions when we apply ∃Elim).

Because we can derive ¬Pa from our premise ∀x¬Px we have the contra-
diction we need, but applying ¬Intro at this stage won’t let us discharge ∃xPx.
This means after applying ∃Elim we assume ∃xPx again and apply ¬Intro a
second time; this second application lets us derive the conclusion ¬∃xPx and
discharge both assumptions of ∃xPx.

97

Existential 20

[Pb]
∃Intro∃yPy

∀x(∃yPy → Qx)
∀Elim∃yPy → Qa

→Elim
Qa

→Intro
Pb→ Qa

∃Intro
∃y(Py → Qa)

∀Intro
∀x∃y(Py → Qx)

This is a past paper question from 2011. The statement we want to prove
is ∀x∃y(Py → Qx), a universal statement. This means we can prove it from
∃y(Py → Qa), as long as a doesn’t appear in any undischarged assumptions.
This is an existential statement, so there are lots of statements we can prove it
from. We’ll try Pb→ Qa.

Pb → Qa is an implication, so we prove it by assuming Pb and trying to
derive Qa. We can get to Qa with the help of our premise, ∀x(∃yPy → Qx).
From this we can derive ∃yPy → Qa, which is an implication with Qa as its
consequent. All we need to do is prove ∃yPy; fortunately this follows from our
assumption of Pb.

The proof would also have worked if we had assumed Pa at the very top
of the proof, and then derived ∃y(Py → Qa) from Pa → Qa. Our ∀Intro step
would still have been allowed because the assumption of Pa would have been
discharged before applying ∀Intro. This alternate proof is shown below:

[Pa]
∃Intro∃yPy

∀x(∃yPy → Qx)
∀Elim∃yPy → Qa

→Elim
Qa

→Intro
Pa→ Qa

∃Intro
∃y(Py → Qa)

∀Intro
∀x∃y(Py → Qx)

98

Existential 21

[Pab]
∃Intro∃yPay [¬∃yPay]

¬Elim
Qab

→Intro
Pab→ Qab

∀Intro
∀y(Pay → Qay)

∀x¬∀y(Pxy → Qxy)
∀Elim

¬∀y(Pay → Qay)
¬Elim∃yPay

∀Intro∀x∃yPxy

This is a past paper question from 2013. Our conclusion ∀x∃yPxy is a
universal statement, so we can prove it from ∃yPay as long as a doesn’t appear
in any undischarged assumptions. This is an existential statement, but we have
no way of proving it directly. Instead we have to assume ¬∃yPay and show that
it leads to a contradiction. Since our premise ∀x¬∀y(Pxy → Qxy) gives us the
negated statement ¬∀y(Pay → Qay), we have the contradiction we need if we
can provide a proof of ∀y(Pay → Qay).
∀y(Pay → Qay) is a universal statement, so we can prove it from Pab →

Qab, as long as b doesn’t appear in any undischarged assumptions. Remember
that the conditions for ∀Intro prevent us from using a twice. Pab→ Qab is an
implication, so we can assume Pab and need to prove Qab. We can’t obtain
Qab from anything directly, but from our assumption of Pab we can obtain
∃yPay, which contradicts our assumption of ¬∃yPay. This lets us obtain Qab
by ¬Elim.

Existential 22

∀x(Pxx ∨ ∀yQxy)
∀Elim

Paa ∨ ∀yQay

[Paa]
∃Intro∃yPay

∨Intro∃yPay ∨Qaa

[∀yQay]
∀Elim

Qaa
∨Intro∃yPay ∨Qaa
∨Elim∃yPay ∨Qaa

∀Intro
∀x(∃yPxy ∨Qxx)

This is a past paper question from 2009. Our conclusion ∀x(∃yPxy∨Qxx) is
a universal statement, so we can prove it from ∃yPay∨Qaa as long as a doesn’t
appear in any undischarged assumptions. Our premise ∀x(Pxx ∨ ∀yQxy) gives
us Paa∨∀yQay, a disjunction splitting the proof into a case where Paa is true
and a case where ∀yQay is true. In the left-hand case we can obtain ∃yPay by
∃Intro, and in the right-hand case we can obtain Qaa by ∀Elim. This means
that in both cases we have proofs of ∃yPay ∨Qaa.

99

Existential 23

∃x(Pxx ∧ ∀yQxy)

[Paa ∧ ∀yQay]
∧Elim

Paa ∃Intro∃yPay

[Paa ∧ ∀yQay]
∧Elim∀yQay

∀Elim
Qaa

∧Intro∃yPay ∧Qaa
∃Intro

∃x(∃yPay ∧Qaa)
∃Elim

∃x(∃yPay ∧Qaa)

This is a past paper question from 2009. Our premise ∃x(Pxx ∧ ∀yQxy)
is an existential statement, so we can apply ∃Elim at the end of the proof to
discharge assumptions of Paa∧∀yQay, provided a doesn’t appear in any other
undischarged assumptions. Our conclusion ∃x(∃yPay ∧ Qaa) is an existential
statement; since our premise is going to discharge assumptions involving a, it
makes sense to try to derive ∃x(∃yPay ∧Qaa) from ∃yPay ∧Qaa.

This is a conjunction, so we need to provide a proof of ∃yPay and a proof
of Qaa. Both of these can be derived from our assumption of Paa ∧ ∀yQay.
From Paa we can derive ∃yPay by ∃Intro, and from ∀yQay we can derive Qaa
by ∀Elim.

