INTRODUCTION TO LOGIC Lecture 5 The Semantics of Predicate Logic Dr. James Studd

We could forget about philosophy. Settle down and maybe get into semantics. Woody Allen 'Mr. Big'

Outline

- Validity.
- **2** Semantics for simple English sentences.
- **3** Semantics for \mathcal{L}_2 -formulae.
- **4** \mathcal{L}_2 -structures.

Valid

What of argument 2?

Argument 2

(1) Zeno is a tortoise.(2) All tortoises are toothless.Therefore, (C) Zeno is toothless.

What of argument 2?

Argument 2

Zeno is a tortoise.
 All tortoises are toothless.
 Therefore, (C) Zeno is toothless.

Formalisation

(1)
$$Ta$$

(2) $\forall x(Tx \rightarrow Lx)$
(C) La

Dictionary: a: Zeno. T:... is a tortoise. L: ... is toothless

Valid

What of argument 2?

Argument 2

Zeno is a tortoise.
 All tortoises are toothless.
 Therefore, (C) Zeno is toothless.

Formalisation

(1)
$$Ta$$

(2) $\forall x(Tx \rightarrow Lx)$
(C) La

Dictionary: a: Zeno. T:... is a tortoise. L: ... is toothless

What is it for this \mathcal{L}_2 -argument to be valid?

Recall the definition of validity for \mathcal{L}_1 .

Recall the definition of validity for \mathcal{L}_1 . Let Γ be a set of sentences of \mathcal{L}_1 and ϕ a sentence of \mathcal{L}_1

Recall the definition of validity for \mathcal{L}_1 . Let Γ be a set of sentences of \mathcal{L}_1 and ϕ a sentence of \mathcal{L}_1

Definition

The argument with all sentences in Γ as premisses and ϕ as conclusion is valid if and only if there is no \mathcal{L}_1 -structure under which:

- (i) all sentences in Γ are true; and
- (ii) ϕ is false.

Recall the definition of validity for \mathcal{L}_1 . Let Γ be a set of sentences of \mathcal{L}_1 and ϕ a sentence of \mathcal{L}_1

Definition

The argument with all sentences in Γ as premisses and ϕ as conclusion is valid if and only if there is no \mathcal{L}_1 -structure under which:

- (i) all sentences in Γ are true; and
- (ii) ϕ is false.

We use an exactly analogous definition for \mathcal{L}_2 , replacing ' \mathcal{L}_1 ' everywhere above with ' \mathcal{L}_2 '

Recall the definition of validity for \mathcal{L}_1 . Let Γ be a set of sentences of \mathcal{L}_2 and ϕ a sentence of \mathcal{L}_2

Definition

The argument with all sentences in Γ as premisses and ϕ as conclusion is valid if and only if there is no \mathcal{L}_2 -structure under which:

- (i) all sentences in Γ are true; and
- (ii) ϕ is false.

We use an exactly analogous definition for \mathcal{L}_2 , replacing ' \mathcal{L}_1 ' everywhere above with ' \mathcal{L}_2 '

Recall the definition of validity for \mathcal{L}_1 . Let Γ be a set of sentences of \mathcal{L}_2 and ϕ a sentence of \mathcal{L}_2

Definition

The argument with all sentences in Γ as premisses and ϕ as conclusion is valid if and only if there is no \mathcal{L}_2 -structure under which:

- (i) all sentences in Γ are true; and
- (ii) ϕ is false.

We use an exactly analogous definition for \mathcal{L}_2 , replacing ' \mathcal{L}_1 ' everywhere above with ' \mathcal{L}_2 ' It remains to define: \mathcal{L}_2 -structure, truth in an \mathcal{L}_2 -structure

Structures interpret non-logical expressions.

Structures interpret non-logical expressions.

\mathcal{L}_1 -structures

• Non-logical expressions in \mathcal{L}_1 : P, Q, R, \ldots

Structures interpret non-logical expressions.

\mathcal{L}_1 -structures

- Non-logical expressions in \mathcal{L}_1 : P, Q, R, \ldots
- An \mathcal{L}_1 structure \mathcal{A} assigns each sentence letter a semantic value

Structures interpret non-logical expressions.

\mathcal{L}_1 -structures

- Non-logical expressions in \mathcal{L}_1 : P, Q, R, \ldots
- An \mathcal{L}_1 structure \mathcal{A} assigns each sentence letter a semantic value (specifically, a truth-value: T or F)

Structures interpret non-logical expressions.

\mathcal{L}_1 -structures

- Non-logical expressions in \mathcal{L}_1 : P, Q, R, \ldots
- An \mathcal{L}_1 structure \mathcal{A} assigns each sentence letter a semantic value (specifically, a truth-value: T or F)

 \mathcal{L}_2 is a richer language. This calls for richer structures.

Structures interpret non-logical expressions.

\mathcal{L}_1 -structures

- Non-logical expressions in \mathcal{L}_1 : P, Q, R, \ldots
- An \mathcal{L}_1 structure \mathcal{A} assigns each sentence letter a semantic value (specifically, a truth-value: T or F)

\mathcal{L}_2 is a richer language. This calls for richer structures.

\mathcal{L}_2 -structures

• Non-logical expressions: P^1, Q^1, R^1, \ldots

Structures interpret non-logical expressions.

\mathcal{L}_1 -structures

- Non-logical expressions in \mathcal{L}_1 : P, Q, R, \ldots
- An \mathcal{L}_1 structure \mathcal{A} assigns each sentence letter a semantic value (specifically, a truth-value: T or F)

\mathcal{L}_2 is a richer language. This calls for richer structures.

\mathcal{L}_2 -structures

• Non-logical expressions: P^1, Q^1, R^1, \dots P^2, Q^2, R^2, \dots

Structures interpret non-logical expressions.

\mathcal{L}_1 -structures

- Non-logical expressions in \mathcal{L}_1 : P, Q, R, \ldots
- An \mathcal{L}_1 structure \mathcal{A} assigns each sentence letter a semantic value (specifically, a truth-value: T or F)

\mathcal{L}_2 is a richer language. This calls for richer structures.

\mathcal{L}_2 -structures

• Non-logical expressions: P^1, Q^1, R^1, \dots P^2, Q^2, R^2, \dots \vdots a, b, c, \dots

Structures interpret non-logical expressions.

\mathcal{L}_1 -structures

- Non-logical expressions in \mathcal{L}_1 : P, Q, R, \ldots
- An \mathcal{L}_1 structure \mathcal{A} assigns each sentence letter a semantic value (specifically, a truth-value: T or F)

 \mathcal{L}_2 is a richer language. This calls for richer structures.

\mathcal{L}_2 -structures

- Non-logical expressions: P^1, Q^1, R^1, \dots P^2, Q^2, R^2, \dots \vdots a, b, c, \dots
- An \mathcal{L}_2 -structure \mathcal{A} assigns each predicate and constant a semantic value

Structures interpret non-logical expressions.

\mathcal{L}_1 -structures

- Non-logical expressions in \mathcal{L}_1 : P, Q, R, \ldots
- An \mathcal{L}_1 structure \mathcal{A} assigns each sentence letter a semantic value (specifically, a truth-value: T or F)

\mathcal{L}_2 is a richer language. This calls for richer structures.

\mathcal{L}_2 -structures

- Non-logical expressions: P^1, Q^1, R^1, \dots P^2, Q^2, R^2, \dots \vdots a, b, c, \dots
- An \mathcal{L}_2 -structure \mathcal{A} assigns each predicate and constant a semantic value (specifically, what?)

Start with a semantics for simple English sentences.

Start with a semantics for simple English sentences.

'Bertrand Russell is a philosopher'

Start with a semantics for simple English sentences.

'Bertrand Russell is a philosopher'

The sentence is true

Start with a semantics for simple English sentences.

'Bertrand Russell is a philosopher'

The sentence is true (i.e.: its semantic value is: T).

Start with a semantics for simple English sentences.

'Bertrand Russell is a philosopher'

The sentence is true (i.e.: its semantic value is: T). ... because of the relationship between the semantic values of its constituents.

Start with a semantics for simple English sentences.

'Bertrand Russell is a philosopher'

The sentence is true (i.e.: its semantic value is: T). ... because of the relationship between the semantic values of its constituents.

expression	semantic value
'Bertrand Russell'	Russell
'is a philosopher'	the property of <i>being a philosopher</i>

Start with a semantics for simple English sentences.

'Bertrand Russell is a philosopher'

The sentence is true (i.e.: its semantic value is: T). ... because of the relationship between the semantic values of its constituents.

expression	semantic value
'Bertrand Russell'	Russell
'is a philosopher'	the property of <i>being a philosopher</i>

... because Russell has the property of *being a philosopher*.

Start with a semantics for simple English sentences.

