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Preface by Volker Halbach

�is booklet contains additional exercises for the Logic Manual with solutions.
�e student version of my own Exercises Booklet, which can be found here

http://logicmanual.philosophy.ox.ac.uk/exercises/exercises.pdf,
doesn’t contain any solutions. Of course the reason for not making the solutions
public was that, once you know the solutions are just a mouse click away, there
is a temptation to look at them for some inspiration. So the solutions were made
available only to tutors. However, I also realized that this isn’t ideal. During
revision one would like to be able to check whether an answer is correct.
Peter Fritz kindly agreed to write a new set of exercises with solutions. Peter

and I hope that students will �nd them useful, especially when revising for an
examination.�e new exercises can also be used instead of the old Exercises
Booklet in classes or tutorials. �ey resemble the old one in structure and
di�culty.
When looking at the solution, one should bear in mind that they are only

short hints.�ey should not be understood as perfect model solutions. In most
cases good answers can di�er signi�cantly and the solutions usually contain
only one possible answer.�at doesn’t mean that other answers are incorrect.
�is even applies to many formal questions. For instance, if there is a proof of
a sentence in Natural Deduction at all, there are in�nitely many proofs of the
sentence. Some questions, that may look trivial, lead to deeper problems in
philosophy of language and metaphysics. Peter has tried to keep the answers
straightforward, but it shouldn’t be assumed that they are the best solutions and
philosophers may well di�er on what the best solution is.
Some of the exercises are inspired by past examination papers set by James

Studd, Gabriel Uzquiano and me. Peter and I thank the former two for allowing
us to use their ideas here. Finally I would like to thank Peter for all the e�ort he
has put into these pages.

Volker Halbach, January 2014
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1 Sets, Relations and Arguments

Exercise 1.1. Consider the following sets:
(i) ∅
(ii) {Mercury, Earth}
(iii) {Mercury, {Earth}}
(iv) {Mercury, Earth, ∅}

(v) {Mercury, Earth, Mercury}
(vi) {Mercury, Venus, Earth, Mars}
(vii) {Earth, the planet closest to the sun}
(viii) {x ∶ x is one of the four planets closest to the sun}
(ix) {x ∶ x is Neptune and one of the four planets closest to the sun}
(x) the set containing Mercury, Earth, and the four planets closest to the sun

Which of the indices (i)–(x) list the same set?

Exercise 1.2. Consider the following relation R:

{⟨Earth, Venus⟩, ⟨Venus, Earth⟩, ⟨Venus, Mars⟩, ⟨Mars, Mars⟩}

(a) Draw a diagram of R.
(b) Determine whether R is re�exive on {Venus, Earth, Mars} and whether it
is symmetric.

(c) Let S be the smallest transitive relation containing all elements of R. Write
down S as R is written down above, and draw a diagram of S.

(d) Determine whether S is re�exive on {Venus, Earth, Mars} and whether it
is symmetric.
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1 Sets, Relations and Arguments 3

Exercise 1.3. Consider the following relations:
(i) the relation containing all pairs of persons ⟨d , e⟩ such that e is d’s mother,
(ii) the relation containing all pairs of persons ⟨d , e⟩ such that e and d have

the same mother,
(iii) the relation containing all pairs of persons ⟨d , e⟩ such that e is distinct

from d.
Let S be the set of all persons. Determine for each of the relations (i)–(iii)
(a) whether it is re�exive on S,
(b) whether it is symmetric,
(c) whether it is asymmetric,
(d) whether it is antisymmetric,
(e) whether it is transitive,
(f) whether it is a function,
(g) whether it is an equivalence relation on S.

Exercise 1.4. Consider the following relation R:

{⟨, ⟩, ⟨, ⟩, ⟨, ⟩, ⟨, ⟩, ⟨, ⟩, ⟨, ⟩}.

Check for yourself that R is a function.
(a) Specify the domain and range of R by enumerating their elements.
(b) Specify the set S of sets M such that R is a function into M without
reference to R.

Exercise 1.5. A set A is a subset of a set B if and only if all elements of A are also
elements of B. Establish the following claims:
(a) �ere is a set which is the subset of the empty set.
(b) If A is a subset of B and B is a subset of A, then A is B.
(c) For any relation R, any set B and any subset A of B, if R is transitive on B,
it is also transitive on A.

(d) �ere is some relation R, some set B and some subset A of B such that R
is transitive on A but not transitive on B.

(e) �ere is a relation R, subset S of R and set A such that R is transitive on A
but S is not transitive on A.
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1 Sets, Relations and Arguments 4

(f) �ere is a relation R, subset S of R and set A such that S is transitive on A
but R is not transitive on A.

Exercise 1.6. (a) Show that every asymmetric relation is antisymmetric.
(b) Show there is an antisymmetric relation which is not asymmetric.
(c) Show that there is a relation which is neither symmetric nor asymmetric
nor antisymmetric.

(d) Show that the empty set is a relation which is symmetric, asymmetric and
antisymmetric. Show that it is the only relation which is both symmetric
and asymmetric.

(e) Show that there is a relation which is symmetric, antisymmetric and not
empty.

(f) Show that there is a relation which is asymmetric, antisymmetric and not
empty.

Exercise 1.7. Consider any function R. Let S be the relationwhich holds between
elements of the domain of R if and only if they are mapped to the same element
by R. In other words, let S be the set of pairs ⟨d , e⟩ for which there is an f such
that R contains both ⟨d , f ⟩ and ⟨e , f ⟩. Show that S is an equivalence relation on
the domain of R.

Exercise 1.8. Identify the premises and conclusions in the following arguments
and determine whether they are logically valid.
(i) Since the sky is blue, the sky is colored.
(ii) All reptiles are mammals. No crocodile is a mammal. �erefore no

crocodile is a reptile.
(iii) Paula is cold; this is because she shivers and if someone is cold, they shiver.
(iv) �ere are no mammals which lay eggs. It follows that humans are not

mammals, since the platypus is a mammal which lays eggs.
(v) All birds �y and no birds �y.�erefore there are no birds.
(vi) �ere are no animals, since all �sh swim and no �sh swim.
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1 Sets, Relations and Arguments 5

Exercise 1.9. (a) Show, in your own words, that an argument is valid if and
only if the set obtained by adding the negation of the conclusion to the
premises is inconsistent.

(b) Show that two logically equivalent sentences are either both logical truths
or both not logical truths.
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Answers for Chapter 1

Answer to 1.1. Since Neptune is not one of the four planets closest to the sun,
nothing is both Neptune and one of the four planets closest to the sun.�erefore
∅ = {x ∶ x is Neptune and one of the four planets closest to the sun}, so (i) and
(ix) list the same set.

{Mercury, Earth} = {Mercury, Earth, Mercury,}, and as Mercury is the
planet closest to the sun, also {Mercury, Earth} = {Earth, the planet closest to
the sun}. So (ii), (v) and (vii) list the same set. Note that {Earth} (i.e., the set
containing only Earth) is not identical to Earth, so {Mercury, {Earth}} is distinct
from {Mercury, Earth}. {Mercury, Earth, ∅} is also distinct from {Mercury,
Earth} since only the former contains ∅ as an element.
Mercury, Venus, Earth and Mars are the four planets closest to the sun, so

{Mercury, Venus, Earth, Mars} is identical to {x ∶ x is one of the four planets
closest to the sun} as well as the set containing Mercury, Earth, and the four
planets closest to the sun. So (vi), (viii) and (x) list the same set.

Answer to 1.2.
(a)

Earth
,,
Venusll

��
MarsYY

(b) R is not re�exive on {Venus, Earth, Mars} as it contains neither ⟨Earth,
Earth⟩ nor ⟨Venus, Venus⟩. R is not symmetric as it contains ⟨Venus,
Mars⟩ but not ⟨Mars, Venus⟩.
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1 Sets, Relations and Arguments 7

(c) Any transitive relation containing all elements of R must contain ⟨Earth,
Mars⟩, ⟨Earth, Earth⟩, ⟨Venus, Venus⟩. �e set containing these pairs
and those in R is a transitive relation, hence S is {⟨Earth, Venus⟩, ⟨Venus,
Earth⟩, ⟨Venus, Mars⟩, ⟨Mars, Mars⟩, ⟨Earth, Mars⟩,
⟨Earth, Earth⟩, ⟨Venus, Venus⟩}.

Earth
,,

$$

��
Venusll

��

��

MarsYY

(d) S is re�exive. As in (b), S is not symmetric.

Answer to 1.3. (i) is not re�exive on S since some person is not their own
mother. (i) is not symmetric since some person is not their mother’s mother.
(i) is asymmetric since no person is their mother’s mother. (i) is antisymmetric
since, as just noted, there are no persons d and e such that e is d’s mother and
d is e’s mother, and therefore trivially, for any such persons, d is e. (i) is not
transitive since there is a person such that their mother’s mother is not their
mother. (i) is a function since every person has no more than one mother. (i) is
not an equivalence relation S since it is not re�exive on S.
(ii) is re�exive on S since every person has the same mother as themselves.

(ii) is symmetric since if e and d have the same mother, d and e have the same
mother. (ii) is not asymmetric since there are persons d and e who have the same
mother. (ii) is not antisymmetric since there are distinct persons d and e who
have the same mother. (ii) is transitive since if d and e have the same mother
and e and f have the samemother, then e and f have the samemother. (ii) is not
a function since for some person d, there are two distinct persons e and e′ such
that d and e and d and e′ have the same mother. (ii) is an equivalence relation
on S, since, as we have argued, (ii) is re�exive on S, transitive and symmetric.
(iii) is not re�exive on S since no person is distinct from themselves. (iii) is

symmetric since if one person is distinct from another, then the latter is distinct
from the former. (iii) is not asymmetric since there are persons d and e who are
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1 Sets, Relations and Arguments 8

distinct from another. (iii) is not antisymmetric since there are distinct persons d
and e who are distinct from another. (iii) is not transitive since there are persons
d and e such that d is distinct from e and e is distinct from d, but of course d is
not distinct from d. (iii) is not a function since there is a person who is distinct
from two distinct persons. (iii) is not an equivalence relation on S since it is not
re�exive on S.

Answer to 1.4.
(a) �e domain of R is the set {, , , , , }. �e range of R is the set

{, , , , , }.
(b) S is the set {M ∶ M is a set such that , , , , , and  are elements of

M}.

Answer to 1.5.
(a) All elements of the empty set are elements of the empty set, therefore the
empty set is a subset of the empty set.

(b) If A is a subset of B and B is a subset of A, then every element of A is an
element of B and every element of B is an element of A. Hence such sets
A and B contain the same members and therefore are identical.

(c) Let e , d , f be elements of A such that R contains ⟨d , e⟩ and ⟨e , f ⟩. Since A
is a subset of B, e , d , f are also elements of B. R is transitive on B, therefore
it must contain ⟨d , f ⟩. Hence R is transitive on A.

(d) Let R = {⟨, ⟩, ⟨, ⟩}, B = {, , } and A = ∅. Since A is the empty set it
is a subset of B and transitive on A. But as R does not contain ⟨, ⟩, R is
not transitive on B.

(e) Let R = {⟨, ⟩, ⟨, ⟩, ⟨, ⟩}, S = {⟨, ⟩, ⟨, ⟩} and A = {, , }. R is
transitive on A, but as in (c), S is not transitive on A.

(f) Let R = {⟨, ⟩, ⟨, ⟩}, S = ∅ and A = {, , }. S is transitive on A, but as
in (c), R is not transitive on A.
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1 Sets, Relations and Arguments 9

Answer to 1.6.
(a) Let R be an asymmetric relation. For R not to be antisymmetric, there
would have to be distinct d and e such that ⟨d , e⟩ and ⟨e , d⟩. But since R
is asymmetric, there are no such elements, hence R is also antisymmetric.

(b) R = {⟨, ⟩} is antisymmetric but not asymmetric.
(c) Let R = {⟨, ⟩, ⟨, ⟩, ⟨, ⟩}. R is not symmetric since it contains ⟨, ⟩
but not ⟨, ⟩. R is neither asymmetric nor antisymmetric since it contains
both ⟨, ⟩ and ⟨, ⟩.

(d) Since the empty set contains no pairs ⟨d , e⟩, it trivially satis�es the condi-
tions for being symmetric, asymmetric and antisymmetric. Consider any
relation R distinct from the empty set. Since it is not empty, R contains
some pair ⟨d , e⟩. If R is asymmetric, it does not contain ⟨e , d⟩ as well,
hence it is not symmetric. So R is not both symmetric and antisymmetric.
�us ∅ is the only relation which is both symmetric and asymmetric.