100

Existential 24

[¬∀xRxx]
∨Intro∀x∃yRxy ∨ ¬∀xRxx [¬(∀x∃yRxy ∨ ¬∀xRxx)]

¬Elim∀xRxx ∀Elim
Raa ∃Intro∃yRay

∀Intro∀x∃yRxy
∨Intro∀x∃yRxy ∨ ¬∀xRxx [¬(∀x∃yRxy ∨ ¬∀xRxx)]

¬Elim∀x∃yRxy ∨ ¬∀xRxx
This is a past paper question from 2013. Our conclusion ∀x∃yRxy ∨ ¬∀xRxx is a disjunction which we are asked to prove

from no premises. This makes it pretty likely that we’ll need to carry out an indirect proof, assuming ¬(∀x∃yRxy ∨ ¬∀xRxx)
and showing that it leads to a contradiction.

We follow the usual strategy for indirectly proving disjunctions. First we assume one disjunct, ¬∀xRxx, and derive the
conclusion ∀x∃yRxy ∨ ¬∀xRxx from it. Using our assumption of ¬(∀x∃yRxy ∨ ¬∀xRxx) we apply ¬Elim and derive ∀xRxx.
With this proof of ∀xRxx we want to derive the other disjunct, ∀x∃yRxy.

This is a universal statement, so we can derive it from ∃yRay (as long as a doesn’t appear in any undischarged assumptions).
This in turn can be derived from Raa, which can be derived by ∀Elim from ∀xRxx.

From ∀x∃yRxy we derive ∀x∃yRxy ∨ ¬∀xRxx a second time and assume ¬(∀x∃yRxy ∨ ¬∀xRxx) a second time. Finally
we apply ¬Elim, discharging both assumptions of ¬(∀x∃yRxy ∨ ¬∀xRxx) and deriving ∀x∃yRxy ∨ ¬∀xRxx.

An alternate proof, starting from ∀x∃yRxy, is shown below:

[∀x∃yRxy]
∨Intro∀x∃yRxy ∨ ¬∀xRxx [¬(∀x∃yRxy ∨ ¬∀xRxx)]

¬Intro¬∀x∃yRxy

[∀xRxx]
∀Elim

Raa ∃Intro∃yRay
∀Intro∀x∃yRxy
¬Intro¬∀xRxx ∨Intro∀x∃yRxy ∨ ¬∀xRxx [¬(∀x∃yRxy ∨ ¬∀xRxx)]

¬Elim∀x∃yRxy ∨ ¬∀xRxx

101

Existential 25

∃x∀yRyx

[Rbb]
∃Intro∃xRxx

[∀yRya]
∀Elim

Rca ∃Intro∃yRcy
∀Intro∀x∃yRxy ∀x∃yRxy → ¬∃xRxx

→Elim¬∃xRxx ¬Intro¬Rbb ∀Intro∀x¬Rxx
∃Elim∀x¬Rxx

This is adapted from a past paper question from 2010. Our premise ∃x∀yRyx
is an existential statement, letting us discharge assumptions of ∀yRya, as long
as a doesn’t appear in any other undischarged assumptions by the end of the
proof.

We want to prove ∀x¬Rxx, which we can derive from ¬Rbb (as long as b
doesn’t appear in any undischarged assumptions when we apply ∀Intro). This
is a negated statement, so we prove it by assuming Rbb and showing that it
leads to a contradiction.

We don’t have any negated statements readily available, but our other
premise ∀x∃yRxy → ¬∃xRxx is a conditional with a negated consequent. This
means that if we can prove ∀x∃yRxy we will be able to derive ¬∃xRxx by
→Elim.
∀x∃yRxy follows from our assumption of ∀yRya, so we have a proof of

¬∃xRxx. Since ∃xRxx follows from Rbb, we have the contradiction we need
to discharge Rbb and apply ¬Intro. This then lets us derive our conclusion
∀x¬Rxx; finally an ∃Elim step discharges our assumption of ∀yRya.

102

Existential 26

[¬∀xPx]
∨I∀x∃zRzx ∨ ¬∀xPx [¬(∀x∃zRzx ∨ ¬∀xPx)]

¬E∀xPx ∀E
Pa

∀x(Px→ ∃yRyx)
∀E

Pa→ ∃yRya
→E∃yRya

[Rba]
∃I∃zRza
∃E∃zRza ∀I∀x∃zRzx ∨I∀x∃zRzx ∨ ¬∀xPx [¬(∀x∃zRzx ∨ ¬∀xPx)]

¬E∀x∃zRzx ∨ ¬∀xPx

This is adapted from a past paper question from 2013. This is another indirect proof of a disjunction, so we follow the
usual strategy of starting by assuming ¬∀xPx, one of the disjuncts, deriving the conclusion by ∨Intro and then assuming the
negation of the conclusion to create a contradiction. With this contradiction we apply ¬Elim to derive ∀xPx.

The legwork of the proof lies in using our premise ∀x(Px→ ∃yRyx) to derive ∀x∃zRzx from ∀xPx. ∀x∃zRzx is a universal
statement, which we can derive from ∃zRza (as long as a doesn’t appear in any undischarged assumptions when we apply
∀Intro). From ∀xPx we can derive Pa and from ∀x(Px→ ∃yRyx) we can derive Pa→ ∃yRya, meaning we can apply →Elim
to derive ∃yRya. This is almost what we need, but we need to apply ∃Intro and ∃Elim to convert it to ∃zRza.

With ∀x∃zRzx we can apply ∨Intro again to derive the conclusion. We assume the negation of the conclusion a second
time and apply ¬Elim to discharge both assumptions of ¬(∀x∃zRzx ∨ ¬∀xPx) and derive ∀x∃zRzx ∨ ¬∀xPx.