'Bertrand Russell is a philosopher'

The sentence is true (i.e.: its semantic value is: T). . . . because of the relationship between the semantic values of its constituents.

expression	semantic value
'Bertrand Russell'	Russell
'is a philosopher'	the property of <i>being a philosopher</i>

... because Russell has the property of *being a philosopher*. ... because |'Bertrand Russell'| has |'is a philosopher'|.

Notation

When e is an expression, we write |e| for its semantic value

Similarly:

'Alonzo Church reveres Bertrand Russell' is true iff Church stands in the relation of *revering* to Russell Similarly:

'Alonzo Church reveres Bertrand Russell' is true iff Church stands in the relation of *revering* to Russell

In other words:

|'Alonzo Church reveres Bertrand Russell'| = T iff |'Alonzo Church'| stands in |'reveres'| to |'Bertrand Russell'|

Semantic values for English expressions

expression	semantic value
designator	object
unary predicate	property (alias: unary relation)
binary predicate	binary relation

Semantic values for English expressions

expression	semantic value
designator	object
unary predicate	property (alias: unary relation)
binary predicate	binary relation

Examples

- |'Bertrand Russell'| = Russell
- ['is a philosopher'] = the property of *being a philosopher*
- |'revers'| = the relation of revering

Semantic values for English expressions

expression	semantic value
designator	object
unary predicate	property (alias: unary relation)
binary predicate	binary relation

Examples

- |'Bertrand Russell'| = Russell
- ['is a philosopher'] = the property of *being a philosopher*
- |'revers'| = the relation of revering

We'll take this one step further, by saying more about properties and relations.

Properties

In logic, we identify properties with sets.

Properties

In logic, we identify properties with sets.

Property (alias: unary relation)

A unary relation \boldsymbol{P} is a set of zero or more objects.

In logic, we identify properties with sets.

Property (alias: unary relation)

A unary relation \boldsymbol{P} is a set of zero or more objects.

Specifically, \boldsymbol{P} is the set of objects that have the property.

In logic, we identify properties with sets.

Property (alias: unary relation)

A unary relation \boldsymbol{P} is a set of zero or more objects.

Specifically, \boldsymbol{P} is the set of objects that have the property.

Informally: $d \in \mathbf{P}$ indicates that d has property \mathbf{P} .

In logic, we identify properties with sets.

Property (alias: unary relation)

A unary relation \boldsymbol{P} is a set of zero or more objects.

Specifically, \boldsymbol{P} is the set of objects that have the property.

Informally: $d \in \mathbf{P}$ indicates that d has property \mathbf{P} .

Example

The property of being a philosopher

In logic, we identify properties with sets.

Property (alias: unary relation)

A unary relation \boldsymbol{P} is a set of zero or more objects.

Specifically, \boldsymbol{P} is the set of objects that have the property.

Informally: $d \in \mathbf{P}$ indicates that d has property \mathbf{P} .

Example

The property of being a philosopher

- = the set of philosophers
- $= \{d : d \text{ is a philosopher}\}$
- $= \{ Descartes, Kant, Russell, \dots \}$

Recall that we identify binary relations with sets of pairs.

Recall that we identify binary relations with sets of pairs.

Binary relation

A binary relation \boldsymbol{R} is a set of zero or more pairs of objects.

Recall that we identify binary relations with sets of pairs.

Binary relation

A binary relation \boldsymbol{R} is a set of zero or more pairs of objects.

 \boldsymbol{R} is the set of pairs $\langle d, e \rangle$ such that d stands in \boldsymbol{R} to e.

Recall that we identify binary relations with sets of pairs.

Binary relation

A binary relation \boldsymbol{R} is a set of zero or more pairs of objects.

 \boldsymbol{R} is the set of pairs $\langle d, e \rangle$ such that d stands in \boldsymbol{R} to e.

Informally: $\langle d, e \rangle \in \mathbf{R}$ indicates that d bears \mathbf{R} to e.

Recall that we identify binary relations with sets of pairs.

Binary relation

A binary relation \boldsymbol{R} is a set of zero or more pairs of objects.

 \boldsymbol{R} is the set of pairs $\langle d, e \rangle$ such that d stands in \boldsymbol{R} to e.

Informally: $\langle d, e \rangle \in \mathbf{R}$ indicates that d bears \mathbf{R} to e.

Example

The relation of *revering* = { $\langle d, e \rangle$: d reverse e}

Recall that we identify binary relations with sets of pairs.

Binary relation

A binary relation \boldsymbol{R} is a set of zero or more pairs of objects.

 \boldsymbol{R} is the set of pairs $\langle d, e \rangle$ such that d stands in \boldsymbol{R} to e.

Informally: $\langle d, e \rangle \in \mathbf{R}$ indicates that d bears \mathbf{R} to e.

Example

The relation of *revering* = { $\langle d, e \rangle$: d reverse e}

Similarly:

A ternary (3-ary) relation is a set of triples (3-tuples).

Recall that we identify binary relations with sets of pairs.

Binary relation

A binary relation \boldsymbol{R} is a set of zero or more pairs of objects.

 \boldsymbol{R} is the set of pairs $\langle d, e \rangle$ such that d stands in \boldsymbol{R} to e.

Informally: $\langle d, e \rangle \in \mathbf{R}$ indicates that d bears \mathbf{R} to e.

Example

The relation of *revering* = { $\langle d, e \rangle$: d reverse e}

Similarly:

A ternary (3-ary) relation is a set of triples (3-tuples). A quaternary (4-ary) relation is a set of quadruples (4-tuples).

Recall that we identify binary relations with sets of pairs.

Binary relation

A binary relation \boldsymbol{R} is a set of zero or more pairs of objects.

 \boldsymbol{R} is the set of pairs $\langle d, e \rangle$ such that d stands in \boldsymbol{R} to e.

Informally: $\langle d, e \rangle \in \mathbf{R}$ indicates that d bears \mathbf{R} to e.

Example

The relation of *revering* = { $\langle d, e \rangle$: d reverse e}

Similarly:

A ternary (3-ary) relation is a set of triples (3-tuples). A quaternary (4-ary) relation is a set of quadruples (4-tuples). etc.

'Bertrand Russell is a philosopher' is true

'Bertrand Russell is a philosopher' is true iff |'Bertrand Russell'| has |'is a philosopher'|

'Bertrand Russell is a philosopher' is true iff |'Bertrand Russell'| has |'is a philosopher'| iff Russell \in the set of philosophers

'Bertrand Russell is a philosopher' is true iff |'Bertrand Russell'| has |'is a philosopher'| iff Russell \in the set of philosophers

Similarly:

'Alonzo Church reveres Russell' is true

'Bertrand Russell is a philosopher' is true iff |'Bertrand Russell'| has |'is a philosopher'| iff Russell \in the set of philosophers

Similarly:

'Alonzo Church reveres Russell' is true iff |'Alonzo Church'| stands in |'reveres'| to |'Russell'|

'Bertrand Russell is a philosopher' is true iff |'Bertrand Russell'| has |'is a philosopher'| iff Russell \in the set of philosophers

Similarly:

'Alonzo Church reveres Russell' is true iff |'Alonzo Church'| stands in |'reveres'| to |'Russell'| iff (Church, Russell) $\in \{\langle d, e \rangle : d \text{ reveres } e\}$

The semantics for atomic \mathcal{L}_2 -sentences is similar.

The semantics for atomic \mathcal{L}_2 -sentences is similar.

An \mathcal{L}_2 -structure specifies semantic values for \mathcal{L}_2 -expressions:

\mathcal{L}_2 -expression	semantic value
constant: a	object: $ a $
sentence letter: ${\cal P}$	truth-value: $ P $ (i.e. T or F)
unary predicate: P^1	unary relation: $ P^1 $ (i.e. a set)
binary predicate: P^2	binary relation: $ P^2 $ (a set of pairs)

The semantics for atomic \mathcal{L}_2 -sentences is similar.

An \mathcal{L}_2 -structure specifies semantic values for \mathcal{L}_2 -expressions:

\mathcal{L}_2 -expression	semantic value
constant: a	object: $ a $
sentence letter: ${\cal P}$	truth-value: $ P $ (i.e. T or F)
unary predicate: P^1	unary relation: $ P^1 $ (i.e. a set)
binary predicate: P^2	binary relation: $ P^2 $ (a set of pairs)

• |Pb| = T iff |b| has |P|

The semantics for atomic \mathcal{L}_2 -sentences is similar.

An \mathcal{L}_2 -structure specifies semantic values for \mathcal{L}_2 -expressions:

\mathcal{L}_2 -expression	semantic value
constant: a	object: $ a $
sentence letter: ${\cal P}$	truth-value: $ P $ (i.e. T or F)
unary predicate: P^1	unary relation: $ P^1 $ (i.e. a set)
binary predicate: P^2	binary relation: $ P^2 $ (a set of pairs)

•
$$|Pb| = T$$
 iff $|b|$ has $|P|$
iff $|b| \in |P|$

The semantics for atomic \mathcal{L}_2 -sentences is similar.

