INTRODUCTION TO LOGIC

Lecture 8 Identity and Definite Descriptions

Dr. James Studd

The analysis of the beginning would thus yield the notion of the unity of being and not-being—or, in a more reflected form, the unity of differentiatedness and non-differentiatedness, or the identity of identity and non-identity.

Hegel
The Science of Logic

Outline

- (1) The language of predicate logic with identity: $\mathcal{L}_{=}$
 - Syntax
 - Semantics
 - Proof theory
- (2) Formalisation in $\mathcal{L}_{=}$
 - Numerical quantifiers
 - Definite descriptions

In English, we use the words 'identity'/'identical' in a number of different ways.

In English, we use the words 'identity'/'identical' in a number of different ways.

Wider uses of 'identity'/'identical'

(1) Mancunians have a strong sense of cultural identity.

In English, we use the words 'identity'/'identical' in a number of different ways.

Wider uses of 'identity'/'identical'

- (1) Mancunians have a strong sense of cultural identity.
- (2) Dr. Jekyll has multiple identities.

In English, we use the words 'identity'/'identical' in a number of different ways.

Wider uses of 'identity'/'identical'

- (1) Mancunians have a strong sense of cultural identity.
- (2) Dr. Jekyll has multiple identities.
- (3) Jedward are almost completely identical.

In English, we use the words 'identity'/'identical' in a number of different ways.

Wider uses of 'identity'/'identical'

- (1) Mancunians have a strong sense of cultural identity.
- (2) Dr. Jekyll has multiple identities.
- (3) Jedward are almost completely identical.

The sense of 'identity' used in (3) is sometimes called 'qualitative identity'.

In English, we use the words 'identity'/'identical' in a number of different ways.

Wider uses of 'identity'/'identical'

- (1) Mancunians have a strong sense of cultural identity.
- (2) Dr. Jekyll has multiple identities.
- (3) Jedward are almost completely identical.

The sense of 'identity' used in (3) is sometimes called 'qualitative identity'.

• (3) says that John and Edward are almost exactly similar in every respect.

In English, we use the words 'identity'/'identical' in a number of different ways.

Wider uses of 'identity'/'identical'

- (1) Mancunians have a strong sense of cultural identity.
- (2) Dr. Jekyll has multiple identities.
- (3) Jedward are almost completely identical.

The sense of 'identity' used in (3) is sometimes called 'qualitative identity'.

• (3) says that John and Edward are almost exactly similar in every respect.

None of these uses of 'identical' is the logicians' use.

A is identical to B iff A is the very same thing as B i.e. A and B are one and the same thing.

A is identical to B iff A is the very same thing as B i.e. A and B are one and the same thing.

This is sometimes called 'numerical identity'

A is identical to B iff A is the very same thing as B i.e. A and B are one and the same thing.

This is sometimes called 'numerical identity'

(Unless otherwise stated 'identity'/'identical' henceforth mean numerical identity/numerically identical.)

A is identical to B iff A is the very same thing as B i.e. A and B are one and the same thing.

This is sometimes called 'numerical identity'

(Unless otherwise stated 'identity'/'identical' henceforth mean numerical identity/numerically identical.)

Examples

• George Orwell is identical to Eric Arthur Blair

A is identical to B iff A is the very same thing as B i.e. A and B are one and the same thing.

This is sometimes called 'numerical identity'

(Unless otherwise stated 'identity'/'identical' henceforth mean numerical identity/numerically identical.)

- George Orwell is identical to Eric Arthur Blair
- Dr. Jekyll is identical to Mr. Hyde

A is identical to B iff A is the very same thing as B i.e. A and B are one and the same thing.

This is sometimes called 'numerical identity'

(Unless otherwise stated 'identity'/'identical' henceforth mean numerical identity/numerically identical.)

- George Orwell is identical to Eric Arthur Blair
- Dr. Jekyll is identical to Mr. Hyde
- John is not identical to Edward

The new language makes a single addition to \mathcal{L}_2 .

The new language makes a single addition to \mathcal{L}_2 .

The language $\mathcal{L}_{=}$

The language $\mathcal{L}_{=}$ of predicate logic with identity adds a single binary predicate letter to the language of predicate logic \mathcal{L}_{2} .

• $\mathcal{L}_{=}$ adds the identity predicate = to \mathcal{L}_{2}

The new language makes a single addition to \mathcal{L}_2 .

The language $\mathcal{L}_{=}$

- $\mathcal{L}_{=}$ adds the identity predicate = to \mathcal{L}_{2}
- = differs from the other predicate letters in several way.

The new language makes a single addition to \mathcal{L}_2 .

The language $\mathcal{L}_{=}$

- $\mathcal{L}_{=}$ adds the identity predicate = to \mathcal{L}_{2}
- = differs from the other predicate letters in several way.
 - P, R^2 , etc., are non-logical expressions. Different \mathcal{L}_2 -structures interpret them differently.

The new language makes a single addition to \mathcal{L}_2 .

The language $\mathcal{L}_{=}$

- $\mathcal{L}_{=}$ adds the identity predicate = to \mathcal{L}_{2}
- = differs from the other predicate letters in several way.
 - P, R^2 , etc., are non-logical expressions. Different \mathcal{L}_2 -structures interpret them differently.
 - is treated as a logical expression.
 It always has the same interpretation in any structure.

The new language makes a single addition to \mathcal{L}_2 .

The language $\mathcal{L}_{=}$

- $\mathcal{L}_{=}$ adds the identity predicate = to \mathcal{L}_{2}
- = differs from the other predicate letters in several way.
 - P, R^2 , etc., are non-logical expressions. Different \mathcal{L}_2 -structures interpret them differently.
 - is treated as a logical expression.
 It always has the same interpretation in any structure.
 - Minor difference: we write a = b (rather than =ab).

We make a slight change to the definition of atomic formula.

Definition (atomic formulae of $\mathcal{L}_{=}$)

All atomic formulae of \mathcal{L}_2 are atomic formulae of $\mathcal{L}_=$. Furthermore, if s and t are variables or constants, then s=t is an atomic formula of $\mathcal{L}_=$.

We make a slight change to the definition of atomic formula.

Definition (atomic formulae of $\mathcal{L}_{=}$)

All atomic formulae of \mathcal{L}_2 are atomic formulae of $\mathcal{L}_=$. Furthermore, if s and t are variables or constants, then s=t is an atomic formula of $\mathcal{L}_=$.

The definition of formula and sentence is otherwise just like the definition for \mathcal{L}_2 .

Examples

• Atomic $\mathcal{L}_{=}$ -formulae:

We make a slight change to the definition of atomic formula.

$\overline{\text{Definition (atomic formulae of } \mathcal{L}_{=})}$

All atomic formulae of \mathcal{L}_2 are atomic formulae of $\mathcal{L}_=$. Furthermore, if s and t are variables or constants, then s=t is an atomic formula of $\mathcal{L}_=$.

The definition of formula and sentence is otherwise just like the definition for \mathcal{L}_2 .

Examples

• Atomic $\mathcal{L}_{=}$ -formulae: c = a,

We make a slight change to the definition of atomic formula.