103

Existential 27

∀x∀y∀z(Rxy ∨Rzy ∨Rzx)
∀E

∀y∀z(Ray ∨Rzy ∨Rza)
∀E

∀z(Rab ∨Rzb ∨Rza)
∀E

Rab ∨Rcb ∨Rca
[Rab ∨Rcb]2

[Rab]1 [¬Rab]3
¬E

Rca ∨Rcb
[Rcb]1

∨I
Rca ∨Rcb

∨E1

Rca ∨Rcb
[Rca]2

∨I
Rca ∨Rcb

∨E2

Rca ∨Rcb ∀I
∀z(Rza ∨Rzb)

∃I
∃y∀z(Rza ∨Rzy)

∃I
∃x∃y∀z(Rzx ∨Rzy)

...

...

∃x∃y∀z(Rzx ∨Rzy) [¬∃x∃y∀z(Rzx ∨Rzy)]4
¬E3

Rab ∨I
Rab ∨Rbc ∀I
∀z(Rza ∨Rzb)

∃I
∃y∀z(Rza ∨Rzy)

∃I
∃x∃y∀z(Rzx ∨Rzy) [¬∃x∃y∀z(Rzx ∨Rzy)]4

¬E4

∃x∃y∀z(Rzx ∨Rzy)

Unfortunately, the above proof is too wide to fit on a single page.
The first thing we should notice is what’s similar between our premise and our conclusion. The premise is ∀x∀y∀z(Rxy ∨

Rzy ∨ Rzx), so from it we can derive Rab ∨ Rcb ∨ Rca. The conclusion is ∃x∃y∀z(Rzx ∨ Rzy), so we can derive it from
Rca ∨Rcb, provided c doesn’t appear in any undischarged assumptions by the time we derive Rca ∨Rcb.

104

Deriving Rca ∨ Rcb from Rab ∨ Rcb ∨ Rca is possible if we can provide a
proof of ¬Rab. We don’t have a proof of ¬Rab, but instead we can simply
assume it. Deriving Rca ∨Rcb then is a straightforward (if a little fiddly) case
of applying ∨Elim and ∨Intro, applying ¬Elim in the Rab case. Notice that,
according to the bracketing conventions, Rab ∨ Rcb ∨ Rca is an abbreviation
of ((Rab ∨ Rcb) ∨ Rca), which is why we need to use ∨Elim once to discharge
assumptions of Rab and Rcb and a second time to discharge assumptions of
Rab ∨Rcb and Rca.

After deriving Rca ∨ Rcb, we still have ¬Rab undischarged. Hence we can
apply ∀Intro to obtain ∀z(Rza ∨ Rzb), but we wouldn’t be able to derive (for
example) ∀x∀y∀z(Rzx ∨Rzy).

Once we have ∃x∃y∀z(Rzx∨Rzy) (which is where the proof above splits in
two), we need to discharge our assumption of ¬Rab, so we assume ¬∃x∃y∀z(Rzx∨
Rzy) and discharge our assumption of ¬Rab by ¬Elim. We now have a proof of
Rab with no undischarged assumptions involving of a, b or c; hence we have
no problem deriving ∃x∃y∀z(Rzx ∨ Rzy) a second time. Then we assume
¬∃x∃y∀z(Rzx∨Rzy) once more, discharge both assumptions of ¬∃x∃y∀z(Rzx∨
Rzy) by ¬Elim, and derive ∃x∃y∀z(Rzx ∨Rzy).

Bonus challenge

The following proof has the two features specified in the challenge:

∃xP [P]
∃Elim

P

This requires us to apply ¬Elim in a bizarre way, but it is indeed allowed.
Recall the formulation of the ∃Elim rule:

∃vφ

[φ[t/v]]

...
ψ

∃Elim
ψ

The ∃Elim rule lets us discharge all assumptions of φ[t/v], where φ[t/v] is
the result of replacing all occurrences of v (x in this case) in φ (P in this case)
with the constant t. But here there are no occurrences of x in P , P is what we
discharge. ψ happens to be P as well in this case, so P is what we conclude.

Furthermore, all additional conditions for ∃Elim are satisfied: there are no
constants in the proof at all, so none appear in ψ or φ or in any undischarged
assumptions in the proof of ψ.

This is an absurd proof, but it highlights an unusual way in which the
quantifier rules can be applied. Similar proofs exist for ∃Intro and the two rules
for the universal quantifier:

P ∃Intro∃xP
∀xP ∃Elim
P

P ∃Intro∀xP

105

5.9 Identity

Identity 1

[a = a]=
∃Intro∃ya = y
∃Intro∃x∃yx = y

We aren’t given any premises, but we can apply =Intro to make and imme-
diately discharge the assumption a = a. From this, we can derive ∃x∃yx = y
by applying ∃Intro twice.

Identity 2

[b = b]=
a = b [a = c]

=Elim
b = c

∧Intro
b = b ∧ b = c ¬(b = b ∧ b = c)

¬Intro¬a = c

Our conclusion ¬a = c is negated, so we can derive it by assuming a = c and
showing it leads to a contradiction. Since one of our premises ¬(b = b ∧ b = c)
is negated, we have the contradiction we need if we can provide a proof of
b = b ∧ b = c.

b = b is easy to prove: we can assume it and immediately discharge it by
=Intro. To obtain b = c, we apply =Elim using our premise a = b and our
assumption of a = c.