An \mathcal{L}_2 -structure specifies semantic values for \mathcal{L}_2 -expressions:

\mathcal{L}_2 -expression	semantic value
constant: a	object: $ a $
sentence letter: ${\cal P}$	truth-value: $ P $ (i.e. T or F)
unary predicate: P^1	unary relation: $ P^1 $ (i.e. a set)
binary predicate: P^2	binary relation: $ P^2 $ (a set of pairs)

•
$$|Pb| = T$$
 iff $|b|$ has $|P|$
iff $|b| \in |P|$

• |Rab| = T iff |a| stands in |R| to |b|

The semantics for atomic \mathcal{L}_2 -sentences is similar.

An \mathcal{L}_2 -structure specifies semantic values for \mathcal{L}_2 -expressions:

\mathcal{L}_2 -expression	semantic value
constant: a	object: $ a $
sentence letter: ${\cal P}$	truth-value: $ P $ (i.e. T or F)
unary predicate: P^1	unary relation: $ P^1 $ (i.e. a set)
binary predicate: P^2	binary relation: $ P^2 $ (a set of pairs)

•
$$|Pb| = T$$
 iff $|b|$ has $|P|$
iff $|b| \in |P|$

•
$$|Rab| = T$$
 iff $|a|$ stands in $|R|$ to $|b|$
iff $\langle |a|, |b| \rangle \in |R|$

The semantics for atomic \mathcal{L}_2 -sentences is similar.

An \mathcal{L}_2 -structure specifies semantic values for \mathcal{L}_2 -expressions:

\mathcal{L}_2 -expression	semantic value
constant: a	object: $ a $
sentence letter: ${\cal P}$	truth-value: $ P $ (i.e. T or F)
unary predicate: P^1	unary relation: $ P^1 $ (i.e. a set)
binary predicate: P^2	binary relation: $ P^2 $ (a set of pairs)

•
$$|Pb| = T$$
 iff $|b|$ has $|P|$
iff $|b| \in |P|$

•
$$|Rab| = T$$
 iff $|a|$ stands in $|R|$ to $|b|$
iff $\langle |a|, |b| \rangle \in |R|$

Notation: $|e|_{\mathcal{A}}$ is the semantic value of e in \mathcal{L}_2 -structure \mathcal{A} .

We have the semantics for \mathcal{L}_2 -sentences like Pa.

We have the semantics for \mathcal{L}_2 -sentences like Pa. What about \mathcal{L}_2 -formulae like Px?

We have the semantics for \mathcal{L}_2 -sentences like Pa. What about \mathcal{L}_2 -formulae like Px?

In English:

• The designator 'Russell' has a constant semantic value.

We have the semantics for \mathcal{L}_2 -sentences like Pa. What about \mathcal{L}_2 -formulae like Px?

In English:

- The designator 'Russell' has a constant semantic value.
- Pronouns, such as 'it', do not.

We have the semantics for \mathcal{L}_2 -sentences like Pa. What about \mathcal{L}_2 -formulae like Px?

In English:

- The designator 'Russell' has a constant semantic value.
- Pronouns, such as 'it', do not. 'it' refers to different objects depending on the context.

We have the semantics for \mathcal{L}_2 -sentences like Pa. What about \mathcal{L}_2 -formulae like Px?

In English:

- The designator 'Russell' has a constant semantic value.
- Pronouns, such as 'it', do not. 'it' refers to different objects depending on the context.

Something similar happens in an \mathcal{L}_2 -structure \mathcal{A} :

We have the semantics for \mathcal{L}_2 -sentences like Pa. What about \mathcal{L}_2 -formulae like Px?

In English:

- The designator 'Russell' has a constant semantic value.
- Pronouns, such as 'it', do not. 'it' refers to different objects depending on the context.

Something similar happens in an \mathcal{L}_2 -structure \mathcal{A} :

• a, b, c, \ldots are assigned a constant semantic value in \mathcal{A} .

We have the semantics for \mathcal{L}_2 -sentences like Pa. What about \mathcal{L}_2 -formulae like Px?

In English:

- The designator 'Russell' has a constant semantic value.
- Pronouns, such as 'it', do not. 'it' refers to different objects depending on the context.

Something similar happens in an \mathcal{L}_2 -structure \mathcal{A} :

- a, b, c, \ldots are assigned a constant semantic value in \mathcal{A} .
- Variables: x, y, z, \ldots are not.

We have the semantics for \mathcal{L}_2 -sentences like Pa. What about \mathcal{L}_2 -formulae like Px?

In English:

- The designator 'Russell' has a constant semantic value.
- Pronouns, such as 'it', do not. 'it' refers to different objects depending on the context.

Something similar happens in an \mathcal{L}_2 -structure \mathcal{A} :

- a, b, c, \ldots are assigned a constant semantic value in \mathcal{A} .
- Variables: x, y, z, \ldots are not.

What object each variable denotes is specified with a variable assignment.

Variable assignments

Variable assignment

A variable assignment assigns an object to each variable.

Variable assignment

A variable assignment assigns an object to each variable.

One can think of a variable assignment as an infinite list

Variable assignment

A variable assignment assigns an object to each variable.

One can think of a variable assignment as an infinite list

Example: the assignment α .						
x	y	z	x_1	y_1	z_1	x_2
Mercury	Venus	Venus	Neptune	Mars	Venus	Mars

Variable assignment

A variable assignment assigns an object to each variable.

One can think of a variable assignment as an infinite list

Example: the assignment α .						
x	y	z	x_1	y_1	z_1	x_2
Mercury	Venus	Venus	Neptune	Mars	Venus	Mars

Notation

We write $|x|^{\alpha}$ for the object α assigns to x.

Variable assignment

A variable assignment assigns an object to each variable.

One can think of a variable assignment as an infinite list

Example: the assignment α .						
x	y	z	x_1	y_1	z_1	x_2
Mercury	Venus	Venus	Neptune	Mars	Venus	Mars

Notation

We write $|x|^{\alpha}$ for the object α assigns to x. We use lower case Greek letters: α, β, γ for assignments.

Variable assignment

A variable assignment assigns an object to each variable.

One can think of a variable assignment as an infinite list

Example: the assignment α .						
x	y	z	x_1	y_1	z_1	x_2
Mercury	Venus	Venus	Neptune	Mars	Venus	Mars

Notation

We write $|x|^{\alpha}$ for the object α assigns to x. We use lower case Greek letters: α, β, γ for assignments.

e.g. $|x|^{\alpha} =$

Variable assignment

A variable assignment assigns an object to each variable.

One can think of a variable assignment as an infinite list

Example: the assignment α .						
x	y	z	x_1	y_1	z_1	x_2
Mercury	Venus	Venus	Neptune	Mars	Venus	Mars

Notation

We write $|x|^{\alpha}$ for the object α assigns to x. We use lower case Greek letters: α, β, γ for assignments.

e.g. $|x|^{\alpha} = Mercury$

Variable assignment

A variable assignment assigns an object to each variable.

One can think of a variable assignment as an infinite list

Example: the assignment α .						
x	y	z	x_1	y_1	z_1	x_2
Mercury	Venus	Venus	Neptune	Mars	Venus	Mars

Notation

We write $|x|^{\alpha}$ for the object α assigns to x. We use lower case Greek letters: α, β, γ for assignments.

e.g. $|x|^{\alpha} =$ Mercury; $|y|^{\alpha} =$

Variable assignment

A variable assignment assigns an object to each variable.

One can think of a variable assignment as an infinite list

Example: the assignment α .						
x	y	z	x_1	y_1	z_1	x_2
Mercury	Venus	Venus	Neptune	Mars	Venus	Mars

Notation

We write $|x|^{\alpha}$ for the object α assigns to x. We use lower case Greek letters: α, β, γ for assignments.

e.g. $|x|^{\alpha} =$ Mercury; $|y|^{\alpha} =$ Venus

Variable assignment

A variable assignment assigns an object to each variable.

One can think of a variable assignment as an infinite list

Example: the assignment α .						
x	y	z	x_1	y_1	z_1	x_2
Mercury	Venus	Venus	Neptune	Mars	Venus	Mars

Notation

We write $|x|^{\alpha}$ for the object α assigns to x. We use lower case Greek letters: α, β, γ for assignments.

e.g. $|x|^{\alpha} =$ Mercury; $|y|^{\alpha} =$ Venus; $|x_2|^{\alpha} =$

Variable assignment

A variable assignment assigns an object to each variable.

One can think of a variable assignment as an infinite list

Example: the assignment α .						
x	y	z	x_1	y_1	z_1	x_2
Mercury	Venus	Venus	Neptune	Mars	Venus	Mars

Notation

We write $|x|^{\alpha}$ for the object α assigns to x. We use lower case Greek letters: α, β, γ for assignments.

e.g. $|x|^{\alpha} =$ Mercury; $|y|^{\alpha} =$ Venus; $|x_2|^{\alpha} =$ Mars.

