INTRODUCTION TO LOGIC 2 Syntax and Semantics of Propositional Logic

Volker Halbach

Logic is the beginning of wisdom. *Thomas Aquinas* In what follows I look at some formal languages that are *much* simpler than English and define *validity of arguments*, 'truth under an interpretation', *consistency* etc. for these formal languages.

In what follows I look at some formal languages that are *much* simpler than English and define *validity of arguments*, 'truth under an interpretation', *consistency* etc. for these formal languages.

In logic one abstracts from all stylistic variants etc of natural language and retains just the basic skeleton of the language in a regimented form. When presenting a formal language, I proceed in the following order:

 I specify the syntax or grammar of the language; in particular I define what the sentences of the language are. When presenting a formal language, I proceed in the following order:

- I specify the syntax or grammar of the language; in particular I define what the sentences of the language are.
- I specify the semantics of the language; in particular, I say what it means for a sentence to be true under an interpretation (or in a 'structure'). Once the notion of an interpretation (or structure) is clear, I can define validity of arguments etc as for English.

Syntax is all about *expressions*: words and sentences.

Syntax is all about *expressions*: words and sentences.

Examples of syntactic claims

- 'Bertrand Russell' is a proper noun.
- 'likes logic' is a verb phrase.
- 'Bertrand Russell likes logic' is a sentence.
- Combining a proper noun and a verb phrase in this way yields a sentence.

1.6 Syntax vs. Semantics

Semantics is all about *meanings* of expressions.

Semantics is all about *meanings* of expressions.

Examples of semantic claims

- 'Bertrand Russell' refers to a British philosopher.
- 'Bertrand Russell' refers to Bertrand Russell.
- 'likes logic' expresses a property Russell has.
- 'Bertrand Russell likes logic' is true.

'Bertrand Russell' refers to Bertrand Russell.

'Bertrand Russell' refers to Bertrand Russell.

Mention

• The first occurrence of 'Bertrand Russell' is an example of mention.

'Bertrand Russell' refers to Bertrand Russell.

Mention

- The first occurrence of 'Bertrand Russell' is an example of mention.
- This occurrence (with quotes) refers to an expression.

'Bertrand Russell' refers to Bertrand Russell.

Mention

- The first occurrence of 'Bertrand Russell' is an example of mention.
- This occurrence (with quotes) refers to an expression.

Use

• The second occurrence of 'Bertrand Russell' is an example of use.

'Bertrand Russell' refers to Bertrand Russell.

Mention

- The first occurrence of 'Bertrand Russell' is an example of mention.
- This occurrence (with quotes) refers to an expression.

Use

- The second occurrence of 'Bertrand Russell' is an example of use.
- This occurrence (without quotes) refers to a man.

2.2 The Syntax of the Language of Propositional Logic

Syntax: English vs. \mathcal{L}_1 .

English has many different sorts of expressions.

2.2 The Syntax of the Language of Propositional Logic

Syntax: English vs. \mathcal{L}_1 .

English has many different sorts of expressions.

Some expressions of English

English has many different sorts of expressions.

Some expressions of English

Sentences: 'Bertrand Russell likes logic', 'Philosophers like conceptual analysis', etc..

English has many different sorts of expressions.

Some expressions of English

- Sentences: 'Bertrand Russell likes logic', 'Philosophers like conceptual analysis', etc..
- 2 Connectives: 'it is not the case that, 'and', etc..

English has many different sorts of expressions.

Some expressions of English

- Sentences: 'Bertrand Russell likes logic', 'Philosophers like conceptual analysis', etc..
- 2 Connectives: 'it is not the case that, 'and', etc..
- (3) Noun phrases: 'Bertrand Russell', 'Philosophers', etc..
- ④ Verb phrases: 'likes logic', 'like conceptual analysis', etc..
- Malso: nouns, verbs, pronouns, etc., etc., etc.,

English has many different sorts of expressions.

Some expressions of English

- Sentences: 'Bertrand Russell likes logic', 'Philosophers like conceptual analysis', etc..
- 2 Connectives: 'it is not the case that, 'and', etc..
- (3) Noun phrases: 'Bertrand Russell', 'Philosophers', etc..
- ④ Verb phrases: 'likes logic', 'like conceptual analysis', etc..
- Miso: nouns, verbs, pronouns, etc., etc., etc.,
- \mathcal{L}_1 has *just two* sorts of basic expressions.

Basic expressions of \mathcal{L}_1

English has many different sorts of expressions.

Some expressions of English

- Sentences: 'Bertrand Russell likes logic', 'Philosophers like conceptual analysis', etc..
- 2 Connectives: 'it is not the case that, 'and', etc..
- (3) Noun phrases: 'Bertrand Russell', 'Philosophers', etc..
- ④ Verb phrases: 'likes logic', 'like conceptual analysis', etc..
- Malso: nouns, verbs, pronouns, etc., etc., etc.,
- \mathcal{L}_1 has *just two* sorts of basic expressions.

Basic expressions of \mathcal{L}_1

Sentence letters: e.g. 'P', 'Q'.

English has many different sorts of expressions.

Some expressions of English

- Sentences: 'Bertrand Russell likes logic', 'Philosophers like conceptual analysis', etc..
- 2 Connectives: 'it is not the case that, 'and', etc..
- (3) Noun phrases: 'Bertrand Russell', 'Philosophers', etc..
- ④ Verb phrases: 'likes logic', 'like conceptual analysis', etc..
- Malso: nouns, verbs, pronouns, etc., etc., etc.,

\mathcal{L}_1 has *just two* sorts of basic expressions.

Basic expressions of \mathcal{L}_1

- Sentence letters: e.g. 'P', 'Q'.
- ② *Connectives*: e.g. '¬', '∧'. There are also brackets: '(' and ')'.

Some complex sentences

Some complex sentences

• 'It is not the case that' and 'Bertrand Russell likes logic' make: 'It is not the case that Bertrand Russell likes logic'.

Some complex sentences

- 'It is not the case that' and 'Bertrand Russell likes logic' make: 'It is not the case that Bertrand Russell likes logic'.
- '¬' and 'P' make: '¬P'.

Some complex sentences

- 'It is not the case that' and 'Bertrand Russell likes logic' make: 'It is not the case that Bertrand Russell likes logic'.
- '¬' and 'P' make: '¬P'.
- 'Bertrand Russell likes logic' and 'and' and 'Philosophers like conceptual analysis' make:

'Bertrand Russell likes logic and philosophers like conceptual analysis'.

Some complex sentences

- 'It is not the case that' and 'Bertrand Russell likes logic' make: 'It is not the case that Bertrand Russell likes logic'.
- '¬' and 'P' make: '¬P'.
- 'Bertrand Russell likes logic' and 'and' and 'Philosophers like conceptual analysis' make:

'Bertrand Russell likes logic and philosophers like conceptual analysis'.

• 'P', '
$$\wedge$$
' and 'Q' make: ' $(P \wedge Q)$ '.

Some complex sentences

- 'It is not the case that' and 'Bertrand Russell likes logic' make: 'It is not the case that Bertrand Russell likes logic'.
- '¬' and 'P' make: '¬P'.
- 'Bertrand Russell likes logic' and 'and' and 'Philosophers like conceptual analysis' make:

'Bertrand Russell likes logic and philosophers like conceptual analysis'.

• 'P', '
$$\wedge$$
' and 'Q' make: ' $(P \wedge Q)$ '.

Logic convention: no quotes around \mathcal{L}_1 -expressions.

Some complex sentences

- 'It is not the case that' and 'Bertrand Russell likes logic' make: 'It is not the case that Bertrand Russell likes logic'.
- '¬' and 'P' make: '¬P'.
- 'Bertrand Russell likes logic' and 'and' and 'Philosophers like conceptual analysis' make:

'Bertrand Russell likes logic and philosophers like conceptual analysis'.

• 'P', '
$$\wedge$$
' and 'Q' make: ' $(P \wedge Q)$ '.

Logic convention: no quotes around \mathcal{L}_1 -expressions.

• P, \wedge and Q make: $(P \wedge Q)$.

name	in English	symbol
conjunction	and	\wedge
disjunction	or	\vee
negation	it is not the	-
	case that	
arrow	if then	\rightarrow
double arrow	if and only if	\leftrightarrow

name	in English	symbol
conjunction	and	Λ
disjunction	or	\vee
negation	it is not the	-
	case that	
arrow	if then	\rightarrow
double arrow	if and only if	\leftrightarrow

name	in English	symbol
conjunction	and	\wedge
disjunction	or	V
negation	it is not the	-
	case that	
arrow	if then	\rightarrow
double arrow	if and only if	\leftrightarrow

name	in English	symbol
conjunction	and	\wedge
disjunction	or	\vee
negation	it is not the	-
	case that	
arrow	if then	\rightarrow
double arrow	if and only if	\leftrightarrow

name	in English	symbol
conjunction	and	\wedge
disjunction	or	\vee
negation	it is not the	-
	case that	
arrow	if then	\rightarrow
double arrow	if and only if	\leftrightarrow
Connectives

Here's the full list of \mathcal{L}_1 -connectives.

name	in English	symbol
conjunction	and	\wedge
disjunction	or	\vee
negation	it is not the	-
	case that	
arrow	if then	\rightarrow
double arrow	if and only if	\leftrightarrow

2.2 The Syntax of the Language of Propositional Logic

The syntax of \mathcal{L}_1

Here's the official definition of \mathcal{L}_1 -sentences.

Here's the official definition of \mathcal{L}_1 -sentences.

Definition

(a) All sentence letters are sentences of \mathcal{L}_1 :

• $P, Q, R, P_1, Q_1, R_1, P_2, Q_2, R_2, P_3, \dots$

Here's the official definition of \mathcal{L}_1 -sentences.

