
INTRODUCTION TO LOGIC

Lecture 5
The Semantics of Predicate Logic

Dr. James Studd

We could forget about philosophy.
Settle down and maybe get into semantics.

Woody Allen
‘Mr. Big’

Outline
1 Validity.
2 Semantics for simple English sentences.
3 Semantics for L2-formulae.
4 L2-structures.

Introduction

What of argument 2?

Argument 2 Valid
(1) Zeno is a tortoise.
(2) All tortoises are toothless.
Therefore, (C) Zeno is toothless.

Formalisation
(1) Ta
(2) ∀x(Tx→ Lx)
(C) La

Dictionary: a: Zeno. T :. . . is a tortoise. L: . . . is toothless

What is it for this L2-argument to be valid?

Introduction

What of argument 2?

Argument 2 Valid
(1) Zeno is a tortoise.
(2) All tortoises are toothless.
Therefore, (C) Zeno is toothless.

Formalisation
(1) Ta
(2) ∀x(Tx→ Lx)
(C) La

Dictionary: a: Zeno. T :. . . is a tortoise. L: . . . is toothless

What is it for this L2-argument to be valid?

Introduction

What of argument 2?

Argument 2 Valid
(1) Zeno is a tortoise.
(2) All tortoises are toothless.
Therefore, (C) Zeno is toothless.

Formalisation
(1) Ta
(2) ∀x(Tx→ Lx)
(C) La

Dictionary: a: Zeno. T :. . . is a tortoise. L: . . . is toothless

What is it for this L2-argument to be valid?

Introduction

Validity
Recall the definition of validity for L1.

Let Γ be a set of sentences of L1 and φ a sentence of L1

Definition
The argument with all sentences in Γ as premisses and φ as
conclusion is valid if and only if there is no L1-structure
under which:
(i) all sentences in Γ are true; and
(ii) φ is false.

We use an exactly analogous definition for L2, replacing ‘L1’
everywhere above with ‘L2’
It remains to define: L2-structure, truth in an L2-structure

Introduction

Validity
Recall the definition of validity for L1.
Let Γ be a set of sentences of L1 and φ a sentence of L1

Definition
The argument with all sentences in Γ as premisses and φ as
conclusion is valid if and only if there is no L1-structure
under which:
(i) all sentences in Γ are true; and
(ii) φ is false.

We use an exactly analogous definition for L2, replacing ‘L1’
everywhere above with ‘L2’
It remains to define: L2-structure, truth in an L2-structure

Introduction

Validity
Recall the definition of validity for L1.
Let Γ be a set of sentences of L1 and φ a sentence of L1

Definition
The argument with all sentences in Γ as premisses and φ as
conclusion is valid if and only if there is no L1-structure
under which:
(i) all sentences in Γ are true; and
(ii) φ is false.

We use an exactly analogous definition for L2, replacing ‘L1’
everywhere above with ‘L2’
It remains to define: L2-structure, truth in an L2-structure

Introduction

Validity
Recall the definition of validity for L1.
Let Γ be a set of sentences of L1 and φ a sentence of L1

Definition
The argument with all sentences in Γ as premisses and φ as
conclusion is valid if and only if there is no L1-structure
under which:
(i) all sentences in Γ are true; and
(ii) φ is false.

We use an exactly analogous definition for L2, replacing ‘L1’
everywhere above with ‘L2’

It remains to define: L2-structure, truth in an L2-structure

Introduction

Validity
Recall the definition of validity for L1.
Let Γ be a set of sentences of L2 and φ a sentence of L2

Definition
The argument with all sentences in Γ as premisses and φ as
conclusion is valid if and only if there is no L2-structure
under which:
(i) all sentences in Γ are true; and
(ii) φ is false.

We use an exactly analogous definition for L2, replacing ‘L1’
everywhere above with ‘L2’

It remains to define: L2-structure, truth in an L2-structure

Introduction

Validity
Recall the definition of validity for L1.
Let Γ be a set of sentences of L2 and φ a sentence of L2

Definition
The argument with all sentences in Γ as premisses and φ as
conclusion is valid if and only if there is no L2-structure
under which:
(i) all sentences in Γ are true; and
(ii) φ is false.

We use an exactly analogous definition for L2, replacing ‘L1’
everywhere above with ‘L2’
It remains to define: L2-structure, truth in an L2-structure

Introduction

Structures
Structures interpret non-logical expressions.

L1-structures
Non-logical expressions in L1: P,Q,R,
An L1 structure A assigns each sentence letter a
semantic value (specifically, a truth-value: T or F)

L2 is a richer language. This calls for richer structures.

L2-structures
Non-logical expressions: P 1, Q1, R1, . . .

P 2, Q2, R2, . . .
...

a, b, c, . . .

An L2-structure A assigns each predicate and constant
a semantic value (specifically, what?)

Introduction

Structures
Structures interpret non-logical expressions.

L1-structures
Non-logical expressions in L1: P,Q,R,

An L1 structure A assigns each sentence letter a
semantic value (specifically, a truth-value: T or F)

L2 is a richer language. This calls for richer structures.

L2-structures
Non-logical expressions: P 1, Q1, R1, . . .

P 2, Q2, R2, . . .
...

a, b, c, . . .

An L2-structure A assigns each predicate and constant
a semantic value (specifically, what?)

Introduction

Structures
Structures interpret non-logical expressions.

L1-structures
Non-logical expressions in L1: P,Q,R,
An L1 structure A assigns each sentence letter a
semantic value

(specifically, a truth-value: T or F)

L2 is a richer language. This calls for richer structures.

L2-structures
Non-logical expressions: P 1, Q1, R1, . . .

P 2, Q2, R2, . . .
...

a, b, c, . . .

An L2-structure A assigns each predicate and constant
a semantic value (specifically, what?)

Introduction

Structures
Structures interpret non-logical expressions.

L1-structures
Non-logical expressions in L1: P,Q,R,
An L1 structure A assigns each sentence letter a
semantic value (specifically, a truth-value: T or F)

L2 is a richer language. This calls for richer structures.

L2-structures
Non-logical expressions: P 1, Q1, R1, . . .

P 2, Q2, R2, . . .
...

a, b, c, . . .

An L2-structure A assigns each predicate and constant
a semantic value (specifically, what?)

Introduction

Structures
Structures interpret non-logical expressions.

L1-structures
Non-logical expressions in L1: P,Q,R,
An L1 structure A assigns each sentence letter a
semantic value (specifically, a truth-value: T or F)

L2 is a richer language. This calls for richer structures.

L2-structures
Non-logical expressions: P 1, Q1, R1, . . .

P 2, Q2, R2, . . .
...

a, b, c, . . .

An L2-structure A assigns each predicate and constant
a semantic value (specifically, what?)

Introduction

Structures
Structures interpret non-logical expressions.

L1-structures
Non-logical expressions in L1: P,Q,R,
An L1 structure A assigns each sentence letter a
semantic value (specifically, a truth-value: T or F)

L2 is a richer language. This calls for richer structures.

L2-structures
Non-logical expressions: P 1, Q1, R1, . . .

P 2, Q2, R2, . . .
...

a, b, c, . . .

An L2-structure A assigns each predicate and constant
a semantic value (specifically, what?)

Introduction

Structures
Structures interpret non-logical expressions.

L1-structures
Non-logical expressions in L1: P,Q,R,
An L1 structure A assigns each sentence letter a
semantic value (specifically, a truth-value: T or F)

L2 is a richer language. This calls for richer structures.

L2-structures
Non-logical expressions: P 1, Q1, R1, . . .

P 2, Q2, R2, . . .
...

a, b, c, . . .

An L2-structure A assigns each predicate and constant
a semantic value (specifically, what?)

Introduction

Structures
Structures interpret non-logical expressions.

L1-structures
Non-logical expressions in L1: P,Q,R,
An L1 structure A assigns each sentence letter a
semantic value (specifically, a truth-value: T or F)

L2 is a richer language. This calls for richer structures.

L2-structures
Non-logical expressions: P 1, Q1, R1, . . .

P 2, Q2, R2, . . .
...

a, b, c, . . .

An L2-structure A assigns each predicate and constant
a semantic value (specifically, what?)

Introduction

Structures
Structures interpret non-logical expressions.

L1-structures
Non-logical expressions in L1: P,Q,R,
An L1 structure A assigns each sentence letter a
semantic value (specifically, a truth-value: T or F)

L2 is a richer language. This calls for richer structures.

L2-structures
Non-logical expressions: P 1, Q1, R1, . . .

P 2, Q2, R2, . . .
...

a, b, c, . . .

An L2-structure A assigns each predicate and constant
a semantic value

(specifically, what?)

Introduction

Structures
Structures interpret non-logical expressions.

L1-structures
Non-logical expressions in L1: P,Q,R,
An L1 structure A assigns each sentence letter a
semantic value (specifically, a truth-value: T or F)

L2 is a richer language. This calls for richer structures.

L2-structures
Non-logical expressions: P 1, Q1, R1, . . .

P 2, Q2, R2, . . .
...

a, b, c, . . .

An L2-structure A assigns each predicate and constant
a semantic value (specifically, what?)

Semantics in English

Semantics in English
Start with a semantics for simple English sentences.

‘Bertrand Russell is a philosopher’

The sentence is true (i.e.: its semantic value is: T).
. . . because of the relationship between the semantic values
of its constituents.

expression semantic value
‘Bertrand Russell’ Russell
‘is a philosopher’ the property of being a philosopher

. . . because Russell has the property of being a philosopher.

. . . because |‘Bertrand Russell’| has |‘is a philosopher’|.

Notation
When e is an expression, we write |e| for its semantic value

Semantics in English

Semantics in English
Start with a semantics for simple English sentences.

‘Bertrand Russell is a philosopher’

The sentence is true (i.e.: its semantic value is: T).
. . . because of the relationship between the semantic values
of its constituents.

expression semantic value
‘Bertrand Russell’ Russell
‘is a philosopher’ the property of being a philosopher

. . . because Russell has the property of being a philosopher.

. . . because |‘Bertrand Russell’| has |‘is a philosopher’|.

Notation
When e is an expression, we write |e| for its semantic value

Semantics in English

Semantics in English
Start with a semantics for simple English sentences.