Definition (atomic formulae of $\mathcal{L}_{=}$)

All atomic formulae of \mathcal{L}_2 are atomic formulae of $\mathcal{L}_=$. Furthermore, if s and t are variables or constants, then s=t is an atomic formula of $\mathcal{L}_=$.

The definition of formula and sentence is otherwise just like the definition for \mathcal{L}_2 .

Examples

• Atomic $\mathcal{L}_{=}$ -formulae: $c = a, x = y_3,$

We make a slight change to the definition of atomic formula.

Definition (atomic formulae of $\mathcal{L}_{=}$)

All atomic formulae of \mathcal{L}_2 are atomic formulae of $\mathcal{L}_=$. Furthermore, if s and t are variables or constants, then s=t is an atomic formula of $\mathcal{L}_=$.

The definition of formula and sentence is otherwise just like the definition for \mathcal{L}_2 .

Examples

• Atomic $\mathcal{L}_{=}$ -formulae: $c=a, x=y_3, x=a,$

We make a slight change to the definition of atomic formula.

Definition (atomic formulae of $\mathcal{L}_{=}$)

All atomic formulae of \mathcal{L}_2 are atomic formulae of $\mathcal{L}_=$. Furthermore, if s and t are variables or constants, then s=t is an atomic formula of $\mathcal{L}_=$.

The definition of formula and sentence is otherwise just like the definition for \mathcal{L}_2 .

Examples

• Atomic $\mathcal{L}_{=}$ -formulae: $c=a, x=y_3, x=a, R^2ax$.

We make a slight change to the definition of atomic formula.

Definition (atomic formulae of $\mathcal{L}_{=}$)

All atomic formulae of \mathcal{L}_2 are atomic formulae of $\mathcal{L}_=$. Furthermore, if s and t are variables or constants, then s=t is an atomic formula of $\mathcal{L}_=$.

The definition of formula and sentence is otherwise just like the definition for \mathcal{L}_2 .

- Atomic $\mathcal{L}_{=}$ -formulae: $c=a, x=y_3, x=a, R^2ax$.
- Complex $\mathcal{L}_{=}$ -formulae:

We make a slight change to the definition of atomic formula.

Definition (atomic formulae of $\mathcal{L}_{=}$)

All atomic formulae of \mathcal{L}_2 are atomic formulae of $\mathcal{L}_=$. Furthermore, if s and t are variables or constants, then s=t is an atomic formula of $\mathcal{L}_=$.

The definition of formula and sentence is otherwise just like the definition for \mathcal{L}_2 .

- Atomic $\mathcal{L}_{=}$ -formulae: $c=a, x=y_3, x=a, R^2ax$.
- Complex $\mathcal{L}_{=}$ -formulae: $\neg x = y$,

We make a slight change to the definition of atomic formula.

Definition (atomic formulae of $\mathcal{L}_{=}$)

All atomic formulae of \mathcal{L}_2 are atomic formulae of $\mathcal{L}_=$. Furthermore, if s and t are variables or constants, then s=t is an atomic formula of $\mathcal{L}_=$.

The definition of formula and sentence is otherwise just like the definition for \mathcal{L}_2 .

- Atomic $\mathcal{L}_{=}$ -formulae: $c=a, x=y_3, x=a, R^2ax$.
- Complex $\mathcal{L}_{=}$ -formulae: $\neg x = y, \forall x (Rxy_2 \rightarrow y_2 = x)$.

The definition of structure is just the same as before.

Definition: $\mathcal{L}_{=}$ -structure

An $\mathcal{L}_{=}$ -structure is simply an \mathcal{L}_{2} -structure.

The definition of structure is just the same as before.

Definition: $\mathcal{L}_{=}$ -structure

An $\mathcal{L}_{=}$ -structure is simply an \mathcal{L}_{2} -structure.

Why no change?

The definition of structure is just the same as before.

Definition: $\mathcal{L}_{=}$ -structure

An $\mathcal{L}_{=}$ -structure is simply an \mathcal{L}_{2} -structure.

Why no change?

 \bullet Structures interpret non-logical expressions like P and a.

The definition of structure is just the same as before.

Definition: $\mathcal{L}_{=}$ -structure

An $\mathcal{L}_{=}$ -structure is simply an \mathcal{L}_{2} -structure.

Why no change?

- ullet Structures interpret non-logical expressions like P and a.
- Structures do not interpret logical expressions like \neg and $\forall x$.

The definition of structure is just the same as before.

Definition: $\mathcal{L}_{=}$ -structure

An $\mathcal{L}_{=}$ -structure is simply an \mathcal{L}_{2} -structure.

Why no change?

- Structures interpret non-logical expressions like P and a.
- Structures do not interpret logical expressions like \neg and $\forall x$.
- The fixed interpretation of logical expressions is specified in the definition of satisfaction.

Semantics

The definition of structure is just the same as before.

Definition: $\mathcal{L}_{=}$ -structure

An $\mathcal{L}_{=}$ -structure is simply an \mathcal{L}_{2} -structure.

Why no change?

- Structures interpret non-logical expressions like P and a.
- Structures do not interpret logical expressions like \neg and $\forall x$.
- The fixed interpretation of logical expressions is specified in the definition of satisfaction.

e.g.
$$|\neg \phi|_{\mathcal{A}}^{\alpha} = T$$
 iff $|\phi|_{\mathcal{A}}^{\alpha} = F$

Semantics

The definition of structure is just the same as before.

Definition: $\mathcal{L}_{=}$ -structure

An $\mathcal{L}_{=}$ -structure is simply an \mathcal{L}_{2} -structure.

Why no change?

- Structures interpret non-logical expressions like P and a.
- Structures do not interpret logical expressions like \neg and $\forall x$.
- The fixed interpretation of logical expressions is specified in the definition of satisfaction.

e.g.
$$|\neg \phi|_{\mathcal{A}}^{\alpha} = T$$
 iff $|\phi|_{\mathcal{A}}^{\alpha} = F$

• Similarly = is treated as a logical expression, which is not assigned a semantic value by the structure.

Semantics

The definition of structure is just the same as before.

Definition: $\mathcal{L}_{=}$ -structure

An $\mathcal{L}_{=}$ -structure is simply an \mathcal{L}_{2} -structure.

Why no change?

- Structures interpret non-logical expressions like P and a.
- Structures do not interpret logical expressions like \neg and $\forall x$.
- The fixed interpretation of logical expressions is specified in the definition of satisfaction.

e.g.
$$|\neg \phi|_{\mathcal{A}}^{\alpha} = T$$
 iff $|\phi|_{\mathcal{A}}^{\alpha} = F$

- Similarly = is treated as a logical expression, which is not assigned a semantic value by the structure.
- The fixed interpretation of = is specified in the definition of satisfaction.

Definition: satisfaction of identity statements

(ix)
$$|s=t|_{\mathcal{A}}^{\alpha} = T$$
 if and only if $|s|_{\mathcal{A}}^{\alpha} = |t|_{\mathcal{A}}^{\alpha}$.