- (a) All sentence letters are sentences of \mathcal{L}_1 :
 - $P, Q, R, P_1, Q_1, R_1, P_2, Q_2, R_2, P_3, \ldots$
- (a) If ϕ and ψ are sentences of \mathcal{L}_1 , then so are:

Here's the official definition of \mathcal{L}_1 -sentences.

- (a) All sentence letters are sentences of \mathcal{L}_1 :
 - $P, Q, R, P_1, Q_1, R_1, P_2, Q_2, R_2, P_3, \ldots$
- (1) If ϕ and ψ are sentences of \mathcal{L}_1 , then so are:

•
$$\neg \phi$$

• $(\phi \land \psi)$

Here's the official definition of \mathcal{L}_1 -sentences.

- (a) All sentence letters are sentences of \mathcal{L}_1 :
 - $P, Q, R, P_1, Q_1, R_1, P_2, Q_2, R_2, P_3, \ldots$
- (1) If ϕ and ψ are sentences of \mathcal{L}_1 , then so are:

•
$$\neg \phi$$

• $(\phi \land \psi)$
• $(\phi \lor \psi)$

Here's the official definition of \mathcal{L}_1 -sentences.

- (a) All sentence letters are sentences of \mathcal{L}_1 :
 - $P, Q, R, P_1, Q_1, R_1, P_2, Q_2, R_2, P_3, \dots$
- (1) If ϕ and ψ are sentences of \mathcal{L}_1 , then so are:

Here's the official definition of \mathcal{L}_1 -sentences.

- (a) All sentence letters are sentences of \mathcal{L}_1 :
 - $P, Q, R, P_1, Q_1, R_1, P_2, Q_2, R_2, P_3, \dots$
- (1) If ϕ and ψ are sentences of \mathcal{L}_1 , then so are:

$$\neg \phi
 \circ (\phi \land \psi)
 \circ (\phi \lor \psi)
 \circ (\phi \to \psi)
 \circ (\phi \leftrightarrow \psi)$$

Here's the official definition of \mathcal{L}_1 -sentences.

Definition

- (a) All sentence letters are sentences of \mathcal{L}_1 :
 - $P, Q, R, P_1, Q_1, R_1, P_2, Q_2, R_2, P_3, \ldots$
- (1) If ϕ and ψ are sentences of \mathcal{L}_1 , then so are:

•
$$\neg \phi$$

• $(\phi \land \psi)$
• $(\phi \lor \psi)$
• $(\phi \rightarrow \psi)$
• $(\phi \leftrightarrow \psi)$

0 Nothing else is a sentence of \mathcal{L}_1 .

Here's the official definition of \mathcal{L}_1 -sentences.

Definition

- (a) All sentence letters are sentences of \mathcal{L}_1 :
 - $P, Q, R, P_1, Q_1, R_1, P_2, Q_2, R_2, P_3, \ldots$
- (1) If ϕ and ψ are sentences of \mathcal{L}_1 , then so are:

•
$$\neg \phi$$

• $(\phi \land \psi)$
• $(\phi \lor \psi)$
• $(\phi \rightarrow \psi)$
• $(\phi \leftrightarrow \psi)$

0 Nothing else is a sentence of \mathcal{L}_1 .

Greek letters: ϕ ('PHI') and ψ ('PSI'): not part of \mathcal{L}_1 .

Example The following is a sentence of \mathcal{L}_1 :

- (a) All sentence letters are sentences of \mathcal{L}_1 .
- ⁽¹⁾ If ϕ and ψ are sentences of \mathcal{L}_1 , then $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi)$ and $(\phi \leftrightarrow \psi)$ are sentences of \mathcal{L}_1 .
- In Nothing else is a sentence of \mathcal{L}_1 .

Example The following is a sentence of \mathcal{L}_1 :

Р

- (a) All sentence letters are sentences of \mathcal{L}_1 .
- ⁽¹⁾ If ϕ and ψ are sentences of \mathcal{L}_1 , then $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi)$ and $(\phi \leftrightarrow \psi)$ are sentences of \mathcal{L}_1 .
- In Mothing else is a sentence of \mathcal{L}_1 .

Example The following is a sentence of \mathcal{L}_1 :

 $P \quad Q$

- (a) All sentence letters are sentences of \mathcal{L}_1 .
- ⁽¹⁾ If ϕ and ψ are sentences of \mathcal{L}_1 , then $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi)$ and $(\phi \leftrightarrow \psi)$ are sentences of \mathcal{L}_1 .
- (Nothing else is a sentence of \mathcal{L}_1 .

Example The following is a sentence of \mathcal{L}_1 :

 $(P \land Q)$

- (a) All sentence letters are sentences of \mathcal{L}_1 .
- ⁽¹⁾ If ϕ and ψ are sentences of \mathcal{L}_1 , then $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi)$ and $(\phi \leftrightarrow \psi)$ are sentences of \mathcal{L}_1 .
- In Mothing else is a sentence of \mathcal{L}_1 .

Example The following is a sentence of \mathcal{L}_1 :

$$(P \land Q)$$
 R_{45}

- (a) All sentence letters are sentences of \mathcal{L}_1 .
- ⁽¹⁾ If ϕ and ψ are sentences of \mathcal{L}_1 , then $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi)$ and $(\phi \leftrightarrow \psi)$ are sentences of \mathcal{L}_1 .
- In Nothing else is a sentence of \mathcal{L}_1 .

Example The following is a sentence of \mathcal{L}_1 :

$$(P \land Q) \qquad \neg R_{45}$$

- (a) All sentence letters are sentences of \mathcal{L}_1 .
- ⁽¹⁾ If ϕ and ψ are sentences of \mathcal{L}_1 , then $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi)$ and $(\phi \leftrightarrow \psi)$ are sentences of \mathcal{L}_1 .
- In Nothing else is a sentence of \mathcal{L}_1 .

Example

The following is a sentence of \mathcal{L}_1 :

$$(P \land Q) \qquad P \quad \neg R_{45}$$

- (a) All sentence letters are sentences of \mathcal{L}_1 .
- ⁽¹⁾ If ϕ and ψ are sentences of \mathcal{L}_1 , then $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi)$ and $(\phi \leftrightarrow \psi)$ are sentences of \mathcal{L}_1 .
- In Mothing else is a sentence of \mathcal{L}_1 .

Example

The following is a sentence of \mathcal{L}_1 :

$$(P \land Q) \quad (P \lor \neg R_{45})$$

- (a) All sentence letters are sentences of \mathcal{L}_1 .
- ⁽¹⁾ If ϕ and ψ are sentences of \mathcal{L}_1 , then $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi)$ and $(\phi \leftrightarrow \psi)$ are sentences of \mathcal{L}_1 .
- In Mothing else is a sentence of \mathcal{L}_1 .

Example

The following is a sentence of \mathcal{L}_1 :

$$((P \land Q) \to (P \lor \neg R_{45}))$$

- (a) All sentence letters are sentences of \mathcal{L}_1 .
- ⁽¹⁾ If ϕ and ψ are sentences of \mathcal{L}_1 , then $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi)$ and $(\phi \leftrightarrow \psi)$ are sentences of \mathcal{L}_1 .
- In Nothing else is a sentence of \mathcal{L}_1 .

Example

The following is a sentence of \mathcal{L}_1 :

$$((P \land Q) \to (P \lor \neg R_{45})) \qquad P_3$$

- (a) All sentence letters are sentences of \mathcal{L}_1 .
- ⁽¹⁾ If ϕ and ψ are sentences of \mathcal{L}_1 , then $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi)$ and $(\phi \leftrightarrow \psi)$ are sentences of \mathcal{L}_1 .
- In Nothing else is a sentence of \mathcal{L}_1 .

Example

The following is a sentence of \mathcal{L}_1 :

$$((P \land Q) \to (P \lor \neg R_{45})) \qquad P_3 \quad R$$

- (a) All sentence letters are sentences of \mathcal{L}_1 .
- ⁽¹⁾ If ϕ and ψ are sentences of \mathcal{L}_1 , then $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi)$ and $(\phi \leftrightarrow \psi)$ are sentences of \mathcal{L}_1 .
- In Nothing else is a sentence of \mathcal{L}_1 .

Example

The following is a sentence of \mathcal{L}_1 :

$$((P \land Q) \to (P \lor \neg R_{45})) \qquad (P_3 \lor R)$$

- (a) All sentence letters are sentences of \mathcal{L}_1 .
- ⁽¹⁾ If ϕ and ψ are sentences of \mathcal{L}_1 , then $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi)$ and $(\phi \leftrightarrow \psi)$ are sentences of \mathcal{L}_1 .
- In Nothing else is a sentence of \mathcal{L}_1 .

Example

The following is a sentence of \mathcal{L}_1 :

$$((P \land Q) \rightarrow (P \lor \neg R_{45})) \qquad (P_3 \lor R) \quad R$$

- (a) All sentence letters are sentences of \mathcal{L}_1 .
- ⁽¹⁾ If ϕ and ψ are sentences of \mathcal{L}_1 , then $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi)$ and $(\phi \leftrightarrow \psi)$ are sentences of \mathcal{L}_1 .
- In Nothing else is a sentence of \mathcal{L}_1 .

Example

The following is a sentence of \mathcal{L}_1 :

$$((P \land Q) \rightarrow (P \lor \neg R_{45})) \qquad ((P_3 \lor R) \lor R)$$

- (a) All sentence letters are sentences of \mathcal{L}_1 .
- ⁽¹⁾ If ϕ and ψ are sentences of \mathcal{L}_1 , then $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi)$ and $(\phi \leftrightarrow \psi)$ are sentences of \mathcal{L}_1 .
- In Nothing else is a sentence of \mathcal{L}_1 .