(e) R = {⟨, ⟩} is symmetric, antisymmetric and not empty.
(f) R = {⟨, ⟩} is asymmetric, antisymmetric and not empty.

Answer to 1.7. We �rst prove that S is re�exive on the domain of R. For any d
in the domain of R, there is an e such that R contains ⟨d , e⟩, and so S contains
⟨d , d⟩.�erefore S is re�exive on the domain of R.
For symmetry, consider any d and e such that ⟨d , e⟩ ∈ S.�en there is an f

such that R contains both ⟨d , f ⟩ and ⟨e , f ⟩. So R contains ⟨e , f ⟩ and ⟨d , f ⟩, and
therefore ⟨e , d⟩ ∈ S.�erefore S is symmetric.
For transitivity, consider any d, e and f such that ⟨d , e⟩ ∈ S and ⟨e , f ⟩ ∈ S.

�en there are g and h such that R contains ⟨d , g⟩, ⟨e , g⟩, ⟨e , h⟩ and ⟨ f , h⟩. Since
F is a function, it follows from ⟨e , g⟩ and ⟨e , h⟩ that g = h. Hence there is an i
(namely g, which is identical to h) such that R contains both ⟨d , i⟩ and ⟨ f , i⟩,
and so ⟨d , f ⟩ ∈ S.�erefore S is transitive.
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1 Sets, Relations and Arguments 10

Answer to 1.8. I only identify the conclusion of each argument.
(i) ‘�e sky is colored’.�is argument is not logically valid.
(ii) ‘No crocodile is a reptile’.�is argument is logically valid.
(iii) ‘Paula is cold’.�is argument is not logically valid.
(iv) ‘Humans are not animals’.�is argument is logically valid (note that the

set of premises is inconsistent).
(v) ‘�ere are no birds’.�is argument is logically valid.
(vi) ‘�ere are no animals’.�is argument is not logically valid.

Answer to 1.9.
(a) An argument is valid if and only if there is no interpretation under which
the premises are all true and the conclusion is false. Under any interpreta-
tion, the conclusion is false if and only if its negation is true. Hence an
argument is logically valid if and only if there is no interpretation under
which the premises and the negation of the conclusion are all true. So an
argument is logically valid if and only if there is no interpretation under
which all sentences in the set obtained by adding the negation of the con-
clusion to the premises are true; this is the case if and only if this set is
inconsistent.

(b) Let A and B be logically equivalent sentences. A is logically true if and
only if A is true under every interpretation. Since A and B are logically
equivalent, under every interpretation, A is true if and only if B is true.
So A is logically true if and only if B is true under every interpretation,
which is the case if and only if B is logically true.
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2 Syntax and Semantics of Propositional Logic

Exercise 2.1. Describe the di�erent ways in which quotation marks may be
added to the following expressions to obtain true English sentences.
(i) is a closing quotation mark.
(ii) dfswse is an English sentence is obviously an incorrect claim or just non-

sense.
(iii) is identical with
(iv) Achilles denotes Achilles, which in turn denotes Achilles, which is an

expression but not a person.

Exercise 2.2. Establish the following claims using truth tables. You may use
partial truth tables.
(i) ((P → Q)→ P)→ P is a tautology.
(ii) ((P↔ Q)↔ (P↔ R))↔ (Q ↔ R) is a tautology.
(iii) P ∨ Q ,¬P ⊧ Q
(iv) P → Q ,Q → R ⊧ P → R
(v) P → (Q → R), P → Q ⊧ P → R

Exercise 2.3. Classify the following sentences as tautologies, contradictions or
as sentences which are neither.
(i) ((P → P)→ P)→ ((P → P)→ ¬(P → P))
(ii) ((P → P)→ P)→ ((P → P)→ (¬P → P))
(iii) ((P → P)→ P)→ ((P → P)→ (P → ¬P))

Exercise 2.4. Similar to the connective ↓ representing ‘neither . . . nor . . . ’, we
can add to L a connective ↑ representing ‘not both . . . and . . . ’.�is is called the
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2 Syntax and Semantics of Propositional Logic 12

She�er stroke, and can be pronounced ‘nand’. As we can de�ne ϕ ↓ ψ in L as
¬ϕ ∧ ¬ψ, we can de�ne ϕ ↑ ψ in L as ¬(ϕ ∧ ψ).
(a) Write down the truth table for ↑.
(b) Find a formula ofL which de�nes ϕ ↑ ψ and only contains the connectives

¬ and ∨.
(c) Show that (P ↑ P) ↑ P is a tautology.1

(d) Show that P, P ↑ (Q ↑ R) ⊧ R.
(e) Just as we can de�ne ↑ using ¬ and ∧, we can de�ne ¬ and ∧ using ↑. Show
that this is the case; i.e., �nd a propositional sentence containing only
the connective ↑ which is logically equivalent to ¬ϕ, and a propositional
sentence containing only the connective ↑ which is logically equivalent to
ϕ ∧ ψ.

(f) Use the claims established in (e) to argue that the language of propositional
sentences containing only ↑ is truth-functionally complete.

Exercise 2.5. Consider the following relations:
(i) R is the relation containing exactly the pairs ⟨ϕ,ψ⟩ of sentences of L
such that ϕ ∧ ψ is a tautology,

(ii) R is the relation containing exactly the pairs ⟨ϕ,ψ⟩ of sentences of L
such that {ϕ,ψ} is semantically consistent,

(iii) R is the relation containing exactly the pairs ⟨ϕ,ψ⟩ of sentences of L
such that ϕ ⊧ ψ,

(iv) R is the relation containing exactly the pairs ⟨ϕ,ψ⟩ of sentences of L
such that ϕ and ψ are logically equivalent.

Determine for each of these relations
(a) whether it is re�exive on the set of sentences of L,
(b) whether it is symmetric,
(c) whether it is transitive.

1 Strictly speaking, we have not de�ned what it means for a sentence including ↑ to be a tautology,
since the notion of a tautology is only de�ned for sentences of L, which does not include ↑. But
given the truth-table of ↑, it requires no changes to the de�nition of a tautology to apply it to
sentences involving ↑ as well, and this is what is intended in this exercise. Similarly remarks apply
to (d) and (e).
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2 Syntax and Semantics of Propositional Logic 13

Exercise 2.6. Classify each of the following sets as semantically consistent or
inconsistent.
(i) {ϕ ∶ ϕ is a sentence letter}
(ii) {¬ϕ ∶ ϕ is a sentence letter}
(iii) {ϕ ∶ ϕ is a sentence of L not containing ¬}

Exercise 2.7. Let ϕ and ψ be sentences of L. Determine which of the following
claims are correct.
(i) ϕ is a tautology if and only if ¬ϕ is a contradiction.
(ii) ϕ and ψ are logically equivalent if and only if ϕ ⊧ ψ and ψ ⊧ ϕ.
(iii) If ϕ is a tautology if and only if ψ is a tautology then ϕ and ψ are logically

equivalent.
(iv) If ϕ and ψ are logically equivalent then ϕ is a tautology if and only if ψ is

a tautology.

Exercise 2.8. Show that�eorem 2.14 is correct, i.e., that for any sentences ψ,
. . . , ψn and ϕ of L, ψ, . . . ,ψn ⊧ ϕ if and only if ψ ∧ ⋅ ⋅ ⋅ ∧ ψn → ϕ is a tautology.

Exercise 2.9. Let ϕ be a sentence of L and Γ and ∆ be sets of sentences of L.
We write Γ ∪ ∆ for the set of sentences which are contained in at least one of the
sets Γ and ∆; this is called the union of Γ and ∆. Show that the following claims
are correct.
(i) ϕ ⊧ ϕ
(ii) If Γ ⊧ ϕ then Γ ∪ ∆ ⊧ ϕ.
(iii) If Γ ⊧ ϕ and ∆ ⊧ ψ for all ψ ∈ Γ then ∆ ⊧ ϕ.
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Answers for Chapter 2

Answer to 2.1.
(i) ‘” is a closing quotation mark.
(ii) �ere are in�nitely many solutions. Two natural solutions are:

‘dfswse is an English sentence’ is obviously an incorrect claim
or just nonsense.
‘‘dfswse’ is an English sentence’ is obviously an incorrect claim
or just nonsense.

But any way of inserting quotation marks in ‘dfswse is an English sentence’
produces an obviously incorrect claim or just nonsense, hence any such
way yields a true English sentence when applied to the relevant part of
(ii).

(iii) Again, there are in�nitely many solutions, since for any string σ of quota-
tion marks – opening or closing – the following is a true English sentence:

‘σ ’ is identical with ‘σ ’
(iv) �ere are also in�nitely many solutions to this exercise. For any strings of

quotation marks σ and σ, the following is a true English sentence:
‘‘‘σAchillesσ’’’ denotes ‘‘σAchillesσ’’, which in turn denotes
‘σAchillesσ’, which is an expression but not a person.

Answer to 2.2. Solutions omitted.

Answer to 2.3. (i) is a contradiction and (ii) a tautology; this can be established
using partial truth tables. (iii) is neither a tautology nor a contradiction; this is
because (iii) is true in the L-structure which assigns T to every sentence letter,
and (iii) is false in any L-structure which assigns F to P and P.
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2 Syntax and Semantics of Propositional Logic 15

Answer to 2.4.
(a) �e truth table for ↑ is:

ϕ ψ ϕ ↑ ψ
T T F
T F T
F T T
F F T

(b) ¬ϕ ∨ ¬ψ de�nes ϕ ↑ ψ.
(c) �is can be established using a partial truth table.
(d) Likewise.
(e) ϕ ↑ ϕ is logically equivalent to ¬ϕ.

(ϕ ↑ ψ) ↑ (ϕ ↑ ψ) is logically equivalent to ϕ ∧ ψ.
(f) Recall that all truth tables can be produced using propositional sentences
containing only ¬ and ∧. In (e) we have established that both ¬ϕ and
ϕ ∧ ψ can be de�ned using ↑. Hence every truth table can be produced
using propositional sentences containing only ↑. So the language of propo-
sitional sentences containing only ↑ is truth-functionally complete.

Answer to 2.5. R is not re�exive on the set of sentences of L since P ∧ P is not
a tautology. R is symmetric and transitive.

R is not re�exive on the set of sentences of L since {P ∧ ¬P, P ∧ ¬P} is
not semantically consistent. R is symmetric. R is not transitive, since {P,Q}

and {Q ,¬P} are both semantically consistent but {P,¬P} is not semantically
consistent.

R is re�exive on the set of sentences of L. R is not symmetric since
P ⊧ P ∨ Q but not P ∨ Q ⊧ P. R is transitive.

R is re�exive on the set of sentences of L, symmetric and transitive.

Answer to 2.6. All three sets are semantically consistent:
�e sentences of (i) are all true in the L-structure which assigns T to every

sentence letter.
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2 Syntax and Semantics of Propositional Logic 16

�e sentences of (ii) are all true in the L-structure which assigns F to every
sentence letter.

�e sentences of (iii) are all true in the L-structure which assigns T to
every sentence letter. To demonstrate this last claim, note if ϕ and ψ are true
in an L-structure, then ϕ ∧ ψ, ϕ ∨ ψ, ϕ → ψ and ϕ ↔ ψ are all true in this
structure as well.�us a sentence built up using only these connectives is true
in an L-structure given that all of the sentence letters occurring in it are true
in this structure. Since the only connective besides ∧, ∨, → and↔ in L is ¬,
it follows that any sentence of L not containing ¬ is true in the L-structure
which assigns T to every sentence letter.

Answer to 2.7. (i) is correct: ϕ is a tautology if and only if ϕ is true in every
L-structure. In any L-structure, ϕ is true if and only if ¬ϕ is false, so ϕ is true
in every L-structure if and only if ¬ϕ is false in every L-structure. ¬ϕ is a
contradiction if and only if ¬ϕ is false in every L-structure. �erefore ϕ is a
tautology if and only if ¬ϕ is a contradiction.
(ii) is correct: ϕ ⊧ ψ if and only if ψ is true in every L-structure in which

ϕ is true, and ψ ⊧ ϕ if and only if ϕ is true in every L-structure in which ψ is
true. So ϕ ⊧ ψ and ψ ⊧ ϕ if and only if ϕ and ψ are true in exactly the same
L-structures, which is the case if and only if ϕ and ψ are logically equivalent.
(iii) is incorrect: neither P nor Q is a tautology, so P is a tautology if and

only if Q is a tautology, but P and Q are not logically equivalent.
(iv) is correct: if ϕ and ψ are logically equivalent, then ϕ and ψ are true in

exactly the same L-structures, so ϕ is true in all L-structures if and only if ψ is
true in all L-structures; therefore, ϕ is a tautology if and only if ψ is a tautology.

