
INTRODUCTION TO LOGIC

4 The Syntax of Predicate Logic

Volker Halbach

I counsel you, dear friend, in sum,
That first you take collegium logicum.
Your spirit’s then well broken in for you,
In Spanish boots laced tightly to,
That you henceforth maymore deliberately keep
The path of thought and straight along it creep,
And not perchance criss-cross may go,
A- will-o’-wisping to and fro.
Then you’ll be taught full many a day
What at one stroke you’ve done alway,
Like eating and like drinking free,
It nowmust go like: One! Two! Three!

Goethe, Faust I



Introduction

The argument
Zeno is a tortoise. All tortoises are toothless. Therefore
Zeno is toothless.

is logically valid but not propositionally valid: replacing ‘Zeno is
tortoise’, ‘All tortoises are toothless’, and ‘Zeno is toothless’
(uniformly) with other sentences doesn’t always yield another
valid argument.

But the validity is independent of themeaning of ‘Zeno’, ‘tortoise’,
and ‘toothless’; so in order to capture the validity of this
argument, I need to analyse the constituents of the sentences.

In the language L2 of predicate logic such arguments can be
analysed.
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4.1 Predicates and Quantification

Some sentences can be parsed into designators and predicate
expressions:

John
±

designator

is tall
²
predicate

.

London
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
designator

is bigger than
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

predicate

the capital of France
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±
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4.1 Predicates and Quantification

In predicate logic predicate expressions are translated into
predicate letters, such as P2, Q1, R5.

The upper index is called the ‘arity index’. It indicates howmany
designators the predicate takes. In the above examples

‘is tall’ takes one
‘is bigger than’ takes two
‘opens . . . with’ takes three

So the predicate expression ‘is tall’ can be translated as P1, ‘is
bigger than’ as Q2, and ‘opens . . . with’ as R3.
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4.1 Predicates and Quantification

Designators come in different varieties: as proper names like
‘Barack Obama’ or ‘the Eiffel Tower’ or as definite descriptions
like ‘the tallest student in Oxford’; and there aremore.
Designators (purport to) refer to one single object.

Especially proper names are formalised in L2 as ‘constants’.
Constants are a, b, c, a1, b1, c1, and so on.



4.1 Predicates and Quantification

Designators come in different varieties: as proper names like
‘Barack Obama’ or ‘the Eiffel Tower’ or as definite descriptions
like ‘the tallest student in Oxford’; and there aremore.
Designators (purport to) refer to one single object.

Especially proper names are formalised in L2 as ‘constants’.
Constants are a, b, c, a1, b1, c1, and so on.



4.1 Predicates and Quantification

Example
Tom hates Mary.

formalisation: P2ab

dictionary:

P2: . . . hates . . .
a: Tom
b: Mary

The arity index 2 is important: P2 takes two constants (as ‘hates’
takes two designators).

The order of a and b matters. 40



4.1 Predicates and Quantification

Using the same dictionary

Example
Tom hates Mary or Mary hates Tom.

is formalised as (P2ab ∨ P2ba).
Sentences of L2 can be combined using connectives in the same
way as L1-sentences.



4.1 Predicates and Quantification

Pronouns
I distinguish two uses of pronouns (like ‘him’, ‘she’ etc.):

(i) lazy uses:

Example
Tom hates Mary and hates

The pronoun can be replaced with the designator to which it
refers back.

(ii) quantificational uses:

Example
A person is morally responsible if and only if

The pronoun cannot be replaced with the noun to which it
refers back (without changing themeaning).
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(i) lazy uses:

Example
Tom hates Mary andMary hates Tom.

The pronoun can be replaced with the designator to which it
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refers back (without changing themeaning).



4.1 Predicates and Quantification

In

Example
A person is morally responsible if and only if she acts freely.

the pronoun ‘she’ is used to express generalisation.

There are other ways to express generalisation, but pronouns offer
a very flexible and efficient way of generalising.
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In

Example
A person is morally responsible if and only if she acts freely.

the pronoun ‘she’ is used to express generalisation.