Example

The following is a sentence of \mathcal{L}_1 :

$$((P \land Q) \rightarrow (P \lor \neg R_{45})) \quad \neg((P_3 \lor R) \lor R)$$

- (a) All sentence letters are sentences of \mathcal{L}_1 .
- ⁽¹⁾ If ϕ and ψ are sentences of \mathcal{L}_1 , then $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi)$ and $(\phi \leftrightarrow \psi)$ are sentences of \mathcal{L}_1 .
- In Nothing else is a sentence of \mathcal{L}_1 .

Example

The following is a sentence of \mathcal{L}_1 :

$$(((P \land Q) \to (P \lor \neg R_{45})) \leftrightarrow \neg ((P_3 \lor R) \lor R))$$

- (a) All sentence letters are sentences of \mathcal{L}_1 .
- ⁽¹⁾ If ϕ and ψ are sentences of \mathcal{L}_1 , then $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi)$ and $(\phi \leftrightarrow \psi)$ are sentences of \mathcal{L}_1 .
- In Nothing else is a sentence of \mathcal{L}_1 .

Example

The following is a sentence of \mathcal{L}_1 :

$$\neg(((P \land Q) \to (P \lor \neg R_{45})) \leftrightarrow \neg((P_3 \lor R) \lor R))$$

- (a) All sentence letters are sentences of \mathcal{L}_1 .
- ⁽¹⁾ If ϕ and ψ are sentences of \mathcal{L}_1 , then $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi)$ and $(\phi \leftrightarrow \psi)$ are sentences of \mathcal{L}_1 .
- In Nothing else is a sentence of \mathcal{L}_1 .

Example

The following is a sentence of \mathcal{L}_1 :

$$\neg\neg(((P \land Q) \to (P \lor \neg R_{45})) \leftrightarrow \neg((P_3 \lor R) \lor R))$$

- (a) All sentence letters are sentences of \mathcal{L}_1 .
- ⁽¹⁾ If ϕ and ψ are sentences of \mathcal{L}_1 , then $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi)$ and $(\phi \leftrightarrow \psi)$ are sentences of \mathcal{L}_1 .
- In Mothing else is a sentence of \mathcal{L}_1 .

2.2 The Syntax of the Language of Propositional Logic

2.2 The Syntax of the Language of Propositional Logic

I mentioned that ϕ and ψ are not part of \mathcal{L}_1 .

• $\neg P$ is a \mathcal{L}_1 -sentence.

- $\neg P$ is a \mathcal{L}_1 -sentence.
- $\neg \phi$ describes many \mathcal{L}_1 -sentences

- $\neg P$ is a \mathcal{L}_1 -sentence.
- $\neg \phi$ describes many \mathcal{L}_1 -sentences

e.g.
$$\neg P$$
, $\neg (Q \lor R)$, $\neg (P \leftrightarrow (Q \lor R))$, ...

- $\neg P$ is a \mathcal{L}_1 -sentence.
- $\neg \phi$ describes many \mathcal{L}_1 -sentences (but is not one itself).

e.g.
$$\neg P$$
, $\neg (Q \lor R)$, $\neg (P \leftrightarrow (Q \lor R))$, ...

• $\neg P$ is a \mathcal{L}_1 -sentence.

• $\neg \phi$ describes many \mathcal{L}_1 -sentences (but is not one itself). e.g. $\neg P$, $\neg (Q \lor R)$, $\neg (P \leftrightarrow (Q \lor R))$, ...

 ϕ and ψ are part of the metal anguage, not the object one.

Object language

The object language is the one we are theorising *about*.

• The object language is \mathcal{L}_1 .

Metalanguage

The metalanguage is the one we are theorising *in*.

• The metalanguage is (augmented) English.

 ϕ and ψ are used as variables in the metalanguage: in order to generalise about sentences of the object language.

2.3 Rules for Dropping Brackets

Bracketing conventions

Bracketing conventions

There are conventions for dropping brackets in \mathcal{L}_1 similar to rules used for + and × in arithmetic.
There are conventions for dropping brackets in \mathcal{L}_1 similar to rules used for + and × in arithmetic.

Example in arithmetic

There are conventions for dropping brackets in \mathcal{L}_1 similar to rules used for + and × in arithmetic.

Example in arithmetic

 \bullet 4 + 5 × 3

There are conventions for dropping brackets in \mathcal{L}_1 similar to rules used for + and × in arithmetic.

Example in arithmetic

• $4 + 5 \times 3$ does not abbreviate $(4 + 5) \times 3$.

There are conventions for dropping brackets in \mathcal{L}_1 similar to rules used for + and × in arithmetic.

Example in arithmetic

- $4 + 5 \times 3$ does not abbreviate $(4 + 5) \times 3$.
- \times 'binds more strongly' than +.

There are conventions for dropping brackets in \mathcal{L}_1 similar to rules used for + and × in arithmetic.

Example in arithmetic

- $4 + 5 \times 3$ does not abbreviate $(4 + 5) \times 3$.
- × 'binds more strongly' than +. $4 + 5 \times 3$ abbreviates $4 + (5 \times 3)$.

There are conventions for dropping brackets in \mathcal{L}_1 similar to rules used for + and × in arithmetic.

Example in arithmetic

- $4 + 5 \times 3$ does not abbreviate $(4 + 5) \times 3$.
- × 'binds more strongly' than +. $4 + 5 \times 3$ abbreviates $4 + (5 \times 3)$.

There are conventions for dropping brackets in \mathcal{L}_1 similar to rules used for + and × in arithmetic.

Example in arithmetic

- $4 + 5 \times 3$ does not abbreviate $(4 + 5) \times 3$.
- × 'binds more strongly' than +. $4 + 5 \times 3$ abbreviates $4 + (5 \times 3)$.

Conventions in \mathcal{L}_1

• \land and \lor bind more strongly than \rightarrow and \leftrightarrow .

There are conventions for dropping brackets in \mathcal{L}_1 similar to rules used for + and × in arithmetic.

Example in arithmetic

- $4 + 5 \times 3$ does not abbreviate $(4 + 5) \times 3$.
- × 'binds more strongly' than +. $4 + 5 \times 3$ abbreviates $4 + (5 \times 3)$.

Conventions in \mathcal{L}_1

• \wedge and \vee bind more strongly than \rightarrow and \leftrightarrow . ($P \rightarrow Q \land R$) abbreviates ($P \rightarrow (Q \land R)$).

There are conventions for dropping brackets in \mathcal{L}_1 similar to rules used for + and × in arithmetic.

Example in arithmetic

- $4 + 5 \times 3$ does not abbreviate $(4 + 5) \times 3$.
- × 'binds more strongly' than +. $4 + 5 \times 3$ abbreviates $4 + (5 \times 3)$.

- \wedge and \vee bind more strongly than \rightarrow and \leftrightarrow . ($P \rightarrow Q \land R$) abbreviates ($P \rightarrow (Q \land R)$).
- One may drop outer brackets.

There are conventions for dropping brackets in \mathcal{L}_1 similar to rules used for + and × in arithmetic.

Example in arithmetic

- $4 + 5 \times 3$ does not abbreviate $(4 + 5) \times 3$.
- × 'binds more strongly' than +. $4 + 5 \times 3$ abbreviates $4 + (5 \times 3)$.

- \wedge and \vee bind more strongly than \rightarrow and \leftrightarrow . ($P \rightarrow Q \land R$) abbreviates ($P \rightarrow (Q \land R)$).
- One may drop outer brackets. $P \land (Q \rightarrow \neg P_4)$ abbreviates $(P \land (Q \rightarrow \neg P_4))$.

There are conventions for dropping brackets in \mathcal{L}_1 similar to rules used for + and × in arithmetic.

Example in arithmetic

- $4 + 5 \times 3$ does not abbreviate $(4 + 5) \times 3$.
- × 'binds more strongly' than +. $4 + 5 \times 3$ abbreviates $4 + (5 \times 3)$.

- \wedge and \vee bind more strongly than \rightarrow and \leftrightarrow . ($P \rightarrow Q \land R$) abbreviates ($P \rightarrow (Q \land R)$).
- One may drop outer brackets. $P \land (Q \rightarrow \neg P_4)$ abbreviates $(P \land (Q \rightarrow \neg P_4))$.
- One may drop brackets on strings of ∧s or ∨s that are bracketed to the left.

There are conventions for dropping brackets in \mathcal{L}_1 similar to rules used for + and × in arithmetic.

Example in arithmetic

- $4 + 5 \times 3$ does not abbreviate $(4 + 5) \times 3$.
- × 'binds more strongly' than +. $4 + 5 \times 3$ abbreviates $4 + (5 \times 3)$.

- \wedge and \vee bind more strongly than \rightarrow and \leftrightarrow . ($P \rightarrow Q \land R$) abbreviates ($P \rightarrow (Q \land R)$).
- One may drop outer brackets. $P \land (Q \rightarrow \neg P_4)$ abbreviates $(P \land (Q \rightarrow \neg P_4))$.
- One may drop brackets on strings of ∧s or ∨s that are bracketed to the left.
 (P ∧ Q ∧ R) abbreviates ((P ∧ Q) ∧ R).

There are conventions for dropping brackets in \mathcal{L}_1 similar to rules used for + and × in arithmetic.

Example in arithmetic

- $4 + 5 \times 3$ does not abbreviate $(4 + 5) \times 3$.
- × 'binds more strongly' than +. $4 + 5 \times 3$ abbreviates $4 + (5 \times 3)$.

- \wedge and \vee bind more strongly than \rightarrow and \leftrightarrow . ($P \rightarrow Q \land R$) abbreviates ($P \rightarrow (Q \land R)$).
- One may drop outer brackets. $P \land (Q \rightarrow \neg P_4)$ abbreviates $(P \land (Q \rightarrow \neg P_4))$.
- One may drop brackets on strings of ∧s or ∨s that are bracketed to the left.
 (P ∧ Q ∧ R) abbreviates ((P ∧ Q) ∧ R).

There are conventions for dropping brackets in \mathcal{L}_1 similar to rules used for + and × in arithmetic.