Answer to 2.8. ψ, . . . ,ψn ⊧ ϕ if and only if there is no L-structure in which
all of ψ, . . . ,ψn are true but ϕ is false. In any L-structure, all of ψ, . . . ,ψn are
true if and only if ψ ∧ ⋅ ⋅ ⋅ ∧ψn is true. Further, in any L-structure, ψ ∧ ⋅ ⋅ ⋅ ∧ψn
is true and ϕ is false if and only if ψ ∧ ⋅ ⋅ ⋅ ∧ ψn → ϕ is false. So ψ, . . . ,ψn ⊧ ϕ if
and only if there is no L-structure in which ψ ∧ ⋅ ⋅ ⋅ ∧ ψn → ϕ is false, which in
turn is the case if and only if ψ ∧ ⋅ ⋅ ⋅ ∧ ψn → ϕ is a tautology.
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2 Syntax and Semantics of Propositional Logic 17

Answer to 2.9. (i)�ere is no L-structure in which ϕ is true and ϕ is false, so
ϕ ⊧ ϕ.
(ii) If Γ ⊧ ϕ then ϕ is true in all L-structures in which all sentences in Γ

are true. Since all sentences in Γ are in Γ ∪ ∆, every L-structure in which all
sentences of Γ ∪∆ are true is an L-structure in which all sentences of Γ are true.
So every L-structure in which all sentences of Γ ∪ ∆ are true is an L-structure
in which ϕ is true, and therefore Γ ∪ ∆ ⊧ ϕ.
(iii) If ∆ ⊧ ψ for all ψ ∈ Γ, then in every L-structure in which all sentences

in ∆ are true, all sentences of Γ are true. If also Γ ⊧ ϕ, then in every L-structure
in which all sentences in Γ are true, ϕ is true as well.�us in every L-structure
in which all sentences in ∆ are true, ϕ is true as well, and therefore ∆ ⊧ ϕ.
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3 Formalization in Propositional Logic

Exercise 3.1. Which of the following connectives are truth-functional? Draw
truth tables for each of them, indicating failures of truth-functionality using ‘?’.
(i) It’s possible that A.
(ii) It’s not necessary that A, but it’s not possible that A is not the case.
(iii) Neither A nor B.
(iv) Some Roman knew that A.
(v) �e Romans knew that A because the Greeks knew that B.
(vi) A few Romans knew that A because Jupiter told them.

Exercise 3.2. Discuss whether the following argument is valid. What does this
show us about using the connective→ to formalize ‘if ’ in English?

If the accused didn’t commit the crime, then someone else did;
therefore if the accused hadn’t committed the crime, then someone
else would have.

Exercise 3.3. Formalize the following two arguments as valid arguments in L,
rewording the premisses as necessary. Demonstrate the validity of the arguments
using full or partial truth tables.
(i) If both Alice and Barbara admit to having hacked into government com-
puters, then neither of them will receive a prison sentence. But if either of
them admits to having hacked into a computer while the other doesn’t,
she will be sentenced to imprisonment while the other won’t. So unless
both don’t admit the deed, it cannot happen that both receive a prison
sentence.
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3 Formalization in Propositional Logic 19

(ii) God is omnibenevolent. It follows that causation is non-transitive. For
supposing causation to be transitive, given that God caused the existence
and �ourishing of humankind, it must also be the case that God caused
global climate change if humankind’s existence and �ourishing did. Every
honest scientist knows that exactly this human activity did cause our
present climate predicament. But although every good Christian knows
that God created humankind and caused it to �ourish, a God behind
global climate change is far from omnibenevolent.

Exercise 3.4. Determine the scopes of the underlined occurrences of connectives
in the following sentences, which have been abbreviated in accordance with the
bracketing conventions.
(i) P ∧ P ∧ P ∧ P
(ii) P↔ Q ∨ ¬R
(iii) R → ((P ∨ Q) ∧ ¬P→ Q)

(iv) P ∧ (Q ∨ R) ∧ P → R ∧ R

Exercise 3.5. Consider the following sentences:
(i) If Alice is happy she forgot Bob’s birthday and she is at a party.
(ii) Alice forgot Bob’s birthday and is at a party or is not happy.
Both of them are ambiguous.
(a) Determine all possible readings of both sentences.
(b) Formalize all readings of both sentences in the language of propositional
logic, using the same dictionary.

(c) �e di�erent formalizations of (i) and (ii) give rise to several formalizations
of the argument whose single premise is (i) and whose conclusion is (ii).
Determine which of these are valid.
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3 Formalization in Propositional Logic 20

Exercise 3.6. Formalize the following sentences in the language of propositional
logic. Your formalizations should be as detailed as possible. If there are several
equally natural formalizations – e.g., if the sentence is ambiguous – list all of
them and describe the di�erences.
(i) 105 is divisible by 3, 5 and 7.
(ii) 15 is the sum of 3, 5 and 7.
(iii) Alice married and got pregnant.
(iv) Anne and Barbara carried the piano and sweated.

Exercise 3.7. Consider the following arguments:
(i) Antonia is a mammal. If Antonia is a mammal, she is mortal.�erefore
Antonia is mortal.

(ii) Antonia is a mammal. Every mammal is mortal. �erefore Antonia is
mortal.

(iii) Antonia is a mammal. Antonia is not a mammal.�erefore Antonia is
mortal.

(iv) It is not the case that if Antonia is a mammal, she is mortal. Antonia is
not a mammal.�erefore Antonia is mortal.

For each of these arguments
(a) formalize it in propositional logic,
(b) determine whether it is propositionally valid,
(c) determine whether it is valid.
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Answers for Chapter 3

Answer to 3.1.
(i) Not truth-functional.�e sentences ‘�ere are only �nitely many primes’
and ‘�ere are no donkeys’ are both false, but it is possible that there are
no donkeys and not possible that there are �nitely many primes.

A It’s possible that A.
T T
F ?

(ii) Truth-functional. It is necessary that A if and only if it is not possible
that A is not the case, so it cannot be the case that it is both not necessary
that A and not possible that A is not the case. Hence such a compound
sentence is false for every sentence A.

A It’s not necessary that A,
but it’s not possible that A is not the case.

T F
F F

(iii) Truth-functional. ‘Neither A nor B’ is true if and only if both A and B are
false.

A B Neither A nor B.
T T F
T F F
F T F
F F T
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3 Formalization in Propositional Logic 22

(iv) Not truth-functional.�e sentences ‘2+2=4’ and ‘π is irrational’ are both
true, but some Roman knew that 2+2=4 and no Roman knew that π is
irrational.

A Some Roman knew that A.
T ?
F F

(v) Not truth-functional. �e Romans learned much from the Greeks, so
there are some true sentences A and B such that ‘�e Romans knew that A
because the Greeks knew that B’ is true. But ‘π is irrational’ is true as well,
and it is not the case that the Romans knew that π is irrational because
the Greeks knew that π is irrational.

A B �e Romans knew that A
because the Greeks knew that B.

T T ?
T F F
F T F
F F F

(vi) Truth-functional.�ere is no Jupiter, so Jupiter did not tell any Roman
anything, and therefore for every sentence A, ‘A few Romans knew that A
because Jupiter told them’ is false.

A A few Romans knew that A because Jupiter told them.
T F
F F

Answer to 3.2. �is argument is not valid according to Characterization 1.9 of
logical validity. One of many ways of showing that this is the case is the following:
Consider the interpretation on which ‘the accused’ is interpreted as ‘Oswald’
and ‘crime’ as ‘murder of JFK’. If Oswald didn’t commit the murder of JFK, then
someone else did, but it is not the case that if Oswald hadn’t committed the
murder of JFK, then someone else would have. So there is an interpretation of
the argument under which the premise is true and the conclusion false, and so
the argument is not valid.
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If we were to formalize the argument using ¬P → Q for the premise as well
as the conclusion, where

P: �e accused committed the crime.
Q: Someone other than the accused committed the crime.

then the argument would be propositionally valid, and therefore valid. But as
argued above, the argument is not valid, so this formalization is not adequate.
�e culprit is the conclusion; a counterfactual conditional can be false even
though its antecedent is false.�e example therefore shows that even though
counterfactual conditionals are constructed in English using ‘if ’ (and sometimes
‘then’), they can not be formalized using→.

Answer to 3.3. (i)�e argument can be formalized as the following valid
argument in L:

P ∧ P → ¬Q ∧ ¬Q,
¬(P ↔ P)→ (P ↔ Q) ∧ (P ↔ Q)

⊧ Q ∧ Q → ¬P ∧ ¬P
P: Alice admits to having hacked into government computers.
P: Barbara admits to having hacked into government comput-

ers.
Q: Alice will receive a prison sentence.
Q: Barbara will receive a prison sentence.

Truth table omitted.
(ii)�e argument can be formalized as the following valid argument in L:
P,Q → (P → (R → P)), R, P, P → ¬P ⊧ ¬Q

P: God is omnibenevolent.
P: God caused the existence and �ourishing of humankind.
P: God caused global climate change.
Q: Causation is transitive.
R: Humankind’s existence and �ourishing caused global cli-

mate change.

Truth table omitted.
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3 Formalization in Propositional Logic 24

Answer to 3.4. I have underbraced the respective scopes, and added the brackets
that have been dropped in accordance with the bracketing conventions.
(i) (((P ∧ P) ∧ P)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∧P)

(ii) (P↔ (Q ∨ ¬R))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(iii) (R → (((P ∨ Q) ∧ ¬P)→ Q)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

)

(iv) (((P ∧ (Q ∨ R)) ∧ P)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

→ (R ∧ R))

Answer to 3.5. (a)�ere are two readings of (i). According to the �rst, the
consequent of the conditional is ‘she forgot Bob’s birthday’; according to the
second, it is ‘she forgot Bob’s birthday and she is at a party’.�ere are also two
readings of (ii). According to the �rst, the �rst disjunct is ‘Alice forgot Bob’s
birthday and is at a party’; according to the second, the second conjunct is ‘[Bob]
is at a party or is not happy’.
(b) I will use the following dictionary:

P: Alice is happy.
Q: Alice forgot Bob’s birthday.
R: Alice is at a party.

With this, we can formalize the two readings of (i) using (i1) and (i2), and the
two readings of (ii) using (ii1) and (ii2):
(i1) (P → Q) ∧ R
(i2) P → (Q ∧ R)
(ii1) (Q ∧ R) ∨ ¬P
(ii2) Q ∧ (R ∨ ¬P)
(c) (ii1) follows logically from (i1), and (ii1) follows logically from (i2).�is

can be shown using partial truth tables. (ii2) does not follow logically from (i1),
and (ii2) does not follow logically from (i2): in any L-structure which assigns F
to P and Q and T to R, both (i1) and (i2) are true and (ii2) is false.
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3 Formalization in Propositional Logic 25

Answer to 3.6. (i) P ∧ Q ∧ R

P: 105 is divisible by 3.
Q: 105 is divisible by 5.
R: 105 is divisible by 7.

(ii) P

P: 15 is the sum of 3, 5 and 7.

(iii) In some circumstances, it is natural to formalize this as follows: P ∧ Q,
where

P: Alice married.
Q: Alice got pregnant.

P ∧Q is logically equivalent to the sentence Q ∧ P, which is most naturally read
as formalizing ‘Alice got pregnant and married’. But in some circumstances, we
intend to convey di�erent things with these two sentences; in particular, they
might be used to convey information about the temporal order of the relevant
events. In this case, the sentence must be formalized simply as P, where

P: Alice married and got pregnant.

(iv)�e sentence is ambiguous. It is most naturally read as saying that Anne
and Barbara carried the piano together. On the less natural reading, it says that
Anne and Barbara each carried the piano individually – presumably at di�erent
moments in time.�e �rst reading can be formalized as P ∧ Q ∧ R, where

P: Anne and Barbara carried the piano.
Q: Anne sweated.
R: Barbara sweated.

�e second reading can be formalized as P ∧ P ∧ Q ∧ Q, where

P: Anne carried the piano.
P: Barbara carried the piano.
Q: Anne sweated.
Q: Barbara sweated.
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3 Formalization in Propositional Logic 26

Answer to 3.7. (i) Premises: P, P → Q; conclusion: Q.