There are other ways to express generalisation, but pronouns offer
a very flexible and efficient way of generalising.



4.1 Predicates and Quantification

Example
If an object

1

is part of another object

2

and it

2

is part of still
another object

3

, then it

1

is a part of it

3

.

Using numerical subscripts one can make the reference of the
pronouns clear and unambiguous. In the language L2 the
variables x, y, z, x1, y1, z1, x2, . . . play the role of pronouns that
are used for quantification.

If an object x1 is part of another object x2 and x2 is part of still
another object x3, then x1 is a part of x3.

To save on indices I’ll use x, y, z, x1, y1, z1, x2, . . .
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4.1 Predicates and Quantification

Here is how to express a generalisation using only pronouns and
generalisations over all objects.

Example
All tortoises are reptiles.

So
I need an expression in L2 that corresponds to ‘for all’. The
symbol ∀ is used for that purpose.

30
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generalisations over all objects.
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4.5 Formalisation

I didn’t specify the syntax of L2, and I didn’t say anything about
the semantics of L2; thus we cannot really discuss translations
from English into L2. But I’ll sketch how we’ll carry out
formalisations in L2.

For formalisations one can again first give the logical form and
then replace the English expressions by the correponding
L2-symbols.



4.5 Formalisation

Example
All epistemologists are philosophers.

This is the original sentence.



4.5 Formalisation

Example
For everything: if it is an epistemologist then it is a philosopher.

I reexpress the general claim using a pronoun.



4.5 Formalisation

Example
For all x: if x is an epistemologist then x is a philosopher.

I replace the pronoun with a variable.



4.5 Formalisation

Example
For all x: (if x is an epistemologist then x is a philosopher)

‘For all x’ is in logical form. I turn to the remaining sentence ‘if x is
an epistemologist then x is a philosopher’ and apply themethods
from propositional logic. As ‘if . . . then’ is a standard connective I
put the expression in brackets and turn to the subsentences.



4.5 Formalisation

Example
For all x: (if (x is an epistemologist) then x is a philosopher)

‘x is an epistemologist’ is a designator and a predicate: it cannot
be sensibly be reformulated with a connective or a generalising
expression such as ‘for all’. so I enclose it in brackets and leave it
alone.



4.5 Formalisation

Example
For all x: (if (x is an epistemologist) then (x is a philosopher))

The same applies to ‘x is a philosopher’.



4.5 Formalisation

From the logical form the L2-sentence can be obtained by the
following substitutions

Example
For all

∀

x: (if (x is an epistemologist)

Q1x

then

→

(x is a philosopher)

P1x

)

This is the logical form.



4.5 Formalisation

From the logical form the L2-sentence can be obtained by the
following substitutions

Example

For all

∀ x

:

(

if

(x is an epistemologist)

Q1x then

→ (x is a philosopher)

P1x

)

The standard connectives are replacedwith the respective symbols.
‘for all’ is replaced with ∀.



4.5 Formalisation

From the logical form the L2-sentence can be obtained by the
following substitutions

Example

For all

∀ x

:

(

if (x is an epistemologist)

Q1x

then

→

(x is a philosopher)

P1x)

‘x is an epistemologist’ is formalised as the atomic formula Q1x,
and ‘x is a philosopher is formalised as P1x.’ as in the case of
propositional logic the brackets around sentence that are not fur-
ther analysable are dropped.



4.5 Formalisation

From the logical form the L2-sentence can be obtained by the
following substitutions

Example

For all

∀ x

:

(

if (x is an epistemologist)

Q1x

then

→

(x is a philosopher)

P1x)

So the sentence is formalised as ∀x (Q1x → P1x) with the follow-
ing dictionary:

P1: . . . is a philosopher
Q1: . . . is an epistemologist



4.5 Formalisation

Example
Some philosophers are logicians.

This is the original sentence.



4.5 Formalisation

Example
At least one philosopher is a logician.

I understand the sentence as saying this.



4.5 Formalisation

Example
There is at least one thing such that it is a philosopher and it is a
logician.