106

Identity 3

[c = a] [a = b]
=Elim

c = b →Intro
c = a→ c = b ∀Intro

∀x(x = a→ x = b)

[a = a]=
[∀x(x = a→ x = b)]

∀Elim
a = a→ a = b

→Elim
a = b

↔Intro
a = b↔ ∀x(x = a→ x = b)

Our conclusion is a biconditional, so we need to provide two proofs: one proof
of ∀x(x = a→ x = b) from a = b and one of a = b from ∀x(x = a→ x = b).

On the left-hand side, we want to derive the universal statement ∀x(x =
a→ x = b). We can derive this from c = a→ c = b, provided c doesn’t appear
in any undischarged assumptions in our proof of c = a→ c = b. Because of the
restrictions on ∀Intro we can’t use a or b instead of c: a and b both appear in
∀x(x = a → x = b), and our assumption a = b won’t be discharged until the
end of the proof. c = a → c = b is an implication, so we assume c = a and
apply =Elim using our assumption of a = b to derive c = b.

On the right-hand side, we want to derive a = b. We can’t derive a = b
using the introduction rule for =, but our assumption of ∀x(x = a → x = b)
helps us: we can apply ∀Elim to obtain a = a → a = b and then derive a = a
by =Intro, giving us a = b by →Elim.

Notice the symmetry in the proof we obtain: the left-hand side uses =Elim,
→Intro and ∀Intro while the right-hand side uses =Intro, →Elim and ∀Elim.

Identity 4

[∃x∀yx = y]2

[∀ya = y]1
∀Elim

a = b
[∀ya = y]1

∀Elima = c
=Elim

b = c ∀Intro∀yb = y
∀Intro∀x∀yx = y
∃Elim1

∀x∀yx = y

[∀x∀yx = y]2
∀Elim∀ya = y

∃Intro∃x∀yx = y
↔Intro2∃x∀yx = y ↔ ∀x∀yx = y

This is a past paper question from 2009. Our conclusion is a biconditional,
so we need to provide a proof of ∀x∀yx = y from ∃x∀yx = y and a proof of
∃x∀yx = y from ∀x∀yx = y.

The right-hand side is easy: we use ∀Elim to replace x with any constant
(a is used in the proof above) and then we use ∃Intro to replace that constant
with x again.

On the left-hand side, we have an existential assumption ∃x∀yx = y which
lets us discharge an assumption of ∀ya = y. We want to prove ∀x∀yx = y,
which we can derive from b = c. We can’t derive it from anything involving a
because our assumption of ∀ya = y won’t be discharged when we apply ∀Intro.
We need to use our assumption of ∀ya = y twice, deriving a = b and a = c.
Then we can apply =Elim to derive b = c.

107

Identity 5

Pa [a = b]
=Elim

Pb ¬Pb ¬Intro¬a = b

Our conclusion ¬a = b is a negation, so we derive it by assuming a = b and
trying to derive a contradiction. One of our premises ¬Pb is a negation, so we
have a contradiction if we can derive Pb.

To obtain Pb we need to make use of our assumption of a = b and apply
=Elim, replacing the a in Pa (our other premise) with b.

We could also have carried out the proof in a different way, applying =Elim
to obtain ¬Pa which contradicts Pa:

Pa

¬Pb [a = b]
=Elim¬Pa ¬Intro¬a = b

Identity 6

Pb ∧Qb
∧Elim

Qb

Pb ∧Qb
∧Elim

Pb

∀x(Px→ x = a)
∀Elim

Pb→ b = a →Elim
b = a

=Elim
Qa

Our conclusion is Qa. This doesn’t have any connectives or quantifiers in it,
so we know the last line of our proof won’t be an introduction rule. Qa doesn’t
appear explicitly in any of our premises, and we can’t derive it using ¬Elim
(assuming ¬Qa is no help).

However, we do have the premise Pb∧Qb, which gives us Qb; we can derive
Qa by =Elim if we can prove b = a. We can show b = a by →Elim, since our
first premise gives us Pb and our other premise gives us ∀x(Px→ x = a) gives
us Pb→ b = a.

108

Identity 7

∃x∀y(Py ↔ x = y)

[Pb]

[∀y(Py ↔ a = y)]
∀Elim

Pb↔ a = b
↔Elim

a = b →Intro
Pb→ a = b ∀Intro

∀y(Py → a = y)
∃Intro

∃x∀y(Py → x = y)
∃Elim

∃x∀y(Py → x = y)

This is a past paper question from 2011. It turns out we don’t need to use
any of the rules for identity, but we do need all four quantifier rules.

Because we have an existential premise ∃x∀y(Py ↔ x = y), we should look
at this first and apply ∃Elim at the end of the proof to discharge ∀y(Py ↔ a = y)
(making sure that a doesn’t appear in any other undischarged assumptions by
the time we apply ∃Elim).

Our conclusion ∃x∀y(Py → x = y) is also an existential statement, and
it’s reasonable to suspect that we’ll derive it from ∀y(Py → a = y) (that both
the premise and the conclusion refer to the same object). This is a universal
statement, so we’ll derive it from Pb → a = b. This is an implication, so we
assume Pb and try to derive a = b. We do this by ↔Elim using Pb ↔ a = b,
which can be derived from our assumption of ∀y(Py ↔ a = y).