•
$$|Px|^{\alpha}_{\mathcal{A}} = T$$
 iff $|x|^{\alpha}$ has $|P|_{\mathcal{A}}$

•
$$|Px|^{\alpha}_{\mathcal{A}} = T$$
 iff $|x|^{\alpha}$ has $|P|_{\mathcal{A}}$ (NB: $|x|^{\alpha}_{\mathcal{A}} = |x|^{\alpha}$)

•
$$|Px|^{\alpha}_{\mathcal{A}} = T \text{ iff } |x|^{\alpha} \text{ has } |P|_{\mathcal{A}}$$
 (NB: $|x|^{\alpha}_{\mathcal{A}} = |x|^{\alpha}$)
iff $|x|^{\alpha} \in |P|_{\mathcal{A}}$

•
$$|Px|^{\alpha}_{\mathcal{A}} = T \text{ iff } |x|^{\alpha} \text{ has } |P|_{\mathcal{A}}$$
 (NB: $|x|^{\alpha}_{\mathcal{A}} = |x|^{\alpha}$)
iff $|x|^{\alpha} \in |P|_{\mathcal{A}}$
• $|Rxy|^{\alpha}_{\mathcal{A}} = T \text{ iff } |x|^{\alpha} \text{ stands in } |R|_{\mathcal{A}} \text{ to } |y|^{\alpha}$

•
$$|Px|^{\alpha}_{\mathcal{A}} = T \text{ iff } |x|^{\alpha} \text{ has } |P|_{\mathcal{A}}$$
 (NB: $|x|^{\alpha}_{\mathcal{A}} = |x|^{\alpha}$)
iff $|x|^{\alpha} \in |P|_{\mathcal{A}}$
• $|Rxy|^{\alpha}_{\mathcal{A}} = T \text{ iff } |x|^{\alpha} \text{ stands in } |R|_{\mathcal{A}} \text{ to } |y|^{\alpha}$
iff $\langle |x|^{\alpha}, |y|^{\alpha} \rangle \in |R|_{\mathcal{A}}$

We write $|e|^{\alpha}_{\mathcal{A}}$ for the semantic value of expression e in the structure \mathcal{A} under the variable assignment α .

•
$$|Px|^{\alpha}_{\mathcal{A}} = T \text{ iff } |x|^{\alpha} \text{ has } |P|_{\mathcal{A}}$$
 (NB: $|x|^{\alpha}_{\mathcal{A}} = |x|^{\alpha}$)
iff $|x|^{\alpha} \in |P|_{\mathcal{A}}$
• $|Rxy|^{\alpha}_{\mathcal{A}} = T \text{ iff } |x|^{\alpha} \text{ stands in } |R|_{\mathcal{A}} \text{ to } |y|^{\alpha}$
iff $\langle |x|^{\alpha}, |y|^{\alpha} \rangle \in |R|_{\mathcal{A}}$

Note: semantic values of constants and predicates are unaffected by the assignment (e.g. $|P|^{\alpha}_{\mathcal{A}} = |P|_{\mathcal{A}}, |a|^{\alpha}_{\mathcal{A}} = |a|_{\mathcal{A}}).$

We write $|e|^{\alpha}_{\mathcal{A}}$ for the semantic value of expression e in the structure \mathcal{A} under the variable assignment α .

•
$$|Px|^{\alpha}_{\mathcal{A}} = T \text{ iff } |x|^{\alpha} \text{ has } |P|_{\mathcal{A}}$$
 (NB: $|x|^{\alpha}_{\mathcal{A}} = |x|^{\alpha}$)
iff $|x|^{\alpha} \in |P|_{\mathcal{A}}$
• $|Rxy|^{\alpha}_{\mathcal{A}} = T \text{ iff } |x|^{\alpha} \text{ stands in } |R|_{\mathcal{A}} \text{ to } |y|^{\alpha}$
iff $\langle |x|^{\alpha}, |y|^{\alpha} \rangle \in |R|_{\mathcal{A}}$

Note: semantic values of constants and predicates are unaffected by the assignment (e.g. $|P|^{\alpha}_{\mathcal{A}} = |P|_{\mathcal{A}}, |a|^{\alpha}_{\mathcal{A}} = |a|_{\mathcal{A}}).$

•
$$|Rab|^{\alpha}_{\mathcal{A}} = T$$
 iff $\langle |a|_{\mathcal{A}}, |b|_{\mathcal{A}} \rangle \in |R|_{\mathcal{A}}$

We write $|e|^{\alpha}_{\mathcal{A}}$ for the semantic value of expression e in the structure \mathcal{A} under the variable assignment α .

•
$$|Px|^{\alpha}_{\mathcal{A}} = T \text{ iff } |x|^{\alpha} \text{ has } |P|_{\mathcal{A}}$$
 (NB: $|x|^{\alpha}_{\mathcal{A}} = |x|^{\alpha}$)
iff $|x|^{\alpha} \in |P|_{\mathcal{A}}$
• $|Rxy|^{\alpha}_{\mathcal{A}} = T \text{ iff } |x|^{\alpha} \text{ stands in } |R|_{\mathcal{A}} \text{ to } |y|^{\alpha}$
iff $\langle |x|^{\alpha}, |y|^{\alpha} \rangle \in |R|_{\mathcal{A}}$

Note: semantic values of constants and predicates are unaffected by the assignment (e.g. $|P|^{\alpha}_{\mathcal{A}} = |P|_{\mathcal{A}}, |a|^{\alpha}_{\mathcal{A}} = |a|_{\mathcal{A}}).$

- $|Rab|^{\alpha}_{\mathcal{A}} = T$ iff $\langle |a|_{\mathcal{A}}, |b|_{\mathcal{A}} \rangle \in |R|_{\mathcal{A}}$
- $|Rxb|^{\alpha}_{\mathcal{A}} = T$ iff $\langle |x|^{\alpha}, |b|_{\mathcal{A}} \rangle \in |R|_{\mathcal{A}}$

We write $|e|_{\mathcal{A}}^{\alpha}$ for the semantic value of expression e in the structure \mathcal{A} under the variable assignment α .

•
$$|Px|^{\alpha}_{\mathcal{A}} = T \text{ iff } |x|^{\alpha} \text{ has } |P|_{\mathcal{A}}$$
 (NB: $|x|^{\alpha}_{\mathcal{A}} = |x|^{\alpha}$)
iff $|x|^{\alpha} \in |P|_{\mathcal{A}}$
• $|Rxy|^{\alpha}_{\mathcal{A}} = T \text{ iff } |x|^{\alpha} \text{ stands in } |R|_{\mathcal{A}} \text{ to } |y|^{\alpha}$
iff $\langle |x|^{\alpha}, |y|^{\alpha} \rangle \in |R|_{\mathcal{A}}$

Note: semantic values of constants and predicates are unaffected by the assignment (e.g. $|P|^{\alpha}_{\mathcal{A}} = |P|_{\mathcal{A}}, |a|^{\alpha}_{\mathcal{A}} = |a|_{\mathcal{A}}).$

- $|Rab|^{\alpha}_{\mathcal{A}} = T$ iff $\langle |a|_{\mathcal{A}}, |b|_{\mathcal{A}} \rangle \in |R|_{\mathcal{A}}$
- $|Rxb|^{\alpha}_{\mathcal{A}} = T$ iff $\langle |x|^{\alpha}, |b|_{\mathcal{A}} \rangle \in |R|_{\mathcal{A}}$

Similarly for other atomic formulae.