I reexpress the claim using a pronoun. Now this isn’t a generali-
sation but rather an existential claim. So I put ‘at least one thing’
rather than ‘everything’.



4.5 Formalisation

Example
There is at least one x: x is a philosopher and x is a logician.

‘There is at least one x’ is in logical form. I turn to the remaining
sentence.



4.5 Formalisation

Example
There is at least one x: (x is a philosopher and x is a logician)

As ‘and’ is a standard connective I put the expression in brackets
and turn to the subsentences.



4.5 Formalisation

Example
There is at least one x: ((x is a philosopher) and (x is a logician))

‘x is a philosopher’ and ‘x is a logician’ cannot be further analysed
with a connective or an expression such as ‘for all’ ‘there is at least
one’. So I enclose them in brackets and leave them alone.



4.5 Formalisation

Example
There is at least one x: ((x is a philosopher) and (x is a logician))

This is formalised as:

∃x (P1x ∧ R1x)

P1: . . . is a philosopher
R1: . . . is a logician



4.5 Formalisation

Example
All persons have a soul.

This is my example.



4.5 Formalisation

Example
For all x: if x is a person then x has a soul

I reformulate the sentence using variables (I skip the step with
pronouns.)



4.5 Formalisation

Example
For all x: (if x is a person then x has a soul)

‘if . . . then’ is a standard connective, so I enclose the expression
with this connective in brackets. . .



4.5 Formalisation

Example
For all x: (if x is a person then x has a soul)

. . . and turn to the first subsentence, which cannot be further
reformulated using connectives or quantifying expressions such
as ‘for all’ or ‘there is at least one’.



4.5 Formalisation

Example
For all x: (if (x is a person) then x has a soul)

So I enclose it in brackets. . .



4.5 Formalisation

Example
For all x: (if (x is a person) then x has a soul)

. . . and turn to the other sentence. ‘x has a soul’ contains an
existential claim. It means that x has at least one soul, that is, there
is at least one y such that x has y and y is a soul.



4.5 Formalisation

Example
For all x: (if ((x is a person) then there is at least one y: x has y
and y is a soul)

So I replace ‘x has a soul’ with this reformulation. Here hemust
use a new variable (ie, a variable different from x) because x should
still refer back to ‘forall x’ and not get caught (bound) by ‘there is
at least one’.



4.5 Formalisation

Example
For all x: (if (x is a person) then there is at least one y: (x has y
and y is a soul))

I introduce brackets for the standard connective ‘and’.



4.5 Formalisation

Example
For all x: (if (x is a person) then there is at least one y: ((x has y)
and (y is a soul)))

‘x has y’ and ‘y is a soul’ cannot be further analysed and I am done.



4.5 Formalisation

Starting from the logical I go on to the formalisation:

Example
For all x: (if (x is a person) then there is at least one y: ((x has y)
and (y is a soul)))

This is the logical form.

P1: . . . is a person
Q2: . . . has . . .
R1: . . . is a soul

20



4.5 Formalisation

Starting from the logical I go on to the formalisation:

Example
∀x ((x is a person)→ ∃y ((x has y) ∧ (y is a soul)))

I introduce the symbols for connectives and quantifiers.

P1: . . . is a person
Q2: . . . has . . .
R1: . . . is a soul

20



4.5 Formalisation

Starting from the logical I go on to the formalisation:

Example
∀x (P1x → ∃y (Q2xy ∧ R1y))

Predicate expressions are replaced with predicate letters of an
appropriate arity. . .

P1: . . . is a person
Q2: . . . has . . .
R1: . . . is a soul

20



4.5 Formalisation

Starting from the logical I go on to the formalisation:

Example
∀x (P1x → ∃y (Q2xy ∧ R1y))

. . . using the following dictionary:

P1: . . . is a person
Q2: . . . has . . .
R1: . . . is a soul

20



4.2 The Sentences of L2

Everything up to this point is just an informal blurbmotivating
the following definitions.

I am now going to specify the syntax of L2 in precise terms.