Definition: satisfaction of identity statements

(ix)
$$|s=t|_{\mathcal{A}}^{\alpha} = T$$
 if and only if $|s|_{\mathcal{A}}^{\alpha} = |t|_{\mathcal{A}}^{\alpha}$.

Note: = is used in both $\mathcal{L}_{=}$ and the metalanguage.

Definition: satisfaction of identity statements

(ix)
$$|s=t|_{\mathcal{A}}^{\alpha} = T$$
 if and only if $|s|_{\mathcal{A}}^{\alpha} = |t|_{\mathcal{A}}^{\alpha}$.

Note: = is used in both $\mathcal{L}_{=}$ and the metalanguage.

Definition: satisfaction of identity statements

(ix)
$$|s=t|_{\mathcal{A}}^{\alpha} = T$$
 if and only if $|s|_{\mathcal{A}}^{\alpha} = |t|_{\mathcal{A}}^{\alpha}$.

Note: = is used in both $\mathcal{L}_{=}$ and the metalanguage.

Definition: satisfaction of identity statements

(ix)
$$|s=t|_{\mathcal{A}}^{\alpha} = T$$
 if and only if $|s|_{\mathcal{A}}^{\alpha} = |t|_{\mathcal{A}}^{\alpha}$.

Note: = is used in both $\mathcal{L}_{=}$ and the metalanguage.

The other definitions from Chapter 5 carry over directly to $\mathcal{L}_{=}$.

- Valid
- Logical truth
- Contradiction
- Logically equivalent
- Semantically consistent

These are defined just as before replacing \mathcal{L}_2 with $\mathcal{L}_{=}$.

 $\forall x \, \forall y \, x = y \text{ isn't logically true.}$

 $\forall x \forall y \, x = y \text{ isn't logically true.}$

Counterexample: let \mathcal{A} be an $\mathcal{L}_{=}$ -structure with domain $\{1, 2\}$.

 $\forall x \forall y \, x = y \text{ isn't logically true.}$

Counterexample: let \mathcal{A} be an $\mathcal{L}_{=}$ -structure with domain $\{1,2\}$.

Proof.

 $\forall x \forall y \, x = y \text{ isn't logically true.}$

Counterexample: let \mathcal{A} be an $\mathcal{L}_{=}$ -structure with domain $\{1,2\}$.

Proof. Let α be an assignment over \mathcal{A} .

 $\forall x \forall y \, x = y \text{ isn't logically true.}$

Counterexample: let \mathcal{A} be an $\mathcal{L}_{=}$ -structure with domain $\{1, 2\}$.

Proof. Let α be an assignment over \mathcal{A} .

 $\forall x \forall y \, x = y \text{ isn't logically true.}$

Counterexample: let \mathcal{A} be an $\mathcal{L}_{=}$ -structure with domain $\{1,2\}$.

Proof. Let α be an assignment over \mathcal{A} .

Sufficient to prove (STP:) $\forall x \forall y \, x = y$ is false in \mathcal{A} under α .

Now: $|\forall x \forall y \ x = y|_{\mathcal{A}}^{\alpha} = T \text{ iff } |\forall y \ x = y|_{\mathcal{A}}^{\beta} = T \text{ for every } \beta$ differing from α at most in x.

 $\forall x \forall y \, x = y \text{ isn't logically true.}$

Counterexample: let \mathcal{A} be an $\mathcal{L}_{=}$ -structure with domain $\{1,2\}$.

Proof. Let α be an assignment over \mathcal{A} .

Sufficient to prove (STP:) $\forall x \forall y \, x = y$ is false in \mathcal{A} under α .

Now: $|\forall x \forall y \ x = y|_{\mathcal{A}}^{\alpha} = F$ iff $|\forall y \ x = y|_{\mathcal{A}}^{\beta} = F$ for some β differing from α at most in x.

 $\forall x \forall y \, x = y \text{ isn't logically true.}$

Counterexample: let \mathcal{A} be an $\mathcal{L}_{=}$ -structure with domain $\{1,2\}$.

Proof. Let α be an assignment over \mathcal{A} .

Sufficient to prove (STP:) $\forall x \forall y \, x = y$ is false in \mathcal{A} under α .

Now: $|\forall x \forall y \ x = y|_{\mathcal{A}}^{\alpha} = F \text{ iff } |\forall y \ x = y|_{\mathcal{A}}^{\beta} = F \text{ for some } \beta$ differing from α at most in x.

STP: $|\forall y \, x = y|_{\mathcal{A}}^{\beta} = F$ for some assignment β differing from α at most in x.

 $\forall x \forall y \, x = y \text{ isn't logically true.}$

Counterexample: let \mathcal{A} be an $\mathcal{L}_{=}$ -structure with domain $\{1,2\}$.

Proof. Let α be an assignment over \mathcal{A} .

- **Now:** $|\forall x \forall y \, x = y|_{\mathcal{A}}^{\alpha} = F$ iff $|\forall y \, x = y|_{\mathcal{A}}^{\beta} = F$ for some β differing from α at most in x.
- **STP:** $|\forall y \, x = y|_{\mathcal{A}}^{\beta} = F$ for some assignment β differing from α at most in x.
 - **But:** $|\forall y \, x = y|_{\mathcal{A}}^{\beta} = T$ iff $|x = y|_{\mathcal{A}}^{\gamma} = T$ for every γ differing from β at most in y.

 $\forall x \forall y \, x = y \text{ isn't logically true.}$

Counterexample: let \mathcal{A} be an $\mathcal{L}_{=}$ -structure with domain $\{1,2\}$.

Proof. Let α be an assignment over \mathcal{A} .

- **Now:** $|\forall x \forall y \, x = y|_{\mathcal{A}}^{\alpha} = F$ iff $|\forall y \, x = y|_{\mathcal{A}}^{\beta} = F$ for some β differing from α at most in x.
- **STP:** $|\forall y \, x = y|_{\mathcal{A}}^{\beta} = F$ for some assignment β differing from α at most in x.
 - But: $|\forall y \, x = y|_{\mathcal{A}}^{\beta} = F$ iff $|x = y|_{\mathcal{A}}^{\gamma} = F$ for some γ differing from β at most in y.

 $\forall x \forall y \, x = y \text{ isn't logically true.}$

Counterexample: let \mathcal{A} be an $\mathcal{L}_{=}$ -structure with domain $\{1,2\}$.

Proof. Let α be an assignment over \mathcal{A} .

- Now: $|\forall x \forall y \ x = y|_{\mathcal{A}}^{\alpha} = F$ iff $|\forall y \ x = y|_{\mathcal{A}}^{\beta} = F$ for some β differing from α at most in x.
- **STP:** $|\forall y \, x = y|_{\mathcal{A}}^{\beta} = F$ for some assignment β differing from α at most in x.
 - **But:** $|\forall y \, x = y|_{\mathcal{A}}^{\beta} = F$ iff $|x = y|_{\mathcal{A}}^{\gamma} = F$ for some γ differing from β at most in y.
- **STP:** $|x = y|_A^{\gamma} = F$ for some γ differing from β in at most y.

 $\forall x \forall y \, x = y \text{ isn't logically true.}$

Counterexample: let \mathcal{A} be an $\mathcal{L}_{=}$ -structure with domain $\{1, 2\}$.