Let \mathcal{L}_2 -structure \mathcal{A} be such that:

- $|a|_{\mathcal{A}} =$ Alonzo Church
- $|b|_{\mathcal{A}} = \text{Bertrand Russell}$
- $|P|_{\mathcal{A}} = \{$ Frege, Russell $\}$
- $|R|_{\mathcal{A}} = \{ \langle \text{Church, Russell} \rangle \}$

Let assignments α and β be such that:

	x	y	z
α :	Frege	Russell	Wittgenstein
β :	Church	Church	Church

Let \mathcal{L}_2 -structure \mathcal{A} be such that:

- $|a|_{\mathcal{A}} =$ Alonzo Church
- $|b|_{\mathcal{A}} = \text{Bertrand Russell}$
- $|P|_{\mathcal{A}} = \{$ Frege, Russell $\}$
- $|R|_{\mathcal{A}} = \{ \langle \text{Church, Russell} \rangle \}$

Let assignments α and β be such that:

	x	y	z
α :	Frege	Russell	Wittgenstein
β :	Church	Church	Church

Compute the following:

 $\begin{aligned} |x|^{\alpha}_{\mathcal{A}} &= \qquad |x|^{\beta}_{\mathcal{A}} &= \qquad |a|^{\alpha}_{\mathcal{A}} &= \\ |Py|^{\alpha}_{\mathcal{A}} &= \qquad |Py|^{\beta}_{\mathcal{A}} &= \qquad |Pb|^{\alpha}_{\mathcal{A}} &= \\ |Rxy|^{\alpha}_{\mathcal{A}} &= \qquad |Rxy|^{\beta}_{\mathcal{A}} &= \qquad |Rxb|^{\alpha}_{\mathcal{A}} &= \end{aligned}$

Let \mathcal{L}_2 -structure \mathcal{A} be such that:

- $|a|_{\mathcal{A}} =$ Alonzo Church
- $|b|_{\mathcal{A}} = \text{Bertrand Russell}$
- $|P|_{\mathcal{A}} = \{$ Frege, Russell $\}$
- $|R|_{\mathcal{A}} = \{ \langle \text{Church, Russell} \rangle \}$

Let assignments α and β be such that:

	x	y	z
α :	Frege	Russell	Wittgenstein
β :	Church	Church	Church

Compute the following:

$ x ^{\alpha}_{\mathcal{A}} = $ Frege	$ x ^{eta}_{\mathcal{A}} =$	$ a ^{lpha}_{\mathcal{A}} =$
$ Py ^{\alpha}_{\mathcal{A}} =$	$\left Py ight _{\mathcal{A}}^{eta} =$	$ Pb ^{\alpha}_{\mathcal{A}} =$
$ Rxy ^{\alpha}_{\mathcal{A}} =$	$ Rxy ^{eta}_{\mathcal{A}} =$	$ Rxb ^{\alpha}_{\mathcal{A}} =$

Let \mathcal{L}_2 -structure \mathcal{A} be such that:

- $|a|_{\mathcal{A}} =$ Alonzo Church
- $|b|_{\mathcal{A}} = \text{Bertrand Russell}$
- $|P|_{\mathcal{A}} = \{$ Frege, Russell $\}$
- $|R|_{\mathcal{A}} = \{ \langle \text{Church, Russell} \rangle \}$

Let assignments α and β be such that:

	x	y	z
α :	Frege	Russell	Wittgenstein
β :	Church	Church	Church

Compute the following:

$ x ^{\alpha}_{\mathcal{A}} = $ Frege	$ x _{\mathcal{A}}^{\beta} = ext{Church}$	$ a ^{\alpha}_{\mathcal{A}} =$
$ Py ^{lpha}_{\mathcal{A}} =$	$\left Py ight _{\mathcal{A}}^{eta}=$	$ Pb ^{\alpha}_{\mathcal{A}} =$
$ Rxy ^{\alpha}_{\mathcal{A}} =$	$ Rxy ^{eta}_{\mathcal{A}} =$	$ Rxb ^{\alpha}_{\mathcal{A}} =$

Let \mathcal{L}_2 -structure \mathcal{A} be such that:

- $|a|_{\mathcal{A}} =$ Alonzo Church
- $|b|_{\mathcal{A}} = \text{Bertrand Russell}$
- $|P|_{\mathcal{A}} = \{$ Frege, Russell $\}$
- $|R|_{\mathcal{A}} = \{ \langle \text{Church, Russell} \rangle \}$

Let assignments α and β be such that:

	x	y	z
α :	Frege	Russell	Wittgenstein
β :	Church	Church	Church

Compute the following:

$$\begin{aligned} |x|_{\mathcal{A}}^{\alpha} &= \text{Frege} & |x|_{\mathcal{A}}^{\beta} &= \text{Church} & |a|_{\mathcal{A}}^{\alpha} &= \text{Church} \\ |Py|_{\mathcal{A}}^{\alpha} &= & |Py|_{\mathcal{A}}^{\beta} &= & |Pb|_{\mathcal{A}}^{\alpha} &= \\ Rxy|_{\mathcal{A}}^{\alpha} &= & |Rxy|_{\mathcal{A}}^{\beta} &= & |Rxb|_{\mathcal{A}}^{\alpha} &= \end{aligned}$$

Let \mathcal{L}_2 -structure \mathcal{A} be such that:

- $|a|_{\mathcal{A}} =$ Alonzo Church
- $|b|_{\mathcal{A}} = \text{Bertrand Russell}$
- $|P|_{\mathcal{A}} = \{$ Frege, Russell $\}$
- $|R|_{\mathcal{A}} = \{ \langle \text{Church, Russell} \rangle \}$

Let assignments α and β be such that:

	x	y	z
α :	Frege	Russell	Wittgenstein
β :	Church	Church	Church

Compute the following:

$$\begin{aligned} |x|_{\mathcal{A}}^{\alpha} &= \text{Frege} & |x|_{\mathcal{A}}^{\beta} &= \text{Church} & |a|_{\mathcal{A}}^{\alpha} &= \text{Church} \\ |Py|_{\mathcal{A}}^{\alpha} &= \text{T} & |Py|_{\mathcal{A}}^{\beta} &= & |Pb|_{\mathcal{A}}^{\alpha} &= \\ Rxy|_{\mathcal{A}}^{\alpha} &= & |Rxy|_{\mathcal{A}}^{\beta} &= & |Rxb|_{\mathcal{A}}^{\alpha} &= \end{aligned}$$

Let \mathcal{L}_2 -structure \mathcal{A} be such that:

- $|a|_{\mathcal{A}} =$ Alonzo Church
- $|b|_{\mathcal{A}} = \text{Bertrand Russell}$
- $|P|_{\mathcal{A}} = \{$ Frege, Russell $\}$
- $|R|_{\mathcal{A}} = \{ \langle \text{Church, Russell} \rangle \}$

Let assignments α and β be such that:

	x	y	z
α :	Frege	Russell	Wittgenstein
β :	Church	Church	Church

Compute the following:

$$\begin{aligned} |x|^{\alpha}_{\mathcal{A}} &= \text{Frege} & |x|^{\beta}_{\mathcal{A}} &= \text{Church} & |a|^{\alpha}_{\mathcal{A}} &= \text{Church} \\ |Py|^{\alpha}_{\mathcal{A}} &= \text{T} & |Py|^{\beta}_{\mathcal{A}} &= \text{F} & |Pb|^{\alpha}_{\mathcal{A}} &= \\ Rxy|^{\alpha}_{\mathcal{A}} &= & |Rxy|^{\beta}_{\mathcal{A}} &= & |Rxb|^{\alpha}_{\mathcal{A}} &= \end{aligned}$$

Let \mathcal{L}_2 -structure \mathcal{A} be such that:

- $|a|_{\mathcal{A}} =$ Alonzo Church
- $|b|_{\mathcal{A}} = \text{Bertrand Russell}$
- $|P|_{\mathcal{A}} = \{$ Frege, Russell $\}$
- $|R|_{\mathcal{A}} = \{ \langle \text{Church, Russell} \rangle \}$

Let assignments α and β be such that:

	x	y	z
α :	Frege	Russell	Wittgenstein
β :	Church	Church	Church

Compute the following:

$$\begin{aligned} |x|_{\mathcal{A}}^{\alpha} &= \text{Frege} & |x|_{\mathcal{A}}^{\beta} &= \text{Church} & |a|_{\mathcal{A}}^{\alpha} &= \text{Church} \\ |Py|_{\mathcal{A}}^{\alpha} &= \text{T} & |Py|_{\mathcal{A}}^{\beta} &= \text{F} & |Pb|_{\mathcal{A}}^{\alpha} &= \text{T} \\ Rxy|_{\mathcal{A}}^{\alpha} &= & |Rxy|_{\mathcal{A}}^{\beta} &= & |Rxb|_{\mathcal{A}}^{\alpha} = \end{aligned}$$

Let \mathcal{L}_2 -structure \mathcal{A} be such that:

- $|a|_{\mathcal{A}} =$ Alonzo Church
- $|b|_{\mathcal{A}} = \text{Bertrand Russell}$
- $|P|_{\mathcal{A}} = \{$ Frege, Russell $\}$
- $|R|_{\mathcal{A}} = \{ \langle \text{Church, Russell} \rangle \}$

Let assignments α and β be such that:

	x	y	z
α :	Frege	Russell	Wittgenstein
β :	Church	Church	Church

Compute the following:

$$\begin{aligned} |x|_{\mathcal{A}}^{\alpha} &= \text{Frege} & |x|_{\mathcal{A}}^{\beta} &= \text{Church} & |a|_{\mathcal{A}}^{\alpha} &= \text{Church} \\ |Py|_{\mathcal{A}}^{\alpha} &= \text{T} & |Py|_{\mathcal{A}}^{\beta} &= \text{F} & |Pb|_{\mathcal{A}}^{\alpha} &= \text{T} \\ Rxy|_{\mathcal{A}}^{\alpha} &= \text{F} & |Rxy|_{\mathcal{A}}^{\beta} &= & |Rxb|_{\mathcal{A}}^{\alpha} &= \end{aligned}$$