Example in arithmetic

- $4 + 5 \times 3$ does not abbreviate $(4 + 5) \times 3$.
- × 'binds more strongly' than +. $4 + 5 \times 3$ abbreviates $4 + (5 \times 3)$.

- \wedge and \vee bind more strongly than \rightarrow and \leftrightarrow . ($P \rightarrow Q \land R$) abbreviates ($P \rightarrow (Q \land R)$).
- One may drop outer brackets. $P \land (Q \rightarrow \neg P_4)$ abbreviates $(P \land (Q \rightarrow \neg P_4))$.
- One may drop brackets on strings of ∧s or ∨s that are bracketed to the left.
 P ∧ Q ∧ R abbreviates ((P ∧ Q) ∧ R).

Recall the characterisation of validity from week 1.

Recall the characterisation of validity from week 1.

Characterisation

An argument is *logically valid* if and only if there is *no* interpretation of subject-specific expressions under which:

- It the premisses are all true, and
- (ii) the conclusion is false.

Recall the characterisation of validity from week 1.

Characterisation

An argument is *logically valid* if and only if there is *no* interpretation of subject-specific expressions under which:

- It the premisses are all true, and
- (ii) the conclusion is false.

We'll adapt this characterisation to \mathcal{L}_1 .

Recall the characterisation of validity from week 1.

Characterisation

An argument is *logically valid* if and only if there is *no* interpretation of subject-specific expressions under which:

- It the premisses are all true, and
- (ii) the conclusion is false.

We'll adapt this characterisation to \mathcal{L}_1 .

• Logical expressions: \neg , \land , \lor , \rightarrow and \leftrightarrow .

Recall the characterisation of validity from week 1.

Characterisation

An argument is *logically valid* if and only if there is *no* interpretation of subject-specific expressions under which:

- (1) the premisses are all true, and
- the conclusion is false.

We'll adapt this characterisation to \mathcal{L}_1 .

- Logical expressions: \neg , \land , \lor , \rightarrow and \leftrightarrow .
- Subject-specific expressions: *P*, *Q*, *R*, ...

Recall the characterisation of validity from week 1.

Characterisation

An argument is *logically valid* if and only if there is *no* interpretation of subject-specific expressions under which:

- (1) the premisses are all true, and
- the conclusion is false.

We'll adapt this characterisation to \mathcal{L}_1 .

- Logical expressions: \neg , \land , \lor , \rightarrow and \leftrightarrow .
- Subject-specific expressions: *P*, *Q*, *R*, ...
- Interpretation: \mathcal{L}_1 -structure.

2.4 The Semantics of Propositional Logic

\mathcal{L}_1 -structures

We interpret sentence letters by assigning them truth-values:

We interpret sentence letters by assigning them truth-values: either T for True or F for False.

We interpret sentence letters by assigning them truth-values: either T for True or F for False.

Definition

An \mathcal{L}_1 -*structure* is an assignment of exactly one truth-value (*T* or *F*) to every sentence letter of \mathcal{L}_1 .

We interpret sentence letters by assigning them truth-values: either T for True or F for False.

Definition

An \mathcal{L}_1 -*structure* is an assignment of exactly one truth-value (*T* or *F*) to every sentence letter of \mathcal{L}_1 .

Examples

We can think of an \mathcal{L}_1 -structure as an infinite list that provides a value T or F for every sentence letter.

We interpret sentence letters by assigning them truth-values: either T for True or F for False.

Definition

An \mathcal{L}_1 -*structure* is an assignment of exactly one truth-value (*T* or *F*) to every sentence letter of \mathcal{L}_1 .

Examples

We can think of an \mathcal{L}_1 -structure as an infinite list that provides a value T or F for every sentence letter.

We interpret sentence letters by assigning them truth-values: either T for True or F for False.

Definition

An \mathcal{L}_1 -*structure* is an assignment of exactly one truth-value (*T* or *F*) to every sentence letter of \mathcal{L}_1 .

Examples

We can think of an \mathcal{L}_1 -structure as an infinite list that provides a value T or F for every sentence letter.

We use \mathcal{A} , \mathcal{B} , etc. to stand for \mathcal{L}_1 -structures.

2.4 The Semantics of Propositional Logic

Truth-values of complex sentences 1/3

- \mathcal{L}_1 -structures only directly specify truth-values for P, Q, R, \dots
 - The logical connectives have fixed meanings.

- The logical connectives have fixed meanings.
- These determine the truth-values of complex sentences.

- The logical connectives have fixed meanings.
- These determine the truth-values of complex sentences.
- Notation: $|\phi|_{\mathcal{A}}$ is the truth-value of ϕ under \mathcal{A} .

- The logical connectives have fixed meanings.
- These determine the truth-values of complex sentences.
- Notation: $|\phi|_{\mathcal{A}}$ is the truth-value of ϕ under \mathcal{A} .
- For all \mathcal{L}_1 -structures \mathcal{A} and sentences ϕ we have either $|\phi|_{\mathcal{A}} = T$ or $|\phi|_{\mathcal{A}} = F$.

 \mathcal{L}_1 -structures only directly specify truth-values for P, Q, R, \dots

- The logical connectives have fixed meanings.
- These determine the truth-values of complex sentences.
- Notation: $|\phi|_{\mathcal{A}}$ is the truth-value of ϕ under \mathcal{A} .
- For all \mathcal{L}_1 -structures \mathcal{A} and sentences ϕ we have either $|\phi|_{\mathcal{A}} = T$ or $|\phi|_{\mathcal{A}} = F$.

Truth-conditions for \neg

The meaning of \neg is summarised in its *truth table*.

$$\begin{array}{c|c} \phi & \neg \phi \\ \hline T & F \\ F & T \\ \end{array}$$

 \mathcal{L}_1 -structures only directly specify truth-values for P, Q, R, \dots

- The logical connectives have fixed meanings.
- These determine the truth-values of complex sentences.
- Notation: $|\phi|_{\mathcal{A}}$ is the truth-value of ϕ under \mathcal{A} .
- For all \mathcal{L}_1 -structures \mathcal{A} and sentences ϕ we have either $|\phi|_{\mathcal{A}} = T$ or $|\phi|_{\mathcal{A}} = F$.

Truth-conditions for \neg

The meaning of \neg is summarised in its *truth table*.

$$\begin{array}{c|c} \phi & \neg \phi \\ \hline T & F \\ F & T \\ \end{array}$$

In words: $|\neg \phi|_{\mathcal{A}} = T$ if and only if $|\phi|_{\mathcal{A}} = F$.

Worked example 1

 $|\phi|_{\mathcal{A}}$ is the truth-value of ϕ under \mathcal{A} .

Compute the following truth-values. Let the structure \mathcal{A} be partially specified as follows.

Compute:

$$|P|_{\mathcal{A}} = |Q|_{\mathcal{A}} = |R_1|_{\mathcal{A}} =$$
$$|\neg P|_{\mathcal{A}} = |\neg Q|_{\mathcal{A}} = |\neg R_1|_{\mathcal{A}} =$$
$$|\neg P|_{\mathcal{A}} = |\neg Q|_{\mathcal{A}} = |\neg R_1|_{\mathcal{A}} =$$

Worked example 1

 $|\phi|_{\mathcal{A}}$ is the truth-value of ϕ under \mathcal{A} .

Compute the following truth-values. Let the structure \mathcal{A} be partially specified as follows.

Compute:

$$|P|_{\mathcal{A}} = \mathbf{T} \qquad |Q|_{\mathcal{A}} = \qquad |R_1|_{\mathcal{A}} =$$
$$|\neg P|_{\mathcal{A}} = \qquad |\neg Q|_{\mathcal{A}} = \qquad |\neg R_1|_{\mathcal{A}} =$$
$$|\neg P|_{\mathcal{A}} = \qquad |\neg Q|_{\mathcal{A}} = \qquad |\neg R_1|_{\mathcal{A}} =$$
$|\phi|_{\mathcal{A}}$ is the truth-value of ϕ under \mathcal{A} .

Compute the following truth-values. Let the structure \mathcal{A} be partially specified as follows.

$$|P|_{\mathcal{A}} = \mathbf{T} \qquad |Q|_{\mathcal{A}} = \mathbf{F} \qquad |R_1|_{\mathcal{A}} =$$
$$|\neg P|_{\mathcal{A}} = \qquad |\neg Q|_{\mathcal{A}} = \qquad |\neg R_1|_{\mathcal{A}} =$$
$$|\neg \neg P|_{\mathcal{A}} = \qquad |\neg \neg R_1|_{\mathcal{A}} =$$

 $|\phi|_{\mathcal{A}}$ is the truth-value of ϕ under \mathcal{A} .

Compute the following truth-values. Let the structure \mathcal{A} be partially specified as follows.

$$|P|_{\mathcal{A}} = T \qquad |Q|_{\mathcal{A}} = F \qquad |R_1|_{\mathcal{A}} = F$$
$$|\neg P|_{\mathcal{A}} = \qquad |\neg Q|_{\mathcal{A}} = \qquad |\neg R_1|_{\mathcal{A}} =$$
$$|\neg \neg P|_{\mathcal{A}} = \qquad |\neg \neg Q|_{\mathcal{A}} = \qquad |\neg \neg R_1|_{\mathcal{A}} =$$

 $|\phi|_{\mathcal{A}}$ is the truth-value of ϕ under \mathcal{A} .

Compute the following truth-values. Let the structure A be partially specified as follows.

$$|P|_{\mathcal{A}} = T \qquad |Q|_{\mathcal{A}} = F \qquad |R_1|_{\mathcal{A}} = F$$
$$|\neg P|_{\mathcal{A}} = F \qquad |\neg Q|_{\mathcal{A}} = \qquad |\neg R_1|_{\mathcal{A}} =$$
$$|\neg \neg P|_{\mathcal{A}} = \qquad |\neg \neg Q|_{\mathcal{A}} = \qquad |\neg \neg R_1|_{\mathcal{A}} =$$

 $|\phi|_{\mathcal{A}}$ is the truth-value of ϕ under \mathcal{A} .