‘Bertrand Russell is a philosopher’

The sentence is true

(i.e.: its semantic value is: T).
. . . because of the relationship between the semantic values
of its constituents.

expression semantic value
‘Bertrand Russell’ Russell
‘is a philosopher’ the property of being a philosopher

. . . because Russell has the property of being a philosopher.

. . . because |‘Bertrand Russell’| has |‘is a philosopher’|.

Notation
When e is an expression, we write |e| for its semantic value

Semantics in English

Semantics in English
Start with a semantics for simple English sentences.

‘Bertrand Russell is a philosopher’

The sentence is true (i.e.: its semantic value is: T).

. . . because of the relationship between the semantic values
of its constituents.

expression semantic value
‘Bertrand Russell’ Russell
‘is a philosopher’ the property of being a philosopher

. . . because Russell has the property of being a philosopher.

. . . because |‘Bertrand Russell’| has |‘is a philosopher’|.

Notation
When e is an expression, we write |e| for its semantic value

Semantics in English

Semantics in English
Start with a semantics for simple English sentences.

‘Bertrand Russell is a philosopher’

The sentence is true (i.e.: its semantic value is: T).
. . . because of the relationship between the semantic values
of its constituents.

expression semantic value
‘Bertrand Russell’ Russell
‘is a philosopher’ the property of being a philosopher

. . . because Russell has the property of being a philosopher.

. . . because |‘Bertrand Russell’| has |‘is a philosopher’|.

Notation
When e is an expression, we write |e| for its semantic value

Semantics in English

Semantics in English
Start with a semantics for simple English sentences.

‘Bertrand Russell is a philosopher’

The sentence is true (i.e.: its semantic value is: T).
. . . because of the relationship between the semantic values
of its constituents.

expression semantic value
‘Bertrand Russell’ Russell
‘is a philosopher’ the property of being a philosopher

. . . because Russell has the property of being a philosopher.

. . . because |‘Bertrand Russell’| has |‘is a philosopher’|.

Notation
When e is an expression, we write |e| for its semantic value

Semantics in English

Semantics in English
Start with a semantics for simple English sentences.

‘Bertrand Russell is a philosopher’

The sentence is true (i.e.: its semantic value is: T).
. . . because of the relationship between the semantic values
of its constituents.

expression semantic value
‘Bertrand Russell’ Russell
‘is a philosopher’ the property of being a philosopher

. . . because Russell has the property of being a philosopher.

. . . because |‘Bertrand Russell’| has |‘is a philosopher’|.

Notation
When e is an expression, we write |e| for its semantic value

Semantics in English

Semantics in English
Start with a semantics for simple English sentences.

‘Bertrand Russell is a philosopher’

The sentence is true (i.e.: its semantic value is: T).
. . . because of the relationship between the semantic values
of its constituents.

expression semantic value
‘Bertrand Russell’ Russell
‘is a philosopher’ the property of being a philosopher

. . . because Russell has the property of being a philosopher.

. . . because |‘Bertrand Russell’| has |‘is a philosopher’|.

Notation
When e is an expression, we write |e| for its semantic value

Semantics in English

Similarly:

‘Alonzo Church reveres Bertrand Russell’ is true iff
Church stands in the relation of revering to Russell

In other words:

|‘Alonzo Church reveres Bertrand Russell’| = T iff
|‘Alonzo Church’| stands in |‘reveres’| to |‘Bertrand Russell’|

Semantics in English

Similarly:

‘Alonzo Church reveres Bertrand Russell’ is true iff
Church stands in the relation of revering to Russell

In other words:

|‘Alonzo Church reveres Bertrand Russell’| = T iff
|‘Alonzo Church’| stands in |‘reveres’| to |‘Bertrand Russell’|

Semantics in English

Semantic values for English expressions

expression semantic value
designator object

unary predicate property (alias: unary relation)
binary predicate binary relation

Examples
|‘Bertrand Russell’| = Russell
|‘is a philosopher’| = the property of being a philosopher
|‘reveres’| = the relation of revering

We’ll take this one step further, by saying more about
properties and relations.

Semantics in English

Semantic values for English expressions

expression semantic value
designator object

unary predicate property (alias: unary relation)
binary predicate binary relation

Examples
|‘Bertrand Russell’| = Russell
|‘is a philosopher’| = the property of being a philosopher
|‘reveres’| = the relation of revering

We’ll take this one step further, by saying more about
properties and relations.

Semantics in English

Semantic values for English expressions

expression semantic value
designator object

unary predicate property (alias: unary relation)
binary predicate binary relation

Examples
|‘Bertrand Russell’| = Russell
|‘is a philosopher’| = the property of being a philosopher
|‘reveres’| = the relation of revering

We’ll take this one step further, by saying more about
properties and relations.

Semantics in English

Properties
In logic, we identify properties with sets.

Property (alias: unary relation)
A unary relation P is a set of zero or more objects.

Specifically, P is the set of objects that have the property.

Informally: d ∈ P indicates that d has property P .

Example
The property of being a philosopher

= the set of philosophers
= {d : d is a philosopher}
= {Descartes, Kant, Russell, . . . }

Semantics in English

Properties
In logic, we identify properties with sets.

Property (alias: unary relation)
A unary relation P is a set of zero or more objects.

Specifically, P is the set of objects that have the property.

Informally: d ∈ P indicates that d has property P .

Example
The property of being a philosopher

= the set of philosophers
= {d : d is a philosopher}
= {Descartes, Kant, Russell, . . . }

Semantics in English

Properties
In logic, we identify properties with sets.

Property (alias: unary relation)
A unary relation P is a set of zero or more objects.

Specifically, P is the set of objects that have the property.

Informally: d ∈ P indicates that d has property P .

Example
The property of being a philosopher

= the set of philosophers
= {d : d is a philosopher}
= {Descartes, Kant, Russell, . . . }

Semantics in English

Properties
In logic, we identify properties with sets.

Property (alias: unary relation)
A unary relation P is a set of zero or more objects.

Specifically, P is the set of objects that have the property.

Informally: d ∈ P indicates that d has property P .

Example
The property of being a philosopher

= the set of philosophers
= {d : d is a philosopher}
= {Descartes, Kant, Russell, . . . }

Semantics in English

Properties
In logic, we identify properties with sets.

Property (alias: unary relation)
A unary relation P is a set of zero or more objects.

Specifically, P is the set of objects that have the property.

Informally: d ∈ P indicates that d has property P .

Example
The property of being a philosopher

= the set of philosophers
= {d : d is a philosopher}
= {Descartes, Kant, Russell, . . . }

Semantics in English

Properties
In logic, we identify properties with sets.

Property (alias: unary relation)
A unary relation P is a set of zero or more objects.

Specifically, P is the set of objects that have the property.

Informally: d ∈ P indicates that d has property P .

Example
The property of being a philosopher

= the set of philosophers
= {d : d is a philosopher}
= {Descartes, Kant, Russell, . . . }

Semantics in English

Relations
Recall that we identify binary relations with sets of pairs.

Binary relation
A binary relation R is a set of zero or more pairs of objects.

R is the set of pairs 〈d, e〉 such that d stands in R to e.

Informally: 〈d, e〉 ∈ R indicates that d bears R to e.

Example
The relation of revering = {〈d, e〉 : d reveres e}

Similarly:

A ternary (3-ary) relation is a set of triples (3-tuples).
A quaternary (4-ary) relation is a set of quadruples (4-tuples).
etc.

Semantics in English

Relations
Recall that we identify binary relations with sets of pairs.

Binary relation
A binary relation R is a set of zero or more pairs of objects.

R is the set of pairs 〈d, e〉 such that d stands in R to e.

Informally: 〈d, e〉 ∈ R indicates that d bears R to e.

Example
The relation of revering = {〈d, e〉 : d reveres e}

Similarly:

A ternary (3-ary) relation is a set of triples (3-tuples).
A quaternary (4-ary) relation is a set of quadruples (4-tuples).
etc.

Semantics in English

Relations
Recall that we identify binary relations with sets of pairs.

Binary relation
A binary relation R is a set of zero or more pairs of objects.

R is the set of pairs 〈d, e〉 such that d stands in R to e.

Informally: 〈d, e〉 ∈ R indicates that d bears R to e.

Example
The relation of revering = {〈d, e〉 : d reveres e}

Similarly:

A ternary (3-ary) relation is a set of triples (3-tuples).
A quaternary (4-ary) relation is a set of quadruples (4-tuples).
etc.

Semantics in English

Relations
Recall that we identify binary relations with sets of pairs.

Binary relation
A binary relation R is a set of zero or more pairs of objects.

R is the set of pairs 〈d, e〉 such that d stands in R to e.

Informally: 〈d, e〉 ∈ R indicates that d bears R to e.

Example
The relation of revering = {〈d, e〉 : d reveres e}

Similarly:

A ternary (3-ary) relation is a set of triples (3-tuples).
A quaternary (4-ary) relation is a set of quadruples (4-tuples).
etc.

Semantics in English

Relations
Recall that we identify binary relations with sets of pairs.

Binary relation
A binary relation R is a set of zero or more pairs of objects.

R is the set of pairs 〈d, e〉 such that d stands in R to e.

Informally: 〈d, e〉 ∈ R indicates that d bears R to e.

Example
The relation of revering = {〈d, e〉 : d reveres e}

Similarly:

A ternary (3-ary) relation is a set of triples (3-tuples).
A quaternary (4-ary) relation is a set of quadruples (4-tuples).
etc.

Semantics in English

Relations
Recall that we identify binary relations with sets of pairs.

Binary relation
A binary relation R is a set of zero or more pairs of objects.

R is the set of pairs 〈d, e〉 such that d stands in R to e.

Informally: 〈d, e〉 ∈ R indicates that d bears R to e.

Example
The relation of revering = {〈d, e〉 : d reveres e}

Similarly:

A ternary (3-ary) relation is a set of triples (3-tuples).

A quaternary (4-ary) relation is a set of quadruples (4-tuples).
etc.

Semantics in English

Relations
Recall that we identify binary relations with sets of pairs.

Binary relation
A binary relation R is a set of zero or more pairs of objects.

R is the set of pairs 〈d, e〉 such that d stands in R to e.

Informally: 〈d, e〉 ∈ R indicates that d bears R to e.

Example
The relation of revering = {〈d, e〉 : d reveres e}

Similarly:

A ternary (3-ary) relation is a set of triples (3-tuples).
A quaternary (4-ary) relation is a set of quadruples (4-tuples).

etc.

