STRATEGIES IN SYNTHESIS 1

Professor T. J. Donohoe

MT 2007

6 Lectures: Tuesday at 10 am; Thursday at 9 am (weeks 6-8)
DP: Lecture Theatre

Monensin

Kishi J. Am. Chem. Soc, 1979, 101, 259.

A copy of this handout is available at:

http://users.ox.ac.uk/~magd1571/Teaching/Teaching.htm

Strategies in Synthesis

Synopsis

1) **Introduction to synthesis**: why do we want to synthesise molecules- what sort of molecules do we need to make?

What aspects of selectivity do we need to exert to accomplish a good synthesis (chemo-, regioand stereoselectivity)

- 2) Protecting group chemistry is central to any synthetic effort (examples)
- 3) **Retrosynthesis** learning to think backwards (revision from first year). Importance of making C-C bonds and controlling oxidation state. Umpolung
- 4) Examples of retrosynthesis/synthesis in action.
- 5) Handy hints for retrosynthesis

Recommended books:

General: Organic Chemistry (Warren et al)

Organic Synthesis: The Disconnection Approach (S. Warren) Classics in Total Synthesis Volumes I and II (K. C. Nicolaou)

The Logic of Chemical Synthesis (E. J. Corey)

1) Why do we want to synthesise complex molecules?

Taxol

Strychnine

Sidenafil

In order to undertake the synthesis of a complex organic molecule, we need to control the following:

- 1) Carbon
- 2) Functional
- 3) Stereochemistry

In order to control 1) and 2)

Chemoselectivity

Regioselectivity

Protecting group strategy

A) CHEMOSELECTIVITY

Using different tactics we can reduce each of the

a) $\mathbf{H_2}$, $\mathbf{Pd}\text{-}\mathbf{C}$. This reagent is sensitive to steric

b) Na, NH₃, tBuOH (1 eq.)

Q. What would happen if we added >2 eq. of tBuOH?

c) $NaBH_4$, $CeCl_3$ (Luche reduction)

What does $CeCl_3$ do to sodiumborohydride?

This process is promoted by

B) REGIOSELECTIVITY

How to influence regioselectivity by

C) PROTECTING GROUPS (are essential to most syntheses)

There are tactics for protecting the least and the most hindered groups.

RETROSYNTHESIS

The theory (Corey- Nobel prize

1) Think about reactions in reverse

$$A-B \xrightarrow{X}$$

2) Use disconnections to break down molecules

$$\bigcap_{\mathbb{N}} \mathbb{N} \longrightarrow$$

$$\longrightarrow$$

$$\bigcap_{\mathbf{N}} \bigvee_{\mathbf{N}} \longrightarrow$$

$$\bigcirc$$

Make sure that your disconnections correspond to known and

3) Synthons: These are simply

There are two ways of analysing a single

A number shows the position of the charge relative to the

9

$$\bigcap_{\mathsf{N}} \bigvee_{\mathsf{H}} \longrightarrow$$

$$\bigcap_{\mathbf{N}} \mathbb{N} \longrightarrow$$

$$\sim$$
 \sim

You have to decide which synthon is realistic and

Remember the concept of UMPOLUNG is helpful (especially) with carbonyl groups:

1) Normal reactivity of the carbonyl group

$$\bigcirc$$

2) Use **UMPOLUNG** to reverse the reactivity of the carbonyl group

$$\Theta$$

The hard part is choosing a particular disconnection (from several others) in a complex molecule.

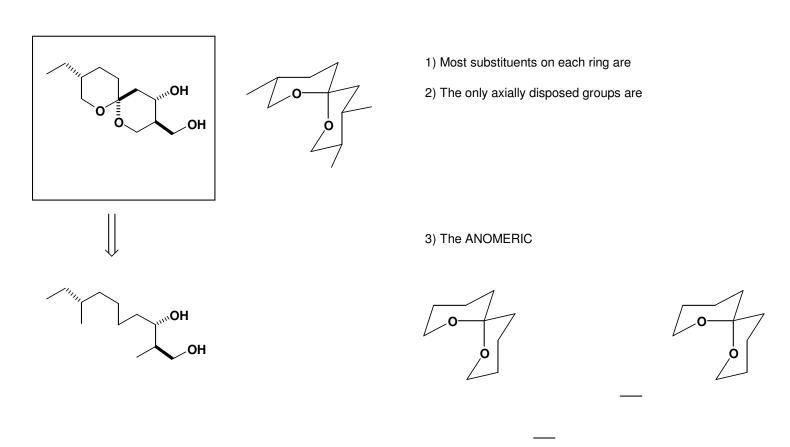
4) Sometimes functional group interconversion on the target helps

Simple
$$\longrightarrow$$
 FGI \longrightarrow

More difficult

Even stereochemistry can be altered in this way.