Compute the following truth-values. Let the structure \mathcal{A} be partially specified as follows.

$$|P|_{\mathcal{A}} = \mathbf{T} \qquad |Q|_{\mathcal{A}} = \mathbf{F} \qquad |R_1|_{\mathcal{A}} = \mathbf{F}$$
$$|\neg P|_{\mathcal{A}} = \mathbf{F} \qquad |\neg Q|_{\mathcal{A}} = \mathbf{T} \qquad |\neg R_1|_{\mathcal{A}} =$$
$$|\neg \neg P|_{\mathcal{A}} = \qquad |\neg \neg Q|_{\mathcal{A}} = \qquad |\neg \neg R_1|_{\mathcal{A}} =$$

 $|\phi|_{\mathcal{A}}$ is the truth-value of ϕ under \mathcal{A} .

Compute the following truth-values. Let the structure \mathcal{A} be partially specified as follows.

$$|P|_{\mathcal{A}} = T \qquad |Q|_{\mathcal{A}} = F \qquad |R_1|_{\mathcal{A}} = F$$
$$|\neg P|_{\mathcal{A}} = F \qquad |\neg Q|_{\mathcal{A}} = T \qquad |\neg R_1|_{\mathcal{A}} = T$$
$$|\neg P|_{\mathcal{A}} = \qquad |\neg \neg Q|_{\mathcal{A}} = \qquad |\neg \neg R_1|_{\mathcal{A}} =$$

 $|\phi|_{\mathcal{A}}$ is the truth-value of ϕ under \mathcal{A} .

Compute the following truth-values. Let the structure \mathcal{A} be partially specified as follows.

$$|P|_{\mathcal{A}} = \mathbf{T} \qquad |Q|_{\mathcal{A}} = \mathbf{F} \qquad |R_1|_{\mathcal{A}} = \mathbf{F}$$
$$|\neg P|_{\mathcal{A}} = \mathbf{F} \qquad |\neg Q|_{\mathcal{A}} = \mathbf{T} \qquad |\neg R_1|_{\mathcal{A}} = \mathbf{T}$$
$$|\neg \neg P|_{\mathcal{A}} = \mathbf{T} \qquad |\neg \neg Q|_{\mathcal{A}} = \qquad |\neg \neg R_1|_{\mathcal{A}} = \mathbf{T}$$

 $|\phi|_{\mathcal{A}}$ is the truth-value of ϕ under \mathcal{A} .

Compute the following truth-values. Let the structure \mathcal{A} be partially specified as follows.

$$|P|_{\mathcal{A}} = T \qquad |Q|_{\mathcal{A}} = F \qquad |R_1|_{\mathcal{A}} = F$$
$$|\neg P|_{\mathcal{A}} = F \qquad |\neg Q|_{\mathcal{A}} = T \qquad |\neg R_1|_{\mathcal{A}} = T$$
$$|\neg \neg P|_{\mathcal{A}} = T \qquad |\neg \neg Q|_{\mathcal{A}} = F \qquad |\neg \neg R_1|_{\mathcal{A}} = T$$

 $|\phi|_{\mathcal{A}}$ is the truth-value of ϕ under \mathcal{A} .

Compute the following truth-values. Let the structure \mathcal{A} be partially specified as follows.

$$|P|_{\mathcal{A}} = T \qquad |Q|_{\mathcal{A}} = F \qquad |R_1|_{\mathcal{A}} = F$$
$$|\neg P|_{\mathcal{A}} = F \qquad |\neg Q|_{\mathcal{A}} = T \qquad |\neg R_1|_{\mathcal{A}} = T$$
$$\neg \neg P|_{\mathcal{A}} = T \qquad |\neg \neg Q|_{\mathcal{A}} = F \qquad |\neg \neg R_1|_{\mathcal{A}} = F$$

Truth-conditions for \wedge and \vee

The meanings of \land and \lor are given by the truth tables:

ϕ	$ \psi $	$(\phi \wedge \psi)$	ϕ	$ \psi $	$(\phi \lor \psi)$
Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	Т
F	T	F	F	T	Т
F	F	F	F	F	F

Truth-conditions for \wedge and \vee

The meanings of \land and \lor are given by the truth tables:

ϕ	$ \psi $	$(\phi \wedge \psi)$	_	φ	$ \psi $	$(\phi \lor \psi)$
Т	Т	Т	_	Т	Т	Т
Т	F	F		Т	F	Т
F	Т	F		F	T	Т
F	F	F		F	F	F

Truth-conditions for \land and \lor

The meanings of \land and \lor are given by the truth tables:

ϕ	ψ	$(\phi \land \psi)$	ϕ	ψ	$(\phi \lor \psi)$
Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	Т
F	Т	F	F	T	Т
F	F	F	F	F	F

 $|(\phi \land \psi)|_{\mathcal{A}} = T$ if and only if $|\phi|_{\mathcal{A}} = T$ and $|\psi|_{\mathcal{A}} = T$.

Truth-conditions for \land and \lor

The meanings of \land and \lor are given by the truth tables:

ϕ	$ \psi $	$(\phi \wedge \psi)$	ϕ	ψ	$(\phi \lor \psi)$
Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	Т
F	T	F	F	Т	Т
F	F	F	F	F	F

 $|(\phi \land \psi)|_{\mathcal{A}} = T$ if and only if $|\phi|_{\mathcal{A}} = T$ and $|\psi|_{\mathcal{A}} = T$.

Truth-conditions for \land and \lor

The meanings of \land and \lor are given by the truth tables:

ϕ	$ \psi $	$(\phi \land \psi)$	ϕ	$ \psi $	$(\phi \lor \psi)$
Т	T	Т	Т	T	Т
Т	F	F	Т	F	Т
F	T	F	F	T	Т
F	F	F	F	F	F

 $|(\phi \land \psi)|_{\mathcal{A}} = T$ if and only if $|\phi|_{\mathcal{A}} = T$ and $|\psi|_{\mathcal{A}} = T$. $|(\phi \lor \psi)|_{\mathcal{A}} = T$ if and only if $|\phi|_{\mathcal{A}} = T$ or $|\psi|_{\mathcal{A}} = T$ (or both).

Truth-conditions for \rightarrow and \leftrightarrow

The meanings of \rightarrow and \leftrightarrow are given by the truth tables:

ϕ	$ \psi $	$ (\phi \rightarrow \psi)$	ϕ	$ \psi $	$(\phi \leftrightarrow \psi)$
Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	F
F	Т	Т	F	T	F
F	F	Т	F	F	Т

Truth-conditions for \rightarrow and \leftrightarrow

The meanings of \rightarrow and \leftrightarrow are given by the truth tables:

ϕ	ψ	$(\phi \rightarrow \psi)$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

ϕ	$ \psi $	$(\phi \leftrightarrow \psi)$
Т	Т	Т
Т	F	F
F	T	F
F	F	Т

Truth-conditions for \rightarrow and \leftrightarrow

The meanings of \rightarrow and \leftrightarrow are given by the truth tables:

ϕ	$ \psi $	$(\phi \rightarrow \psi)$	ϕ	ψ	$\ (\phi \leftrightarrow \psi) \ $
Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	F
F	Т	Т	F	T	F
F	F	Т	F	F	Т

 $|(\phi \rightarrow \psi)|_{\mathcal{A}} = T$ if and only if $|\phi|_{\mathcal{A}} = F$ or $|\psi|_{\mathcal{A}} = T$.

Truth-conditions for \rightarrow and \leftrightarrow

The meanings of \rightarrow and \leftrightarrow are given by the truth tables:

ϕ	$ \psi $	$(\phi \rightarrow \psi)$	ϕ	$ \psi $	$(\phi \leftrightarrow \psi)$
Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	F
F	Т	Т	F	Т	F
F	F	Т	F	F	Т

$$|(\phi \rightarrow \psi)|_{\mathcal{A}} = T$$
 if and only if $|\phi|_{\mathcal{A}} = F$ or $|\psi|_{\mathcal{A}} = T$.

Truth-conditions for \rightarrow and \leftrightarrow

The meanings of \rightarrow and \leftrightarrow are given by the truth tables:

ϕ	$ \psi $	$(\phi \rightarrow \psi)$	ϕ	$ \psi $	$(\phi \leftrightarrow \psi)$
Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	F
F	Т	Т	F	Т	F
F	F	Т	F	F	Т

 $\begin{aligned} |(\phi \to \psi)|_{\mathcal{A}} &= \text{T if and only if } |\phi|_{\mathcal{A}} &= \text{F or } |\psi|_{\mathcal{A}} = \text{T.} \\ |(\phi \leftrightarrow \psi)|_{\mathcal{A}} &= \text{T if and only if } |\phi|_{\mathcal{A}} &= |\psi|_{\mathcal{A}}. \end{aligned}$

Let $|P|_{\mathcal{B}} = T$ and $|Q|_{\mathcal{B}} = F$.

Compute
$$|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$$

What is the truth value of $\neg (P \rightarrow Q) \rightarrow (P \land Q)$ under \mathcal{B} ?