Semantics in English

Relations
Recall that we identify binary relations with sets of pairs.

Binary relation
A binary relation R is a set of zero or more pairs of objects.

R is the set of pairs 〈d, e〉 such that d stands in R to e.

Informally: 〈d, e〉 ∈ R indicates that d bears R to e.

Example
The relation of revering = {〈d, e〉 : d reveres e}

Similarly:

A ternary (3-ary) relation is a set of triples (3-tuples).
A quaternary (4-ary) relation is a set of quadruples (4-tuples).
etc.

Semantics in English

Putting this all together:

‘Bertrand Russell is a philosopher’ is true
iff |‘Bertrand Russell’| has |‘is a philosopher’|
iff Russell ∈ the set of philosophers

Similarly:

‘Alonzo Church reveres Russell’ is true
iff |‘Alonzo Church’| stands in |‘reveres’| to |‘Russell’|
iff 〈Church, Russell〉 ∈ {〈d, e〉 : d reveres e}

Semantics in English

Putting this all together:

‘Bertrand Russell is a philosopher’ is true

iff |‘Bertrand Russell’| has |‘is a philosopher’|
iff Russell ∈ the set of philosophers

Similarly:

‘Alonzo Church reveres Russell’ is true
iff |‘Alonzo Church’| stands in |‘reveres’| to |‘Russell’|
iff 〈Church, Russell〉 ∈ {〈d, e〉 : d reveres e}

Semantics in English

Putting this all together:

‘Bertrand Russell is a philosopher’ is true
iff |‘Bertrand Russell’| has |‘is a philosopher’|

iff Russell ∈ the set of philosophers

Similarly:

‘Alonzo Church reveres Russell’ is true
iff |‘Alonzo Church’| stands in |‘reveres’| to |‘Russell’|
iff 〈Church, Russell〉 ∈ {〈d, e〉 : d reveres e}

Semantics in English

Putting this all together:

‘Bertrand Russell is a philosopher’ is true
iff |‘Bertrand Russell’| has |‘is a philosopher’|
iff Russell ∈ the set of philosophers

Similarly:

‘Alonzo Church reveres Russell’ is true
iff |‘Alonzo Church’| stands in |‘reveres’| to |‘Russell’|
iff 〈Church, Russell〉 ∈ {〈d, e〉 : d reveres e}

Semantics in English

Putting this all together:

‘Bertrand Russell is a philosopher’ is true
iff |‘Bertrand Russell’| has |‘is a philosopher’|
iff Russell ∈ the set of philosophers

Similarly:

‘Alonzo Church reveres Russell’ is true

iff |‘Alonzo Church’| stands in |‘reveres’| to |‘Russell’|
iff 〈Church, Russell〉 ∈ {〈d, e〉 : d reveres e}

Semantics in English

Putting this all together:

‘Bertrand Russell is a philosopher’ is true
iff |‘Bertrand Russell’| has |‘is a philosopher’|
iff Russell ∈ the set of philosophers

Similarly:

‘Alonzo Church reveres Russell’ is true
iff |‘Alonzo Church’| stands in |‘reveres’| to |‘Russell’|

iff 〈Church, Russell〉 ∈ {〈d, e〉 : d reveres e}

Semantics in English

Putting this all together:

‘Bertrand Russell is a philosopher’ is true
iff |‘Bertrand Russell’| has |‘is a philosopher’|
iff Russell ∈ the set of philosophers

Similarly:

‘Alonzo Church reveres Russell’ is true
iff |‘Alonzo Church’| stands in |‘reveres’| to |‘Russell’|
iff 〈Church, Russell〉 ∈ {〈d, e〉 : d reveres e}

Atomic Sentences

Semantics for atomic L2-sentences
The semantics for atomic L2-sentences is similar.

An L2-structure specifies semantic values for L2-expressions:

L2-expression semantic value
constant: a object: |a|

sentence letter: P truth-value: |P | (i.e. T or F)
unary predicate: P 1 unary relation: |P 1| (i.e. a set)
binary predicate: P 2 binary relation: |P 2| (a set of pairs)

|Pb| = T iff |b| has |P |
iff |b| ∈ |P |

|Rab| = T iff |a| stands in |R| to |b|
iff 〈|a|, |b|〉 ∈ |R|

Notation: |e|A is the semantic value of e in L2-structure A.

Atomic Sentences

Semantics for atomic L2-sentences
The semantics for atomic L2-sentences is similar.

An L2-structure specifies semantic values for L2-expressions:

L2-expression semantic value
constant: a object: |a|

sentence letter: P truth-value: |P | (i.e. T or F)
unary predicate: P 1 unary relation: |P 1| (i.e. a set)
binary predicate: P 2 binary relation: |P 2| (a set of pairs)

|Pb| = T iff |b| has |P |
iff |b| ∈ |P |

|Rab| = T iff |a| stands in |R| to |b|
iff 〈|a|, |b|〉 ∈ |R|

Notation: |e|A is the semantic value of e in L2-structure A.

Atomic Sentences

Semantics for atomic L2-sentences
The semantics for atomic L2-sentences is similar.

An L2-structure specifies semantic values for L2-expressions:

L2-expression semantic value
constant: a object: |a|

sentence letter: P truth-value: |P | (i.e. T or F)
unary predicate: P 1 unary relation: |P 1| (i.e. a set)
binary predicate: P 2 binary relation: |P 2| (a set of pairs)

|Pb| = T iff |b| has |P |

iff |b| ∈ |P |
|Rab| = T iff |a| stands in |R| to |b|

iff 〈|a|, |b|〉 ∈ |R|

Notation: |e|A is the semantic value of e in L2-structure A.

Atomic Sentences

Semantics for atomic L2-sentences
The semantics for atomic L2-sentences is similar.

An L2-structure specifies semantic values for L2-expressions:

L2-expression semantic value
constant: a object: |a|

sentence letter: P truth-value: |P | (i.e. T or F)
unary predicate: P 1 unary relation: |P 1| (i.e. a set)
binary predicate: P 2 binary relation: |P 2| (a set of pairs)

|Pb| = T iff |b| has |P |
iff |b| ∈ |P |

|Rab| = T iff |a| stands in |R| to |b|
iff 〈|a|, |b|〉 ∈ |R|

Notation: |e|A is the semantic value of e in L2-structure A.

Atomic Sentences

Semantics for atomic L2-sentences
The semantics for atomic L2-sentences is similar.

An L2-structure specifies semantic values for L2-expressions:

L2-expression semantic value
constant: a object: |a|

sentence letter: P truth-value: |P | (i.e. T or F)
unary predicate: P 1 unary relation: |P 1| (i.e. a set)
binary predicate: P 2 binary relation: |P 2| (a set of pairs)

|Pb| = T iff |b| has |P |
iff |b| ∈ |P |

|Rab| = T iff |a| stands in |R| to |b|

iff 〈|a|, |b|〉 ∈ |R|

Notation: |e|A is the semantic value of e in L2-structure A.

Atomic Sentences

Semantics for atomic L2-sentences
The semantics for atomic L2-sentences is similar.

An L2-structure specifies semantic values for L2-expressions:

L2-expression semantic value
constant: a object: |a|

sentence letter: P truth-value: |P | (i.e. T or F)
unary predicate: P 1 unary relation: |P 1| (i.e. a set)
binary predicate: P 2 binary relation: |P 2| (a set of pairs)

|Pb| = T iff |b| has |P |
iff |b| ∈ |P |

|Rab| = T iff |a| stands in |R| to |b|
iff 〈|a|, |b|〉 ∈ |R|

Notation: |e|A is the semantic value of e in L2-structure A.

Atomic Sentences

Semantics for atomic L2-sentences
The semantics for atomic L2-sentences is similar.

An L2-structure specifies semantic values for L2-expressions:

L2-expression semantic value
constant: a object: |a|

sentence letter: P truth-value: |P | (i.e. T or F)
unary predicate: P 1 unary relation: |P 1| (i.e. a set)
binary predicate: P 2 binary relation: |P 2| (a set of pairs)

|Pb| = T iff |b| has |P |
iff |b| ∈ |P |

|Rab| = T iff |a| stands in |R| to |b|
iff 〈|a|, |b|〉 ∈ |R|

Notation: |e|A is the semantic value of e in L2-structure A.

Atomic Formulae

Semantics for atomic L2-formulae
We have the semantics for L2-sentences like Pa.

What about L2-formulae like Px?

In English:

The designator ‘Russell’ has a constant semantic value.
Pronouns, such as ‘it’, do not.
‘it’ refers to different objects depending on the context.

Something similar happens in an L2-structure A:

a, b, c, . . . are assigned a constant semantic value in A.
Variables: x, y, z, . . . are not.

What object each variable denotes is specified with a
variable assignment.

Atomic Formulae

Semantics for atomic L2-formulae
We have the semantics for L2-sentences like Pa.
What about L2-formulae like Px?

In English:

The designator ‘Russell’ has a constant semantic value.
Pronouns, such as ‘it’, do not.
‘it’ refers to different objects depending on the context.

Something similar happens in an L2-structure A:

a, b, c, . . . are assigned a constant semantic value in A.
Variables: x, y, z, . . . are not.

What object each variable denotes is specified with a
variable assignment.

Atomic Formulae

Semantics for atomic L2-formulae
We have the semantics for L2-sentences like Pa.
What about L2-formulae like Px?

In English:

The designator ‘Russell’ has a constant semantic value.

Pronouns, such as ‘it’, do not.
‘it’ refers to different objects depending on the context.

Something similar happens in an L2-structure A:

a, b, c, . . . are assigned a constant semantic value in A.
Variables: x, y, z, . . . are not.

What object each variable denotes is specified with a
variable assignment.

Atomic Formulae

Semantics for atomic L2-formulae
We have the semantics for L2-sentences like Pa.
What about L2-formulae like Px?

In English:

The designator ‘Russell’ has a constant semantic value.
Pronouns, such as ‘it’, do not.

‘it’ refers to different objects depending on the context.

Something similar happens in an L2-structure A:

a, b, c, . . . are assigned a constant semantic value in A.
Variables: x, y, z, . . . are not.

What object each variable denotes is specified with a
variable assignment.