109

Identity 8

∃xPx

∀x(x = a ∨ x = b)
∀E

c = a ∨ c = b

[Pc]3 [c = a]1
=E

Pa [¬Pa]2
¬E

Pb

[Pc]3 [c = b]1
=E

Pb
∨E1

Pb
→I2¬Pa→ Pb
∃E3

¬Pa→ Pb

One of our premises ∃xPx is an existential statement, so we should think
about that first. If we apply ∃Elim at the end of the proof we can discharge
assumptions of Pc, as long as c doesn’t appear in any undischarged assumptions.
We can’t use a or b because they both appear in our conclusion ¬Pa→ Pb.
¬Pa→ Pb is an implication, so we derive it by assuming ¬Pa and deriving

Pb from it. Our premise ∀x(x = a ∨ x = b) is a universal statement. We can
derive lots of disjunctions from it, but not all of them will be useful. a = a∨a =
b, for example, is something we could derive without any premises if we wanted
to: when we can use =Intro to assume and discharge a = a and then use ∨Intro
to derive a = a ∨ a = b.

c = a ∨ c = b is useful: it splits the proof into a case where c = a is true
and a case where c = b is true. On the right-hand side, our assumptions of Pc
and c = b let us derive Pb by =Elim. On the left-hand side, we can use =Elim
to derive Pa, which contradicts our other assumption of ¬Pa and lets us derive
Pb by ¬Elim.

110

Identity 9

∃x(Px ∧Qx ∧Rax)

[Pc ∧Qc ∧Rac]
∧E

Rac

Pb ∧Qb
[Pc ∧Qc ∧Rac]

∧E
Pc ∧Qc

∧I
(Pb ∧Qb) ∧ (Pc ∧Qc)

∀x∀y((Px ∧Qx) ∧ (Py ∧Qy)→ x = y)
∀E

∀y((Pb ∧Qb) ∧ (Py ∧Qy)→ b = y)
∀E

(Pb ∧Qb) ∧ (Pc ∧Qc)→ b = c
→E

b = c
=E

Rab
∃E

Rab

This is a past paper question from 2010. Our premise ∃x(Px ∧ Qx ∧ Rax) is an existential statement, so we will apply
∃Elim at the end of the proof to discharge assumptions of Pc ∧ Qc ∧ Rac and make sure that c doesn’t appear in any other
undischarged assumptions. Not that we’re using c as our constant here: we can’t use a or b because they appear in our
conclusion Rab, the existential premise ∃x(Px ∧Qx ∧Rax) and our other premise Pb ∧Qb.

We want to prove Rab; because our assumption Pc ∧Qc ∧Rac gives us Rac, we can obtain Rab using =Elim. To do this,
we need to show b = c. Our big premise ∀x∀y((Px∧Qx)∧ (Py ∧Qy)→ x = y) gives us (Pb∧Qb)∧ (Pc∧Qc)→ b = c, so we
can prove b = c by →Elim if we can prove (Pb ∧Qb) ∧ (Pc ∧Qc). We can obtain this by ∧Intro and ∧Elim from our premise
Pb ∧Qb and our assumption Pc ∧Qc ∧Rac.

111

Identity 10

[Pa ∧Qa]
∧Elim

Qa

[Pa ∧Qa]
∧Elim

Pa [a = a]=
∧Intro

Pa ∧ a = a

∀x∀y(Px ∧ x = y → ¬Qy)
∀Elim

∀y(Pa ∧ a = y → ¬Qy)
∀Elim

Pa ∧ a = a→ ¬Qa
→Elim¬Qa

¬Intro
¬(Pa ∧Qa)

∀Intro
∀z¬(Pz ∧Qz)

This is a past paper question from 2012. Our conclusion is a universal statement, so we can derive it from ¬(Pa ∧Qa) (as
long as a doesn’t appear in any undischarged assumptions by the end of the proof). This is a negated statement, so we assume
Pa ∧Qa and show that it leads to a contradiction.

We don’t have any negated statements immediately available which can give us the contradiction we need, but our premise
∀y(Pa ∧ a = y → ¬Qy) can give us one. If we apply ∀Elim twice, we can obtain Pa ∧ a = a→ ¬Qa, which is an abbreviation
of (Pa ∧ a = a)→ ¬Qa. This means that if we can prove Pa ∧ a = a we can prove ¬Qa by →Elim.

Pa comes from our assumption of Pa ∧Qa and a = a can be assumed and discharged by =Intro, so a proof of Pa ∧ a = a
is easy to provide. With a proof of ¬Qa and a proof of Qa (which also follows from our assumption of Pa ∧Qa) we have the
contradiction we need.

112

Identity 11

[a = a]=

∀x∀y(Rxy ↔ x = y)
∀Elim

∀y(Ray ↔ a = y)
∀Elim

Raa↔ a = a
↔Elim

Raa ∀Intro∀xRxx

Our conclusion ∀xRxx is a universal statement, so we can derive it from
Raa (as long as a appears in no undischarged assumptions). By applying ∀Elim
twice on our premise we can derive Raa↔ a = a; this allows us to apply↔Elim
and derive Raa if we can provide a proof of a = a. =Intro gives us the proof of
a = a we need by allowing us to make and immediately discharge an assumption
of a = a.

Identity 12

Rab [a = b]
=Elim

Raa
∀x¬Rxx ∀Elim¬Raa ¬Intro¬a = b ∃Intro∃y¬a = y

∃Intro∃x∃y¬x = y

This is a past paper question from 2012. The conclusion ∃x∃y¬x = y has
two existential quantifiers, so it’s likely we will derive it by applying ∃Intro,
but we also need to determine which statement we should try to derive it from.
The constants a and b appear in the premise Rab, so ¬a = b would be a good
sentence to try and prove.

This is a negation, so we prove it by assuming a = b and showing that it leads
to a contradiction. There are actually lots of ways we can derive a contradiction
from this assumption and our premises Rab and ∀x¬Rxx. In the proof above,
we use =Elim and a = b to replace the b in Rab with a, giving Raa. Because
we can derive ¬Raa from ∀x¬Rxx, we have the contradiction we need.