Definition (predicate letters)
All expressions of the form Pk

n , Qk
n , or Rk

n are predicate letters,
where k and n are either missing (no symbol) or a numeral ‘1’, ‘2’,
‘3’, . . .

So the letter P with or without numerals ‘1’, ‘2’, and so on as upper
and/or lower indices is a predicate letter, and similarly for
Q and R. The sentence letters P, Q, R, P1, Q1, . . . are also
predicate letters, according to this definition. Furthermore,
P1, Q1, R1, P1

1 , Q1
1 , R1

1, P1
2, Q1

2, R1
2, . . . , P2

1 , Q2
1 , R2

1 , P2
2 , Q2

2 , R2
2, and so

on, are predicate letters.
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4.2 The Sentences of L2

Everything up to this point is just an informal blurbmotivating
the following definitions.

I am now going to specify the syntax of L2 in precise terms.

Definition (predicate letters)
All expressions of the form Pk

n , Qk
n , or Rk

n are predicate letters,
where k and n are either missing (no symbol) or a numeral ‘1’, ‘2’,
‘3’, . . .

So the letter P with or without numerals ‘1’, ‘2’, and so on as upper
and/or lower indices is a predicate letter, and similarly for
Q and R. The sentence letters P, Q, R, P1, Q1, . . . are also
predicate letters, according to this definition. Furthermore,
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4.2 The Sentences of L2

Definition
The value of the upper index of a predicate letter is called its arity.
If a predicate letter does not have an upper index its arity is 0.

Definition (constants)
a, b, c, a1, b1, c1, a2, b2, c2, a3, . . .are constants.

Definition (variables)
x, y, z, x1, y1, z1, x2, . . .are variables.
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4.2 The Sentences of L2

Definition
The value of the upper index of a predicate letter is called its arity.
If a predicate letter does not have an upper index its arity is 0.

Definition (constants)
a, b, c, a1, b1, c1, a2, b2, c2, a3, . . .are constants.

Definition (variables)
x, y, z, x1, y1, z1, x2, . . .are variables.



4.2 The Sentences of L2

Definition (atomic formulae of L2)
If Z is a predicate letter of arity n and each of t1, . . . , tn is a
variable or a constant, then Zt1 . . . tn is an atomic formula of L2.

Example
The following expressions are atomic formulae of L2:

Q1x
P2cy
P3
5 x31c4y

R2xx
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4.2 The Sentences of L2

Definition
A quantifier is an expression ∀v or ∃v where v is a variable.

Thus, ∀x348 and ∃z are quantifiers.
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4.3 Free and Bound Occurrences of Variables

The formula P1x isn’t a sentence. Only once the variable x is used
or bound by some quantifier is becomes a sentence.
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refers back to a quantifier; otherwise the occurrence is free.

Example

∀x
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4.3 Free and Bound Occurrences of Variables

Roughly speaking, an occurrence of a variable is bound iff it
refers back to a quantifier; otherwise the occurrence is free.

Example

∀x

(P1x → Q2ax)

In this formula both occurrences of the variable x are free.



4.3 Free and Bound Occurrences of Variables

Roughly speaking, an occurrence of a variable is bound iff it
refers back to a quantifier; otherwise the occurrence is free.

Example
∀x (P1x → Q2ax)

Now both occurrences of the variable x refer back to the
quantifier ∀x, so they are both bound.



4.3 Free and Bound Occurrences of Variables

Example
(∀x P1x → Q2ax)

In this formula only the first red occurrence of x refers back to
∀x; it’s bound by this quantifier; the second (i.e. green)
occurrence is free.
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4.3 Free and Bound Occurrences of Variables

Definition

(i) All occurrences of variables in atomic formulae are free.

(ii) The occurrences of a variable that are free in ϕ and ψ are
also free in ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ → ψ) and (ϕ↔ ψ).

(iii) In a formula ∀v ϕ no occurrence of the variable v is free; all
occurrences of variables other than v that are free in ϕ are
also free in ∀v ϕ.