Atomic Formulae

Semantics for atomic L2-formulae
We have the semantics for L2-sentences like Pa.
What about L2-formulae like Px?

In English:

The designator ‘Russell’ has a constant semantic value.
Pronouns, such as ‘it’, do not.
‘it’ refers to different objects depending on the context.

Something similar happens in an L2-structure A:

a, b, c, . . . are assigned a constant semantic value in A.
Variables: x, y, z, . . . are not.

What object each variable denotes is specified with a
variable assignment.

Atomic Formulae

Semantics for atomic L2-formulae
We have the semantics for L2-sentences like Pa.
What about L2-formulae like Px?

In English:

The designator ‘Russell’ has a constant semantic value.
Pronouns, such as ‘it’, do not.
‘it’ refers to different objects depending on the context.

Something similar happens in an L2-structure A:

a, b, c, . . . are assigned a constant semantic value in A.
Variables: x, y, z, . . . are not.

What object each variable denotes is specified with a
variable assignment.

Atomic Formulae

Semantics for atomic L2-formulae
We have the semantics for L2-sentences like Pa.
What about L2-formulae like Px?

In English:

The designator ‘Russell’ has a constant semantic value.
Pronouns, such as ‘it’, do not.
‘it’ refers to different objects depending on the context.

Something similar happens in an L2-structure A:

a, b, c, . . . are assigned a constant semantic value in A.

Variables: x, y, z, . . . are not.

What object each variable denotes is specified with a
variable assignment.

Atomic Formulae

Semantics for atomic L2-formulae
We have the semantics for L2-sentences like Pa.
What about L2-formulae like Px?

In English:

The designator ‘Russell’ has a constant semantic value.
Pronouns, such as ‘it’, do not.
‘it’ refers to different objects depending on the context.

Something similar happens in an L2-structure A:

a, b, c, . . . are assigned a constant semantic value in A.
Variables: x, y, z, . . . are not.

What object each variable denotes is specified with a
variable assignment.

Atomic Formulae

Semantics for atomic L2-formulae
We have the semantics for L2-sentences like Pa.
What about L2-formulae like Px?

In English:

The designator ‘Russell’ has a constant semantic value.
Pronouns, such as ‘it’, do not.
‘it’ refers to different objects depending on the context.

Something similar happens in an L2-structure A:

a, b, c, . . . are assigned a constant semantic value in A.
Variables: x, y, z, . . . are not.

What object each variable denotes is specified with a
variable assignment.

Atomic Formulae

Variable assignments

Variable assignment
A variable assignment assigns an object to each variable.

One can think of a variable assignment as an infinite list

Example: the assignment α.
x y z x1 y1 z1 x2

Mercury Venus Venus Neptune Mars Venus Mars · · ·

Notation
We write |x|α for the object α assigns to x.
We use lower case Greek letters: α, β, γ for assignments.

e.g. |x|α = Mercury; |y|α =Venus; |x2|α = Mars.

Atomic Formulae

Variable assignments

Variable assignment
A variable assignment assigns an object to each variable.

One can think of a variable assignment as an infinite list

Example: the assignment α.
x y z x1 y1 z1 x2

Mercury Venus Venus Neptune Mars Venus Mars · · ·

Notation
We write |x|α for the object α assigns to x.
We use lower case Greek letters: α, β, γ for assignments.

e.g. |x|α = Mercury; |y|α =Venus; |x2|α = Mars.

Atomic Formulae

Variable assignments

Variable assignment
A variable assignment assigns an object to each variable.

One can think of a variable assignment as an infinite list

Example: the assignment α.
x y z x1 y1 z1 x2

Mercury Venus Venus Neptune Mars Venus Mars · · ·

Notation
We write |x|α for the object α assigns to x.
We use lower case Greek letters: α, β, γ for assignments.

e.g. |x|α = Mercury; |y|α =Venus; |x2|α = Mars.

Atomic Formulae

Variable assignments

Variable assignment
A variable assignment assigns an object to each variable.

One can think of a variable assignment as an infinite list

Example: the assignment α.
x y z x1 y1 z1 x2

Mercury Venus Venus Neptune Mars Venus Mars · · ·

Notation
We write |x|α for the object α assigns to x.

We use lower case Greek letters: α, β, γ for assignments.

e.g. |x|α = Mercury; |y|α =Venus; |x2|α = Mars.

Atomic Formulae

Variable assignments

Variable assignment
A variable assignment assigns an object to each variable.

One can think of a variable assignment as an infinite list

Example: the assignment α.
x y z x1 y1 z1 x2

Mercury Venus Venus Neptune Mars Venus Mars · · ·

Notation
We write |x|α for the object α assigns to x.
We use lower case Greek letters: α, β, γ for assignments.

e.g. |x|α = Mercury; |y|α =Venus; |x2|α = Mars.

Atomic Formulae

Variable assignments

Variable assignment
A variable assignment assigns an object to each variable.

One can think of a variable assignment as an infinite list

Example: the assignment α.
x y z x1 y1 z1 x2

Mercury Venus Venus Neptune Mars Venus Mars · · ·

Notation
We write |x|α for the object α assigns to x.
We use lower case Greek letters: α, β, γ for assignments.

e.g. |x|α =

Mercury; |y|α =Venus; |x2|α = Mars.

Atomic Formulae

Variable assignments

Variable assignment
A variable assignment assigns an object to each variable.

One can think of a variable assignment as an infinite list

Example: the assignment α.
x y z x1 y1 z1 x2

Mercury Venus Venus Neptune Mars Venus Mars · · ·

Notation
We write |x|α for the object α assigns to x.
We use lower case Greek letters: α, β, γ for assignments.

e.g. |x|α = Mercury

; |y|α =Venus; |x2|α = Mars.

Atomic Formulae

Variable assignments

Variable assignment
A variable assignment assigns an object to each variable.

One can think of a variable assignment as an infinite list

Example: the assignment α.
x y z x1 y1 z1 x2

Mercury Venus Venus Neptune Mars Venus Mars · · ·

Notation
We write |x|α for the object α assigns to x.
We use lower case Greek letters: α, β, γ for assignments.

e.g. |x|α = Mercury; |y|α =

Venus; |x2|α = Mars.

Atomic Formulae

Variable assignments

Variable assignment
A variable assignment assigns an object to each variable.

One can think of a variable assignment as an infinite list

Example: the assignment α.
x y z x1 y1 z1 x2

Mercury Venus Venus Neptune Mars Venus Mars · · ·

Notation
We write |x|α for the object α assigns to x.
We use lower case Greek letters: α, β, γ for assignments.

e.g. |x|α = Mercury; |y|α =Venus

; |x2|α = Mars.

Atomic Formulae

Variable assignments

Variable assignment
A variable assignment assigns an object to each variable.

One can think of a variable assignment as an infinite list

Example: the assignment α.
x y z x1 y1 z1 x2

Mercury Venus Venus Neptune Mars Venus Mars · · ·

Notation
We write |x|α for the object α assigns to x.
We use lower case Greek letters: α, β, γ for assignments.

e.g. |x|α = Mercury; |y|α =Venus; |x2|α =

Mars.

Atomic Formulae

Variable assignments

Variable assignment
A variable assignment assigns an object to each variable.

One can think of a variable assignment as an infinite list

Example: the assignment α.
x y z x1 y1 z1 x2

Mercury Venus Venus Neptune Mars Venus Mars · · ·

Notation
We write |x|α for the object α assigns to x.
We use lower case Greek letters: α, β, γ for assignments.

e.g. |x|α = Mercury; |y|α =Venus; |x2|α = Mars.

Atomic Formulae

Once x has been assigned an object, the semantics for Px
are much like the semantics for Pa

We write |e|αA for the semantic value of expression e in the
structure A under the variable assignment α.

|Px|αA = T iff |x|α has |P |A (NB: |x|αA = |x|α)
iff |x|α ∈ |P |A

|Rxy|αA = T iff |x|α stands in |R|A to |y|α
iff 〈|x|α, |y|α〉 ∈ |R|A

Note: semantic values of constants and predicates are unaffected
by the assignment (e.g. |P |αA = |P |A, |a|αA = |a|A).

|Rab|αA = T iff 〈|a|A, |b|A〉 ∈ |R|A
|Rxb|αA = T iff 〈|x|α, |b|A〉 ∈ |R|A

Similarly for other atomic formulae.

Atomic Formulae

Once x has been assigned an object, the semantics for Px
are much like the semantics for Pa

We write |e|αA for the semantic value of expression e in the
structure A under the variable assignment α.

|Px|αA = T iff |x|α has |P |A (NB: |x|αA = |x|α)
iff |x|α ∈ |P |A

|Rxy|αA = T iff |x|α stands in |R|A to |y|α
iff 〈|x|α, |y|α〉 ∈ |R|A

Note: semantic values of constants and predicates are unaffected
by the assignment (e.g. |P |αA = |P |A, |a|αA = |a|A).

|Rab|αA = T iff 〈|a|A, |b|A〉 ∈ |R|A
|Rxb|αA = T iff 〈|x|α, |b|A〉 ∈ |R|A

Similarly for other atomic formulae.

Atomic Formulae

Once x has been assigned an object, the semantics for Px
are much like the semantics for Pa

We write |e|αA for the semantic value of expression e in the
structure A under the variable assignment α.

|Px|αA = T iff |x|α has |P |A

(NB: |x|αA = |x|α)
iff |x|α ∈ |P |A

|Rxy|αA = T iff |x|α stands in |R|A to |y|α
iff 〈|x|α, |y|α〉 ∈ |R|A

Note: semantic values of constants and predicates are unaffected
by the assignment (e.g. |P |αA = |P |A, |a|αA = |a|A).

|Rab|αA = T iff 〈|a|A, |b|A〉 ∈ |R|A
|Rxb|αA = T iff 〈|x|α, |b|A〉 ∈ |R|A

Similarly for other atomic formulae.

Atomic Formulae

Once x has been assigned an object, the semantics for Px
are much like the semantics for Pa

We write |e|αA for the semantic value of expression e in the
structure A under the variable assignment α.

|Px|αA = T iff |x|α has |P |A (NB: |x|αA = |x|α)

iff |x|α ∈ |P |A
|Rxy|αA = T iff |x|α stands in |R|A to |y|α

iff 〈|x|α, |y|α〉 ∈ |R|A
Note: semantic values of constants and predicates are unaffected
by the assignment (e.g. |P |αA = |P |A, |a|αA = |a|A).

|Rab|αA = T iff 〈|a|A, |b|A〉 ∈ |R|A
|Rxb|αA = T iff 〈|x|α, |b|A〉 ∈ |R|A

Similarly for other atomic formulae.