113

Identity 13

∃x∀yx = y

∃x∃yRxy
[∃yRby]2

[Rbc]1
[∀ya = y]3

∀Elim
a = b

=Elim
Rac

[∀ya = y]3
∀Elima = c

=Elim
Raa

[∀ya = y]3
∀Elim

a = b1
=Elim

Rb1a
[∀ya = y]3

∀Elima = c1
=Elim

Rb1c1 ∀Intro∀yRb1y
∀Intro∀x∀yRxy
∃Elim1

∀x∀yRxy
∃Elim2

∀x∀yRxy
∃Elim3

∀x∀yRxy

We have two existential premises, so we should think about those first. From ∃x∀yx = y we can apply ∃Elim to discharge
an assumption of ∀ya = y, and from ∃x∃yRxy we can apply ∃Elim twice to discharge an assumption of Rbc.

Our conclusion is ∀x∀yRxy, a universal statement, so we derive it from Rb1c1. We can’t derive it from any statements
involving a, b or c because they appear in our assumptions of Rbc and ∀ya = y, which won’t be discharged until the very end
of the proof.

Now all we need to do is move from our assumptions of Rbc and ∀ya = y to Rb1c1. This is easy to do using =Elim, because
our assumption of ∀ya = y tells us that everything is identical to a. First we replace the b and c with Rbc with as, and then
we replace those as with b1 and c1.

114

Identity 14

[∀xPxx]4
∀Elim

Paa

[¬Pab]2 [a = b]1
=Elim¬Paa

¬Intro1¬a = b
→Intro2¬Pab→ ¬a = b ∀Intro

∀y(¬Pay → ¬a = y)
∀Intro

∀x∀y(¬Pxy → ¬x = y)

[a = a]=
[¬Paa]3

[∀x∀y(¬Pxy → ¬x = y)]4
∀Elim

∀y(¬Pay → ¬a = y)
∀Elim¬Paa→ ¬a = a

→Elim¬a = a
¬Elim3

Paa ∀Intro∀xPxx
↔Intro4∀xPxx↔ ∀x∀y(¬Pxy → ¬x = y)

This is a past paper question from 2009. Our conclusion is a biconditional, so we need to provide a proof of ∀x∀y(¬Pxy →
¬x = y) from ∀xPxx and a proof of ∀xPxx ∀x∀y(¬Pxy → ¬x = y).

On the left-hand side, we can derive ∀xPxx ∀x∀y(¬Pxy → ¬x = y) by deriving ¬Pab→ ¬a = b and applying ∀Intro twice,
as long as neither a or b appear in any undischarged assumptions when we apply ∀Intro. ¬Pab → ¬a = b is an implication,
so we assume ¬Pab and try to derive ¬a = b. Because ¬a = b is a negated statement, we assume a = b and try to derive a
contradiction.

There are many ways we can derive a contradiction from ∀xPxx, ¬Pab and a = b. In the proof above, we use a = b to
replace the b in ¬Pab with a, giving us ¬Paa. This contradicts Paa, which can be derived from ∀xPxx.

On the right-hand side, we need to prove the universal statement ∀xPxx, which can be derived from Paa (as long as a
doesn’t appear in any undischarged assumptions when we apply ∀Intro). Sadly we don’t have any way of deriving Paa directly;
instead we prove it by deriving a contradiction from assumptions of ¬Paa.

From our assumption of ∀xPxx ∀x∀y(¬Pxy → ¬x = y) we can derive ¬Paa→ ¬a = a, so we can derive ¬a = a by→Elim.
This gives us the contradiction we need, because =Intro lets us make and immediately discharge an assumption of a = a.

Notice that this proof involves a particular symmetry: on the left-hand side we apply ∀Intro (twice),→Intro, ¬Intro, =Elim
and ∀Elim; on the right-hand side we apply ∀Elim (twice), →Elim, ¬Elim, =Intro and ∀Intro. Each time an introduction rule
appears on one side, the corresponding elimination rule appears on the other side.

115

Identity 15

∀x∃y(Rxy ∧ Py)
∀E

∃y(Ray ∧ Py)

∀x∃y(Rxy ∧ Py)
∀E

∃y(Rby ∧ Py)

[Rbc ∧ Pc]3
∧E

Rbc

[Rbc ∧ Pc]3
∧E

Pc

[Rab ∧ Pb]2
∧E

Pb

[∀x∀y(Px→ (Py → x = y))]1
∀E

∀y(Pb→ (Py → b = y))
∀E

Pb→ (Pc→ b = c)
→E

Pc→ b = c →E
b = c

=E
Rbb

∀x¬Rxx ∀E¬Rbb
¬I1¬∀x∀y(Px→ (Py → x = y))

∃E2

¬∀x∀y(Px→ (Py → x = y))
∃E3

¬∀x∀y(Px→ (Py → x = y))

This is a past paper question from 2012. Because our conclusion is a negated formula, we assume ∀x∀y(Px→ (Py → x = y))
and show that it leads to a contradiction. However, our two premises are difficult to use. ∀x¬Rxx could give us ¬Raa, ¬Rbb
or any of infinitely many other negated statements, so we can’t be certain which one will give us the contradiction we need.
Similarly ∀x∃y(Rxy ∧ Py) could give us any number of different existential statements, and we can’t be certain how many
times we’ll need to use it.

For a hint we can look at our assumption of ∀x∀y(Px→ (Py → x = y)). This is an implication involving two occurrences
of the predicate P . In order to derive the consequent by →Elim, we need two different things for which P holds. Each time
we apply ∀Elim on ∀x∃y(Rxy ∧Py) we obtain an existential statement asserting the existence of one thing for which P holds.
This suggests we want to use ∀Elim on ∀x∃y(Rxy ∧ Py) twice.