Let $|P|_{\mathcal{B}} = T$ and $|Q|_{\mathcal{B}} = F$. Compute $|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$ What is the truth value of $\neg (P \rightarrow Q) \rightarrow (P \land Q)$ under \mathcal{B} ? $|P \rightarrow Q||_{\mathcal{B}}$

$$\begin{array}{c|cccc} \phi & \neg \phi & \hline \psi & (\phi \land \psi) & (\phi \rightarrow \psi) \\ \hline T & F & T & T & T \\ \hline T & F & T & F & F \\ F & T & F & T & F & F \\ F & T & F & T & F & T \\ F & F & F & T \\ \end{array}$$

Let $|P|_{\mathcal{B}} = T$ and $|Q|_{\mathcal{B}} = F$. Compute $|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$ What is the truth value of $\neg (P \rightarrow Q) \rightarrow (P \land Q)$ under \mathcal{B} ? $|P \rightarrow Q||_{\mathcal{B}}$

$$\begin{array}{c|cccc} \phi & \neg \phi & \psi & (\phi \land \psi) & (\phi \rightarrow \psi) \\ \hline \hline T & F & T & T & T \\ \hline T & F & T & F & F \\ F & T & F & T & F \\ \hline F & T & F & T \\ \hline F & F & F & T \\ \hline F & F & F & T \\ \hline \end{array}$$

Let $|P|_{\mathcal{B}} = T$ and $|Q|_{\mathcal{B}} = F$. Compute $|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$ What is the truth value of $\neg (P \rightarrow Q) \rightarrow (P \land Q)$ under \mathcal{B} ? $|P \rightarrow Q||_{\mathcal{B}}$

Let $|P|_{\mathcal{B}} = T$ and $|Q|_{\mathcal{B}} = F$. Compute $|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$ What is the truth value of $\neg (P \rightarrow Q) \rightarrow (P \land Q)$ under \mathcal{B} ? $|(P \rightarrow Q)|_{\mathcal{B}} = F$

$$\begin{array}{c|cccc} \phi & \neg \phi & \psi & (\phi \land \psi) & (\phi \rightarrow \psi) \\ \hline \hline T & F & T & T & T \\ \hline T & F & T & F & F \\ F & T & F & T & F \\ \hline F & T & F & T \\ \hline F & F & F & T \\ \hline F & F & F & T \\ \hline \end{array}$$

Let $|P|_{\mathcal{B}} = T$ and $|Q|_{\mathcal{B}} = F$. Compute $|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$ What is the truth value of $\neg (P \rightarrow Q) \rightarrow (P \land Q)$ under \mathcal{B} ? $|(P \rightarrow Q)|_{\mathcal{B}} = F$ and $|(P \land Q)|_{\mathcal{B}}$

Let $|P|_{\mathcal{B}} = T$ and $|Q|_{\mathcal{B}} = F$. Compute $|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$ What is the truth value of $\neg (P \rightarrow Q) \rightarrow (P \land Q)$ under \mathcal{B} ? $|(P \rightarrow Q)|_{\mathcal{B}} = F$ and $|(P \land Q)|_{\mathcal{B}}$

Let $|P|_{\mathcal{B}} = T$ and $|Q|_{\mathcal{B}} = F$. Compute $|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$ What is the truth value of $\neg (P \rightarrow Q) \rightarrow (P \land Q)$ under \mathcal{B} ? $|(P \rightarrow Q)|_{\mathcal{B}} = F$ and $|(P \land Q)|_{\mathcal{B}}$

Let $|P|_{\mathcal{B}} = T$ and $|Q|_{\mathcal{B}} = F$. Compute $|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$ What is the truth value of $\neg (P \rightarrow Q) \rightarrow (P \land Q)$ under \mathcal{B} ? $|(P \rightarrow Q)|_{\mathcal{B}} = F$ and $|(P \land Q)|_{\mathcal{B}} = F$

$$\begin{array}{c|cccc} \phi & \neg \phi & \psi & (\phi \land \psi) & (\phi \rightarrow \psi) \\ \hline \hline T & F & T & T & T \\ \hline T & F & T & F & F \\ F & T & F & T & F & T \\ F & F & F & F & T \\ \hline F & F & F & T \\ \end{array}$$

Let $|P|_{\mathcal{B}} = T$ and $|Q|_{\mathcal{B}} = F$. Compute $|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$ What is the truth value of $\neg (P \rightarrow Q) \rightarrow (P \land Q)$ under \mathcal{B} ? (a) $|(P \rightarrow Q)|_{\mathcal{B}} = F$ and $|(P \land Q)|_{\mathcal{B}} = F$ (b) $|\neg (P \rightarrow Q)|_{\mathcal{B}}$

$$\begin{array}{c|cccc} \phi & \neg \phi & \hline \psi & (\phi \land \psi) & (\phi \rightarrow \psi) \\ \hline \phi & \neg \phi & T & T & T & T \\ \hline T & F & T & F & F & F \\ F & T & F & T & F & T \\ F & F & F & F & T \\ F & F & F & T \end{array}$$

Let $|P|_{\mathcal{B}} = T$ and $|Q|_{\mathcal{B}} = F$. Compute $|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$ What is the truth value of $\neg (P \rightarrow Q) \rightarrow (P \land Q)$ under \mathcal{B} ? (a) $|(P \rightarrow Q)|_{\mathcal{B}} = F$ and $|(P \land Q)|_{\mathcal{B}} = F$ (b) $|\neg (P \rightarrow Q)|_{\mathcal{B}}$

Let $|P|_{\mathcal{B}} = T$ and $|Q|_{\mathcal{B}} = F$. Compute $|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$ What is the truth value of $\neg (P \rightarrow Q) \rightarrow (P \land Q)$ under \mathcal{B} ? (a) $|(P \rightarrow Q)|_{\mathcal{B}} = F$ and $|(P \land Q)|_{\mathcal{B}} = F$ (b) $|\neg (P \rightarrow Q)|_{\mathcal{B}}$

Let $|P|_{\mathcal{B}} = T$ and $|Q|_{\mathcal{B}} = F$. Compute $|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$ What is the truth value of $\neg (P \rightarrow Q) \rightarrow (P \land Q)$ under \mathcal{B} ? (a) $|(P \rightarrow Q)|_{\mathcal{B}} = F$ and $|(P \land Q)|_{\mathcal{B}} = F$ (b) $|\neg (P \rightarrow Q)|_{\mathcal{B}} = T$

$$\begin{array}{c|cccc} \phi & \neg \phi & \psi & (\phi \land \psi) & (\phi \rightarrow \psi) \\ \hline \phi & \neg \phi & T & T & T & T \\ \hline T & F & T & F & F & F \\ F & T & F & T & F & T \\ F & F & F & F & T \\ F & F & F & T \end{array}$$

Let $|P|_{\mathcal{B}} = T$ and $|Q|_{\mathcal{B}} = F$. Compute $|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$ What is the truth value of $\neg (P \rightarrow Q) \rightarrow (P \land Q)$ under \mathcal{B} ? $(P \rightarrow Q)|_{\mathcal{B}} = F$ and $|(P \land Q)|_{\mathcal{B}} = F$ $|\neg (P \rightarrow Q)|_{\mathcal{B}} = T$ $|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$

$$\begin{array}{c|cccc} \phi & \neg \phi & \psi & (\phi \land \psi) & (\phi \rightarrow \psi) \\ \hline \phi & \neg \phi & T & T & T & T \\ \hline T & F & T & F & F & F \\ F & T & F & T & F & T \\ F & F & F & F & T \\ F & F & F & T \end{array}$$

Let $|P|_{\mathcal{B}} = T$ and $|Q|_{\mathcal{B}} = F$. Compute $|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$ What is the truth value of $\neg (P \rightarrow Q) \rightarrow (P \land Q)$ under \mathcal{B} ? $(P \rightarrow Q)|_{\mathcal{B}} = F$ and $|(P \land Q)|_{\mathcal{B}} = F$ $|\neg (P \rightarrow Q)|_{\mathcal{B}} = T$ $|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$

Let $|P|_{\mathcal{B}} = T$ and $|Q|_{\mathcal{B}} = F$. Compute $|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$ What is the truth value of $\neg (P \rightarrow Q) \rightarrow (P \land Q)$ under \mathcal{B} ? $(P \rightarrow Q)|_{\mathcal{B}} = F$ and $|(P \land Q)|_{\mathcal{B}} = F$ $|\neg (P \rightarrow Q)|_{\mathcal{B}} = T$ $|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$

$$\begin{array}{c|cccc} \phi & \neg \phi & \hline & \psi & (\phi \land \psi) & (\phi \rightarrow \psi) \\ \hline \hline T & F & T & T & T \\ \hline T & F & F & F \\ F & T & F & T & F \\ \hline F & T & F & T \\ F & F & F & T \\ \hline F & F & F & T \\ \end{array}$$

Let $|P|_{\mathcal{B}} = T$ and $|Q|_{\mathcal{B}} = F$. Compute $|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$ What is the truth value of $\neg (P \rightarrow Q) \rightarrow (P \land Q)$ under \mathcal{B} ? (a) $|(P \rightarrow Q)|_{\mathcal{B}} = F$ and $|(P \land Q)|_{\mathcal{B}} = F$ (b) $|\neg (P \rightarrow Q)|_{\mathcal{B}} = T$ (c) $|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}} = F$

$$\begin{array}{c|cccc} \phi & \neg \phi & \hline \psi & (\phi \land \psi) & (\phi \rightarrow \psi) \\ \hline \phi & \neg \phi & T & T & T & T \\ \hline T & F & T & F & F & F \\ F & T & F & T & F & T \\ F & F & F & F & T \\ F & F & F & T \end{array}$$

Let $|P|_{\mathcal{B}} = T$ and $|Q|_{\mathcal{B}} = F$. Compute $|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$ What is the truth value of $\neg (P \rightarrow Q) \rightarrow (P \land Q)$ under \mathcal{B} ? (a) $|(P \rightarrow Q)|_{\mathcal{B}} = F$ and $|(P \land Q)|_{\mathcal{B}} = F$ (c) $|\neg (P \rightarrow Q)|_{\mathcal{B}} = T$ (c) $|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}} = F$

$$\begin{array}{c|cccc} \phi & \psi & (\phi \land \psi) & (\phi \rightarrow \psi) \\ \hline \phi & \neg \phi & T & T & T \\ \hline T & F & T & F & F \\ F & T & F & T & F & F \\ F & T & F & T & F & T \\ F & F & F & T \\ \hline F & F & F & T \end{array}$$
Compute
$$|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$$

$$\frac{P \mid Q \mid \neg (P \rightarrow Q) \rightarrow (P \land Q)}{\mid \mid \mid}$$

For actual calculations it's usually better to use tables.