Atomic Formulae

Once x has been assigned an object, the semantics for Px
are much like the semantics for Pa

We write |e|αA for the semantic value of expression e in the
structure A under the variable assignment α.

|Px|αA = T iff |x|α has |P |A (NB: |x|αA = |x|α)
iff |x|α ∈ |P |A

|Rxy|αA = T iff |x|α stands in |R|A to |y|α
iff 〈|x|α, |y|α〉 ∈ |R|A

Note: semantic values of constants and predicates are unaffected
by the assignment (e.g. |P |αA = |P |A, |a|αA = |a|A).

|Rab|αA = T iff 〈|a|A, |b|A〉 ∈ |R|A
|Rxb|αA = T iff 〈|x|α, |b|A〉 ∈ |R|A

Similarly for other atomic formulae.

Atomic Formulae

Once x has been assigned an object, the semantics for Px
are much like the semantics for Pa

We write |e|αA for the semantic value of expression e in the
structure A under the variable assignment α.

|Px|αA = T iff |x|α has |P |A (NB: |x|αA = |x|α)
iff |x|α ∈ |P |A

|Rxy|αA = T iff |x|α stands in |R|A to |y|α

iff 〈|x|α, |y|α〉 ∈ |R|A
Note: semantic values of constants and predicates are unaffected
by the assignment (e.g. |P |αA = |P |A, |a|αA = |a|A).

|Rab|αA = T iff 〈|a|A, |b|A〉 ∈ |R|A
|Rxb|αA = T iff 〈|x|α, |b|A〉 ∈ |R|A

Similarly for other atomic formulae.

Atomic Formulae

Once x has been assigned an object, the semantics for Px
are much like the semantics for Pa

We write |e|αA for the semantic value of expression e in the
structure A under the variable assignment α.

|Px|αA = T iff |x|α has |P |A (NB: |x|αA = |x|α)
iff |x|α ∈ |P |A

|Rxy|αA = T iff |x|α stands in |R|A to |y|α
iff 〈|x|α, |y|α〉 ∈ |R|A

Note: semantic values of constants and predicates are unaffected
by the assignment (e.g. |P |αA = |P |A, |a|αA = |a|A).

|Rab|αA = T iff 〈|a|A, |b|A〉 ∈ |R|A
|Rxb|αA = T iff 〈|x|α, |b|A〉 ∈ |R|A

Similarly for other atomic formulae.

Atomic Formulae

Once x has been assigned an object, the semantics for Px
are much like the semantics for Pa

We write |e|αA for the semantic value of expression e in the
structure A under the variable assignment α.

|Px|αA = T iff |x|α has |P |A (NB: |x|αA = |x|α)
iff |x|α ∈ |P |A

|Rxy|αA = T iff |x|α stands in |R|A to |y|α
iff 〈|x|α, |y|α〉 ∈ |R|A

Note: semantic values of constants and predicates are unaffected
by the assignment (e.g. |P |αA = |P |A, |a|αA = |a|A).

|Rab|αA = T iff 〈|a|A, |b|A〉 ∈ |R|A
|Rxb|αA = T iff 〈|x|α, |b|A〉 ∈ |R|A

Similarly for other atomic formulae.

Atomic Formulae

Once x has been assigned an object, the semantics for Px
are much like the semantics for Pa

We write |e|αA for the semantic value of expression e in the
structure A under the variable assignment α.

|Px|αA = T iff |x|α has |P |A (NB: |x|αA = |x|α)
iff |x|α ∈ |P |A

|Rxy|αA = T iff |x|α stands in |R|A to |y|α
iff 〈|x|α, |y|α〉 ∈ |R|A

Note: semantic values of constants and predicates are unaffected
by the assignment (e.g. |P |αA = |P |A, |a|αA = |a|A).

|Rab|αA = T iff 〈|a|A, |b|A〉 ∈ |R|A

|Rxb|αA = T iff 〈|x|α, |b|A〉 ∈ |R|A
Similarly for other atomic formulae.

Atomic Formulae

Once x has been assigned an object, the semantics for Px
are much like the semantics for Pa

We write |e|αA for the semantic value of expression e in the
structure A under the variable assignment α.

|Px|αA = T iff |x|α has |P |A (NB: |x|αA = |x|α)
iff |x|α ∈ |P |A

|Rxy|αA = T iff |x|α stands in |R|A to |y|α
iff 〈|x|α, |y|α〉 ∈ |R|A

Note: semantic values of constants and predicates are unaffected
by the assignment (e.g. |P |αA = |P |A, |a|αA = |a|A).

|Rab|αA = T iff 〈|a|A, |b|A〉 ∈ |R|A
|Rxb|αA = T iff 〈|x|α, |b|A〉 ∈ |R|A

Similarly for other atomic formulae.

Atomic Formulae

Once x has been assigned an object, the semantics for Px
are much like the semantics for Pa

We write |e|αA for the semantic value of expression e in the
structure A under the variable assignment α.

|Px|αA = T iff |x|α has |P |A (NB: |x|αA = |x|α)
iff |x|α ∈ |P |A

|Rxy|αA = T iff |x|α stands in |R|A to |y|α
iff 〈|x|α, |y|α〉 ∈ |R|A

Note: semantic values of constants and predicates are unaffected
by the assignment (e.g. |P |αA = |P |A, |a|αA = |a|A).

|Rab|αA = T iff 〈|a|A, |b|A〉 ∈ |R|A
|Rxb|αA = T iff 〈|x|α, |b|A〉 ∈ |R|A

Similarly for other atomic formulae.

Atomic Formulae

Worked example
Let L2-structure A be such that:
|a|A = Alonzo Church
|b|A = Bertrand Russell
|P |A = {Frege, Russell}
|R|A = {〈Church, Russell〉}

Let assignments α and β be such that:
x y z

α: Frege Russell Wittgenstein
β: Church Church Church

35

Compute the following:

|x|αA =

Frege

|x|βA =

Church

|a|αA =

Church

|Py|αA =

T

|Py|βA =

F

|Pb|αA =

T

|Rxy|αA =

F

|Rxy|βA =

F

|Rxb|αA =

F

Atomic Formulae

Worked example
Let L2-structure A be such that:
|a|A = Alonzo Church
|b|A = Bertrand Russell
|P |A = {Frege, Russell}
|R|A = {〈Church, Russell〉}

Let assignments α and β be such that:
x y z

α: Frege Russell Wittgenstein
β: Church Church Church

35

Compute the following:

|x|αA =

Frege

|x|βA =

Church

|a|αA =

Church

|Py|αA =

T

|Py|βA =

F

|Pb|αA =

T

|Rxy|αA =

F

|Rxy|βA =

F

|Rxb|αA =

F

Atomic Formulae

Worked example
Let L2-structure A be such that:
|a|A = Alonzo Church
|b|A = Bertrand Russell
|P |A = {Frege, Russell}
|R|A = {〈Church, Russell〉}

Let assignments α and β be such that:
x y z

α: Frege Russell Wittgenstein
β: Church Church Church

35

Compute the following:

|x|αA = Frege |x|βA =

Church

|a|αA =

Church

|Py|αA =

T

|Py|βA =

F

|Pb|αA =

T

|Rxy|αA =

F

|Rxy|βA =

F

|Rxb|αA =

F

Atomic Formulae

Worked example
Let L2-structure A be such that:
|a|A = Alonzo Church
|b|A = Bertrand Russell
|P |A = {Frege, Russell}
|R|A = {〈Church, Russell〉}

Let assignments α and β be such that:
x y z

α: Frege Russell Wittgenstein
β: Church Church Church

35

Compute the following:

|x|αA = Frege |x|βA = Church |a|αA =

Church

|Py|αA =

T

|Py|βA =

F

|Pb|αA =

T

|Rxy|αA =

F

|Rxy|βA =

F

|Rxb|αA =

F

Atomic Formulae

Worked example
Let L2-structure A be such that:
|a|A = Alonzo Church
|b|A = Bertrand Russell
|P |A = {Frege, Russell}
|R|A = {〈Church, Russell〉}

Let assignments α and β be such that:
x y z

α: Frege Russell Wittgenstein
β: Church Church Church

35

Compute the following:

|x|αA = Frege |x|βA = Church |a|αA = Church

|Py|αA =

T

|Py|βA =

F

|Pb|αA =

T

|Rxy|αA =

F

|Rxy|βA =

F

|Rxb|αA =

F

Atomic Formulae

Worked example
Let L2-structure A be such that:
|a|A = Alonzo Church
|b|A = Bertrand Russell
|P |A = {Frege, Russell}
|R|A = {〈Church, Russell〉}

Let assignments α and β be such that:
x y z

α: Frege Russell Wittgenstein
β: Church Church Church

35

Compute the following:

|x|αA = Frege |x|βA = Church |a|αA = Church

|Py|αA = T |Py|βA =

F

|Pb|αA =

T

|Rxy|αA =

F

|Rxy|βA =

F

|Rxb|αA =

F

Atomic Formulae

Worked example
Let L2-structure A be such that:
|a|A = Alonzo Church
|b|A = Bertrand Russell
|P |A = {Frege, Russell}
|R|A = {〈Church, Russell〉}

Let assignments α and β be such that:
x y z

α: Frege Russell Wittgenstein
β: Church Church Church

35

Compute the following:

|x|αA = Frege |x|βA = Church |a|αA = Church

|Py|αA = T |Py|βA = F |Pb|αA =

T

|Rxy|αA =

F

|Rxy|βA =

F

|Rxb|αA =

F

Atomic Formulae

Worked example
Let L2-structure A be such that:
|a|A = Alonzo Church
|b|A = Bertrand Russell
|P |A = {Frege, Russell}
|R|A = {〈Church, Russell〉}