(iv) In a formula ∃v ϕ no occurrence of the variable v is free; all
occurrences of variables other than v that are free in ϕ are
also free in ∃v ϕ.

An occurrence of a variable is bound in a formula if and only if it
is not free.
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4.3 Free and Bound Occurrences of Variables

I look at my example again to illustrate the definition:

Example
P1x

P1x is an atomic formula. . .



4.3 Free and Bound Occurrences of Variables

I look at my example again to illustrate the definition:

Example
∀x P1x

Writing ∀ x in front of P1x binds the green occurrence of x.



4.3 Free and Bound Occurrences of Variables

I look at my example again to illustrate the definition:

Example
∀x P1x Q2ax

Q2ax is an atomic formula, so the red occurrence of x is free.
Q2ax is still not related to P1x.



4.3 Free and Bound Occurrences of Variables

I look at my example again to illustrate the definition:

Example
(∀x P1x → Q2ax)

Now I combine the two formulae using→ but that doesn’t make
the red occurrence of x a bound occurrence.



4.3 Free and Bound Occurrences of Variables

Definition
A variable occurs freely in a formula if and only if there is at least
one free occurrence of the variable in the formula.

Definition (sentence of L2)
A formula of L2 is a sentence of L2 if and only if no variable
occurs freely in the formula.



4.3 Free and Bound Occurrences of Variables

Definition
A variable occurs freely in a formula if and only if there is at least
one free occurrence of the variable in the formula.

Definition (sentence of L2)
A formula of L2 is a sentence of L2 if and only if no variable
occurs freely in the formula.



4.4 Notational Conventions

This section doesn’t concern the syntax of L2; it just contains
some rules for abbreviating formulae of L2. These rules do not
form part of the syntax of L2, they just are conventions that allow
one to abbreviate formulae.

The bracketing conventions of L1 apply also to L2 formulae.

Convention
An L2-formulamay be abbreviated by dropping the arity indices.

So instead of P2xy onemay write Pxy.
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This section doesn’t concern the syntax of L2; it just contains
some rules for abbreviating formulae of L2. These rules do not
form part of the syntax of L2, they just are conventions that allow
one to abbreviate formulae.

The bracketing conventions of L1 apply also to L2 formulae.

Convention
An L2-formulamay be abbreviated by dropping the arity indices.

So instead of P2xy onemay write Pxy.



4.4 Notational Conventions

Example
∀x ((P1x ∧ R2

5

5

xa)→ ∃y2((R2
5

5

xy2 ∧ Q1x) ∧ P1y2))

This is the sentence. Now I apply the rules for abbreviating
formulae of L2.



4.4 Notational Conventions

Example
∀x ((P1x ∧ R2

5

5

xa)→ ∃y2((R2
5

5

xy2 ∧ Q1x) ∧ P1y2))

The connective ∧ binds more strong than→; so I drop the the red
brackets



4.4 Notational Conventions

Example
∀x ( P1x ∧ R2

5

5

xa → ∃y2((R2
5

5

xy2 ∧ Q1x) ∧ P1y2))

The pair of green brackets can be dropped because in chains of
formulae with ∧ ‘left-bracketing’ applies.



4.4 Notational Conventions

Example
∀x ( P1x ∧ R2

5

5

xa → ∃y2( R2
5

5

xy2 ∧ Q1x ∧ P1y2))

And then, according to the new rule, I can drop the arity indices
from all predicate letters.



4.4 Notational Conventions

Example
∀x ( P

1

x ∧ R

2
5

5xa → ∃y2( R

2
5

5xy2 ∧ Q

1

x ∧ P

1

y2))

Note that there is no pair of outer brackets that I could drop. The
formula cannot be further abbreviated.



4.4 Notational Conventions

In the abbreviation

Pa ∧ Pab

the two occurrences of P stand for different predicate letters,
which becomes obvious when arity indices are added:

(P1a ∧ P2ab)



4.5 Formalisation

This is onlymy first stab on formalisation in L2. In Chapter 7 I’ll
take up the topic again after specifying the semantics of L2.
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