Let \mathcal{L}_2 -structure \mathcal{A} be such that:

- $|a|_{\mathcal{A}} =$ Alonzo Church
- $|b|_{\mathcal{A}} = \text{Bertrand Russell}$
- $|P|_{\mathcal{A}} = \{$ Frege, Russell $\}$
- $|R|_{\mathcal{A}} = \{ \langle \text{Church, Russell} \rangle \}$

Let assignments α and β be such that:

	x	y	z
α :	Frege	Russell	Wittgenstein
β :	Church	Church	Church

Compute the following:

$$\begin{aligned} |x|_{\mathcal{A}}^{\alpha} &= \text{Frege} & |x|_{\mathcal{A}}^{\beta} &= \text{Church} & |a|_{\mathcal{A}}^{\alpha} &= \text{Church} \\ |Py|_{\mathcal{A}}^{\alpha} &= \text{T} & |Py|_{\mathcal{A}}^{\beta} &= \text{F} & |Pb|_{\mathcal{A}}^{\alpha} &= \text{T} \\ Rxy|_{\mathcal{A}}^{\alpha} &= \text{F} & |Rxy|_{\mathcal{A}}^{\beta} &= \text{F} & |Rxb|_{\mathcal{A}}^{\alpha} &= \end{aligned}$$

Let \mathcal{L}_2 -structure \mathcal{A} be such that:

- $|a|_{\mathcal{A}} =$ Alonzo Church
- $|b|_{\mathcal{A}} = \text{Bertrand Russell}$
- $|P|_{\mathcal{A}} = \{$ Frege, Russell $\}$
- $|R|_{\mathcal{A}} = \{ \langle \text{Church, Russell} \rangle \}$

Let assignments α and β be such that:

	x	y	z
α :	Frege	Russell	Wittgenstein
β :	Church	Church	Church

Compute the following:

$$\begin{aligned} |x|_{\mathcal{A}}^{\alpha} &= \text{Frege} & |x|_{\mathcal{A}}^{\beta} &= \text{Church} & |a|_{\mathcal{A}}^{\alpha} &= \text{Church} \\ |Py|_{\mathcal{A}}^{\alpha} &= \text{T} & |Py|_{\mathcal{A}}^{\beta} &= \text{F} & |Pb|_{\mathcal{A}}^{\alpha} &= \text{T} \\ Rxy|_{\mathcal{A}}^{\alpha} &= \text{F} & |Rxy|_{\mathcal{A}}^{\beta} &= \text{F} & |Rxb|_{\mathcal{A}}^{\alpha} &= \text{F} \end{aligned}$$

In English, the truth-value of a quantified sentence depends on how widely the quantifiers range.

In English, the truth-value of a quantified sentence depends on how widely the quantifiers range.

Almost everyone attended the first lecture.

In English, the truth-value of a quantified sentence depends on how widely the quantifiers range.

Almost everyone attended the first lecture.

The context supplies a 'domain' telling us who 'everyone' ranges over

In English, the truth-value of a quantified sentence depends on how widely the quantifiers range.

Almost everyone attended the first lecture.

The context supplies a 'domain' telling us who 'everyone' ranges over

Domain: the set of first-year Oxford philosophy students

Almost every first-year Oxford philosophy student attended the first lecture.

Semantics for quantifiers

In English, the truth-value of a quantified sentence depends on how widely the quantifiers range.

Almost everyone attended the first lecture.

The context supplies a 'domain' telling us who 'everyone' ranges over

Domain: the set of first-year Oxford philosophy students

Almost every first-year Oxford philosophy student attended the first lecture. T

Semantics for quantifiers

In English, the truth-value of a quantified sentence depends on how widely the quantifiers range.

Almost everyone attended the first lecture.

The context supplies a 'domain' telling us who 'everyone' ranges over

Domain: the set of first-year Oxford philosophy students

Almost every first-year Oxford philosophy student attended the first lecture. T

Domain: the set of everyone in the world

Almost everyone in the world attended the first lecture.

Semantics for quantifiers

In English, the truth-value of a quantified sentence depends on how widely the quantifiers range.

Almost everyone attended the first lecture.

The context supplies a 'domain' telling us who 'everyone' ranges over

Domain: the set of first-year Oxford philosophy students

Almost every first-year Oxford philosophy student attended the first lecture. T

Domain: the set of everyone in the world

Almost everyone in the world attended the first lecture. F

An \mathcal{L}_2 -structure \mathcal{A} specifies a non-empty set $D_{\mathcal{A}}$ as the domain.

Semantics for \forall/\exists (first approximation):

 $|\forall x P x|_{\mathcal{A}} = T$ iff every member of $D_{\mathcal{A}}$ has $|P|_{\mathcal{A}}$

Semantics for \forall/\exists (first approximation):

 $|\forall x P x|_{\mathcal{A}} = T$ iff every member of $D_{\mathcal{A}}$ has $|P|_{\mathcal{A}}$ iff every assignment α of x to a member of $D_{\mathcal{A}}$ is such that $|x|^{\alpha} \in |P|_{\mathcal{A}}$

Semantics for \forall/\exists (first approximation):

 $|\forall x P x|_{\mathcal{A}} = T$ iff every member of $D_{\mathcal{A}}$ has $|P|_{\mathcal{A}}$ iff every assignment α of x to a member of $D_{\mathcal{A}}$ is such that $|x|^{\alpha} \in |P|_{\mathcal{A}}$ iff every assignment α over \mathcal{A} is such that $|Px|_{\mathcal{A}}^{\alpha} = T$

Semantics for \forall/\exists (first approximation):

 $|\forall x P x|_{\mathcal{A}} = T$ iff every member of $D_{\mathcal{A}}$ has $|P|_{\mathcal{A}}$ iff every assignment α of x to a member of $D_{\mathcal{A}}$ is such that $|x|^{\alpha} \in |P|_{\mathcal{A}}$ iff every assignment α over \mathcal{A} is such that $|Px|_{\mathcal{A}}^{\alpha} = T$

Similarly:

 $\begin{aligned} |\exists x P x|_{\mathcal{A}} &= \mathbf{T} \\ \text{iff some member of } D_{\mathcal{A}} \text{ has } |P|_{\mathcal{A}} \end{aligned}$

Semantics for \forall/\exists (first approximation):

 $|\forall x P x|_{\mathcal{A}} = T$ iff every member of $D_{\mathcal{A}}$ has $|P|_{\mathcal{A}}$ iff every assignment α of x to a member of $D_{\mathcal{A}}$ is such that $|x|^{\alpha} \in |P|_{\mathcal{A}}$ iff every assignment α over \mathcal{A} is such that $|Px|_{\mathcal{A}}^{\alpha} = T$

Similarly:

 $|\exists x P x|_{\mathcal{A}} = T$ iff some member of $D_{\mathcal{A}}$ has $|P|_{\mathcal{A}}$ iff some assignment α of x to a member of $D_{\mathcal{A}}$ is such that $|x|^{\alpha} \in |P|_{\mathcal{A}}$

Semantics for \forall/\exists (first approximation):

 $|\forall x P x|_{\mathcal{A}} = T$ iff every member of $D_{\mathcal{A}}$ has $|P|_{\mathcal{A}}$ iff every assignment α of x to a member of $D_{\mathcal{A}}$ is such that $|x|^{\alpha} \in |P|_{\mathcal{A}}$ iff every assignment α over \mathcal{A} is such that $|Px|_{\mathcal{A}}^{\alpha} = T$

Similarly:

 $|\exists x P x|_{\mathcal{A}} = T$ iff some member of $D_{\mathcal{A}}$ has $|P|_{\mathcal{A}}$ iff some assignment α of x to a member of $D_{\mathcal{A}}$ is such that $|x|^{\alpha} \in |P|_{\mathcal{A}}$ iff some assignment α over \mathcal{A} is such that $|Px|_{\mathcal{A}}^{\alpha} = T$

Semantics for \forall/\exists (first approximation):

 $|\forall x P x|_{\mathcal{A}} = T$ iff every member of $D_{\mathcal{A}}$ has $|P|_{\mathcal{A}}$ iff every assignment α of x to a member of $D_{\mathcal{A}}$ is such that $|x|^{\alpha} \in |P|_{\mathcal{A}}$ iff every assignment α over \mathcal{A} is such that $|Px|_{\mathcal{A}}^{\alpha} = T$

Similarly:

 $|\exists x P x|_{\mathcal{A}} = T$ iff some member of $D_{\mathcal{A}}$ has $|P|_{\mathcal{A}}$ iff some assignment α of x to a member of $D_{\mathcal{A}}$ is such that $|x|^{\alpha} \in |P|_{\mathcal{A}}$ iff some assignment α over \mathcal{A} is such that $|Px|_{\mathcal{A}}^{\alpha} = T$

This is correct but the general case is more complex.