P: Antonia is a mammal.
Q: Antonia is mortal.

P, P → Q ⊧ Q, so the argument is propositionally valid, and therefore also valid.
(ii) Premises: P, Q; conclusion: R.

P: Antonia is a mammal.
Q: Every mammal is mortal.
R: Antonia is mortal.

R does not follow from P and Q, so the argument is not propositionally valid. It
is valid.
(iii) Premises: P, ¬P; conclusion: Q.

P: Antonia is a mammal.
Q: Antonia is mortal.

P,¬P ⊧ Q, so the argument is propositionally valid, and therefore also valid.
�e argument might strike one as invalid, but it is clearly valid according to

Characterization 1.9; see the discussion in section 3.6 of theManual.
(iv) It is natural to try to formalize the premises using ¬(P → Q) and ¬P

and the conclusion using Q, where

P: Antonia is a mammal.
Q: Antonia is mortal.

¬(P → Q),¬P ⊧ Q, so if this was an adequate formalization, it would follow
that the argument is propositionally valid, and therefore also valid.
As in (iii), the argument might strike one as invalid. And as in (iii), one

might try to explain this away by arguing that we are confused by the fact that
the premises are inconsistent (note that P is true in any L-structure in which
¬(P → Q) is true). But informally, the premises are plausibly not inconsistent.
�is is because it is natural to read the �rst premise (‘It is not the case that if
Antonia is a mammal, she is mortal.’) as expressing only that it does not follow
(in some sense) from Antonia being a mammal that she is mortal.�us in this
case, ‘if . . . then . . . ’ might not be correctly formalized using →. �erefore, it
might be better to formalize the premises using ¬P and ¬Q, and the conclusion
using R, where
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P: If Antonia is a mammal, she is mortal.
Q: Antonia is a mammal.
R: Antonia is mortal.

R does not follow from ¬P and ¬Q, so the argument would then not be proposi-
tionally valid, and it would therefore no longer follow that it is valid.
Which of these formalizations is in fact the most adequate one and whether

the argument is in fact valid depends on subtle issues concerning ‘if . . . then . . . ’
in English, which we can’t settle here.
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4 �e Syntax of Predicate Logic

Exercise 4.1. Determine which of the following expressions are formulas of L
and which are also sentences of L. For every formula of L, add the omitted
arity indices to all predicate letters and mark all free occurrences of variables.
(i) ∃x(∀xRxx ∧ ¬∃xQxx)
(ii) ∀a(Pa → Qy)
(iii) ∃y(Ryy)
(iv) ∃z(Pzz ∨ Pzzz)
(v) ∃x(∃xRxy↔ ∃yRxy)
(vi) ∀zPcz
(vii) ∀xPxyz ∧ ∀yPxyz ∧ ∀zPxyz
(viii) ¬(∃xRxa)

Exercise 4.2. Formalize the following English sentences in L. Make the for-
malizations as detailed as possible, and explicitly specify a dictionary.
(i) Anton is a zebra.
(ii) All marmots are furry.
(iii) Some whales are large mammals.
(iv) Some chameleons can run faster than every penguin.
(v) �e octopus is using the coconut shell to hide from the moray.
(vi) Tina likes all llamas.
(vii) Tina likes every llama which likes itself.
(viii) Tina likes all llamas which like all llamas.
(ix) Tina likes all and only those llamas which like all and only those llamas

Tina likes.
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Exercise 4.3. Formalize the following English sentences in the language L of
predicate logic using the dictionary below.

a: the empty set
P: . . . is a set
Q: . . . is an ordered pair
R: . . . is a binary relation
R: . . . has . . . as an element

(i) Something is not a set.
(ii) Not every set is an ordered pair.
(iii) �e empty set is both a set and a binary relation, but not an ordered pair.
(iv) �e empty set has no elements.
(v) Everything is an element of some set, but no set has everything as an
element.

(vi) Anything which has itself as an element is not a set.
(vii) A set is a binary relation if and only if it has only ordered pairs as elements.
(viii) For every set, there is a set whose elements are exactly the sets whose

elements are elements of the �rst set.
(ix) Every non-empty set has an element which is either not a set or has no

elements which are also elements of the �rst set.

Exercise 4.4. Translate the following sentences of L into idiomatic English
using the following dictionary:

R: . . . is a part of . . .

(i) ∀xRxx
(ii) ∀x∃yRxy
(iii) ∀y∃xRxy
(iv) ∃x∀yRxy
(v) ∃y∀xRxy
(vi) ∀x∀y∃z(Rxz ∧ Ryz)
(vii) ∀x∃y(Ryx ∧ ¬∃z(Rzy ∧ ¬Ryz))
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Answer to 4.1. Wemark free variables by underlining them.
(i) ∃x(∀xRxx ∧ ¬∃xQxx) is a formula and a sentence.
(ii) ∀a(Pa → Qy) is not a formula of L since a is not a variable.
(iii) ∃y(Ryy) is not a formula of L because of the presence of the brackets.
(iv) ∃z(Pzz ∨ Pzzz) is a formula but not a sentence.
(v) ∃x(∃xRxy↔ ∃yRxy) is a formula but not a sentence.
(vi) ∀zPcz is a formula and a sentence.
(vii) ∀xP

 xyz ∧ ∀yP

 xyz ∧ ∀zP


 xyz is a formula but not a sentence.

(viii) ¬(∃xRxa) is not a formula of L because of the presence of the brackets.

Answer to 4.2.
(i) Pa

a: Anton
P: . . . is a zebra

(ii) ∀x(Px → Qx)

P: . . . is a marmot
Q: . . . is furry

(iii) ∃x(Px ∧ Qx)

P: . . . is a whale
Q: . . . is a large mammal

(iv) ∃x(Px ∧ ∀y(Qy → Rxy))

P: . . . is chameleon
Q: . . . is a penguin
R: . . . can run faster than . . .

(v) Pabc
a: the octopus
b: the coconut shell
c: the moray

P: . . . is using . . . to hide from . . . .
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(vi) ∀x(Px → Qax)
(vii) ∀x(Px ∧ Qxx → Qax)
(viii) ∀x(Px ∧ ∀y(Py → Qxy)→ Qax)
(ix) ∀x(Px → (Qax ↔ ∀y(Py → (Qxy↔ Qay))))

a: Tina
P: . . . is a llama
Q: . . . likes . . .

Answer to 4.3.
(i) ∃x¬Px
(ii) ¬∀x(Px → Qx)
(iii) Pa ∧ Ra ∧ ¬Qa
(iv) ¬∃xRax
(v) ∀x∃y(Py ∧ Ryx) ∧ ¬∃x(Px ∧ ∀yRxy)
(vi) ∀x(Rxx → ¬Px)
(vii) ∀x(Px → (Rx ↔ ∀y(Rxy → Qy)))
(viii) ∀x(Px → ∃y(Py ∧ ∀z(Ryz↔ (Pz ∧ ∀x(Rzx → Rxx)))))
(ix) ∀x(Px ∧ ∃yRxy → ∃y(Rxy ∧ (¬Py ∨ ¬∃z(Ryz ∧ Rxz))))

Answer to 4.4.
(i) Everything is a part of itself.
(ii) Everything is a part of something.
(iii) Everything has something as a part.
(iv) Something is a part of everything.
(v) Something has everything as a part.
(vi) For any two things, there is something of which they are both a part.
(vii) Everything has a part which has no part of which it is not also a part.
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Exercise 5.1. Consider an L-structureA such that:

DA = {, , }
∣R∣A = {⟨, ⟩, ⟨, ⟩, ⟨, ⟩, ⟨, ⟩}
∣a∣A = 
∣b∣A = 

Determine whether the following sentences are true or false inA. Sketch proofs
for your answers.
(i) Rab ∧ (Rba → ∃xRxx)
(ii) ∃x∃y(Rxy ∧ Ryx)
(iii) ∀x∃y(Rxy ∨ Ryx)
(iv) ∀x∀y∀z((Rxy ∧ Ryz)→ Rxz)
(v) ∀x(Rxb↔ ∃y(Ryb ∧ Rxy))

Exercise 5.2. Refute each of the following claims by means of a counterexample.
You only need to specify the counterexample; there is no need to show that your
structure is a counterexample.
(i) ¬∀x(Px → ¬Px) is logically true.
(ii) ∀x∃yPxyy ∨ ∃x¬∃y∃zPxyz is logically true.
(iii) ∀x(Px → ∃y(Ryx ∧ Py)) ⊧ ¬∀xPx
(iv) ∀y(∃xRyx ∧ ∃xQyx) ⊧ ∀y∃x(Ryx ∧ Qyx)
(v) ∀x∃y∃z(Qxy ∧ Qzx) ⊧ ∀x∀y∀z(Qxy → (Qyz → Qxz))
(vi) ∀x∀y(Px → (Qy → ¬Rxyx)) ⊧ ∀x∀z(Rxzx → (Qz ∧ ¬Px))
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Exercise 5.3. Specify for each of the following sentences an L-structure in
which it is true.
(i) ∀x(Px → ∃y(Py ∧ Rxy))
(ii) (Rab ∧ ¬Rba) ∧ ∀x∀y∀z(Rxy → (Ryz → Rxz)) ∧ ∀xRxx
(iii) ∀x∃y∃z(Ryxz ∧ Pz ∧ ∃z(Ryxz ∧ ¬Pz))

Exercise 5.4. Recall that a set of L-sentences is semantically consistent if there
is an L-structure in which all members of the set are true. Specify structures to
show that each of the following sets is semantically consistent.
(i) {¬Pc, ((Pa ∧ Pb)→ Pc), Pa}
(ii) {∀x∀y(Rxy↔ ¬Qyx),∀x¬Rxx}
(iii) {∀x(Rxx ∨ Qxx),∀x∀y(Rxy↔ ¬Qxy),¬∀xRxx ,¬∀xQxx}
(iv) {∀x∀y∀z(¬Rxy ∨ ¬Ryz ∨ Rxz),∀x∀y(¬Rxy ∨ Ryx),¬∀xRxx}

Exercise 5.5. Consider the following L-sentence:

∀x∃y∃z(Qxyz ∧ Py ∧ ¬Pz ∧ ¬Qxxz ∧ ¬Qxyx)

Specify an L-structure with as few elements in its domain as possible in which
the sentence is true. Sketch an argument why the sentence is true in the structure
you have speci�ed and explain why it is not true in any L-structure with fewer
elements in its domain.

Exercise 5.6. Note that the syntax of L contains the sentence letters of L as
0-place predicate letters and that the syntax of L allows all of the connectives of
L in building formulas. Consequently, every sentence of L is a sentence of L.
For any set Γ of L-sentences and L-sentence ϕ, show that De�nitions 2.9

and 5.8 agree on whether ϕ follows from Γ. I.e., show that Γ ⊧ ϕ according to
De�nition 2.9 if and only if Γ ⊧ ϕ according to De�nition 5.8.
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Exercise 5.7. Specify a semantically consistent set X of L-sentences containing
no other than unary predicate letters such that every L-structure in which all
of its elements are true has an in�nite domain.
Show that for every �nite set Y of elements of X, there is an L-structure

with a �nite domain in which all elements of Y are true.

Exercise 5.8. Recall that L-structures assign T or F to -ary predicate letters
(i.e., sentence letters), and that for every natural number n ≥ , they assign n-ary
relations to n-ary predicate letters. Recall also the satisfaction clause for atomic
L-sentences:
(i) ∣Φt . . . tn∣αA = T if and only if ⟨∣t∣αA, . . . , ∣tn∣

α
A
⟩ ∈ ∣Φ∣α

A
, where Φ is an

n-ary predicate letter (n must be 1 or higher), and each of t, . . . , tn is
either a variable or a constant.