Proof. Let α be an assignment over \mathcal{A} .

- Now: $|\forall x \forall y \, x = y|_{\mathcal{A}}^{\alpha} = F$ iff $|\forall y \, x = y|_{\mathcal{A}}^{\beta} = F$ for some β differing from α at most in x.
- **STP:** $|\forall y \, x = y|_{\mathcal{A}}^{\beta} = F$ for some assignment β differing from α at most in x.
 - **But:** $|\forall y \, x = y|_{\mathcal{A}}^{\beta} = F$ iff $|x = y|_{\mathcal{A}}^{\gamma} = F$ for some γ differing from β at most in y.
- **STP:** $|x = y|_{\mathcal{A}}^{\gamma} = F$ for some γ differing from α in at most x and y.

 $\forall x \forall y \, x = y \text{ isn't logically true.}$

Counterexample: let \mathcal{A} be an $\mathcal{L}_{=}$ -structure with domain $\{1, 2\}$.

Proof. Let α be an assignment over \mathcal{A} .

- **Now:** $|\forall x \forall y \, x = y|_{\mathcal{A}}^{\alpha} = F$ iff $|\forall y \, x = y|_{\mathcal{A}}^{\beta} = F$ for some β differing from α at most in x.
- **STP:** $|\forall y \, x = y|_{\mathcal{A}}^{\beta} = F$ for some assignment β differing from α at most in x.
 - But: $|\forall y \, x = y|_{\mathcal{A}}^{\beta} = F$ iff $|x = y|_{\mathcal{A}}^{\gamma} = F$ for some γ differing from β at most in y.
- **STP:** $|x = y|_{\mathcal{A}}^{\gamma} = F$ for some γ differing from α in at most x and y.
 - So: Let γ assign x to 1 and y to 2 (otherwise agreeing with α)

 $\forall x \forall y \, x = y \text{ isn't logically true.}$

Counterexample: let \mathcal{A} be an $\mathcal{L}_{=}$ -structure with domain $\{1, 2\}$.

Proof. Let α be an assignment over \mathcal{A} .

- Now: $|\forall x \forall y \, x = y|_{\mathcal{A}}^{\alpha} = F$ iff $|\forall y \, x = y|_{\mathcal{A}}^{\beta} = F$ for some β differing from α at most in x.
- **STP:** $|\forall y \, x = y|_{\mathcal{A}}^{\beta} = F$ for some assignment β differing from α at most in x.
 - But: $|\forall y \, x = y|_{\mathcal{A}}^{\beta} = F$ iff $|x = y|_{\mathcal{A}}^{\gamma} = F$ for some γ differing from β at most in y.
- **STP:** $|x = y|_{\mathcal{A}}^{\gamma} = F$ for some γ differing from α in at most x and y.
 - So: Let γ assign x to 1 and y to 2 (otherwise agreeing with α) Then $|x|^{\gamma} \neq |y|^{\gamma}$;

 $\forall x \forall y \, x = y \text{ isn't logically true.}$

Counterexample: let \mathcal{A} be an $\mathcal{L}_{=}$ -structure with domain $\{1, 2\}$.

Proof. Let α be an assignment over \mathcal{A} .

- Now: $|\forall x \forall y \, x = y|_{\mathcal{A}}^{\alpha} = F$ iff $|\forall y \, x = y|_{\mathcal{A}}^{\beta} = F$ for some β differing from α at most in x.
- **STP:** $|\forall y \, x = y|_{\mathcal{A}}^{\beta} = F$ for some assignment β differing from α at most in x.
 - **But:** $|\forall y \, x = y|_{\mathcal{A}}^{\beta} = F$ iff $|x = y|_{\mathcal{A}}^{\gamma} = F$ for some γ differing from β at most in y.
- **STP:** $|x = y|_{\mathcal{A}}^{\gamma} = F$ for some γ differing from α in at most x and y.
 - So: Let γ assign x to 1 and y to 2 (otherwise agreeing with α) Then $|x|^{\gamma} \neq |y|^{\gamma}$; so $|x=y|_{A}^{\gamma} = F$.

 $\forall x \forall y \, x = y \text{ isn't logically true.}$

Counterexample: let \mathcal{A} be an $\mathcal{L}_{=}$ -structure with domain $\{1, 2\}$.

Proof. Let α be an assignment over \mathcal{A} .

- Now: $|\forall x \forall y \, x = y|_{\mathcal{A}}^{\alpha} = F$ iff $|\forall y \, x = y|_{\mathcal{A}}^{\beta} = F$ for some β differing from α at most in x.
- **STP:** $|\forall y \, x = y|_{\mathcal{A}}^{\beta} = F$ for some assignment β differing from α at most in x.
 - **But:** $|\forall y \, x = y|_{\mathcal{A}}^{\beta} = F$ iff $|x = y|_{\mathcal{A}}^{\gamma} = F$ for some γ differing from β at most in y.
- **STP:** $|x = y|_{\mathcal{A}}^{\gamma} = F$ for some γ differing from α in at most x and y.
 - So: Let γ assign x to 1 and y to 2 (otherwise agreeing with α) Then $|x|^{\gamma} \neq |y|^{\gamma}$; so $|x=y|_{A}^{\gamma} = F$. QED

Natural Deduction for $\mathcal{L}_{=}$ has the same rules as Natural Deduction for \mathcal{L}_{2} with the addition of rules for =.

Natural Deduction for $\mathcal{L}_{=}$ has the same rules as Natural Deduction for \mathcal{L}_{2} with the addition of rules for =.

=Intro

Any assumption of the form t=t where t is a constant can and must be discharged.

Natural Deduction for $\mathcal{L}_{=}$ has the same rules as Natural Deduction for \mathcal{L}_{2} with the addition of rules for =.

=Intro

Any assumption of the form t=t where t is a constant can and must be discharged.

A proof with an application of =Intro looks like this:

$$\begin{array}{c}
[t=t]\\
\vdots$$

Natural Deduction for $\mathcal{L}_{=}$ has the same rules as Natural Deduction for \mathcal{L}_{2} with the addition of rules for =.

=Intro

Any assumption of the form t=t where t is a constant can and must be discharged.

A proof with an application of =Intro looks like this:

$$\begin{array}{c}
[t=t]\\
\vdots$$

Natural Deduction for $\mathcal{L}_{=}$ has the same rules as Natural Deduction for \mathcal{L}_{2} with the addition of rules for =.

=Intro

Any assumption of the form t=t where t is a constant can and must be discharged.

A proof with an application of =Intro looks like this:

$$\begin{array}{c} [t = t] \\ \vdots \end{array}$$

$$a = a$$

Natural Deduction for $\mathcal{L}_{=}$ has the same rules as Natural Deduction for \mathcal{L}_{2} with the addition of rules for =.

=Intro

Any assumption of the form t=t where t is a constant can and must be discharged.

A proof with an application of =Intro looks like this:

$$\begin{array}{c} [t = t] \\ \vdots \end{array}$$

$$[a=a]$$

Natural Deduction for $\mathcal{L}_{=}$ has the same rules as Natural Deduction for \mathcal{L}_{2} with the addition of rules for =.