The semantics of quantifiers is complicated by the need to deal with multiple quantifiers in sentences such as $\forall x \exists y Rxy$

The semantics of quantifiers is complicated by the need to deal with multiple quantifiers in sentences such as $\forall x \exists y Rxy$ Suppose we try to evaluate this as before under \mathcal{A} with domain $D_{\mathcal{A}}$ The semantics of quantifiers is complicated by the need to deal with multiple quantifiers in sentences such as $\forall x \exists y Rxy$

Suppose we try to evaluate this as before under ${\mathcal A}$ with domain $D_{{\mathcal A}}$

 $|\forall x \exists y Rxy|_{\mathcal{A}} = T$ iff every assignment α over \mathcal{A} is such that $|\exists y Rxy|_{\mathcal{A}}^{\alpha} = T$ The semantics of quantifiers is complicated by the need to deal with multiple quantifiers in sentences such as $\forall x \exists y Rxy$

Suppose we try to evaluate this as before under \mathcal{A} with domain $D_{\mathcal{A}}$

 $|\forall x \exists y Rxy|_{\mathcal{A}} = T$ iff every assignment α over \mathcal{A} is such that $|\exists y Rxy|_{\mathcal{A}}^{\alpha} = T$

To progress any further we need to be able evaluate $\exists y Rxy$ under an assignment α of an object to x.

 $|\exists y R x y|_{\mathcal{A}}^{\alpha} = \mathbf{T}$

iff some d in $D_{\mathcal{A}}$ is such that $|x|^{\alpha}$ stands in $|R|_{\mathcal{A}}$ to d

 $|\exists y R x y|_{\mathcal{A}}^{\alpha} = \mathbf{T}$

iff some d in $D_{\mathcal{A}}$ is such that $|x|^{\alpha}$ stands in $|R|_{\mathcal{A}}$ to d

iff some assignment β over \mathcal{A} is such that $|x|^{\alpha}$ stands in $|R|_{\mathcal{A}}$ to $|y|^{\beta}$

 $|\exists y Rxy|^{\alpha}_{\mathcal{A}} = T$ iff some d in $D_{\mathcal{A}}$ is such that $|x|^{\alpha}$ stands in $|R|_{\mathcal{A}}$ to diff some assignment β over \mathcal{A} is such that $|x|^{\alpha}$ stands in $|R|_{\mathcal{A}}$ to $|y|^{\beta}$

So we don't have to keep track of multiple assignments:

Say that β differs from α in y at most if $|v|^{\alpha} = |v|^{\beta}$ for all variables v with the possible exception of y.

 $|\exists y Rxy|^{\alpha}_{\mathcal{A}} = \mathbf{T}$ iff some d in $D_{\mathcal{A}}$ is such that $|x|^{\alpha}$ stands in $|R|_{\mathcal{A}}$ to diff some assignment β over \mathcal{A} is such that $|x|^{\alpha}$ stands in $|R|_{\mathcal{A}}$ to $|y|^{\beta}$

So we don't have to keep track of multiple assignments:

Say that β differs from α in y at most if $|v|^{\alpha} = |v|^{\beta}$ for all variables v with the possible exception of y.

 $|\exists y R x y|_{\mathcal{A}}^{\alpha} = \mathbf{T}$

iff some assignment β over \mathcal{A} which differs from α in y at most is such that $|x|^{\alpha}$ stands in $|R|_{\mathcal{A}}$ to $|y|^{\beta}$

 $|\exists y Rxy|^{\alpha}_{\mathcal{A}} = \mathbf{T}$ iff some d in $D_{\mathcal{A}}$ is such that $|x|^{\alpha}$ stands in $|R|_{\mathcal{A}}$ to diff some assignment β over \mathcal{A} is such that $|x|^{\alpha}$ stands in $|R|_{\mathcal{A}}$ to $|y|^{\beta}$

So we don't have to keep track of multiple assignments:

Say that β differs from α in y at most if $|v|^{\alpha} = |v|^{\beta}$ for all variables v with the possible exception of y.

 $|\exists y R x y|_{\mathcal{A}}^{\alpha} = \mathbf{T}$

iff some assignment β over \mathcal{A} which differs from α in y at most is such that $|x|^{\alpha}$ stands in $|R|_{\mathcal{A}}$ to $|y|^{\beta}$

 $|\exists y Rxy|^{\alpha}_{\mathcal{A}} = \mathbf{T}$ iff some d in $D_{\mathcal{A}}$ is such that $|x|^{\alpha}$ stands in $|R|_{\mathcal{A}}$ to diff some assignment β over \mathcal{A} is such that $|x|^{\alpha}$ stands in $|R|_{\mathcal{A}}$ to $|y|^{\beta}$

So we don't have to keep track of multiple assignments:

Say that β differs from α in y at most if $|v|^{\alpha} = |v|^{\beta}$ for all variables v with the possible exception of y.

 $|\exists y R x y|_{\mathcal{A}}^{\alpha} = \mathbf{T}$

iff some assignment β over \mathcal{A} which differs from α in y at most is such that $|x|^{\beta}$ stands in $|R|_{\mathcal{A}}$ to $|y|^{\beta}$

 $|\exists y Rxy|^{\alpha}_{\mathcal{A}} = T$ iff some d in $D_{\mathcal{A}}$ is such that $|x|^{\alpha}$ stands in $|R|_{\mathcal{A}}$ to diff some assignment β over \mathcal{A} is such that $|x|^{\alpha}$ stands in $|R|_{\mathcal{A}}$ to $|y|^{\beta}$

So we don't have to keep track of multiple assignments:

Say that β differs from α in y at most if $|v|^{\alpha} = |v|^{\beta}$ for all variables v with the possible exception of y.

 $|\exists y R x y|_{\mathcal{A}}^{\alpha} = \mathbf{T}$

iff some assignment β over \mathcal{A} which differs from α in y at most is such that $|x|^{\beta}$ stands in $|R|_{\mathcal{A}}$ to $|y|^{\beta}$

iff some assignment β over \mathcal{A} which differs from α in y at most is such that $|Rxy|^{\beta}_{\mathcal{A}} = T$

Here's the full specification of an \mathcal{L}_2 -structure.

Here's the full specification of an \mathcal{L}_2 -structure.

An \mathcal{L}_2 -structure \mathcal{A} supplies two things

Here's the full specification of an \mathcal{L}_2 -structure.

An \mathcal{L}_2 -structure \mathcal{A} supplies two things (1) a domain: a non-empty set $D_{\mathcal{A}}$

Here's the full specification of an \mathcal{L}_2 -structure.

An \mathcal{L}_2 -structure \mathcal{A} supplies two things

(1) a domain: a non-empty set $D_{\mathcal{A}}$

(2) a semantic value for each predicate and constant.

Here's the full specification of an \mathcal{L}_2 -structure.

An \mathcal{L}_2 -structure \mathcal{A} supplies two things

- (1) a domain: a non-empty set $D_{\mathcal{A}}$
- (2) a semantic value for each predicate and constant.

\mathcal{L}_2 -expression	semantic value in \mathcal{A}
constant: a	object: $ a _{\mathcal{A}}$
sentence letter: ${\cal P}$	truth-value: $ P _{\mathcal{A}} (= T \text{ or } F)$
unary predicate: P^1	unary relation: $ P^1 _{\mathcal{A}}$ (i.e. a set)
binary predicate: P^2	binary relation: $ P^2 _{\mathcal{A}}$ (a set of pairs)
ternary predicate: P^3	ternary relation: $ P^3 _{\mathcal{A}}$ (a set of triples)
etc. etc.	

Let \mathcal{A} be an \mathcal{L}_2 -structure and α an assignment over \mathcal{A} .

Let \mathcal{A} be an \mathcal{L}_2 -structure and α an assignment over \mathcal{A} .

Atomic formulae

Let \mathcal{A} be an \mathcal{L}_2 -structure and α an assignment over \mathcal{A} .

Atomic formulae

Let Φ^n be a *n*-ary predicate letter (n > 0) and let t_1, t_2, \ldots be variables or constants.

• $|\Phi^n|^{\alpha}_{\mathcal{A}}$ is the *n*-ary relation assigned to Φ^n by \mathcal{A} .

Let \mathcal{A} be an \mathcal{L}_2 -structure and α an assignment over \mathcal{A} .

Atomic formulae

Let Φ^n be a *n*-ary predicate letter (n > 0) and let t_1, t_2, \ldots be variables or constants.

- $|\Phi^n|^{\alpha}_{\mathcal{A}}$ is the *n*-ary relation assigned to Φ^n by \mathcal{A} .
- $|t|^{\alpha}_{\mathcal{A}}$ is the object t denotes in \mathcal{A} if t is a constant.
- $|t|_{\mathcal{A}}^{\alpha}$ is the object assigned to t by α if t is a variable.