�ere are unique sets X and Y such that if T = X and F = Y , then we can drop
the special treatment of sentence letters in both the de�nition of L-structures
and the satisfaction clauses. Which sets are X and Y?
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Answer to 5.1.
(i) Rab ∧ (Rba → ∃xRxx) is true inA. We �rst show that Rab is true inA:

⟨, ⟩ ∈ {⟨, ⟩, ⟨, ⟩, ⟨, ⟩, ⟨, ⟩}
⟨∣a∣A, ∣b∣A⟩ ∈ ∣R∣A
∣Rab∣A = T De�nition 5.2(i) (*)

We now show that Rba is false inA:

⟨, ⟩ ∉ {⟨, ⟩, ⟨, ⟩, ⟨, ⟩, ⟨, ⟩}
⟨∣b∣A, ∣a∣A⟩ ∉ ∣R∣A
∣Rba∣A = F De�nition 5.2(i)
∣Rba → ∃xRxx∣A = T De�nition 5.2(v)
∣Rab ∧ (Rba → ∃xRxx)∣A = T De�nition 5.2(iii) and line (*)

(ii) ∃x∃y(Rxy ∧ Ryx) is true in A. Let α be a variable assignment over A
such that ∣x∣α

A
=  and ∣y∣α

A
= .�en:

⟨, ⟩ ∈ {⟨, ⟩, ⟨, ⟩, ⟨, ⟩, ⟨, ⟩}
⟨∣x∣α
A
, ∣y∣α
A
⟩ ∈ ∣R∣A

∣Rxy∣α
A
= T De�nition 5.2(i) (*)

⟨, ⟩ ∈ {⟨, ⟩, ⟨, ⟩, ⟨, ⟩, ⟨, ⟩}
⟨∣y∣α
A
, ∣x∣α
A
⟩ ∈ ∣R∣A

∣Ryx∣α
A
= T De�nition 5.2(i)

∣Rxy ∧ Ryx∣α
A
= T De�nition 5.2(iii) and line (*)

∣∃y(Rxy ∧ Ryx)∣α
A
= T De�nition 5.2(viii)

∣∃x∃y(Rxy ∧ Ryx)∣A = T De�nition 5.2(viii)
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(iii) ∀x∃y(Rxy ∨ Ryx) is true inA. Let α be any variable assignment overA.
We distinguish three cases:
First case. ∣x∣α

A
= . Let β be a variable assignment overA di�ering from

α in y at most such that ∣y∣β
A
= .�en:

⟨, ⟩ ∈ {⟨, ⟩, ⟨, ⟩, ⟨, ⟩, ⟨, ⟩}

⟨∣x∣β
A
, ∣y∣β
A
⟩ ∈ ∣R∣A

∣Rxy∣β
A
= T De�nition 5.2(i)

∣Rxy ∨ Ryx∣β
A
= T De�nition 5.2(iv)

∣∃y(Rxy ∨ Ryx)∣α
A
= T De�nition 5.2(viii)

Second case. ∣x∣α
A
= . Let β be a variable assignment over A di�ering

from α in y at most such that ∣y∣β
A
= .�en:

⟨, ⟩ ∈ {⟨, ⟩, ⟨, ⟩, ⟨, ⟩, ⟨, ⟩}

⟨∣y∣β
A
, ∣x∣β
A
⟩ ∈ ∣R∣A

∣Ryx∣β
A
= T De�nition 5.2(i)

∣Rxy ∨ Ryx∣β
A
= T De�nition 5.2(iv)

∣∃y(Rxy ∨ Ryx)∣α
A
= T De�nition 5.2(viii)

�ird case. ∣x∣α
A
= . Let β be a variable assignment overA di�ering from

α in y at most such that ∣y∣β
A
= .�en:

⟨, ⟩ ∈ {⟨, ⟩, ⟨, ⟩, ⟨, ⟩, ⟨, ⟩}

⟨∣x∣β
A
, ∣y∣β
A
⟩ ∈ ∣R∣A

∣Rxy∣β
A
= T De�nition 5.2(i)

∣Rxy ∨ Ryx∣β
A
= T De�nition 5.2(iv)

∣∃y(Rxy ∨ Ryx)∣α
A
= T De�nition 5.2(viii)

�at ∣∀x∃y(Rxy∨Ryx)∣A = T follows from these three cases byDe�nition
5.2(vii).
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(iv) ∀x∀y∀z((Rxy ∧ Ryz)→ Rxz) is false inA. Let α be any variable assign-
ment overA such that ∣x∣α

A
= ∣z∣α

A
=  and ∣y∣α

A
= .�en:

⟨, ⟩ ∈ {⟨, ⟩, ⟨, ⟩, ⟨, ⟩, ⟨, ⟩}
⟨∣x∣α
A
, ∣y∣α
A
⟩ ∈ ∣R∣A

∣Rxy∣α
A
= T De�nition 5.2(i) (*)

⟨, ⟩ ∈ {⟨, ⟩, ⟨, ⟩, ⟨, ⟩, ⟨, ⟩}
⟨∣y∣α
A
, ∣z∣α
A
⟩ ∈ ∣R∣A

∣Ryz∣α
A
= T De�nition 5.2(i)

∣Rxy ∧ Ryz∣α
A
= T De�nition 5.2(iii) and line (*)

(†)

⟨, ⟩ ∉ {⟨, ⟩, ⟨, ⟩, ⟨, ⟩, ⟨, ⟩}
⟨∣x∣α
A
, ∣z∣α
A
⟩ ∉ ∣R∣A

∣Rxz∣α
A
= F De�nition 5.2(i)

∣(Rxy ∧ Ryz)→ Rxz∣α
A
= F De�nition 5.2(v) and line (†)

∣∀z(Rxy ∧ Ryz)→ Rxz∣α
A
= F De�nition 5.2(vii)

∣∀y∀z(Rxy ∧ Ryz)→ Rxz∣α
A
= F De�nition 5.2(vii)

∣∀x∀y∀z(Rxy ∧ Ryz)→ Rxz∣A = F De�nition 5.2(vii)

(v) ∀x(Rxb↔ ∃y(Ryb∧Rxy)) is true inA. Let α be any variable assignment
overA. We distinguish three cases.
First case. ∣x∣α

A
= .�en:

⟨, ⟩ ∈ {⟨, ⟩, ⟨, ⟩, ⟨, ⟩, ⟨, ⟩}
⟨∣x∣α
A
, ∣b∣A⟩ ∈ ∣R∣A

∣Rxb∣α
A
= T De�nition 5.2(i) (1)

Let β be a variable assignment overA di�ering from α in y at most such
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that ∣y∣β
A
= .�en:

⟨, ⟩ ∈ {⟨, ⟩, ⟨, ⟩, ⟨, ⟩, ⟨, ⟩}

⟨∣y∣β
A
, ∣b∣A⟩ ∈ ∣R∣A

∣Ryb∣β
A
= T De�nition 5.2(i) (2)

⟨, ⟩ ∈ {⟨, ⟩, ⟨, ⟩, ⟨, ⟩, ⟨, ⟩}

⟨∣x∣β
A
, ∣y∣β
A
⟩ ∈ ∣R∣A

∣Rxy∣β
A
= T De�nition 5.2(i)

∣Ryb ∧ Rxy∣β
A
= T De�nition 5.2(iii) and line (2)

∣∃y(Ryb ∧ Rxy)∣α
A
= T De�nition 5.2(viii)

∣Rxb↔ ∃y(Ryb ∧ Rxy)∣α
A
= T De�nition 5.2(vi) and line (1) (3)

Second case. ∣x∣α
A
= .�en:

⟨, ⟩ ∉ {⟨, ⟩, ⟨, ⟩, ⟨, ⟩, ⟨, ⟩}
⟨∣x∣α
A
, ∣b∣A⟩ ∉ ∣R∣A

∣Rxb∣α
A
= F De�nition 5.2(i) (4)

Let β be a variable assignment overA di�ering from α in y at most.�en:

⟨, ∣y∣β
A
⟩ ∉ {⟨, ⟩, ⟨, ⟩, ⟨, ⟩, ⟨, ⟩}

⟨∣x∣β
A
, ∣y∣β
A
⟩ ∉ ∣R∣A

∣Rxy∣β
A
= F De�nition 5.2(i)

∣Ryb ∧ Rxy∣β
A
= F De�nition 5.2(iii)

∣∃y(Ryb ∧ Rxy)∣α
A
= F De�nition 5.2(viii)

∣Rxb↔ ∃y(Ryb ∧ Rxy)∣α
A
= T De�nition 5.2(vi) and line (4)

�ird case. ∣x∣α
A
= .�en:

⟨, ⟩ ∈ {⟨, ⟩, ⟨, ⟩, ⟨, ⟩, ⟨, ⟩}
⟨∣x∣α
A
, ∣b∣A⟩ ∈ ∣R∣A

∣Rxb∣α
A
= T De�nition 5.2(i) (5)
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Let β be a variable assignment overA di�ering from α in y at most such
that ∣y∣β

A
= .�en:

⟨, ⟩ ∈ {⟨, ⟩, ⟨, ⟩, ⟨, ⟩, ⟨, ⟩}

⟨∣y∣β
A
, ∣b∣A⟩ ∈ ∣R∣A

∣Ryb∣β
A
= T De�nition 5.2(i) (6)

⟨, ⟩ ∈ {⟨, ⟩, ⟨, ⟩, ⟨, ⟩, ⟨, ⟩}

⟨∣x∣β
A
, ∣y∣β
A
⟩ ∈ ∣R∣A

∣Rxy∣β
A
= T De�nition 5.2(i)

∣Ryb ∧ Rxy∣β
A
= T De�nition 5.2(iii) and line (6)

∣∃y(Ryb ∧ Rxy)∣α
A
= T De�nition 5.2(viii)

∣Rxb↔ ∃y(Ryb ∧ Rxy)∣α
A
= T De�nition 5.2(vi) and line (5)

�at ∣∀x(Rxb↔ ∃y(Ryb ∧ Rxy))∣A = T follows from these three cases
by De�nition 5.2(vii).

Answer to 5.2.
(i) ¬∀x(Px → ¬Px) is false in any L-structureA such that ∣P∣A = ∅.
(ii) ∀x∃yPxyy ∨ ∃x¬∃y∃zPxyz is false in any L-structureA such that:

DA = {, }
∣P∣A = {⟨, , ⟩, ⟨, , ⟩}

(iii) A counterexamples to ∀x(Px → ∃y(Ryx ∧ Py)) ⊧ ¬∀xPx is any L-
structureA such that:

DA = {}
∣P∣A = {}
∣R∣A = {⟨, ⟩}
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(iv) A counterexamples to ∀y(∃xRyx ∧∃xQyx) ⊧ ∀y∃x(Ryx ∧Qyx) is any
L-structureA such that:

DA = {, }
∣Q∣A = {⟨, ⟩, ⟨, ⟩}
∣R∣A = {⟨, ⟩, ⟨, ⟩}

(v) A counterexamples to∀x∃y∃z(Qxy∧Qzx) ⊧ ∀x∀y∀z(Qxy → (Qyz →
Qxz)) is any L-structureA such that:

DA = {, , }
∣Q∣A = {⟨, ⟩, ⟨, ⟩, ⟨, ⟩, ⟨, ⟩}

(vi) A counterexamples to∀x∀y(Px → (Qy → ¬Rxyx)) ⊧ ∀x∀z(Rxzx →
(Qz ∧ ¬Px)) is any L-structureA such that:

DA = {, }
∣P∣A = ∅

∣Q∣A = ∅

∣R∣A = {⟨, , ⟩}

Answer to 5.3.
(i) �e sentence ∀x(Px → ∃y(Py ∧ Rxy)) is true in any L-structure A
such that ∣P∣A = ∅.

(ii) (Rab∧¬Rba)∧∀x∀y∀z(Rxy → (Ryz → Rxz))∧∀xRxx is true in any
L-structureA such that:

DA = {, }
∣R∣A = {⟨, ⟩, ⟨, ⟩, ⟨, ⟩}
∣a∣A = 
∣b∣A = 

© Peter Fritz More Exercises ⋅ 16th February 2014



5 �e Semantics of Predicate Logic 41

(iii) ∀x∃y∃z(Ryxz ∧ Pz ∧ ∃z(Ryxz ∧ ¬Pz)) is true in any L-structure
A such that:

DA = {, }
∣P∣A = {}
∣R∣A = {⟨, , ⟩, ⟨, , ⟩, ⟨, , ⟩, ⟨, , ⟩}

Answer to 5.4.
(i) All members of {¬Pc, ((Pa∧Pb)→ Pc), Pa} are true in anyL-structure
A such that:

DA = {, }
∣P∣A = {}
∣a∣A = 
∣b∣A = 
∣c∣A = 

(ii) All members of {∀x∀y(Rxy ↔ ¬Qyx),∀x¬Rxx} are true in any L-
structureA such that:

DA = {}
∣Q∣A = {⟨, ⟩}
∣R∣A = ∅

(iii) Allmembers of {∀x(Rxx∨Qxx),∀x∀y(Rxy↔ ¬Qxy),¬∀xRxx ,¬∀xQxx}
are true in any L-structureA such that:

DA = {, }
∣Q∣A = {⟨, ⟩, ⟨, ⟩}
∣R∣A = {⟨, ⟩, ⟨, ⟩}

(iv) Allmembers of {∀x∀y∀z(¬Rxy∨¬Ryz∨Rxz),∀x∀y(¬Rxy∨Ryx),¬∀xRxx}
are true in any L-structureA such that ∣R∣A = ∅.
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Answer to 5.5. ∀x∃y∃z(Qxyz ∧ Py ∧ ¬Pz ∧ ¬Qxxz ∧ ¬Qxyx) is true in any
L-structureA such that:

DA = {, , , }
∣P∣A = {, }
∣Q∣A = {⟨, , ⟩, ⟨, , ⟩, ⟨, , ⟩, ⟨, , ⟩}

Consider any L-structure B in which ∀x∃y∃z(Qxyz ∧ Py ∧ ¬Pz ∧ ¬Qxxz ∧
¬Qxyx) is true. Let α be an assignment over B.�en there is an assignment
β over B di�ering from α in at most y and z such that ∣Qxyz ∧ Py ∧ ¬Pz ∧
¬Qxxz∧¬Qxyx∣β

B
= T. From the truth of Py and¬Pz, it follows that ∣y∣β

B
≠ ∣z∣β

B
.