=Intro

Any assumption of the form t=t where t is a constant can and must be discharged.

A proof with an application of =Intro looks like this:

$$\frac{[t=t]}{\vdots}$$

$$\frac{[a=a]}{\forall z(z=z)}$$

=E \lim

If s and t are constants, the result of appending $\phi[t/v]$ to a proof of $\phi[s/v]$ and a proof of s=t or t=s is a proof of $\phi[t/v]$.

$$\frac{\vdots}{\phi[s/v]} \frac{\vdots}{s=t}_{\text{Elim}} = \text{Elim} \qquad \frac{\vdots}{\phi[s/v]} \frac{\vdots}{t=s}_{\text{Elim}}$$

Worked example: prove the following.

$$\vdash \forall x \forall y (Rxy \rightarrow (x=y \rightarrow Ryx))$$

Worked example: prove the following.

$$\vdash \forall x \, \forall y \, (Rxy \to (x = y \to Ryx))$$

Rab

Worked example: prove the following.

$$\vdash \forall x \forall y (Rxy \rightarrow (x = y \rightarrow Ryx))$$

$$Rab$$
 $a=b$

$$\frac{\vdots}{\phi[s/v]} \frac{\vdots}{s=t}_{} = \text{Elim} \qquad \frac{\vdots}{\phi[s/v]} \frac{\vdots}{t=s}_{} = \text{Elim}$$

$$\vdash \forall x \forall y (Rxy \rightarrow (x = y \rightarrow Ryx))$$

$$\frac{Rab \quad a=b}{Raa}$$

$$\frac{\vdots}{\phi[s/v]} \frac{\vdots}{s=t}_{\text{Elim}} = \text{Elim} \qquad \frac{\vdots}{\phi[s/v]} \frac{\vdots}{t=s}_{\text{Elim}} = \text{Elim}$$

$$\vdash \forall x \forall y (Rxy \rightarrow (x = y \rightarrow Ryx))$$

$$\frac{Rab \quad a=b}{Raa} \quad a=b$$

$$\frac{\vdots}{\phi[s/v]} \frac{\vdots}{s=t}_{} = \text{Elim} \qquad \frac{\vdots}{\phi[s/v]} \frac{\vdots}{t=s}_{} = \text{Elim}$$

$$\vdash \forall x \forall y (Rxy \rightarrow (x = y \rightarrow Ryx))$$

$$\begin{array}{c|c}
Rab & a=b \\
\hline
Raa & a=b \\
\hline
Rba
\end{array}$$

$$\frac{\vdots \qquad \vdots \qquad \qquad \vdots \qquad \vdots \\ \frac{\phi[s/v] \quad s=t}{\phi[t/v]} = \text{Elim} \qquad \frac{\phi[s/v] \quad t=s}{\phi[t/v]} = \text{Elim}$$

$$\vdash \forall x \forall y (Rxy \rightarrow (x = y \rightarrow Ryx))$$

$$\begin{array}{c|c}
Rab & a=b \\
\hline
Raa & a=b \\
\hline
Rba \\
a=b \to Rba
\end{array}$$

$$\vdash \forall x \forall y (Rxy \rightarrow (x = y \rightarrow Ryx))$$

$$\begin{array}{c|c}
Rab & [a=b] \\
\hline
Raa & a=b \\
\hline
Rba \\
a=b \to Rba
\end{array}$$

$$\vdash \forall x \forall y (Rxy \rightarrow (x = y \rightarrow Ryx))$$

$$\begin{array}{c|c}
Rab & [a=b] \\
\hline
Raa & [a=b] \\
\hline
Rba \\
\hline
a=b \to Rba
\end{array}$$

$$\vdash \forall x \, \forall y \, (Rxy \to (x = y \to Ryx))$$

$$\begin{array}{c|c}
Rab & [a=b] \\
\hline
Raa & [a=b] \\
\hline
Rba \\
\hline
a=b \to Rba \\
Rab \to (a=b \to Rba)
\end{array}$$

$$\vdash \forall x \, \forall y \, (Rxy \to (x = y \to Ryx))$$

$$\frac{[Rab] \quad [a=b]}{Raa \quad [a=b]} \\
\underline{Rba} \\
\underline{a=b \to Rba} \\
Rab \to (a=b \to Rba)$$

$$\vdash \forall x \forall y (Rxy \rightarrow (x=y \rightarrow Ryx))$$

$$\vdash \forall x \forall y (Rxy \rightarrow (x=y \rightarrow Ryx))$$

Adequacy

Soundness and Completeness still hold.

Adequacy

Soundness and Completeness still hold.

Let Γ be a set of $\mathcal{L}_{=}$ -sentences and ϕ an $\mathcal{L}_{=}$ -sentence.

Theorem (adequacy)

$$\Gamma \vdash \phi$$
 if and only if $\Gamma \models \phi$.

25

Using = one can formalise 'is [identical to]' in English.

Formalise:

William II is Wilhelm II.

Formalisation: a = b.

Dictionary: a: William II. b: Wilhelm II.

Using = one can formalise 'is [identical to]' in English.

Formalise:

William II is Wilhelm II.

Formalisation: a = b.

Dictionary: a: William II. b: Wilhelm II.

Note: don't confuse the 'is' of identity with the 'is' of predication.

Using = one can formalise 'is [identical to]' in English.

Formalise:

William II is Wilhelm II.

Formalisation: a = b.

Dictionary: a: William II. b: Wilhelm II.

Note: don't confuse the 'is' of identity with the 'is' of predication.

Formalise:

Wilhelm II is an emperor.

Using = one can formalise 'is [identical to]' in English.

Formalise:

William II is Wilhelm II.

Formalisation: a = b.

Dictionary: a: William II. b: Wilhelm II.

Note: don't confuse the 'is' of identity with the 'is' of predication.

Formalise:

Wilhelm II is an emperor.

Formalisation: Ea.

Dictionary: a: Wilhelm. E: ... is an emperor.

Using = one can formalise 'is [identical to]' in English.

Formalise:

William II is Wilhelm II.

Formalisation: a = b.

Dictionary: a: William II. b: Wilhelm II.

Note: don't confuse the 'is' of identity with the 'is' of predication.

Formalise:

Wilhelm II is an emperor.

Formalisation: Ea.

Dictionary: a: Wilhelm. E: ... is an emperor.

Here 'is' forms part of the predicate 'is an emperor.'

Dictionary: P: ... is a perfect being.

Formalise

(1) There are at least two perfect beings.

Dictionary: P: ... is a perfect being.

Formalise

(1) There are at least two perfect beings. Incorrect formalisation: $\exists x \exists y (Px \land Py)$.

Dictionary: P: ... is a perfect being.

Formalise

(1) There are at least two perfect beings.

Incorrect formalisation: $\exists x \exists y (Px \land Py)$.

Correct formalisation: $\exists x \exists y (Px \land Py \land \neg x = y).$

Dictionary: P: ... is a perfect being.

Formalise

(1) There are at least two perfect beings.

Incorrect formalisation: $\exists x \exists y (Px \land Py)$.