So we derive ∃y(Ray ∧ Py) and apply ∃Elim at the very end of the proof to discharge assumptions of Rab ∧ Pb. Then
before the end of the proof we derive a second existential statement, ∃y(Ray ∧ Py), which we use to discharge assumptions
of Rbc ∧ Pc. We’re justified in doing this: note that by the very end of the proof, b appears in no undischarged assumptions
other than Rab ∧ Pb because Rbc ∧ Pc has already been discharged.

From these assumptions of Rab ∧ Pb and Rbc ∧ Pc we can derive Pb and Pc, which (using our assumption of ∀x∀y(Px→
(Py → x = y))) gives us b = c. We could use b = c with Rab to obtain Rac, but this isn’t very useful. Instead, we use b = c
with Rbc to obtain Rbb. Because we can derive ¬Rbb from ∀x¬Rxx, we have the contradiction we need.

116

5.10 Additional challenges

Admissible rules 1

The rule ?1 is admissible. We can show that any proof making use of ?1 can be
rewritten using ∧Elim.

Suppose we have a proof involving one or more applications of ?1. Each
application of ?1 corresponds to a subproof of the following form:

...
φ ∧ ψ

[φ]

...
χ
?1χ

We can rewrite this subproof by moving the proof of φ∧ψ to the top of the
proof of χ, and applying ∧Elim to derive φ:

...
φ ∧ ψ

∧Elim
φ

...
χ

We can repeat this process for each application of ?1 (starting with the
smallest subproof) until we are left with a proof only using the original Natural
Deduction rules.

Admissible rules 2

The rule ?2 is not admissible. P → Q,¬P ` ¬Q is not possible in unaugmented
Natural Deduction, but is possible with ?2:

¬P P → Q
?2¬Q

Admissible rules 3

The rule ?3 is not admissible. ` P is not possible in unaugmented Natural
Deduction, but is possible with ?3:

[Q]
→Intro

Q→ Q [(Q→ Q)→ P]
→Elim

P
?3

P

117

Admissible rules 4

The rule ?4 is admissible. We can rewrite any proof using ?4 as a proof using
¬Intro, ¬Elim and ∨Intro.

Suppose we have a proof involving one or more applications of ?4. Each
application corresponds to a subproof of the following form:

[¬φ]

...
ψ

?4
φ ∨ ψ

We replace the ?4 step itself with an application of ∨Intro. At the top of
the subproof we assume φ and ¬(φ ∨ ψ) and apply ∨Intro and ¬Intro to derive
¬φ. At the bottom of the subproof we assume ¬(φ∨ψ) again and apply ¬Elim
to discharge assumptions of ¬(φ ∨ ψ) and derive φ ∨ ψ.

The resultant subproof will look like this:

[φ]1
∨Intro

φ ∨ ψ [¬(φ ∨ ψ)]2
¬Intro1¬φ

...
ψ

∨Intro
φ ∨ ψ [¬(φ ∨ ψ)]2

¬Elim2

¬φ

This is a familiar proof structure: it is how we proved disjunctions such as
P ∨ ¬P by indirect proof.

We can repeat this process for each application of ?4 (starting with the
smallest subproof) until we are left with a proof only using the original Natural
Deduction rules.

Admissible rules 5

The rule ?5 is admissible. We can rewrite any proof using ?5 as a proof using
→Intro and ¬Elim.

Suppose we have a proof involving one or more applications of ?5. Each
application corresponds to a subproof of the following form:

[φ→ ψ]

...
φ
?5

φ

118

At the top of the subproof we assume ¬φ and φ and apply ¬Elim and→Intro
to derive φ→ ψ. At the bottom of the subproof we assume ¬φ again and apply
¬Elim to discharge assumptions of ¬φ and derive φ.

The resultant subproof will look like this:

[φ]1 [¬φ]2
¬Elim

ψ
→Intro1

φ→ ψ

...
φ [¬φ]2

¬Elim2

φ

We can repeat this process for each application of ?5 (starting with the
smallest subproof) until we are left with a proof only using the original Natural
Deduction rules.

Contraposition 1

[¬P]1 [¬¬P]2
¬Elim1

P →Intro
Q→ P ¬(Q→ P)

¬Elim2

¬P

We cannot derive ¬P by ¬Intro, where we assume P and derive a contra-
diction from it. Instead we must prove ¬P indirectly, by assuming ¬¬P and
deriving a contradiction from that. ¬¬P allows us to derive P (by assuming
¬P and applying ¬Elim); from this we can derive Q → P , which contradicts
our premise ¬(Q→ P).

Contraposition 2

[¬(P ∧ ¬P)]1 [¬¬(P ∧ ¬P)]3
¬Elim1

P ∧ ¬P ∧Elim
P

[¬(P ∧ ¬P)]2 [¬¬(P ∧ ¬P)]3
¬Elim2

P ∧ ¬P ∧Elim¬P
¬Elim3

¬(P ∧ ¬P)

We proceed in a similar fashion to the previous question. We cannot derive
¬(P ∧¬P) by assuming P ∧¬P and deriving a contradiction from it; instead we
must derive a contradiction from ¬¬(P ∧ ¬P). Assuming ¬¬(P ∧ ¬P) lets us
derive P∧¬P , which in turn lets us derive P and ¬P , and hence a contradiction.