Let assignments α and β be such that:
x y z

α: Frege Russell Wittgenstein
β: Church Church Church

35

Compute the following:

|x|αA = Frege |x|βA = Church |a|αA = Church

|Py|αA = T |Py|βA = F |Pb|αA = T

|Rxy|αA =

F

|Rxy|βA =

F

|Rxb|αA =

F

Atomic Formulae

Worked example
Let L2-structure A be such that:
|a|A = Alonzo Church
|b|A = Bertrand Russell
|P |A = {Frege, Russell}
|R|A = {〈Church, Russell〉}

Let assignments α and β be such that:
x y z

α: Frege Russell Wittgenstein
β: Church Church Church

35

Compute the following:

|x|αA = Frege |x|βA = Church |a|αA = Church

|Py|αA = T |Py|βA = F |Pb|αA = T

|Rxy|αA = F |Rxy|βA =

F

|Rxb|αA =

F

Atomic Formulae

Worked example
Let L2-structure A be such that:
|a|A = Alonzo Church
|b|A = Bertrand Russell
|P |A = {Frege, Russell}
|R|A = {〈Church, Russell〉}

Let assignments α and β be such that:
x y z

α: Frege Russell Wittgenstein
β: Church Church Church

35

Compute the following:

|x|αA = Frege |x|βA = Church |a|αA = Church

|Py|αA = T |Py|βA = F |Pb|αA = T

|Rxy|αA = F |Rxy|βA = F |Rxb|αA =

F

Atomic Formulae

Worked example
Let L2-structure A be such that:
|a|A = Alonzo Church
|b|A = Bertrand Russell
|P |A = {Frege, Russell}
|R|A = {〈Church, Russell〉}

Let assignments α and β be such that:
x y z

α: Frege Russell Wittgenstein
β: Church Church Church

35

Compute the following:

|x|αA = Frege |x|βA = Church |a|αA = Church

|Py|αA = T |Py|βA = F |Pb|αA = T

|Rxy|αA = F |Rxy|βA = F |Rxb|αA = F

Quantifiers

Semantics for quantifiers
In English, the truth-value of a quantified sentence depends
on how widely the quantifiers range.

Almost everyone attended the first lecture.

The context supplies a ‘domain’ telling us who ‘everyone’
ranges over

Domain: the set of first-year Oxford philosophy students

Almost every first-year Oxford philosophy student attended
the first lecture. T

Domain: the set of everyone in the world

Almost everyone in the world attended the first lecture. F

Quantifiers

Semantics for quantifiers
In English, the truth-value of a quantified sentence depends
on how widely the quantifiers range.

Almost everyone attended the first lecture.

The context supplies a ‘domain’ telling us who ‘everyone’
ranges over

Domain: the set of first-year Oxford philosophy students

Almost every first-year Oxford philosophy student attended
the first lecture. T

Domain: the set of everyone in the world

Almost everyone in the world attended the first lecture. F

Quantifiers

Semantics for quantifiers
In English, the truth-value of a quantified sentence depends
on how widely the quantifiers range.

Almost everyone attended the first lecture.

The context supplies a ‘domain’ telling us who ‘everyone’
ranges over

Domain: the set of first-year Oxford philosophy students

Almost every first-year Oxford philosophy student attended
the first lecture. T

Domain: the set of everyone in the world

Almost everyone in the world attended the first lecture. F

Quantifiers

Semantics for quantifiers
In English, the truth-value of a quantified sentence depends
on how widely the quantifiers range.

Almost everyone attended the first lecture.

The context supplies a ‘domain’ telling us who ‘everyone’
ranges over

Domain: the set of first-year Oxford philosophy students

Almost every first-year Oxford philosophy student attended
the first lecture.

T

Domain: the set of everyone in the world

Almost everyone in the world attended the first lecture. F

Quantifiers

Semantics for quantifiers
In English, the truth-value of a quantified sentence depends
on how widely the quantifiers range.

Almost everyone attended the first lecture.

The context supplies a ‘domain’ telling us who ‘everyone’
ranges over

Domain: the set of first-year Oxford philosophy students

Almost every first-year Oxford philosophy student attended
the first lecture. T

Domain: the set of everyone in the world

Almost everyone in the world attended the first lecture. F

Quantifiers

Semantics for quantifiers
In English, the truth-value of a quantified sentence depends
on how widely the quantifiers range.

Almost everyone attended the first lecture.

The context supplies a ‘domain’ telling us who ‘everyone’
ranges over

Domain: the set of first-year Oxford philosophy students

Almost every first-year Oxford philosophy student attended
the first lecture. T

Domain: the set of everyone in the world

Almost everyone in the world attended the first lecture.

F

Quantifiers

Semantics for quantifiers
In English, the truth-value of a quantified sentence depends
on how widely the quantifiers range.

Almost everyone attended the first lecture.

The context supplies a ‘domain’ telling us who ‘everyone’
ranges over

Domain: the set of first-year Oxford philosophy students

Almost every first-year Oxford philosophy student attended
the first lecture. T

Domain: the set of everyone in the world

Almost everyone in the world attended the first lecture. F

Quantifiers

An L2-structure A specifies a non-empty set DA as the domain.

An assignment over A assigns a member of DA to each variable.

Semantics for ∀/∃ (first approximation):
|∀xPx|A = T
iff every member of DA has |P |A
iff every assignment α of x to a member of DA is such that |x|α∈|P |A
iff every assignment α over A is such that |Px|αA = T

Similarly:

|∃xPx|A = T
iff some member of DA has |P |A
iff some assignment α of x to a member of DA is such that |x|α ∈ |P |A
iff some assignment α over A is such that |Px|αA = T

This is correct but the general case is more complex.

Quantifiers

An L2-structure A specifies a non-empty set DA as the domain.
An assignment over A assigns a member of DA to each variable.

Semantics for ∀/∃ (first approximation):
|∀xPx|A = T
iff every member of DA has |P |A
iff every assignment α of x to a member of DA is such that |x|α∈|P |A
iff every assignment α over A is such that |Px|αA = T

Similarly:

|∃xPx|A = T
iff some member of DA has |P |A
iff some assignment α of x to a member of DA is such that |x|α ∈ |P |A
iff some assignment α over A is such that |Px|αA = T

This is correct but the general case is more complex.

Quantifiers

An L2-structure A specifies a non-empty set DA as the domain.
An assignment over A assigns a member of DA to each variable.

Semantics for ∀/∃ (first approximation):
|∀xPx|A = T
iff every member of DA has |P |A

iff every assignment α of x to a member of DA is such that |x|α∈|P |A
iff every assignment α over A is such that |Px|αA = T

Similarly:

|∃xPx|A = T
iff some member of DA has |P |A
iff some assignment α of x to a member of DA is such that |x|α ∈ |P |A
iff some assignment α over A is such that |Px|αA = T

This is correct but the general case is more complex.

Quantifiers

An L2-structure A specifies a non-empty set DA as the domain.
An assignment over A assigns a member of DA to each variable.

Semantics for ∀/∃ (first approximation):
|∀xPx|A = T
iff every member of DA has |P |A
iff every assignment α of x to a member of DA is such that |x|α∈|P |A

iff every assignment α over A is such that |Px|αA = T

Similarly:

|∃xPx|A = T
iff some member of DA has |P |A
iff some assignment α of x to a member of DA is such that |x|α ∈ |P |A
iff some assignment α over A is such that |Px|αA = T

This is correct but the general case is more complex.

Quantifiers

An L2-structure A specifies a non-empty set DA as the domain.
An assignment over A assigns a member of DA to each variable.

Semantics for ∀/∃ (first approximation):
|∀xPx|A = T
iff every member of DA has |P |A
iff every assignment α of x to a member of DA is such that |x|α∈|P |A
iff every assignment α over A is such that |Px|αA = T

Similarly:

|∃xPx|A = T
iff some member of DA has |P |A
iff some assignment α of x to a member of DA is such that |x|α ∈ |P |A
iff some assignment α over A is such that |Px|αA = T

This is correct but the general case is more complex.

Quantifiers

An L2-structure A specifies a non-empty set DA as the domain.
An assignment over A assigns a member of DA to each variable.

Semantics for ∀/∃ (first approximation):
|∀xPx|A = T
iff every member of DA has |P |A
iff every assignment α of x to a member of DA is such that |x|α∈|P |A
iff every assignment α over A is such that |Px|αA = T

Similarly:

|∃xPx|A = T
iff some member of DA has |P |A

iff some assignment α of x to a member of DA is such that |x|α ∈ |P |A
iff some assignment α over A is such that |Px|αA = T

This is correct but the general case is more complex.

Quantifiers

An L2-structure A specifies a non-empty set DA as the domain.
An assignment over A assigns a member of DA to each variable.

Semantics for ∀/∃ (first approximation):
|∀xPx|A = T
iff every member of DA has |P |A
iff every assignment α of x to a member of DA is such that |x|α∈|P |A
iff every assignment α over A is such that |Px|αA = T

Similarly:

|∃xPx|A = T
iff some member of DA has |P |A
iff some assignment α of x to a member of DA is such that |x|α ∈ |P |A

iff some assignment α over A is such that |Px|αA = T

This is correct but the general case is more complex.

Quantifiers

An L2-structure A specifies a non-empty set DA as the domain.
An assignment over A assigns a member of DA to each variable.

Semantics for ∀/∃ (first approximation):
|∀xPx|A = T
iff every member of DA has |P |A
iff every assignment α of x to a member of DA is such that |x|α∈|P |A
iff every assignment α over A is such that |Px|αA = T

Similarly:

|∃xPx|A = T
iff some member of DA has |P |A
iff some assignment α of x to a member of DA is such that |x|α ∈ |P |A
iff some assignment α over A is such that |Px|αA = T

This is correct but the general case is more complex.

Quantifiers

An L2-structure A specifies a non-empty set DA as the domain.
An assignment over A assigns a member of DA to each variable.

Semantics for ∀/∃ (first approximation):
|∀xPx|A = T
iff every member of DA has |P |A
iff every assignment α of x to a member of DA is such that |x|α∈|P |A
iff every assignment α over A is such that |Px|αA = T

Similarly:

|∃xPx|A = T
iff some member of DA has |P |A
iff some assignment α of x to a member of DA is such that |x|α ∈ |P |A
iff some assignment α over A is such that |Px|αA = T

This is correct but the general case is more complex.

Quantifiers

The semantics of quantifiers is complicated by the need to
deal with multiple quantifiers in sentences such as ∀x∃yRxy

Suppose we try to evaluate this as before under A with
domain DA

|∀x∃yRxy|A = T
iff every assignment α over A is such that |∃yRxy|αA = T

To progress any further we need to be able evaluate ∃yRxy
under an assignment α of an object to x.