Correct formalisation: $\exists x \exists y (Px \land Py \land \neg x = y).$

(2) There is at most one perfect being.

Dictionary: P: ... is a perfect being.

Formalise

(1) There are at least two perfect beings.

Incorrect formalisation: $\exists x \exists y (Px \land Py)$.

Correct formalisation: $\exists x \exists y (Px \land Py \land \neg x = y).$

(2) There is at most one perfect being.

Formalisation: $\neg \exists x \exists y (Px \land Py \land \neg x = y).$

Dictionary: P: ... is a perfect being.

Formalise

(1) There are at least two perfect beings.

Incorrect formalisation: $\exists x \exists y (Px \land Py)$.

Correct formalisation: $\exists x \exists y (Px \land Py \land \neg x = y).$

(2) There is at most one perfect being.

Formalisation: $\neg \exists x \exists y (Px \land Py \land \neg x = y).$

Alternative formalisation: $\forall x \forall y ((Px \land Py) \rightarrow x = y).$

Dictionary: P: ... is a perfect being.

Formalise

(1) There are at least two perfect beings.

Incorrect formalisation: $\exists x \exists y (Px \land Py)$.

Correct formalisation: $\exists x \exists y (Px \land Py \land \neg x = y).$

(2) There is at most one perfect being.

Formalisation: $\neg \exists x \exists y (Px \land Py \land \neg x = y).$

Alternative formalisation: $\forall x \forall y ((Px \land Py) \rightarrow x = y).$

(3) There is exactly one perfect being.

Dictionary: P: ... is a perfect being.

Formalise

- (1) There are at least two perfect beings.
- Incorrect formalisation: $\exists x \exists y (Px \land Py)$.

Correct formalisation: $\exists x \exists y (Px \land Py \land \neg x = y).$

(2) There is at most one perfect being.

Formalisation: $\neg \exists x \exists y (Px \land Py \land \neg x = y).$

Alternative formalisation: $\forall x \forall y ((Px \land Py) \rightarrow x = y).$

(3) There is exactly one perfect being.

Formalisation: $\exists x Px \land \forall x \forall y ((Px \land Py) \rightarrow x = y).$

Dictionary: P: ... is a perfect being.

Formalise

- (1) There are at least two perfect beings.
- Incorrect formalisation: $\exists x \exists y (Px \land Py)$.

Correct formalisation: $\exists x \exists y (Px \land Py \land \neg x = y).$

(2) There is at most one perfect being.

Formalisation: $\neg \exists x \exists y (Px \land Py \land \neg x = y).$

Alternative formalisation: $\forall x \forall y ((Px \land Py) \rightarrow x = y)$.

(3) There is exactly one perfect being.

Formalisation: $\exists x Px \land \forall x \forall y ((Px \land Py) \rightarrow x = y).$

Alternative formalisation: $\exists x (Px \land \forall y (Py \rightarrow y = x)).$

Definite descriptions

Examples of definite descriptions:

- 'the Queen'
- 'Bellerophon's winged horse'
- 'the author of Ulysses'

Definite descriptions

Examples of definite descriptions:

- 'the Queen'
- 'Bellerophon's winged horse'
- 'the author of Ulysses'

In \mathcal{L}_2 : the best we can do is to formalise definite descriptions as constants.

Definite descriptions

Examples of definite descriptions:

- 'the Queen'
- 'Bellerophon's winged horse'
- 'the author of Ulysses'

In \mathcal{L}_2 : the best we can do is to formalise definite descriptions as constants.

But this isn't perfect...

Example

Bellerophon's winged horse isn't real; so there is something that is Bellerophon's winged horse.

Bellerophon's winged horse isn't real; so there is something that is Bellerophon's winged horse.

Bellerophon's winged horse isn't real; so there is something that is Bellerophon's winged horse.

The obvious formalisation with constants is valid.

Bellerophon's winged horse isn't real; so there is something that is Bellerophon's winged horse.

The obvious formalisation with constants is valid.

Formalisation: premiss: $\neg Rb$. Conclusion: $\exists x(x=b)$.

Dictionary: R: ... is real. b: Bellerophon's winged horse.

Bellerophon's winged horse isn't real; so there is something that is Bellerophon's winged horse.

The obvious formalisation with constants is valid.

Formalisation: premiss: $\neg Rb$. Conclusion: $\exists x(x=b)$.

Dictionary: R: ... is real. b: Bellerophon's winged horse.

$$b = b$$

Bellerophon's winged horse isn't real; so there is something that is Bellerophon's winged horse.

The obvious formalisation with constants is valid.

Formalisation: premiss: $\neg Rb$. Conclusion: $\exists x(x=b)$.

Dictionary: R: ... is real. b: Bellerophon's winged horse.

$$[b=b]$$

Bellerophon's winged horse isn't real; so there is something that is Bellerophon's winged horse.

The obvious formalisation with constants is valid.

Formalisation: premiss: $\neg Rb$. Conclusion: $\exists x(x=b)$.

Dictionary: R: ... is real. b: Bellerophon's winged horse.

$$\frac{[b=b]}{\exists x(x=b)}$$

Bellerophon's winged horse isn't real; so there is something that is Bellerophon's winged horse.

The obvious formalisation with constants is valid.

Formalisation: premiss: $\neg Rb$. Conclusion: $\exists x(x=b)$.

Dictionary: R: ... is real. b: Bellerophon's winged horse.

$$\frac{[b=b]}{\exists x(x=b)}$$

(In fact: the conclusion is a logical truth.)

Bellerophon's winged horse isn't real; so there is something that is Bellerophon's winged horse.

The obvious formalisation with constants is valid.

Formalisation: premiss: $\neg Rb$. Conclusion: $\exists x(x=b)$.

Dictionary: R: ... is real. b: Bellerophon's winged horse.

$$\frac{[b=b]}{\exists x(x=b)}$$

(In fact: the conclusion is a logical truth.)

Source of the trouble:

- $\mathcal{L}_{=}$ -constants always refer to an object in a $\mathcal{L}_{=}$ -structure.
- definite descriptions may fail to pick out a unique object.

There's a better way to formalise definite descriptions in $\mathcal{L}_{=}$.

There's a better way to formalise definite descriptions in $\mathcal{L}_{=}$.

Formalise:

The author of Ulysses wrote Dubliners.

There's a better way to formalise definite descriptions in $\mathcal{L}_{=}$.

Formalise:

The author of Ulysses wrote Dubliners.

Russell analyses this as the conjunction of two claims.

- (i) There is exactly one author of Ulysses
- (ii) and it wrote Dubliners.

There's a better way to formalise definite descriptions in $\mathcal{L}_{=}$.

Formalise:

The author of Ulysses wrote Dubliners.

Russell analyses this as the conjunction of two claims.

- (i) There is exactly one author of Ulysses
- (ii) and it wrote Dubliners.

Dictionary: A: ... is an author of Ulysses.

W: ... wrote Dubliners.

There's a better way to formalise definite descriptions in $\mathcal{L}_{=}$.

Formalise:

The author of Ulysses wrote Dubliners.