119

Contraposition 3

First, we note that an application of ¬Intro corresponds to a subproof of the
following shape:

[φ]

...
ψ

[φ]

...
¬ψ

¬Intro¬φ

We replace all applications of ¬Intro in our proof of φ from Γ (if there are
any) with subproofs of the following shape:

[¬φ]1 [¬¬φ]3
¬Elim1

φ

...
ψ

[¬φ]2 [¬¬φ]3
¬Elim2

φ

...
¬ψ

¬Elim3

¬φ

Contraposition 4

Suppose that Γ `C φ. This means that there is a proof of φ from Γ which
potentially uses contraposition (but doesn’t use ¬Intro or ¬Elim).

If this proof involves no applications of contraposition, it is trivially true
that Γ ` φ.

If the proof does involve at least one application of contraposition, this ap-
plication corresponds to a subproof of the following shape:

[¬ψ]

...
¬φ

C
φ→ ψ

We replace this subproof with a subproof of the following shape:

[φ]2

[¬ψ]1

...
¬φ

¬Elim1

ψ
→Intro2

φ→ ψ

We repeat this process for each application of contraposition, starting with
the smallest subproof. The resultant proof has no applications of contraposition,
but does have applications of ¬Elim. Hence Γ ` φ.

120

Contraposition 5

¬¬P
C

¬P → ¬(Q→ Q)

Contraposition 6

[¬P] ¬P → ¬(Q→ Q)
→Elim

¬(Q→ Q)
C

(Q→ Q)→ P

To show that ¬P → ¬(Q → Q) `C (Q → Q) → P we are allowed to use
→Elim as well as contraposition. To derive (Q → Q) → P by contraposition,
we need to provide a proof of ¬(Q→ Q) from an assumption of ¬P . With ¬P
and our premise ¬P → ¬(Q→ Q) we can derive ¬(Q→ Q) by →Elim.

Contraposition 7

[¬Q]
C

Q→ Q (Q→ Q)→ P
→Elim

P

Usefully, contraposition still allows us to easily derive Q→ Q, but instead of
assuming and discharging Q (as we would in ordinary Natural Deduction), we
assume and discharge ¬Q. We can then derive P by →Elim using our premise
(Q→ Q)→ P .

Contraposition 8

[¬Q]1
C1

Q→ Q

[¬P]2
¬¬P

C
¬P → ¬(Q→ Q)

→Elim
¬(Q→ Q)

C2

(Q→ Q)→ P
→Elim

P

The proof above combines our proofs from the previous three questions.
This is not the shortest possible derivation of P from ¬¬P ; the proof below is
shorter, but is perhaps less obvious:

¬¬P

[¬P]
¬¬P

C¬P → ¬¬¬P
→Elim¬¬¬P

C¬¬P → P →Elim
P

121

Contraposition 9

We note that each ¬Elim step corresponds to a subproof of the following shape:

[¬φ]

...
ψ

[¬φ]

...
¬ψ

¬Elim
φ

We replace all applications of ¬Elim with subproofs of the following shape:

[¬P]1
C1

P → P

[¬φ]2

...
ψ

[¬φ]2

...
¬ψ

C
ψ → ¬(P → P)

→Elim
¬(P → P)

C2

(P → P)→ φ
→Elim

φ

Contraposition 10

Each application of →Intro corresponds to a subproof of the following shape:

[φ]

...
ψ

→ Intro
φ→ ψ

We replace each of these subproofs with a subproof of the following shape:

[φ]1

...
ψ [¬ψ]2

¬Intro1¬φ
C2

φ→ ψ

122

Contraposition 11

To demonstrate that Γ `C′ φ whenever Γ ` φ we need to be able to convert any
proof in ordinary Natural Deduction to a proof with contraposition but without
→Intro, ¬Intro or ¬Elim.

We do this in three steps:

1. Replace →Intro steps with ¬Intro and contraposition

2. Replace ¬Intro steps (including any new ones made in step 1) with ¬Elim

3. Replace ¬Elim steps (including any new ones made in step 2) with con-
traposition and →Elim

This is by no means the only way of tackling this question, but given our
answers to previous questions it is one of the easiest strategies. Question 10
showed us how to carry out step 1. Question 3 showed us how to carry out step
2. Finally, question 9 showed us how to carry out step 3.

After carrying out all three steps, we are left without any applications of
¬Intro, ¬Elim or →Intro, but we may have applications of →Elim and contra-
position. This is a proof satisfying the requirements for Γ `C′ φ.

Hence if Γ ` φ then Γ `C′ φ.
This is a striking result: if we add the contraposition rule to Natural Deduc-

tion, we can dispense not only with ¬Intro but also with ¬Elim and →Intro.
This not the only technique we could have used. For example, we could have

replaced →Intro steps with contraposition and →Elim using the (monstrous)
subproof below:

[¬P]1
C1

P → P

[¬P]2
C2

P → P

[¬¬φ]4
C

¬φ→ ¬(P → P) [¬φ]3
→E

¬(P → P)
C3

(P → P)→ φ
→E

φ

...
ψ

[¬ψ]5
C

ψ → ¬(P → P)

¬(P → P)
C4

(P → P)→ ¬φ
→E¬φ

C5

φ→ ψ

123

	Using this pack
	Summary of rules
	Worked examples
	Implication
	Universal quantifier
	Existential quantifier

	Practice problems
	Core
	Conjunction
	Implication
	Disjunction
	Biconditional
	Negation
	Universal quantifier
	Existential quantifier
	Identity
	Additional challenges

	Solutions
	Core
	Conjunction
	Implication
	Disjunction
	Biconditional
	Negation
	Universal quantifier
	Existential quantifier
	Identity
	Additional challenges