Similarly, by the truth of Qxyz and ¬Qxxz, it follows that ∣x∣β
B
≠ ∣y∣β

B
, and by

the truth of Qxyz and ¬Qxyx, it follows that ∣x∣β
B
≠ ∣z∣β

B
.�us DB has at least

three elements. Now, either ∣Px∣α
B
= T or ∣Px∣α

B
= F. In the former case, consider

an assignment γ over B such that ∣x∣γ
B
= ∣z∣β

B
; in the latter case, consider an

assignment γ overB such that ∣x∣γ
B
= ∣y∣β

B
. In either case, as before, it follows that

there is an assignment δ over B di�ering from γ at most in y and z such that all
of ∣x∣δ

B
, ∣y∣δ
B
and ∣z∣δ

B
are distinct, ∣y∣δ

B
∈ ∣P∣B and ∣z∣δB ∉ ∣P∣B.�is is impossible if

DB = {∣x∣β
B
, ∣y∣β
B
, ∣z∣β
B
}, hence DB has at least four members.

Answer to 5.6. Assume Γ ⊭ ϕ according to De�nition 2.9.�en there is an L-
structureA such that all members of Γ are true inA and ϕ is false inA. Extend
A to an L-structureA′ by adding a domain and interpretations of constants
and n-ary predicate letters for n ≥ . Since the satisfaction clauses of sentence
letters and the propositional connectives of L are the same in L and L, all
members of Γ are true inA′ and ϕ is false inA′. So according to De�nition 5.8,
Γ ⊭ ϕ.
Assume Γ ⊭ ϕ according to De�nition 5.8. �en there is an L-structure

A such that all members of Γ are true in A and ϕ is false in A. Derive an L-
structureA′ fromA by omitting the domain and the interpretations of constants
and n-ary predicate letters for n ≥ . Since the satisfaction clauses of sentence
letters and the propositional connectives of L are the same in L and L, all
members of Γ are true inA′ and ϕ is false inA′. So according to De�nition 2.9,
Γ ⊭ ϕ.
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Answer to 5.7. I will write N for the set of natural numbers. Let X be the set of
sentences which are members of one of the following sets: {Pia j ∶ i , j ∈ N and
i ≤ j} and {¬Pia j ∶ i , j ∈ N and i > j}. X is semantically consistent, since all
of its elements are true in any L-structureA such that DA = N, and for every
i ∈ N:

∣Pi ∣A = { j ∶ j ∈ N and i ≤ j}
∣ai ∣A = i

Consider any �nite set Y of elements of X. If Y = ∅, it is trivially true that
all of its elements are true in every L-structure with a �nite domain. If Y ≠ ∅,
let i be the largest natural number such that there is a natural number j such that
one of Pia j, ¬Pia j, Pjai and ¬Pjai is a member of Y . Let B be an L-structure
such that DB = { j ∶ j ∈ N and j ≤ i}, and for every j ∈ N such that j ≤ i:

∣Pj∣B = {k ∶ k ∈ N and j ≤ k}
∣a j∣B = j

All elements of Y are true in B.

Answer to 5.8. For us to be able to treat sentence letters like other predicate
letters, sentence letters have to be interpreted by L-structures as 0-ary relations.
Since a 0-ary relation is a set of -tuples, and there is only one 0-tuple, namely
⟨⟩, there are exactly two 0-ary relations: ∅ and {⟨⟩}.
Applying the satisfaction clause of atomic sentences to sentence letters, we

obtain the following condition:
(i) ∣Φ∣A = T if and only if ⟨⟩ ∈ ∣Φ∣α

A
, where Φ is a -ary predicate letter.

So T must be {⟨⟩} and F must be ∅.
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6 Natural Deduction

Exercise 6.1. Establish the following claims by means of proofs in the system of
Natural Deduction.
(i) P → (Q ↔ R) ⊢ P ∧ Q ↔ P ∧ R
(ii) ¬((P → ¬Q) ∨ ¬R) ⊢ Q
(iii) P ∨ ¬Q → R ⊢ ¬R → ¬P ∧ Q

Exercise 6.2. Establish the following claims by means of proofs in the system of
Natural Deduction.
(i) ∃x(Px ∧ ∀yRxy) ⊢ ∃zRzz
(ii) ∀x∃yRxy ⊢ ∃y¬∀z(Ray → ¬Ryz)
(iii) ∀y∃x(Ryx ∨ Qyx) ⊢ ∀y(∃xRyx ∨ ∃xQyx)
(iv) (∃xPx ∧ ∃yQy) ∨ (¬∃xPx ∧ ¬∃yQy) ⊢ ∃xPx ↔ ∃yQy
(v) ∀x∀y(Px → (Qy → ¬Rxyx)) ⊢ ∀x∀z(Rxzx → (Qz → ¬Px))
(vi) ∀x(Px → ∃y(Ryx ∧ Py)),∀x∀y∀z(Ryx → (Rzy → ¬Pz)) ⊢ ¬∀xPx

Exercise 6.3. Consider the following attempted proofs. Brie�y explain why they
are incorrect, listing all mistakes in them. Where possible supply a corrected
proof. Otherwise, provide a counterexample and brie�y sketch the reasons why
it is a counterexample.
(i) ⊢ Q ∨ ¬Q:

[Q]

Q ∨ ¬Q
[¬Q]

Q ∨ ¬Q
Q ∨ ¬Q
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(ii) Pc ⊢ ∀z(Qz → Pz): Pc
Qc → Pc

∀z(Qz → Pz)

(iii) ∀x∃yRxy ⊢ ∃x∃y∃z(Rxy ∧ Ryz):

∀x∃yRxy
∃yRby

∀x∃yRxy
∃yRay

[Rab] [Rbc]
Rab ∧ Rbc

Rab ∧ Rbc
Rab ∧ Rbc

∃y(Ray ∧ Ryz)
∃y∃z(Ray ∧ Ryz)
∃x∃y∃z(Rxy ∧ Ryz)

Exercise 6.4. �e notion of soundness is formally de�ned in section 7.1 of the
Logic Manual. Consider the following variant of the Natural Deduction rule of
universal introduction (∀Intro):

Assume that ϕ is a formula with at most v occurring freely and that
ϕ does not contain the constant t. Assume further that there is a
proof of ϕ[t/v].�en the result of appending ∀v ϕ to that proof is
a proof of ∀v ϕ.

(a) How does this modi�ed rule di�er from ∀Intro?
(b) Explain why replacing ∀Intro with this rule renders the system of Natural
Deduction unsound.

Consider the rule described by the following graphical representation.

[ϕ]
⋮
ψ

[ψ]

⋮
χ

ϕ → χ
(c) State the rule in words.
(d) Would the system of Natural Deduction still be sound if this rule were

added?
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Answer to 6.1. (i) P → (Q ↔ R) ⊢ P ∧ Q ↔ P ∧ R:

[P ∧ Q]

P

[P ∧ Q]

P P → (Q ↔ R)
Q ↔ R

[P ∧ Q]

Q
R

P ∧ R

[P ∧ R]
P

[P ∧ R]
P P → (Q ↔ R)

Q ↔ R
[P ∧ R]

R
Q

P ∧ Q
P ∧ Q ↔ P ∧ R

(ii) ¬((P → ¬Q) ∨ ¬R) ⊢ Q:

[¬Q]

P → ¬Q
(P → ¬Q) ∨ ¬R ¬((P → ¬Q) ∨ ¬R)

Q

(iii) P ∨ ¬Q → R ⊢ ¬R → ¬P ∧ Q:

[P]
P ∨ ¬Q P ∨ ¬Q → R

R [¬R]
¬P

[¬Q]

P ∨ ¬Q P ∨ ¬Q → R
R [¬R]

Q
¬P ∧ Q

¬R → ¬P ∧ Q

Answer to 6.2. (i) ∃x(Px ∧ ∀yRxy) ⊢ ∃zRzz:

∃x(Px ∧ ∀yRxy)

[Pa ∧ ∀yRay]
∀yRay
Raa
∃zRzz

∃zRzz
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(ii) ∀x∃yRxy ⊢ ∃y¬∀z(Ray → ¬Ryz):

∀x∃yRxy
∃yRay

∀x∃yRxy
∃yRby

[Rab]
[∀z(Rab → ¬Rbz)]

Rab → ¬Rbc
¬Rbc [Rbc]

¬∀z(Rab → ¬Rbz)
¬∀z(Rab → ¬Rbz)
∃y¬∀z(Ray → ¬Ryz)

∃y¬∀z(Ray → ¬Ryz)

(iii) ∀y∃x(Ryx ∨ Qyx) ⊢ ∀y(∃xRyx ∨ ∃xQyx):

∀y∃x(Ryx ∨ Qyx)
∃x(Rax ∨ Qax)

[Rab ∨ Qab]

[Rab]
∃xRax

∃xRax ∨ ∃xQax

[Qab]
∃xQax

∃xRax ∨ ∃xQax
∃xRax ∨ ∃xQax

∃xRax ∨ ∃xQax
∀y(∃xRyx ∨ ∃xQyx)

(iv) For reasons of space, the proof of (∃xPx ∧ ∃yQy) ∨ (¬∃xPx ∧ ¬∃yQy) ⊢
∃xPx ↔ ∃yQy is given on page 50.
(v) ∀x∀y(Px → (Qy → ¬Rxyx)) ⊢ ∀x∀z(Rxzx → (Qz → ¬Px)):

[Raba]
[Qb]

[Pa]

∀x∀y(Px → (Qy → ¬Rxyx))
∀y(Pa → (Qy → ¬Raya))

Pa → (Qb → ¬Raba)
Qb → ¬Raba

¬Raba
¬Pa

Qb → ¬Pa
Raba → (Qb → ¬Pa)

∀z(Raza → (Qz → ¬Pa))
∀x∀z(Rxzx → (Qz → ¬Px))

(vi) For reasons of space, the proof of∀x(Px → ∃y(Ryx∧Py)),∀x∀y∀z(Ryx →
(Rzy → ¬Pz)) ⊢ ¬∀xPx is given on page 50.
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Answer to 6.3.
(i) �e last step of the attempted proof does not conform to any of the rules;
there is no rule which allows us to derive Q ∨¬Q from a proof of Q ∨¬Q
with assumption Q and a proof of Q ∨ ¬Q with assumption ¬Q. In par-
ticular, note that it is not a correct application of disjunction elimination
(∨Elim), since this would require Q ∨ ¬Q as a third premise, which is
of course exactly what we are trying to show. A correct proof is given as
Example 6.6 in the Logic Manual.