Russell analyses this as the conjunction of two claims.

- (i) There is exactly one author of Ulysses
- (ii) and it wrote Dubliners.

Dictionary: A: ... is an author of Ulysses.

W: ... wrote Dubliners.

Formalisation: $\exists x (Ax \land \forall y (Ay \rightarrow y = x))$

There's a better way to formalise definite descriptions in $\mathcal{L}_{=}$.

Formalise:

The author of Ulysses wrote Dubliners.

Russell analyses this as the conjunction of two claims.

- (i) There is exactly one author of Ulysses
- (ii) and it wrote Dubliners.

Dictionary: A: ... is an author of Ulysses.

W: ... wrote Dubliners.

Formalisation: $\exists x (Ax \land \forall y (Ay \rightarrow y = x) \land Wx)$

Bellerophon's winged horse isn't real.

R: ... is real. B: ... is a winged horse belonging to Bellerophon.

Bellerophon's winged horse isn't real.

R: ... is real. B: ... is a winged horse belonging to Bellerophon.

On Russell's view this can have two readings.

Bellerophon's winged horse isn't real.

R: ... is real. B: ... is a winged horse belonging to Bellerophon.

On Russell's view this can have two readings.

Paraphrase 1: (i) there is exactly one winged horse belonging to Bellerophon and (ii) it is not real.

Bellerophon's winged horse isn't real.

R: ... is real. B: ... is a winged horse belonging to Bellerophon.

On Russell's view this can have two readings.

Paraphrase 1: (i) there is exactly one winged horse belonging to Bellerophon and (ii) it is not real.

Formalisation 1: $\exists x (Bx \land \forall y (By \rightarrow y = x) \land \neg Rx).$

Bellerophon's winged horse isn't real.

R: ... is real. B: ... is a winged horse belonging to Bellerophon.

On Russell's view this can have two readings.

Paraphrase 1: (i) there is exactly one winged horse belonging to Bellerophon and (ii) it is not real.

Formalisation 1: $\exists x (Bx \land \forall y (By \rightarrow y = x) \land \neg Rx).$

Dubious: this is true only if there are non-real things.

Bellerophon's winged horse isn't real.

R: ... is real. B: ... is a winged horse belonging to Bellerophon.

On Russell's view this can have two readings.

Paraphrase 1: (i) there is exactly one winged horse belonging to Bellerophon and (ii) it is not real.

Formalisation 1: $\exists x (Bx \land \forall y (By \rightarrow y = x) \land \neg Rx).$

Dubious: this is true only if there are non-real things .

Paraphrase 2: It's not the case that ((i) there is exactly one winged horse belonging to Bellerophon and (ii) it is real).

Bellerophon's winged horse isn't real.

R: ... is real. B: ... is a winged horse belonging to Bellerophon.

On Russell's view this can have two readings.

Paraphrase 1: (i) there is exactly one winged horse belonging to Bellerophon and (ii) it is not real.

Formalisation 1: $\exists x (Bx \land \forall y (By \rightarrow y = x) \land \neg Rx).$

Dubious: this is true only if there are non-real things .

Paraphrase 2: It's not the case that ((i) there is exactly one winged horse belonging to Bellerophon and (ii) it is real).

Formalisation 2: $\neg \exists x (Bx \land \forall y (By \rightarrow y = x) \land Rx)$.

Bellerophon's winged horse isn't real; so there is something that is Bellerophon's winged horse.

Bellerophon's winged horse isn't real; so there is something that is Bellerophon's winged horse.

We can capture its non-validity by using the second formalisation of the premiss.

Bellerophon's winged horse isn't real; so there is something that is Bellerophon's winged horse.

We can capture its non-validity by using the second formalisation of the premiss.

Dictionary: R: ... is real.

 $B: \ldots$ is a winged horse belonging to Bellerophon.

Bellerophon's winged horse isn't real; so there is something that is Bellerophon's winged horse.

We can capture its non-validity by using the second formalisation of the premiss.

Dictionary: R: ... is real.

B: ... is a winged horse belonging to Bellerophon.

Formalisation

Premiss: $\neg \exists x (Bx \land \forall y (By \rightarrow y = x) \land Rx).$

Bellerophon's winged horse isn't real; so there is something that is Bellerophon's winged horse.

We can capture its non-validity by using the second formalisation of the premiss.

Dictionary: R: ... is real.

 $B: \ldots$ is a winged horse belonging to Bellerophon.

Formalisation

Premiss: $\neg \exists x (Bx \land \forall y (By \rightarrow y = x) \land Rx).$

Conclusion: $\exists x B x$.

Bellerophon's winged horse isn't real; so there is something that is Bellerophon's winged horse.

We can capture its non-validity by using the second formalisation of the premiss.

Dictionary: R: ... is real.

B: ... is a winged horse belonging to Bellerophon.

Formalisation

Premiss: $\neg \exists x (Bx \land \forall y (By \rightarrow y = x) \land Rx).$

Conclusion: $\exists x B x$.

The structure \mathcal{A} is a counterexample to this argument.

$$D_{\mathcal{A}} = \{x : x \text{ is a horse}\}; |B|_{\mathcal{A}} = \emptyset.$$

Example

Not valid

Bellerophon's winged horse isn't real; so there is something that is Bellerophon's winged horse.

We can capture its non-validity by using the second formalisation of the premiss.

Dictionary: R: ... is real.

B: ... is a winged horse belonging to Bellerophon.

Formalisation

Not valid

Premiss: $\neg \exists x (Bx \land \forall y (By \rightarrow y = x) \land Rx).$

Conclusion: $\exists x B x$.

The structure \mathcal{A} is a counterexample to this argument.

$$D_{\mathcal{A}} = \{x : x \text{ is a horse}\}; |B|_{\mathcal{A}} = \emptyset.$$

Example

Not valid

Bellerophon's winged horse isn't real; so there is something that is Bellerophon's winged horse.

We can capture its non-validity by using the second formalisation of the premiss.

Dictionary: R: ... is real.

B: ... is a winged horse belonging to Bellerophon.

Formalisation

Not valid

Premiss: $\neg \exists x (Bx \land \forall y (By \rightarrow y = x) \land Rx).$

Conclusion: $\exists x B x$.

The structure \mathcal{A} is a counterexample to this argument.

$$D_{\mathcal{A}} = \{x : x \text{ is a horse}\}; |B|_{\mathcal{A}} = \emptyset.$$

(It doesn't matter what the extension of R is here.)

Multiple descriptions

We deal with these much like multiple quantifiers.

Formalise

The author of Ulysses likes the author of the Odyssey

Dictionary: U: ... is an author of Ulysses

O: ... is an author of the Odyssey. L: ... likes ...

Multiple descriptions

We deal with these much like multiple quantifiers.

Formalise

The author of Ulysses likes the author of the Odyssey

Dictionary: U: ... is an author of Ulysses

O: ... is an author of the Odyssey. L: ... likes ...

It's helpful to break this into two steps.

Partial formalisation:

$$\exists x_1 \big(Ux_1 \land \forall y_1 (Uy_1 \to y_1 = x_1) \big)$$

 $\wedge x_1$ likes the author of the Odyssey)

Multiple descriptions

We deal with these much like multiple quantifiers.