(i) $|\Phi^1 t_1|^{\alpha}_{\mathcal{A}} = T$ if and only if $|t_1|^{\alpha}_{\mathcal{A}} \in |\Phi^1|_{\mathcal{A}}$

Let \mathcal{A} be an \mathcal{L}_2 -structure and α an assignment over \mathcal{A} .

Atomic formulae

- $|\Phi^n|^{\alpha}_{\mathcal{A}}$ is the *n*-ary relation assigned to Φ^n by \mathcal{A} .
- $|t|^{\alpha}_{\mathcal{A}}$ is the object t denotes in \mathcal{A} if t is a constant.
- $|t|_{\mathcal{A}}^{\alpha}$ is the object assigned to t by α if t is a variable.

(i)
$$|\Phi^{1}t_{1}|_{\mathcal{A}}^{\alpha} = T$$
 if and only if $|t_{1}|_{\mathcal{A}}^{\alpha} \in |\Phi^{1}|_{\mathcal{A}}$
 $|\Phi^{2}t_{1}t_{2}|_{\mathcal{A}}^{\alpha} = T$ if and only if $\langle |t_{1}|_{\mathcal{A}}^{\alpha}, |t_{2}|_{\mathcal{A}}^{\alpha} \rangle \in |\Phi^{2}|_{\mathcal{A}}$

Let \mathcal{A} be an \mathcal{L}_2 -structure and α an assignment over \mathcal{A} .

Atomic formulae

- $|\Phi^n|^{\alpha}_{\mathcal{A}}$ is the *n*-ary relation assigned to Φ^n by \mathcal{A} .
- $|t|^{\alpha}_{\mathcal{A}}$ is the object t denotes in \mathcal{A} if t is a constant.
- $|t|_{\mathcal{A}}^{\alpha}$ is the object assigned to t by α if t is a variable.

(i)
$$|\Phi^{1}t_{1}|_{\mathcal{A}}^{\alpha} = T$$
 if and only if $|t_{1}|_{\mathcal{A}}^{\alpha} \in |\Phi^{1}|_{\mathcal{A}}$
 $|\Phi^{2}t_{1}t_{2}|_{\mathcal{A}}^{\alpha} = T$ if and only if $\langle |t_{1}|_{\mathcal{A}}^{\alpha}, |t_{2}|_{\mathcal{A}}^{\alpha} \rangle \in |\Phi^{2}|_{\mathcal{A}}$
 $|\Phi^{3}t_{1}t_{2}t_{3}|_{\mathcal{A}}^{\alpha} = T$ if and only if $\langle |t_{1}|_{\mathcal{A}}^{\alpha}, |t_{2}|_{\mathcal{A}}^{\alpha}, |t_{3}|_{\mathcal{A}}^{\alpha} \rangle \in |\Phi^{3}|_{\mathcal{A}}$

Let \mathcal{A} be an \mathcal{L}_2 -structure and α an assignment over \mathcal{A} .

Atomic formulae

- $|\Phi^n|^{\alpha}_{\mathcal{A}}$ is the *n*-ary relation assigned to Φ^n by \mathcal{A} .
- $|t|^{\alpha}_{\mathcal{A}}$ is the object t denotes in \mathcal{A} if t is a constant.
- $|t|_{\mathcal{A}}^{\alpha}$ is the object assigned to t by α if t is a variable.

(i)
$$|\Phi^{1}t_{1}|_{\mathcal{A}}^{\alpha} = T$$
 if and only if $|t_{1}|_{\mathcal{A}}^{\alpha} \in |\Phi^{1}|_{\mathcal{A}}$
 $|\Phi^{2}t_{1}t_{2}|_{\mathcal{A}}^{\alpha} = T$ if and only if $\langle |t_{1}|_{\mathcal{A}}^{\alpha}, |t_{2}|_{\mathcal{A}}^{\alpha} \rangle \in |\Phi^{2}|_{\mathcal{A}}$
 $|\Phi^{3}t_{1}t_{2}t_{3}|_{\mathcal{A}}^{\alpha} = T$ if and only if $\langle |t_{1}|_{\mathcal{A}}^{\alpha}, |t_{2}|_{\mathcal{A}}^{\alpha}, |t_{3}|_{\mathcal{A}}^{\alpha} \rangle \in |\Phi^{3}|_{\mathcal{A}}$
etc.

The semantics for connectives are just like those for \mathcal{L}_1 .

Semantics for connectives

These are the semantic clauses for $\forall v$ and $\exists v$.

These are the semantic clauses for $\forall v$ and $\exists v$.

Quantifiers

(vii) $|\forall v \phi|_{\mathcal{A}}^{\alpha} = T$ if and only if $|\phi|_{\mathcal{A}}^{\beta} = T$ for all variable assignments β over \mathcal{A} differing from α in v at most.

These are the semantic clauses for $\forall v$ and $\exists v$.

Quantifiers

Just one detail remains.

50

Just one detail remains.

50

We haven't yet said what it is for a sentence to be true in an \mathcal{L}_2 -structure \mathcal{A} .

Just one detail remains.

50

We haven't yet said what it is for a sentence to be true in an \mathcal{L}_2 -structure \mathcal{A} .

We've said what it is for a formula to be true in an \mathcal{L}_2 -structure \mathcal{A} under an assignment over \mathcal{A}

Just one detail remains.

50

We haven't yet said what it is for a sentence to be true in an \mathcal{L}_2 -structure \mathcal{A} .

We've said what it is for a formula to be true in an \mathcal{L}_2 -structure \mathcal{A} under an assignment over \mathcal{A}

(We've defined $|\phi|^{\alpha}_{\mathcal{A}}$; we want now to define $|\phi|_{\mathcal{A}}$.)

Just one detail remains.

50

We haven't yet said what it is for a sentence to be true in an \mathcal{L}_2 -structure \mathcal{A} .

We've said what it is for a formula to be true in an \mathcal{L}_2 -structure \mathcal{A} under an assignment over \mathcal{A}

(We've defined $|\phi|_{\mathcal{A}}^{\alpha}$; we want now to define $|\phi|_{\mathcal{A}}$.)

Fact about sentences

The truth-value of a sentence does *not* depend on the assignment.

Just one detail remains.

50

We haven't yet said what it is for a sentence to be true in an \mathcal{L}_2 -structure \mathcal{A} .

We've said what it is for a formula to be true in an \mathcal{L}_2 -structure \mathcal{A} under an assignment over \mathcal{A}

(We've defined $|\phi|^{\alpha}_{\mathcal{A}}$; we want now to define $|\phi|_{\mathcal{A}}$.)

Fact about sentences

The truth-value of a sentence does *not* depend on the assignment. For α and β over \mathcal{A} : $|\phi|^{\alpha}_{\mathcal{A}} = |\phi|^{\beta}_{\mathcal{A}}$ (when ϕ is a sentence).

Just one detail remains.

50

We haven't yet said what it is for a sentence to be true in an \mathcal{L}_2 -structure \mathcal{A} .

We've said what it is for a formula to be true in an \mathcal{L}_2 -structure \mathcal{A} under an assignment over \mathcal{A}

(We've defined $|\phi|^{\alpha}_{\mathcal{A}}$; we want now to define $|\phi|_{\mathcal{A}}$.)

Fact about sentences

The truth-value of a sentence does *not* depend on the assignment. For α and β over \mathcal{A} : $|\phi|^{\alpha}_{\mathcal{A}} = |\phi|^{\beta}_{\mathcal{A}}$ (when ϕ is a sentence).

A sentence ϕ is true in an \mathcal{L}_2 -structure \mathcal{A} (in symbols: $|\phi|_{\mathcal{A}} = T$) iff $|\phi|_{\mathcal{A}}^{\alpha} = T$ for all variable assignments α over \mathcal{A} .

Just one detail remains.

50

We haven't yet said what it is for a sentence to be true in an \mathcal{L}_2 -structure \mathcal{A} .

We've said what it is for a formula to be true in an \mathcal{L}_2 -structure \mathcal{A} under an assignment over \mathcal{A}

(We've defined $|\phi|^{\alpha}_{\mathcal{A}}$; we want now to define $|\phi|_{\mathcal{A}}$.)

Fact about sentences

The truth-value of a sentence does *not* depend on the assignment. For α and β over \mathcal{A} : $|\phi|^{\alpha}_{\mathcal{A}} = |\phi|^{\beta}_{\mathcal{A}}$ (when ϕ is a sentence).

A sentence ϕ is true in an \mathcal{L}_2 -structure \mathcal{A} (in symbols: $|\phi|_{\mathcal{A}} = T$) iff $|\phi|_{\mathcal{A}}^{\alpha} = T$ for all variable assignments α over \mathcal{A} . equivalently: $|\phi|_{\mathcal{A}}^{\alpha} = T$ for some variable assignment α over \mathcal{A} .

http://logicmanual.philosophy.ox.ac.uk