Suppose $|P|_{\mathcal{B}} = T$ and $|Q|_{\mathcal{B}} = F$.

Compute
$$|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$$

 $\frac{P \mid Q \mid \neg (P \rightarrow Q) \rightarrow (P \land Q)}{T \mid F \mid}$

Compute
$$|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$$

 $\frac{P \mid Q \mid \neg (P \rightarrow Q) \rightarrow (P \land Q)}{T \mid F \mid T}$

Compute
$$|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$$

$$\frac{P \mid Q \mid \neg (P \rightarrow Q) \rightarrow (P \land Q)}{T \mid F \mid T \mid F}$$

Compute
$$|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$$

 $\frac{P \mid Q \mid \neg (P \rightarrow Q) \rightarrow (P \land Q)}{T \mid F \mid T \quad F \quad T}$

Compute
$$|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$$

$$\frac{P \mid Q \mid \neg (P \rightarrow Q) \rightarrow (P \land Q)}{T \mid F \mid T \quad F \quad T \quad F}$$

Compute
$$|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$$

$$\frac{P \mid Q \mid |\neg (P \rightarrow Q) \rightarrow (P \land Q)}{T \mid F \mid T \quad F \quad T \quad F}$$

Compute
$$|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$$

$$\frac{P \mid Q \mid |\neg (P \rightarrow Q) \rightarrow (P \land Q)}{T \mid F \mid T \quad F \quad T \quad F \quad F}$$

Compute
$$|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$$

$$\frac{P \mid Q \mid |\neg (P \rightarrow Q) \rightarrow (P \land Q)}{T \mid F \mid T \quad F \quad T \quad F \quad F}$$

Compute
$$|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$$

$$\frac{P \mid Q \mid \neg (P \rightarrow Q) \rightarrow (P \land Q)}{T \mid F \mid T \mid F \mid F \mid T \mid F \mid F}$$

Compute
$$|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$$

$$\frac{P \mid Q \mid |\neg (P \rightarrow Q) \rightarrow (P \land Q)}{T \mid F \mid T \mid F \mid F \mid T \mid F \mid F}$$

Compute
$$|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$$

$$\frac{P \mid Q \mid \neg (P \rightarrow Q) \rightarrow (P \land Q)}{T \mid F \mid T T F F T F F}$$

Compute
$$|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$$

$$\frac{P \mid Q \mid \neg (P \rightarrow Q) \rightarrow (P \land Q)}{T \mid F \mid T T F F T F F}$$

Compute
$$|\neg (P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}}$$

$$\frac{P \mid Q \mid \neg (P \rightarrow Q) \rightarrow (P \land Q)}{T \mid F \mid T T F F F T F F}$$

2.4 The Semantics of Propositional Logic

Р	Q	$ \neg (P \to Q) \to (P \land Q)$
Т	Т	
Т	F	
F	Т	
F	F	

Р	Q	$\neg (P \to Q) \to (P \land Q)$
Т	Т	Т
Т	F	Т
F	Т	
F	F	

Р	Q	$\neg (P \rightarrow Q) \rightarrow (P \land Q)$
Т	Т	Т
Т	F	Т
F	Т	F
F	F	

Р	Q	$\neg (P \to Q) \to (P \land Q)$
Т	Т	Т
Т	F	Т
F	Т	F
F	F	F

Р	Q	$\neg (P \rightarrow Q) \rightarrow (P \land Q)$
Т	Т	Т Т
Т	F	Т
F	Т	F
F	F	F

Р	Q	$ \neg (P \rightarrow$	$Q) \to (P \land Q)$
Т	Т	Т	Т
Т	F	Т	Т
F	Т	F	
F	F	F	

Р	Q	$ \neg (P \rightarrow$	$Q) \to (P \land Q)$
Т	Т	Т	Т
Т	F	Т	Т
F	Т	F	F
F	F	F	

Р	Q	$ \neg (P \rightarrow$	$Q) \to (P \land Q)$
Т	Т	Т	Т
Т	F	Т	Т
F	Т	F	F
F	F	F	F

Р	Q	$ \neg (P \rightarrow$	Q)	$\rightarrow (P \land$	Q)
Т	Т	Т	Т	Т	
Т	F	Т		Т	
F	Т	F		F	
F	F	F		F	

Р	Q	$\neg (P -$	→ Q) -	$\rightarrow (P \land$	Q)
Т	Т	Т	Т	Т	
Т	F	Т	F	Т	
F	Т	F		F	
F	F	F		F	

Р	Q	$ \neg (P \rightarrow$	• Q) ·	$\rightarrow (P \land$	Q)
Т	Т	Т	Т	Т	
Т	F	Т	F	Т	
F	Т	F	Т	F	
F	F	F		F	

Р	Q	$ \neg (P \rightarrow$	Q)	$\rightarrow (P \land Q)$
Т	Т	Т	Т	Т
Т	F	Т	F	Т
F	Т	F	Т	F
F	F	F	F	F

Р	Q	$ \neg (P \rightarrow$	Q)	$\rightarrow (P \land$	Q)
Т	Т	Т	Т	Т	Т
Т	F	Т	F	Т	
F	Т	F	Т	F	
F	F	F	F	F	

Р	Q	$ \neg (P \rightarrow$	$\cdot Q)$	$\rightarrow (P \land$	Q)
Т	Т	Т	Т	Т	Т
Т	F	Т	F	Т	F
F	Т	F	Т	F	
F	F	F	F	F	

Р	Q	$ \neg (P \rightarrow$	• Q) ·	$\rightarrow (P \land$	(Q)
Т	Т	Т	Т	Т	Т
Т	F	Т	F	Т	F
F	Т	F	Т	F	Т
F	F	F	F	F	

Р	Q	$ \neg (P \rightarrow$	Q)	$\rightarrow (P \land$	<i>Q</i>)
Т	Т	Т	Т	Т	Т
Т	F	Т	F	Т	F
F	Т	F	Т	F	Т
F	F	F	F	F	F

Р	Q	$\neg (P$	\rightarrow	Q)	$\rightarrow (P$	$\land Q)$
Т	Т	T	Т	Т	Т	Т
Т	F	T		F	Т	F
F	Т	F		Т	F	Т
F	F	F		F	F	F

Р	Q	$\neg (P$	\rightarrow	Q)	$\rightarrow (P$	$\land Q)$
Т	Т	T	Т	Т	Т	Т
Т	F	T	F	F	Т	F
F	Т	F		Т	F	Т
F	F	F		F	F	F

Р	Q	$\neg (P$	\rightarrow	Q)	$\rightarrow (P /$	$\land Q)$
Т	Т	T	Т	Т	Т	Т
Т	F	T	F	F	Т	F
F	Т	F	Т	Т	F	Т
F	F	F		F	F	F

Р	Q	$\neg (P$	\rightarrow	Q)	$\rightarrow (P)$	$\land Q)$
Т	Т	T	Т	Т	Т	Т
Т	F	T	F	F	Т	F
F	Т	F	Т	Т	F	Т
F	F	F	Т	F	F	F
Р	Q	$\neg (P$	\rightarrow	Q)	$\rightarrow (P$	$\land Q)$
---	---	-----------	---------------	----	------------------	------------
Т	Т	T	Т	Т	Т	T T
Т	F	T	F	F	Т	F
F	Т	F	Т	Т	F	Т
F	F	F	Т	F	F	F

Р	Q	$\neg (P$	\rightarrow	Q)	$\rightarrow (P$	\wedge	<i>Q</i>)
Т	Т	T	Т	Т	Т	Т	Т
Т	F	T	F	F	Т	F	F
F	Т	F	Т	Т	F		Т
F	F	F	Т	F	F		F

Р	Q	$\neg (P$	\rightarrow	Q)	$\rightarrow (I$	` ^	Q)
Т	Т	T	Т	Т	Т	Т	Т
Т	F	T	F	F	Т	F	F
F	Т	F	Т	Т	F	F	Т
F	F	F	Т	F	F		F

Р	Q	$\neg (P$	\rightarrow	Q)	$\rightarrow (I$	^ ^	Q)
Т	Т	T	Т	Т	Т	Т	Т
Т	F	T	F	F	Т	F	F
F	Т	F	Т	Т	F	F	Т
F	F	F	Т	F	F	F	F

Р	<i>Q</i>	¬	(P	\rightarrow	Q)	\rightarrow	(<i>P</i>	\wedge	Q)
Т	Т	F	Т	Т	Т		Т	Т	Т
Т	F		Т	F	F		Т	F	F
F	Т		F	Т	Т		F	F	Т
F	F		F	Т	F		F	F	F

Р	Q	¬	(P	\rightarrow	Q)	\rightarrow	(<i>P</i>	\wedge	Q)
Т	Т	F	Т	Т	Т		Т	Т	Т
Т	F	T	Т	F	F		Т	F	F
F	Т		F	Т	Т		F	F	Т
F	F		F	Т	F		F	F	F

Р	Q	¬	(P	\rightarrow	Q)	\rightarrow	(<i>P</i>	\wedge	Q)
Т	Т	F	Т	Т	Т		Т	Т	Т
Т	F	T	Т	F	F		Т	F	F
F	Т	F	F	Т	Т		F	F	Т
F	F		F	Т	F		F	F	F

Р	Q	¬	(P	\rightarrow	Q)	\rightarrow	(<i>P</i>	\wedge	Q)
Т	Т	F	Т	Т	Т		Т	Т	Т
Т	F	T	Т	F	F		Т	F	F
F	Т	F	F	Т	Т		F	F	Т
F	F	F	F	Т	F		F	F	F

Р	Q	¬	(P	\rightarrow	Q)	\rightarrow	(P	\wedge	Q)
Т	Т	F	Т	Т	Т	Т	Т	Т	Т
Т	F	T	Т	F	F		Т	F	F
F	Т	F	F	Т	Т		F	F	Т
F	F	F	F	Т	F		F	F	F

PQ
$$\neg$$
 (P \rightarrow Q) \rightarrow (P \land Q)TTFTTTTTFTTTTTTTFFTFFFFFTFFTTTFFFTFFTTTFFTFFFFTFTFFFFFFFTFFFF

The main column (in boldface) gives the truth-value of the whole sentence.