Formalise

The author of Ulysses likes the author of the Odyssey

Dictionary: U: ... is an author of Ulysses

O: ... is an author of the Odyssey. L: ... likes ...

It's helpful to break this into two steps.

Partial formalisation:

$$\exists x_1 \big(Ux_1 \land \forall y_1 (Uy_1 \to y_1 = x_1) \\ \land x_1 \text{ likes the author of the Odyssey} \big)$$

It remains to formalise ' x_1 likes the author of the Odyssey'.

Paraphrase: the author of the Odyssey is liked by x_1 .

Paraphrase: the author of the Odyssey is liked by x_1 .

Formalisation: $\exists x_2 (Ox_2 \land \forall y_2 (Oy_2 \rightarrow y_2 = x_2) \land Lx_1x_2).$

Paraphrase: the author of the Odyssey is liked by x_1 .

Formalisation:
$$\exists x_2 (Ox_2 \land \forall y_2 (Oy_2 \rightarrow y_2 = x_2) \land Lx_1x_2).$$

Finally, we put this together with what we had before.

$$\exists x_1 \big(Ux_1 \land \forall y_1 (Uy_1 \to y_1 = x_1) \\ \land x_1 \text{ likes the author of the Odyssey} \big).$$

Paraphrase: the author of the Odyssey is liked by x_1 .

Formalisation:
$$\exists x_2 (Ox_2 \land \forall y_2 (Oy_2 \rightarrow y_2 = x_2) \land Lx_1x_2).$$

Finally, we put this together with what we had before.

$$\exists x_1 (Ux_1 \land \forall y_1 (Uy_1 \to y_1 = x_1))$$

\(\lambda x_1 \) likes the author of the Odyssey).

Paraphrase: the author of the Odyssey is liked by x_1 .

Formalisation:
$$\exists x_2 (Ox_2 \land \forall y_2 (Oy_2 \rightarrow y_2 = x_2) \land Lx_1x_2).$$

Finally, we put this together with what we had before.

$$\exists x_1 \big(Ux_1 \land \forall y_1 (Uy_1 \to y_1 = x_1) \\ \land x_1 \text{ likes the author of the Odyssey} \big).$$

$$\exists x_1 \big(Ux_1 \land \forall y_1 (Uy_1 \to y_1 = x_1) \\ \land \exists x_2 \big(Ox_2 \land \forall y_2 (Oy_2 \to y_2 = x_2) \land Lx_1 x_2 \big) \big).$$

Paraphrase: the author of the Odyssey is liked by x_1 .

Formalisation:
$$\exists x_2 (Ox_2 \land \forall y_2 (Oy_2 \rightarrow y_2 = x_2) \land Lx_1x_2).$$

Finally, we put this together with what we had before.

$$\exists x_1 \big(Ux_1 \land \forall y_1 (Uy_1 \to y_1 = x_1) \\ \land x_1 \text{ likes the author of the Odyssey} \big).$$

$$\exists x_1 \big(Ux_1 \land \forall y_1 (Uy_1 \to y_1 = x_1) \\ \land \exists x_2 \big(Ox_2 \land \forall y_2 (Oy_2 \to y_2 = x_2) \land Lx_1 x_2 \big) \big).$$

Paraphrase: the author of the Odyssey is liked by x_1 .

Formalisation:
$$\exists x_2 (Ox_2 \land \forall y_2 (Oy_2 \rightarrow y_2 = x_2) \land Lx_1x_2).$$

Finally, we put this together with what we had before.

$$\exists x_1 \big(Ux_1 \land \forall y_1 (Uy_1 \to y_1 = x_1) \\ \land x_1 \text{ likes the author of the Odyssey} \big).$$

$$\exists x_1 \big(Ux_1 \land \forall y_1 (Uy_1 \to y_1 = x_1) \\ \land \exists x_2 \big(Ox_2 \land \forall y_2 (Oy_2 \to y_2 = x_2) \land Lx_1 x_2 \big) \big).$$

Paraphrase: the author of the Odyssey is liked by x_1 .

Formalisation:
$$\exists x_2 (Ox_2 \land \forall y_2 (Oy_2 \rightarrow y_2 = x_2) \land Lx_1x_2).$$

Finally, we put this together with what we had before.

$$\exists x_1 \big(Ux_1 \land \forall y_1 (Uy_1 \to y_1 = x_1) \\ \land x_1 \text{ likes the author of the Odyssey} \big).$$

$$\exists x_1 \big(Ux_1 \land \forall y_1 (Uy_1 \to y_1 = x_1) \\ \land \exists x_2 \big(Ox_2 \land \forall y_2 (Oy_2 \to y_2 = x_2) \land Lx_1x_2 \big) \big).$$

 $\neg, \land, \lor, \rightarrow, \leftrightarrow, \forall, \exists$ and = are our only logical expressions. 45

 $\neg, \land, \lor, \rightarrow, \leftrightarrow, \forall, \exists \text{ and } = \text{are our only logical expressions.} \ _{45}$

 $\neg, \land, \lor, \rightarrow, \leftrightarrow, \forall, \exists$ and = are our only logical expressions. 45

This raises two questions:

Q1 What's special about these expressions?

 $\neg, \land, \lor, \rightarrow, \leftrightarrow, \forall, \exists \text{ and } = \text{are our only logical expressions.} \ _{45}$

- Q1 What's special about these expressions?
- A1 Alfred Tarski proposes to analyse topic neutrality in terms of 'permutation invariance'

 $\neg, \land, \lor, \rightarrow, \leftrightarrow, \forall, \exists$ and = are our only logical expressions. 45

- Q1 What's special about these expressions?
- A1 Alfred Tarski proposes to analyse topic neutrality in terms of 'permutation invariance'
 - Roughly: logical expressions are the ones whose meaning is insensitive to which object is which.

 $\neg, \land, \lor, \rightarrow, \leftrightarrow, \forall, \exists$ and = are our only logical expressions. 45

- Q1 What's special about these expressions?
- **A1** Alfred Tarski proposes to analyse topic neutrality in terms of 'permutation invariance'
 - Roughly: logical expressions are the ones whose meaning is insensitive to which object is which.
 - See Tarski 'What are Logical Notions?' *History and Philosophy of Logic* 7, 143–154.

Q2 What happens if we add more logical constants?

- Q2 What happens if we add more logical constants?
- **A2** This is the business of philosophical logic.

Q2 What happens if we add more logical constants?

A2 This is the business of philosophical logic.

Extension of \mathcal{L}_2	New logical expressions
Generalised quantifiers	more than half infinitely many, etc.
Modal logic	It is necessarily the case that It is possibly the case that
Deontic logic	It is obligatory that It is permissible that

Q2 What happens if we add more logical constants?

A2 This is the business of philosophical logic.

Extension of \mathcal{L}_2	New logical expressions
Generalised quantifiers	more than half infinitely many, etc.
Modal logic	It is necessarily the case that It is possibly the case that
Deontic logic	It is obligatory that It is permissible that

See the finals paper 127: Philosophical Logic.