Quantifiers

The semantics of quantifiers is complicated by the need to
deal with multiple quantifiers in sentences such as ∀x∃yRxy

Suppose we try to evaluate this as before under A with
domain DA

|∀x∃yRxy|A = T
iff every assignment α over A is such that |∃yRxy|αA = T

To progress any further we need to be able evaluate ∃yRxy
under an assignment α of an object to x.

Quantifiers

The semantics of quantifiers is complicated by the need to
deal with multiple quantifiers in sentences such as ∀x∃yRxy

Suppose we try to evaluate this as before under A with
domain DA

|∀x∃yRxy|A = T
iff every assignment α over A is such that |∃yRxy|αA = T

To progress any further we need to be able evaluate ∃yRxy
under an assignment α of an object to x.

Quantifiers

The semantics of quantifiers is complicated by the need to
deal with multiple quantifiers in sentences such as ∀x∃yRxy

Suppose we try to evaluate this as before under A with
domain DA

|∀x∃yRxy|A = T
iff every assignment α over A is such that |∃yRxy|αA = T

To progress any further we need to be able evaluate ∃yRxy
under an assignment α of an object to x.

Quantifiers

How to determine |∃yRxy|αA?

|∃yRxy|αA = T

iff some d in DA is such that |x|α stands in |R|A to d

iff some assignment β over A is such that |x|α stands in |R|A to |y|β

So we don’t have to keep track of multiple assignments:

Say that β differs from α in y at most if |v|α = |v|β for all
variables v with the possible exception of y.

|∃yRxy|αA = T

iff some assignment β over A which differs from α in y at most
is such that |x|α stands in |R|A to |y|β

iff some assignment β over A which differs from α in y at most is such
that |Rxy|βA = T

Quantifiers

How to determine |∃yRxy|αA?

|∃yRxy|αA = T

iff some d in DA is such that |x|α stands in |R|A to d

iff some assignment β over A is such that |x|α stands in |R|A to |y|β

So we don’t have to keep track of multiple assignments:

Say that β differs from α in y at most if |v|α = |v|β for all
variables v with the possible exception of y.

|∃yRxy|αA = T

iff some assignment β over A which differs from α in y at most
is such that |x|α stands in |R|A to |y|β

iff some assignment β over A which differs from α in y at most is such
that |Rxy|βA = T

Quantifiers

How to determine |∃yRxy|αA?

|∃yRxy|αA = T

iff some d in DA is such that |x|α stands in |R|A to d

iff some assignment β over A is such that |x|α stands in |R|A to |y|β

So we don’t have to keep track of multiple assignments:

Say that β differs from α in y at most if |v|α = |v|β for all
variables v with the possible exception of y.

|∃yRxy|αA = T

iff some assignment β over A which differs from α in y at most
is such that |x|α stands in |R|A to |y|β

iff some assignment β over A which differs from α in y at most is such
that |Rxy|βA = T

Quantifiers

How to determine |∃yRxy|αA?

|∃yRxy|αA = T

iff some d in DA is such that |x|α stands in |R|A to d

iff some assignment β over A is such that |x|α stands in |R|A to |y|β

So we don’t have to keep track of multiple assignments:

Say that β differs from α in y at most if |v|α = |v|β for all
variables v with the possible exception of y.

|∃yRxy|αA = T

iff some assignment β over A which differs from α in y at most
is such that |x|α stands in |R|A to |y|β

iff some assignment β over A which differs from α in y at most is such
that |Rxy|βA = T

Quantifiers

How to determine |∃yRxy|αA?

|∃yRxy|αA = T

iff some d in DA is such that |x|α stands in |R|A to d

iff some assignment β over A is such that |x|α stands in |R|A to |y|β

So we don’t have to keep track of multiple assignments:

Say that β differs from α in y at most if |v|α = |v|β for all
variables v with the possible exception of y.

|∃yRxy|αA = T

iff some assignment β over A which differs from α in y at most
is such that |x|α stands in |R|A to |y|β

iff some assignment β over A which differs from α in y at most is such
that |Rxy|βA = T

Quantifiers

How to determine |∃yRxy|αA?

|∃yRxy|αA = T

iff some d in DA is such that |x|α stands in |R|A to d

iff some assignment β over A is such that |x|α stands in |R|A to |y|β

So we don’t have to keep track of multiple assignments:

Say that β differs from α in y at most if |v|α = |v|β for all
variables v with the possible exception of y.

|∃yRxy|αA = T

iff some assignment β over A which differs from α in y at most
is such that |x|α stands in |R|A to |y|β

iff some assignment β over A which differs from α in y at most is such
that |Rxy|βA = T

Quantifiers

How to determine |∃yRxy|αA?

|∃yRxy|αA = T

iff some d in DA is such that |x|α stands in |R|A to d

iff some assignment β over A is such that |x|α stands in |R|A to |y|β

So we don’t have to keep track of multiple assignments:

Say that β differs from α in y at most if |v|α = |v|β for all
variables v with the possible exception of y.

|∃yRxy|αA = T

iff some assignment β over A which differs from α in y at most
is such that |x|β stands in |R|A to |y|β

iff some assignment β over A which differs from α in y at most is such
that |Rxy|βA = T

Quantifiers

How to determine |∃yRxy|αA?

|∃yRxy|αA = T

iff some d in DA is such that |x|α stands in |R|A to d

iff some assignment β over A is such that |x|α stands in |R|A to |y|β

So we don’t have to keep track of multiple assignments:

Say that β differs from α in y at most if |v|α = |v|β for all
variables v with the possible exception of y.

|∃yRxy|αA = T

iff some assignment β over A which differs from α in y at most
is such that |x|β stands in |R|A to |y|β

iff some assignment β over A which differs from α in y at most is such
that |Rxy|βA = T

Quantifiers

L2-structures
Here’s the full specification of an L2-structure.

An L2-structure A supplies two things
(1) a domain: a non-empty set DA

(2) a semantic value for each predicate and constant.

L2-expression semantic value in A
constant: a object: |a|A

sentence letter: P truth-value: |P |A (= T or F)
unary predicate: P 1 unary relation: |P 1|A (i.e. a set)
binary predicate: P 2 binary relation: |P 2|A (a set of pairs)
ternary predicate: P 3 ternary relation: |P 3|A (a set of triples)

etc. etc.

Quantifiers

L2-structures
Here’s the full specification of an L2-structure.

An L2-structure A supplies two things

(1) a domain: a non-empty set DA

(2) a semantic value for each predicate and constant.

L2-expression semantic value in A
constant: a object: |a|A

sentence letter: P truth-value: |P |A (= T or F)
unary predicate: P 1 unary relation: |P 1|A (i.e. a set)
binary predicate: P 2 binary relation: |P 2|A (a set of pairs)
ternary predicate: P 3 ternary relation: |P 3|A (a set of triples)

etc. etc.

Quantifiers

L2-structures
Here’s the full specification of an L2-structure.

An L2-structure A supplies two things
(1) a domain: a non-empty set DA

(2) a semantic value for each predicate and constant.

L2-expression semantic value in A
constant: a object: |a|A

sentence letter: P truth-value: |P |A (= T or F)
unary predicate: P 1 unary relation: |P 1|A (i.e. a set)
binary predicate: P 2 binary relation: |P 2|A (a set of pairs)
ternary predicate: P 3 ternary relation: |P 3|A (a set of triples)

etc. etc.

Quantifiers

L2-structures
Here’s the full specification of an L2-structure.

An L2-structure A supplies two things
(1) a domain: a non-empty set DA

(2) a semantic value for each predicate and constant.

L2-expression semantic value in A
constant: a object: |a|A

sentence letter: P truth-value: |P |A (= T or F)
unary predicate: P 1 unary relation: |P 1|A (i.e. a set)
binary predicate: P 2 binary relation: |P 2|A (a set of pairs)
ternary predicate: P 3 ternary relation: |P 3|A (a set of triples)

etc. etc.

Quantifiers

L2-structures
Here’s the full specification of an L2-structure.

An L2-structure A supplies two things
(1) a domain: a non-empty set DA

(2) a semantic value for each predicate and constant.

L2-expression semantic value in A
constant: a object: |a|A

sentence letter: P truth-value: |P |A (= T or F)
unary predicate: P 1 unary relation: |P 1|A (i.e. a set)
binary predicate: P 2 binary relation: |P 2|A (a set of pairs)
ternary predicate: P 3 ternary relation: |P 3|A (a set of triples)

etc. etc.

Quantifiers

Summary of semantics of L2

Let A be an L2-structure and α an assignment over A.

Atomic formulae
Let Φn be a n-ary predicate letter (n > 0) and let t1, t2, . . . be
variables or constants.

|Φn|αA is the n-ary relation assigned to Φn by A.
|t|αA is the object t denotes in A if t is a constant.
|t|αA is the object assigned to t by α if t is a variable.

(i) |Φ1t1|αA = T if and only if |t1|αA ∈ |Φ1|A
|Φ2t1t2|αA = T if and only if 〈|t1|αA, |t2|αA〉 ∈ |Φ2|A
|Φ3t1t2t3|αA = T if and only if 〈|t1|αA, |t2|αA, |t3|αA〉 ∈ |Φ3|A
etc.

Quantifiers

Summary of semantics of L2

Let A be an L2-structure and α an assignment over A.

Atomic formulae
Let Φn be a n-ary predicate letter (n > 0) and let t1, t2, . . . be
variables or constants.

|Φn|αA is the n-ary relation assigned to Φn by A.
|t|αA is the object t denotes in A if t is a constant.
|t|αA is the object assigned to t by α if t is a variable.

(i) |Φ1t1|αA = T if and only if |t1|αA ∈ |Φ1|A
|Φ2t1t2|αA = T if and only if 〈|t1|αA, |t2|αA〉 ∈ |Φ2|A
|Φ3t1t2t3|αA = T if and only if 〈|t1|αA, |t2|αA, |t3|αA〉 ∈ |Φ3|A
etc.

Quantifiers

Summary of semantics of L2

Let A be an L2-structure and α an assignment over A.