Let Γ be a set of sentences of \mathcal{L}_1 and ϕ a sentence of \mathcal{L}_1 .

Let Γ be a set of sentences of \mathcal{L}_1 and ϕ a sentence of \mathcal{L}_1 .

Definition

The argument with all sentences in Γ as premisses and ϕ as conclusion is *valid* if and only if there is no \mathcal{L}_1 -structure under which:

- (i) all sentences in Γ are true; and
- (ii) ϕ is false.

Let Γ be a set of sentences of \mathcal{L}_1 and ϕ a sentence of \mathcal{L}_1 .

Definition

The argument with all sentences in Γ as premisses and ϕ as conclusion is *valid* if and only if there is no \mathcal{L}_1 -structure under which:

- (i) all sentences in Γ are true; and
- (ii) ϕ is false.

Notation: when this argument is valid we write $\Gamma \vDash \phi$.

Let Γ be a set of sentences of \mathcal{L}_1 and ϕ a sentence of \mathcal{L}_1 .

Definition

The argument with all sentences in Γ as premisses and ϕ as conclusion is *valid* if and only if there is no \mathcal{L}_1 -structure under which:

- (1) all sentences in Γ are true; and
- (ii) ϕ is false.

Notation: when this argument is valid we write $\Gamma \vDash \phi$.

 $\{P \rightarrow \neg Q, Q\} \models \neg P$ means that the argument whose premises are $P \rightarrow \neg Q$ and Q, and whose conclusion is $\neg P$ is valid. Also written: $P \rightarrow \neg Q, Q \models \neg P$

We can use truth-tables to show that \mathcal{L}_1 -arguments are valid.

We can use truth-tables to show that \mathcal{L}_1 -arguments are valid.

Example Show that $\{P \rightarrow \neg Q, Q\} \models \neg P$.

We can use truth-tables to show that \mathcal{L}_1 -arguments are valid.

Example Show that $\{P \rightarrow \neg Q, Q\} \models \neg P$.

Р	Q	$P \rightarrow \neg Q$	Q	$\neg P$
Т	Т	TFFT	Τ	FT
Т	F	TTTF	F	F T
F	T	FTFT	T	TF
F	F	F T TF	F	TF

We can use truth-tables to show that \mathcal{L}_1 -arguments are valid.

Example Show that $\{P \rightarrow \neg Q, Q\} \models \neg P$.

$$P$$
 Q $P \rightarrow \neg Q$ Q $\neg P$ TTTFFTTFTTFFFTFTFFFTFTFTFFFTTFFFFTTF

Rows correspond to interpretations.

We can use truth-tables to show that \mathcal{L}_1 -arguments are valid.

Example Show that $\{P \rightarrow \neg Q, Q\} \models \neg P$.

Rows correspond to interpretations.

We can use truth-tables to show that \mathcal{L}_1 -arguments are valid.

Example Show that $\{P \rightarrow \neg Q, Q\} \models \neg P$.

Rows correspond to interpretations.

We can use truth-tables to show that \mathcal{L}_1 -arguments are valid.

Example Show that $\{P \rightarrow \neg Q, Q\} \models \neg P$.

Rows correspond to interpretations.

We can use truth-tables to show that \mathcal{L}_1 -arguments are valid.

Example Show that $\{P \rightarrow \neg Q, Q\} \models \neg P$.

Rows correspond to interpretations.

We can use truth-tables to show that \mathcal{L}_1 -arguments are valid.

Example Show that $\{P \rightarrow \neg Q, Q\} \models \neg P$.

$$\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|} P & Q & P \rightarrow \neg Q & Q & \neg P \\ \hline T & T & T & F & F & T & T & F & T \\ T & F & T & T & T & F & F & F & T \\ F & T & F & T & F & T & T & T & F \\ \hline \bullet & F & F & F & F & T & F & F & T & F \end{array}$$

Rows correspond to interpretations.

Other logical notions

Definition

A sentence ϕ of \mathcal{L}_1 is *logically true* (a *tautology*) iff:

• ϕ is true under all \mathcal{L}_1 -structures.

Other logical notions

Definition

A sentence ϕ of \mathcal{L}_1 is *logically true* (a *tautology*) iff:

• ϕ is true under all \mathcal{L}_1 -structures.

e.g. $P \lor \neg P$, and $P \rightarrow P$ are tautologies.

Other logical notions

Definition

A sentence ϕ of \mathcal{L}_1 is *logically true* (a *tautology*) iff:

• ϕ is true under all \mathcal{L}_1 -structures.

e.g. $P \lor \neg P$, and $P \rightarrow P$ are tautologies.

Truth tables of tautologies

Every row in the main column is a T.

A sentence ϕ of \mathcal{L}_1 is a *contradiction* iff:

• ϕ is not true under any \mathcal{L}_1 -structure.

A sentence ϕ of \mathcal{L}_1 is a *contradiction* iff:

• ϕ is not true under any \mathcal{L}_1 -structure.

e.g. $P \land \neg P$, and $\neg (P \rightarrow P)$ are contradictions.

A sentence ϕ of \mathcal{L}_1 is a *contradiction* iff:

• ϕ is not true under any \mathcal{L}_1 -structure.

e.g. $P \land \neg P$, and $\neg (P \rightarrow P)$ are contradictions.

Truth tables of contradictions Every row in the main column is an F.

Sentences ϕ and ψ are *logically equivalent* iff:

• ϕ and ψ are true in exactly the same \mathcal{L}_1 -structures.

Sentences ϕ and ψ are *logically equivalent* iff:

- ϕ and ψ are true in exactly the same \mathcal{L}_1 -structures.
- *P* and $\neg \neg P$ are logically equivalent.
- $P \land Q$ and $\neg(\neg P \lor \neg Q)$ are logically equivalent.

Sentences ϕ and ψ are *logically equivalent* iff:

- ϕ and ψ are true in exactly the same \mathcal{L}_1 -structures.
- *P* and $\neg \neg P$ are logically equivalent.
- $P \land Q$ and $\neg(\neg P \lor \neg Q)$ are logically equivalent.

Truth tables of logical equivalents The truth-values in the main columns agree.

PQ
$$P \land Q$$
 $\neg (\neg P \lor \neg Q)$ TTTTTFFTTFTFFFTTFFTFTFFFTTTFFTFFFTFTFTFFFFFFTTTTFFFFFTFTTT

Example

Show that the sentence $(P \rightarrow (\neg Q \land R)) \lor P$ is a tautology.
Worked example 4

Example

Show that the sentence $(P \rightarrow (\neg Q \land R)) \lor P$ is a tautology.

Method 1: Full truth table

- Write out the truth table for $(P \rightarrow (\neg Q \land R)) \lor P$.
- Check there's a T in every row of the main column.

Worked example 4

Example

Show that the sentence $(P \rightarrow (\neg Q \land R)) \lor P$ is a tautology.

Method 1: Full truth table

- Write out the truth table for $(P \rightarrow (\neg Q \land R)) \lor P$.
- Check there's a T in every row of the main column.

Р	Q	R	(P	\rightarrow	(¬	Q	\wedge	R))	$\lor P$
Т	Т	Т	T	F	F	Т	F	Т	TT
Т	Т	F	Т	F	F	Т	F	F	ТT
Т	F	T	Т	Т	Т	F	Т	Т	T T
Т	F	F	Т	F	Т	F	F	F	ТT
F	Т	T	F	Т	F	Т	F	Т	ΤF
F	Т	F	F	Т	F	Т	F	F	ΤF
F	F	T	F	Т	Т	F	Т	Т	TF
F	F	F	F	Т	Т	F	F	F	T F

Show that the sentence $(P \rightarrow (\neg Q \land R)) \lor P$ is a tautology.

- Put an F in the main column.
- Work backwards to show this leads to a contradiction.

Show that the sentence $(P \rightarrow (\neg Q \land R)) \lor P$ is a tautology.

- Put an F in the main column.
- Work backwards to show this leads to a contradiction.

Show that the sentence $(P \rightarrow (\neg Q \land R)) \lor P$ is a tautology.

- Put an F in the main column.
- Work backwards to show this leads to a contradiction.

Show that the sentence $(P \rightarrow (\neg Q \land R)) \lor P$ is a tautology.

- Put an F in the main column.
- Work backwards to show this leads to a contradiction.

Show that the sentence $(P \rightarrow (\neg Q \land R)) \lor P$ is a tautology.

- Put an F in the main column.
- Work backwards to show this leads to a contradiction.

Show that the sentence $(P \rightarrow (\neg Q \land R)) \lor P$ is a tautology.

- Put an F in the main column.
- Work backwards to show this leads to a contradiction.

Show that the sentence $(P \rightarrow (\neg Q \land R)) \lor P$ is a tautology.

- Put an F in the main column.
- Work backwards to show this leads to a contradiction.

Show that the sentence $(P \rightarrow (\neg Q \land R)) \lor P$ is a tautology.

- Put an F in the main column.
- Work backwards to show this leads to a contradiction.

Show that the sentence $(P \rightarrow (\neg Q \land R)) \lor P$ is a tautology.

- Put an F in the main column.
- Work backwards to show this leads to a contradiction.