(ii) �e last step of the attempted proof does not conform to any of the rules.
In particular, the rule of universal introduction (∀Intro) is not applicable,
as c occurs in the undischarged assumption Pc.
�e following L-structureA is a counterexample:

DA = {, }
∣P∣A = {}
∣Q∣A = {}
∣c∣A = 

(iii) �e rule of existential elimination (∃Elim) is used incorrectly twice. In the
�rst instance, the introduced constant b occurs both in an undischarged
assumption (Rbc) and the sentence which is intended to be derived in this
step (Rab∧Rbc); in the second instance, the introduced constant c occurs
in the sentence which is intended to be derived in this step (Rab ∧ Rbc).
�e rule of existential introduction (∃Intro) is also used incorrectly twice;
we cannot derive ∃y(Ray ∧ Ryz) from Rab ∧ Rbc (note the replacement
of c by z), nor can we derive ∃y∃z(Ray ∧ Ryz) from ∃y(Ray ∧ Ryz).
�e following is a correct proof:

∀x∃yRxy
∃yRay

∀x∃yRxy
∃yRby

[Rab] [Rbc]
Rab ∧ Rbc

∃z(Rab ∧ Rbz)
∃y∃z(Ray ∧ Ryz)
∃x∃y∃z(Rxy ∧ Ryz)

∃x∃y∃z(Rxy ∧ Ryz)
∃x∃y∃z(Rxy ∧ Ryz)
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Answer to 6.4.
(a) �is variant di�ers from ∀Intro in two ways: it omits the restriction
that the proof of ϕ[t/v]may not contain any undischarged assumptions
containing t, but adds the restriction that v may be the only variable
occurring freely in ϕ.

(b) �e proposed variant licenses the following derivation:

Pa
∀xPx

However, Pa ⊧ ∀xPx is not the case, as can easily be shown using a
counterexample.�us in the proposed system, there a sentence provable
from premises which does not follow from the premises (i.e., the argument
constituted by the premises and the conclusion is not valid), which shows
that the system is not sound.

(c) �e rule can be read as follows: “�e result of appending ϕ → χ to a proof
of ψ and a proof of χ, discharging all assumptions of ϕ in the proof of ψ
and discharging all assumptions of ψ in the proof of χ is a proof of ϕ → χ.”

�e resulting systemwould still be sound. To see this, note that we can transform
any proof using the new rule into a proof in the original system, by applying
the following procedure to every application of the new rule: We replace every
assumption of ψ in the proof of χ by a copy of the proof of ψ; this gives us a proof
of χ, from which we can derive ϕ → χ using→Intro, discharging all assumptions
of ϕ.
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7 Formalisation in Predicate Logic

Exercise 7.1. Show that the following argument is logically valid by formaliz-
ing it in the language L of predicate logic and establishing the validity of the
formalized argument by means of a proof in Natural Deduction.

Every villager is the descendant of a villager. Kate is a villager.
�erefore Kate is the descendant of a villager, who is the descendant
of some villager as well.

Exercise 7.2. Reveal the ambiguities in the following sentences by formalizing
them in two or more di�erent ways in L.
(i) Some property is instantiated by every object.
(ii) �e chaplain married John’s sister.
(iii) Fiona will have to postpone her trip and she will need to apply for special

permission if the documents don’t arrive in time.
(iv) All that glitters is not gold.

Exercise 7.3. Formalize each of the following sentences in as much detail as
possible, explicitly specifying your dictionary. If there are any non-extensional
expressions in the English sentence, demonstrate their failure of extensionality
using examples, and explain what this means for the formalization.
(i) Every writer admires the author of�e Man Without Qualitites.
(ii) Every writer admires some writer.
(iii) Jane hopes that she will see her brother tomorrow, but she believes it is

likely that she won’t.
(iv) For any atom of polonium-218 and atom of uranium-238, the former is

more likely to decay in the next �ve minutes than the latter.
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Exercise 7.4. Recall that a set of L-sentences Γ is de�ned to be syntactically
consistent if and only if there is an L-sentence ϕ such that Γ ⊬ ϕ. Prove that Γ
is syntactically consistent if and only if Γ ⊬ P ∧ ¬P.

Exercise 7.5. Determine whether the following sentence is logically true in pred-
icate logic:

�ere is someone such that, if he or she is asleep, everyone is asleep.

Exercise 7.6. Show that if ϕ is a tautology in the language L of propositional
logic, then there are in�nitely many proofs of ϕ in the system of Natural Deduc-
tion.

Exercise 7.7. For any natural number n ≥ , specify an inconsistent set Γn of
exactly n L-sentences such that all sets of sentences in Γn not containing all
sentences in Γn are consistent. Sketch an argument showing that the speci�ed
set satis�es these conditions.
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Answer to 7.1. I use the following dictionary:

P: . . . is a villager
R: . . . is a descendant of . . .
a: Kate

With this, the argument can be formalized as the following valid argument of
L:

∀x(Px → ∃y(Py ∧ Rxy)), Pa ⊢ ∃x(Px ∧ Rax ∧ ∃y(Py ∧ Rxy))

Pa
∀x(Px→∃y(Py ∧ Rxy))
Pa → ∃y(Py ∧ Ray)
∃y(Py ∧ Ray)

[Pb ∧ Rab]

[Pb ∧ Rab]
Pb

∀x(Px→∃y(Py ∧ Rxy))
Pb → ∃y(Py ∧ Rby)

∃y(Py ∧ Rby)
Pb ∧ Rab ∧ ∃y(Py ∧ Rby)

∃x(Px ∧ Rax ∧ ∃y(Py ∧ Rxy))
∃x(Px ∧ Rax ∧ ∃y(Py ∧ Rxy))

Answer to 7.2.
(i) I use the following dictionary:

P: . . . is a property
Q: . . . is an object
R: . . . is instantiated by . . .

�ere are two ways of reading the sentence, which can be formalized in
the following two ways:

∃x(Px ∧ ∀y(Qy → Rxy))

∀y(Qy → ∃x(Px ∧ Rxy))
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(ii) �e ambiguity in this sentence is not structural, but lexical: the verb “to
marry” has two meanings; it can either mean to enter into a marriage
or to perform the ceremony of marriage. �e corresponding two ways
of reading the sentence can therefore be formalized using the same L-
sentence Pab; the di�erence in formalization consists in the fact that we
can use either of the following two dictionaries:

P: . . . marries (in the sense of entering into a marriage
with) . . .

a: the chaplain
b: John’s sister

or
P: . . . marries (in the sense of performing the ceremony

of marriage) . . .
a: the chaplain
b: John’s sister

(iii) I use the following dictionary:

P: Fiona will have to postpone her trip
Q: the documents don’t arrive in time
R: Fiona will need to apply for special permission

�ere are two ways of reading the sentence, which can be formalized in
the following two ways:

P ∧ (Q → R)
Q → P ∧ R

(iv) I use the following dictionary:

P: . . . glitters
Q: . . . is gold

�ere are two ways of reading the sentence, which can be formalized in
the following two ways:

∀x(Px → ¬Qx)
¬∀x(Px → Qx)
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Answer to 7.3.
(i) ∀x(Px → Qx)

P: . . . is a writer
Q: . . . admires the author of�e Man Without Qualitites

“. . . admires . . . ” is not extensional: Lois Lane may admire Superman with-
out admiring Clark Kent, even though Clark Kent is Superman.�erefore,
“admires” does not express a binary relation, and so we can’t formalize it
using a two-place predicate letter.

(ii) ∀x(Px → Qx)

P: . . . is a writer
Q: . . . admires some writer.

As in (i), “. . . admires . . . ” is not extensional, so we can’t formalize it using
a two-place predicate letter. �erefore, we are also unable to formalize
“some writer” using an existential quanti�er.

(iii) Pa ∧ Qa
P: . . . hopes that she will see her brother tomorrow
Q: . . . believes it is likely that she won’t see her brother

tomorrow
a: Jane

Neither “. . . hopes that she will see . . . tomorrow” nor “. . . believes it is
likely that she won’t see . . . tomorrow” is extensional. We may imagine
an astronomer incorrectly thinking that Hesperus and Phosphorus are
distinct celestial bodies, and consequently hoping that she will see Hespe-
rus tomorrow without thinking that she will see Phosphorus tomorrow;
likewise, she might believe that it is likely that she won’t see Hesperus
tomorrow without believing it to be likely that she won’t see Phosphorus
tomorrow.

(iv) ∀x∀y(Px ∧ Qy → Rxy)

P: . . . is an atom of polonium-218
Q: . . . is an atom of uranium-238
R: . . . is more likely to decay in the next �ve minutes than. . .

�is formalization assumes that “likely” is read as expressing objective
chances, which is natural, as that the sentence is about nuclear decay. If it
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is read as expressing our subjective credences, then “. . . is more likely to
decay in the next �ve minutes than . . . ” is not extensional (since we might
well be confused about the identities of certain atoms). On this reading,
the sentence has to be formalized using a single sentence letter.

Answer to 7.4. If Γ ⊬ P ∧ ¬P, then there is an L-sentence ϕ such that Γ ⊬ ϕ,
namely P ∧ ¬P, so Γ is syntactically consistent. If Γ ⊢ P ∧ ¬P, then we can
extend any proof of this to a proof of Γ ⊢ P and to a proof of Γ ⊢ ¬P, using
conjunction elimination. Using negation elimination, we can then combine
the resulting proof to a proof of Γ ⊢ φ, for any L-sentence φ. So Γ is not
syntactically consistent.

Answer to 7.5. �e sentence can be formalized as follows: ∃x(Px → ∀yPy)

P: . . . is asleep

�is L-sentence is logically true. We can establish this in the Natural Deduc-
tion system using the following proof, where dots indicate a proof of ∃y¬Py ∨
¬∃y¬Py along the lines of Example 6.6 of the Logic Manual:

⋮

∃y¬Py ∨ ¬∃y¬Py
[∃y¬Py]

[Pa] [¬Pa]
∀yPy

Pa → ∀yPy
∃x(Px → ∀yPy)

∃x(Px → ∀yPy)

[¬∃y¬Py]
[¬Pa]
∃y¬Py

Pa
∀yPy

Pa → ∀yPy
∃x(Px → ∀yPy)

∃x(Px → ∀yPy)

Answer to 7.6. By completeness (�eorem 7.1 in the Logic Manual), if ϕ is a
tautology, there is a proof of ϕ in the system of Natural Deduction. Consider
any such proof:

© Peter Fritz More Exercises ⋅ 16th February 2014



7 Formalisation in Predicate Logic 57

⋮

ϕ

Given such a proof, the result of deriving ϕ ∧ ϕ from two copies of it is a proof
of ϕ ∧ ϕ, from which we can derive ϕ again by conjunction elimination:

⋮

ϕ
⋮

ϕ
ϕ ∧ ϕ
ϕ

�is procedure allows us to turn any proof of ϕ into a more complex proof of
ϕ. So, starting from any proof of ϕ, we can apply the procedure, resulting in
a more complex proof, apply the procedure to this second proof, obtaining an
even more complex third proof, etc. for all natural numbers n. So for every
natural number n, we obtain a distinct proof of ϕ from our original proof. Since
there are in�nitely many natural numbers, there are in�nitely many proofs of ϕ
in the system of Natural Deduction.

Answer to 7.7. Let Γn be the set containing the sentence P ∧ ¬Pn+ ∧ Pi → Pi+
for every natural number i such that  ≤ i ≤ n.
We �rst argue semantically that Γn is inconsistent. Any L-structure satis-

fying Γn would have to make P true and Pn+ false, but it would also have to
make Pi → Pi+ true for every natural number i such that  ≤ i ≤ n, which is
impossible.
We now argue that any set of sentences in Γn not containing all sentences in

Γn is consistent. For any such set, there is a natural number i between  and n
such that the set does not contain the sentence P ∧¬Pn+ ∧ Pi → Pi+. Consider
an L-structure in which for all natural numbers j, the sentence letter Pj is true
if and only if j ≤ i. �en P ∧ ¬Pn+ ∧ Pj → Pj+ will be true in the structure
for all natural numbers j between  and n apart from i, and so in particular all
sentences in the set under consideration will be true.
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Exercise 8.1. Formalize the following sentences in the language L= of predi-
cate logic with identity in as much detail as possible, explicitly specifying your
dictionary.
(i) �ere are exactly three cats in the room.
(ii) If Walter Scott is the author of Waverley and Walter Scott is the author of

Ivanhoe, then the author of Waverley is the author of Ivanhoe.

Exercise 8.2. Refute each of the following claims by means of a counterexample.
(i) ¬a = b ∧ ¬b = c ⊢ ¬a = c
(ii) ∃x∃y(Ryx ∧ ¬x = y),∀x∀y∀z(Rzy → (Ryx → Rzx)) ⊢

∃x∃y∃z(¬x = y ∧ ¬y = z ∧ ¬x = z)
(iii) ∀x∀y∀z(Rxy ∧ Rxz → y = z) ⊢ ∀x∀y∀z(Ryx ∧ Rzx → y = z)

Exercise 8.3. Establish the following claims by means of proofs in Natural De-
duction.
(i) ⊢ ∀x∀y∀z(x = y ∧ y = z → x = z)
(ii) ∀x∀y(Rxy → ¬Ryx) ⊢ ∀x∀y(Rxy ∧ Ryx → x = y)
(iii) ∀x∀y(∀z(Rzx ↔ Rzy)→ x=y), ∃x∀y¬Ryx ⊢ ∃x∀y(∀z¬Rzy↔ x=y)

Exercise 8.4. Determine for each of the following sentences whether it is logi-
cally true by suitably formalizing it in the language L= of predicate logic with
identity, specifying a dictionary, and proving the resulting sentence in the system
of Natural Deduction or providing a counterexample.
(i) �e set with no elements doesn’t contain any elements.