Atomic formulae
Let Φn be a n-ary predicate letter (n > 0) and let t1, t2, . . . be
variables or constants.

|Φn|αA is the n-ary relation assigned to Φn by A.

|t|αA is the object t denotes in A if t is a constant.
|t|αA is the object assigned to t by α if t is a variable.

(i) |Φ1t1|αA = T if and only if |t1|αA ∈ |Φ1|A
|Φ2t1t2|αA = T if and only if 〈|t1|αA, |t2|αA〉 ∈ |Φ2|A
|Φ3t1t2t3|αA = T if and only if 〈|t1|αA, |t2|αA, |t3|αA〉 ∈ |Φ3|A
etc.

Quantifiers

Summary of semantics of L2

Let A be an L2-structure and α an assignment over A.

Atomic formulae
Let Φn be a n-ary predicate letter (n > 0) and let t1, t2, . . . be
variables or constants.

|Φn|αA is the n-ary relation assigned to Φn by A.
|t|αA is the object t denotes in A if t is a constant.
|t|αA is the object assigned to t by α if t is a variable.

(i) |Φ1t1|αA = T if and only if |t1|αA ∈ |Φ1|A

|Φ2t1t2|αA = T if and only if 〈|t1|αA, |t2|αA〉 ∈ |Φ2|A
|Φ3t1t2t3|αA = T if and only if 〈|t1|αA, |t2|αA, |t3|αA〉 ∈ |Φ3|A
etc.

Quantifiers

Summary of semantics of L2

Let A be an L2-structure and α an assignment over A.

Atomic formulae
Let Φn be a n-ary predicate letter (n > 0) and let t1, t2, . . . be
variables or constants.

|Φn|αA is the n-ary relation assigned to Φn by A.
|t|αA is the object t denotes in A if t is a constant.
|t|αA is the object assigned to t by α if t is a variable.

(i) |Φ1t1|αA = T if and only if |t1|αA ∈ |Φ1|A
|Φ2t1t2|αA = T if and only if 〈|t1|αA, |t2|αA〉 ∈ |Φ2|A

|Φ3t1t2t3|αA = T if and only if 〈|t1|αA, |t2|αA, |t3|αA〉 ∈ |Φ3|A
etc.

Quantifiers

Summary of semantics of L2

Let A be an L2-structure and α an assignment over A.

Atomic formulae
Let Φn be a n-ary predicate letter (n > 0) and let t1, t2, . . . be
variables or constants.

|Φn|αA is the n-ary relation assigned to Φn by A.
|t|αA is the object t denotes in A if t is a constant.
|t|αA is the object assigned to t by α if t is a variable.

(i) |Φ1t1|αA = T if and only if |t1|αA ∈ |Φ1|A
|Φ2t1t2|αA = T if and only if 〈|t1|αA, |t2|αA〉 ∈ |Φ2|A
|Φ3t1t2t3|αA = T if and only if 〈|t1|αA, |t2|αA, |t3|αA〉 ∈ |Φ3|A

etc.

Quantifiers

Summary of semantics of L2

Let A be an L2-structure and α an assignment over A.

Atomic formulae
Let Φn be a n-ary predicate letter (n > 0) and let t1, t2, . . . be
variables or constants.

|Φn|αA is the n-ary relation assigned to Φn by A.
|t|αA is the object t denotes in A if t is a constant.
|t|αA is the object assigned to t by α if t is a variable.

(i) |Φ1t1|αA = T if and only if |t1|αA ∈ |Φ1|A
|Φ2t1t2|αA = T if and only if 〈|t1|αA, |t2|αA〉 ∈ |Φ2|A
|Φ3t1t2t3|αA = T if and only if 〈|t1|αA, |t2|αA, |t3|αA〉 ∈ |Φ3|A
etc.

Quantifiers

The semantics for connectives are just like those for L1.

Semantics for connectives
(ii) |¬φ|αA = T if and only if |φ|αA = F.
(iii) |φ ∧ ψ|αA = T if and only if |φ|αA = T and |ψ|αA = T.
(iv) |φ ∨ ψ|αA = T if and only if |φ|αA = T or |ψ|αA = T.
(v) |φ→ ψ|αA = T if and only if |φ|αA = F or |ψ|αA = T.
(vi) |φ↔ ψ|αA = T if and only if |φ|αA = |ψ|αA.

Quantifiers

These are the semantic clauses for ∀v and ∃v.

Quantifiers

(vii) |∀v φ|αA = T if and only if |φ|βA = T for all variable
assignments β over A differing from α in v at most.

(viii) |∃v φ|αA = T if and only if |φ|βA = T for at least one
variable assignment β over A differing from α in v at
most.

Quantifiers

These are the semantic clauses for ∀v and ∃v.
Quantifiers

(vii) |∀v φ|αA = T if and only if |φ|βA = T for all variable
assignments β over A differing from α in v at most.

(viii) |∃v φ|αA = T if and only if |φ|βA = T for at least one
variable assignment β over A differing from α in v at
most.

Quantifiers

These are the semantic clauses for ∀v and ∃v.
Quantifiers

(vii) |∀v φ|αA = T if and only if |φ|βA = T for all variable
assignments β over A differing from α in v at most.

(viii) |∃v φ|αA = T if and only if |φ|βA = T for at least one
variable assignment β over A differing from α in v at
most.

Quantifiers

Truth
Just one detail remains. 50

We haven’t yet said what it is for a sentence to be true in an
L2-structure A.

We’ve said what it is for a formula to be true in an
L2-structure A under an assignment over A

(We’ve defined |φ|αA; we want now to define |φ|A.)

Fact about sentences
The truth-value of a sentence does not depend on the assignment.
For α and β over A: |φ|αA = |φ|βA (when φ is a sentence).

A sentence φ is true in an L2-structure A (in symbols:
|φ|A = T) iff |φ|αA = T for all variable assignments α over A.

equivalently: |φ|αA = T for some variable assignment α over A.

Quantifiers

Truth
Just one detail remains. 50

We haven’t yet said what it is for a sentence to be true in an
L2-structure A.

We’ve said what it is for a formula to be true in an
L2-structure A under an assignment over A

(We’ve defined |φ|αA; we want now to define |φ|A.)

Fact about sentences
The truth-value of a sentence does not depend on the assignment.
For α and β over A: |φ|αA = |φ|βA (when φ is a sentence).

A sentence φ is true in an L2-structure A (in symbols:
|φ|A = T) iff |φ|αA = T for all variable assignments α over A.

equivalently: |φ|αA = T for some variable assignment α over A.

Quantifiers

Truth
Just one detail remains. 50

We haven’t yet said what it is for a sentence to be true in an
L2-structure A.

We’ve said what it is for a formula to be true in an
L2-structure A under an assignment over A

(We’ve defined |φ|αA; we want now to define |φ|A.)

Fact about sentences
The truth-value of a sentence does not depend on the assignment.
For α and β over A: |φ|αA = |φ|βA (when φ is a sentence).

A sentence φ is true in an L2-structure A (in symbols:
|φ|A = T) iff |φ|αA = T for all variable assignments α over A.

equivalently: |φ|αA = T for some variable assignment α over A.

Quantifiers

Truth
Just one detail remains. 50

We haven’t yet said what it is for a sentence to be true in an
L2-structure A.

We’ve said what it is for a formula to be true in an
L2-structure A under an assignment over A

(We’ve defined |φ|αA; we want now to define |φ|A.)

Fact about sentences
The truth-value of a sentence does not depend on the assignment.
For α and β over A: |φ|αA = |φ|βA (when φ is a sentence).

A sentence φ is true in an L2-structure A (in symbols:
|φ|A = T) iff |φ|αA = T for all variable assignments α over A.

equivalently: |φ|αA = T for some variable assignment α over A.

Quantifiers

Truth
Just one detail remains. 50

We haven’t yet said what it is for a sentence to be true in an
L2-structure A.

We’ve said what it is for a formula to be true in an
L2-structure A under an assignment over A

(We’ve defined |φ|αA; we want now to define |φ|A.)

Fact about sentences
The truth-value of a sentence does not depend on the assignment.

For α and β over A: |φ|αA = |φ|βA (when φ is a sentence).

A sentence φ is true in an L2-structure A (in symbols:
|φ|A = T) iff |φ|αA = T for all variable assignments α over A.

equivalently: |φ|αA = T for some variable assignment α over A.

Quantifiers

Truth
Just one detail remains. 50

We haven’t yet said what it is for a sentence to be true in an
L2-structure A.

We’ve said what it is for a formula to be true in an
L2-structure A under an assignment over A

(We’ve defined |φ|αA; we want now to define |φ|A.)

Fact about sentences
The truth-value of a sentence does not depend on the assignment.
For α and β over A: |φ|αA = |φ|βA (when φ is a sentence).

A sentence φ is true in an L2-structure A (in symbols:
|φ|A = T) iff |φ|αA = T for all variable assignments α over A.

equivalently: |φ|αA = T for some variable assignment α over A.

Quantifiers

Truth
Just one detail remains. 50

We haven’t yet said what it is for a sentence to be true in an
L2-structure A.

We’ve said what it is for a formula to be true in an
L2-structure A under an assignment over A

(We’ve defined |φ|αA; we want now to define |φ|A.)

Fact about sentences
The truth-value of a sentence does not depend on the assignment.
For α and β over A: |φ|αA = |φ|βA (when φ is a sentence).

A sentence φ is true in an L2-structure A (in symbols:
|φ|A = T) iff |φ|αA = T for all variable assignments α over A.

equivalently: |φ|αA = T for some variable assignment α over A.

Quantifiers

Truth
Just one detail remains. 50

We haven’t yet said what it is for a sentence to be true in an
L2-structure A.

We’ve said what it is for a formula to be true in an
L2-structure A under an assignment over A

(We’ve defined |φ|αA; we want now to define |φ|A.)

Fact about sentences
The truth-value of a sentence does not depend on the assignment.
For α and β over A: |φ|αA = |φ|βA (when φ is a sentence).

A sentence φ is true in an L2-structure A (in symbols:
|φ|A = T) iff |φ|αA = T for all variable assignments α over A.

equivalently: |φ|αA = T for some variable assignment α over A.

http://logicmanual.philosophy.ox.ac.uk

http://logicmanual.philosophy.ox.ac.uk

	Introduction
	Semantics in English
	Atomic Sentences
	Atomic Formulae
	Quantifiers