©Peter Fritz More Exercises ⋅ 16th February 2014



8 Identity and De�nite Descriptions 59

(ii) If there are more than two white elephants, then it is not the case that
there are white elephants in India.

(iii) If the greatest Roman orator is Cicero, and Tully is Cicero, then Tully is
an orator.

Exercise 8.5. (a) Compare and contrast to what extent these sentences may
be formalized in L.
(i) On Wednesday we will play football or basketball.
(ii) On Wednesday we can play football or basketball.

(b) Compare and contrast to what extent these sentences may be formalized
in L.
(i) Every student answered an easy question.
(ii) Most students answered an easy question.

(c) Compare and contrast to what extent these sentences may be formalized
in L=.
(i) �e best student answered three questions.
(ii) �e average student answered three questions.

Exercise 8.6. (a) Formalize the following as a valid argument inL, using the
dictionary below. Demonstrate the validity of your formalization using
Natural Deduction.

Q: Matter is atomless
P: . . . is a proper part of . . .
R: . . . is smaller than . . .
a: the smallest object

Matter is not atomless. Assuming, on the contrary, that it is,
then every object has a proper part. A proper part of anything
is smaller than it is. If something is smaller than the smallest
object, then something is smaller than everything. But this is
impossible: nothing is smaller than itself.
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(b) Formalize the argument in part (a) once more, this time as an invalid
argument in L=, using the same dictionary but without the constant a.
Demonstrate the invalidity of your formalization by specifying a coun-
terexample.

(c) What is it thatmakes theL formalization validwhen theL= formalization
is not valid?

Exercise 8.7. Recall the compactness theorem for propositional logic, which
was mentioned on p. 42 of the Logic Manual: If a sentence ϕ of L follows from
a set of sentences Γ ofL, then there is a �nite set ∆ of sentences in Γ from which
ϕ follows.

�ere are analogous compactness theorems for predicate logic and predicate
logic with identity: If a sentence ϕ of L/L= follows from a set of sentences Γ of
L/L=, then there is a �nite set ∆ of sentences in Γ from which ϕ follows.
(a) Show that for each of the three logics, the compactness theorem follows
from the adequacy theorem (�eorems 6.10, 7.3 and 8.7 in the Logic Man-
ual). To do so, make use of the fact that Natural Deduction proofs are
�nite, in the sense that every such proof contains only a �nite number of
occurrences of formulas.

(b) Specify a set Γ of sentences of L= such that for all L-structures A, all
elements of Γ are true inA if and only if the domain ofA is in�nite.

(c) Use the compactness theorem forL= established in (a) and the set speci�ed
in (b) to show that there is no single sentence of L= which is true in an
L-structure if and only if its domain is in�nite.
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Answer to 8.1.
(i) ∃x∃y∃z(Px ∧ Qx ∧ Py ∧ Qy ∧ Pz ∧ Qz ∧ ¬x = y ∧ ¬x = z ∧ ¬y =

z ∧ ∀x(Px ∧ Qx → x = x ∨ x = y ∨ x = z))

P: . . . is a cat
Q: . . . is in the room

(ii) ∀x(Pxa↔ x = c) ∧ ∀x(Pxb↔ x = c)→
∃x∃y(∀z(Pza↔ z = x) ∧ ∀z(Pzb↔ z = y) ∧ x = y)

P: . . . authored . . .
a: Waverley
b: Ivanhoe
c: Walter Scott

Answer to 8.2.
(i) LetA be an L-structure such that:

DA = {, }
∣a∣A = 
∣b∣A = 
∣c∣A = 

(ii) LetA be an L-structure such that:

DA = {, }
∣R∣A = {⟨, ⟩}

(iii) LetA be an L-structure such that:

DA = {, }
∣R∣A = {⟨, ⟩, ⟨, ⟩}
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Answer to 8.3. (i) ⊢ ∀x∀y∀z(x = y ∧ y = z → x = z):

[a = b ∧ b = c]
a = b

[a = b ∧ b = c]
b = c

a = c
a = b ∧ b = c → a = c

∀z(a = b ∧ b = z → a = z)
∀y∀z(a = y ∧ y = z → a = z)

∀x∀y∀z(x = y ∧ y = z → x = z)

(ii) ∀x∀y(Rxy → ¬Ryx) ⊢ ∀x∀y(Rxy ∧ Ryx → x = y):

[Rab ∧ Rba]
Rba

[Rab ∧ Rba]
Rab

∀x∀y(Rxy → ¬Ryx)
∀y(Ray → ¬Rya)

Rab → ¬Rba
¬Rba

a = b
Rab ∧ Rba → a = b

∀y(Ray ∧ Rya → a = y)
∀x∀y(Rxy ∧ Ryx → x = y)

(iii) For reasons of space, the proof of of ∀x∀y(∀z(Rzx ↔ Rzy) → x =

y), ∃x∀y¬Ryx ⊢ ∃x∀y(∀z¬Rzy↔ x = y) is given on the last page.

Answer to 8.4.
(i) �is sentence is not logically true. We can formalize it as follows:

∃x(∀y(Py ∧ ¬∃zQzy↔ y = x) ∧ ¬∃zQzx)

P: . . . is a set
Q: . . . is an element of . . .

For a counterexample, letA be an L-structure such that:

DA = {}
∣P∣A = ∅

∣Q∣A = ∅
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(ii) �is sentence is not logically true. We can formalize it as follows:
∃x∃y∃z(Px ∧ Py ∧ Pz ∧ ¬x = y ∧ ¬x = z ∧ ¬y = z)→ ¬∃x(Px ∧ Qx)

P: . . . is a white elephant
Q: . . . is in India

For a counterexample, letA be an L-structure such that:

DA = {, , }
∣P∣A = {, , }
∣Q∣A = {, , }

(iii) �is sentence is not logically true. We can formalize it as follows:
∀x(Px ∧ ∀y(Py ∧ ¬x = y → Qxy)↔ x = a) ∧ b = a → Rb

P: . . . is Roman
Q: . . . is a greater orator than . . .
R: . . . is an orator
a: Cicero
b: Tully

For a counterexample, letA be an L-structure such that:

DA = {}
∣P∣A = {}
∣Q∣A = ∅

∣R∣A = ∅

∣a∣A = 
∣b∣A = 

Answer to 8.5.
(a) (i) can be formalized as a disjunction, but (ii) has to be formalized as a
single sentence letter. To see that (ii) cannot be understood as a disjunction,
note that if on Wednesday, we can play football, then the disjunction of
the claim that on Wednesday, we can play football, and the claim that on

© Peter Fritz More Exercises ⋅ 16th February 2014



8 Identity and De�nite Descriptions 64

Wednesday, we can play basketball, is true. However, this does not mean
that (ii) is true, since the claims just stated don’t entail that on Wednesday,
we can play basketball, which is guaranteed by (ii).
So (i) can be formalized as P ∨ Q and (ii) as R, using the following dictio-
nary:

P: On Wednesday we will play football
Q: On Wednesday we will play basketball
R: On Wednesday we can play football or basketball.

(b) SinceL does not have a representation of “most”, (ii) has to be represented
by a single sentence letter. Using universal and existential quanti�ers, we
can give amore detailed formalization of (i). With the following dictionary,
(i) can be formalized as ∀x(Px → ∃y(Qy ∧ Rxy)) and (ii) as P:

P: . . . is a student
Q: . . . is an easy question
R: . . . answered . . .
P: Most students answered an easy question.

(c) Using quanti�ers and identity, we can give a detailed formalization of
(i). We cannot do the same for (ii), since “the average student” does not
refer to a particular student, and so can’t be represented by a constant,
nor can it be given a complex formalization in terms of quanti�ers and
identity.�erefore (ii) has to be formalized using a single sentence letter.
Using the following dictionary, (i) can be formalized as ∃x(∀y(∀z(¬z =
y → Pyz)↔ y = x) ∧ ∃y∃y∃y(Qy ∧ Qy ∧ Qy ∧ ¬y = y ∧ ¬y =
y ∧ ¬y = y ∧ Rxy ∧ Rxy ∧ Rxy)), and (ii) as P.

P: . . . is a better student than . . .
Q: . . . is a question
R: . . . answered . . .
P: �e average student answered three questions.
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Answer to 8.6.
(a) Q → ∀x∃yPyx ,∀x∀y(Pxy → Rxy), ∃xRxa → ∃x∀yRxy,¬∃xRxx ⊢ ¬Q

[Q]Q→∀x∃yPyx
∀x∃yPyx
∃yPya

[Pba]

∀x∀y(Pxy→Rxy)
∀y(Pby→Rby)

Pba→Rba
Rba
∃xRxa

∃xRxa ∃xRxa→∃x∀yRxy
∃x∀yRxy

[∀yRcy]
Rcc

∃xRxx
∃xRxx ¬∃xRxx

¬Q

(b) Q → ∀x∃yPyx ,∀x∀y(Pxy → Rxy), ∃x(∀y(∀z(¬z = y → Ryz) ↔ x =

y) ∧ ∃yRyx)→ ∃x∀yRxy,¬∃xRxx ⊢ ¬Q
For a counterexample, letA be an L-structure such that:

DA = {, }
∣P∣A = {⟨, ⟩, ⟨, ⟩}
∣Q∣A = T
∣R∣A = {⟨, ⟩, ⟨, ⟩}

(c) In the �rst formalization, “the smallest object” is formalized as a constant. In
L, all constants denote some element of the domain, so the use of a constant
in the formalization implicitly introduces the presupposition in the formalized
argument that there is a smallest object. No such assumption – implicit or explicit
– is present in the second formalization, which allows counterexamples in which
there is no smallest object.

Answer to 8.7.
(a) Consider any of the three logics, and let ϕ be a sentence and Γ a set of
sentences of the relevant language. Assume ϕ follows from Γ, i.e., Γ ⊧ ϕ.
By the adequacy theorem for the logic under consideration, it follows that
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Γ ⊢ ϕ, so there is a proof of ϕ with only sentences in Γ as undischarged
assumptions. As noted in the exercise, this proof can only contain a �nite
number of occurrences of formulas. So the set ∆ of sentences in Γ which
also occur as undischarged assumptions in this proof is �nite. Since ∆ is
the set of undischarged assumptions in our proof, it follows that ∆ ⊢ ϕ,
and so via the adequacy theorem again that ∆ ⊧ ϕ. �is concludes the
proof: ∆ is �nite set of sentences in Γ from which ϕ follows.

(b) Let Γ be a set of sentences, one for each natural number n, which say
that there are (at least) n objects. More precisely, we can de�ne this set
as follows: For each natural number n, de�ne ηn to be a sentence which
is true in an L-structure if and only if its domain contains at least n
elements. E.g., let:

η = ∃x x = x
η = ∃x∃x ¬x = x
η = ∃x∃x∃x(¬x = x ∧ ¬x = x ∧ ¬x = x)
⋮

Let Γ be the set of sentences ηn for every natural number n, i.e., Γ = {ηn ∶

n is a natural number}.
(c) Assume for contradiction that there is a sentence ϕ of L= which is true in
an L-structure if and only if its domain is in�nite.�en using the set Γ
from (b), Γ ⊧ ϕ. So by the compactness theorem for L=, established in (a),
there is a �nite set ∆ of sentences in Γ such that ∆ ⊧ ϕ. We distinguish
two cases:
Case 1: ∆ is empty. �en every element of ∆ is true in all �nite L-
structures, but ϕ is by assumption false in all such structures.
Case 2: ∆ is not empty.�en there is a largest natural number n such that
ηn is an element of ∆ (recall that ∆ is �nite). So in any �nite L-structure
whose domain contains at least n elements, all elements of ∆ are true and
ϕ is false.
So in both cases, there areL-structures in which all elements of ∆ are true
and ϕ is false.�erefore ∆ ⊭ ϕ, contradicting what we have established.
So there is no sentence ϕ of L= which is true in an L-structure if and
only if its domain is in�nite.
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