Some problems: How would you synthesise the following? (Hint: think about Diels Alder)

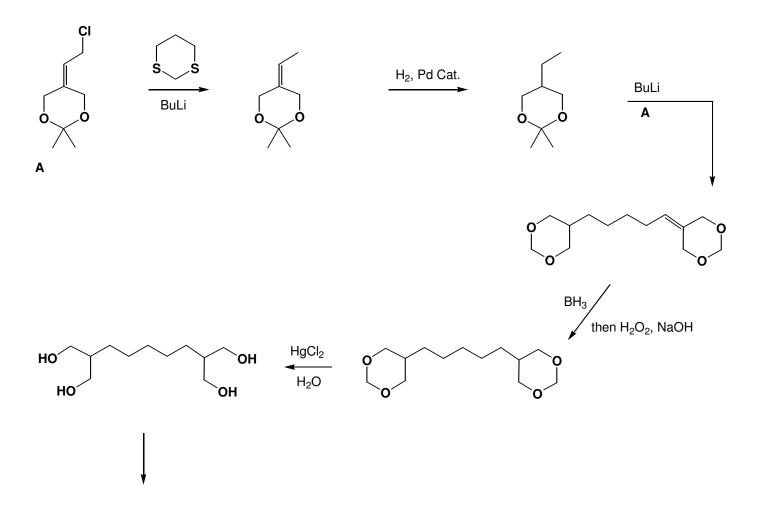

Synthesis 1) Eletriptan (Pfizer) Migraine

The synthesis:

Mechanism for this step is:

To finish the synthesis

Synthesis 2) Talaromycin B (Schrieber, *Tetrahedron Letters*, 1983, P4781)



Further disconnections are possible

The synthesis in full:

1) Preparation of the starting materials

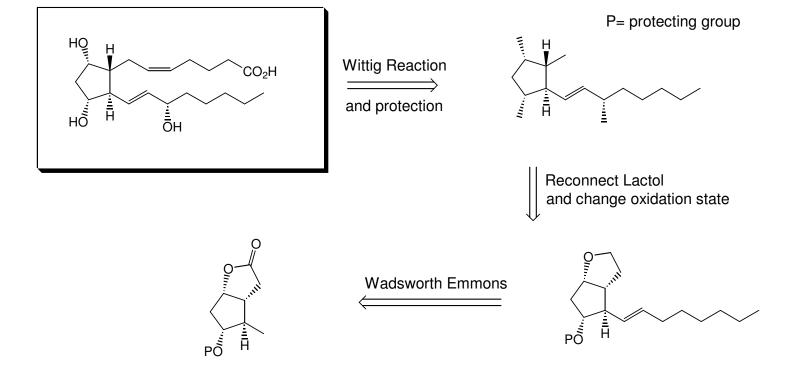
Putting these pieces together:

And finally,

Synthesis 3) Estradiol (Helvetica Chimica Acta, 1980, 63, 1703)

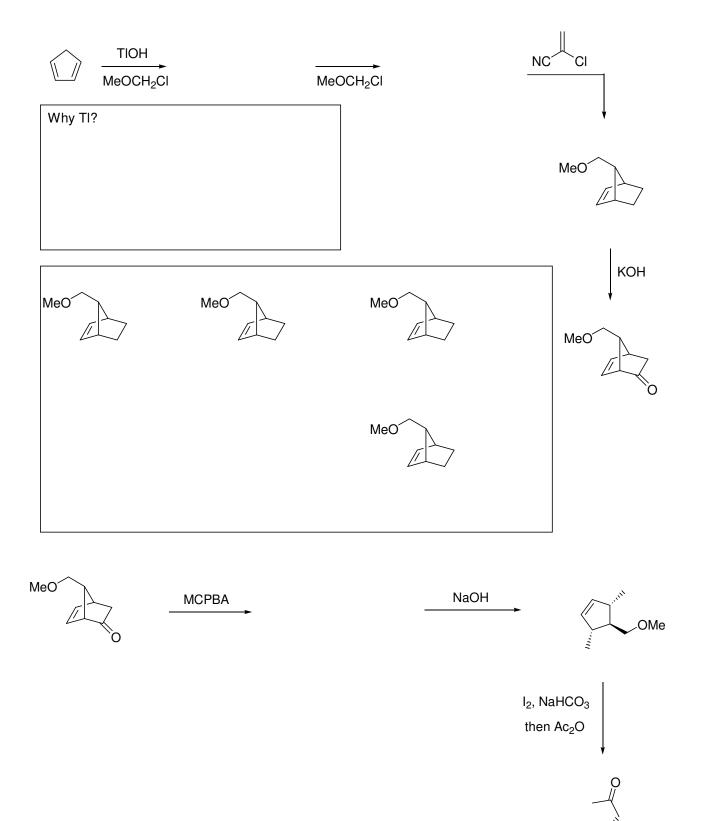
HO OH

Now the synthesis.


think about relative

The other half:

The end-game


And finally,

Synthesis 4) Prostaglandin $F_{2\alpha}$ (Journal of the American Chemical Society, 1969, P5675) E. J. Corey

AND

The synthesis:

AcÕ

mechanism of iodide reduction:

Reduction of the C=O bond

How do you make the ylid?

$$Ph_3P$$
 CO_2

Why do non-stabilised

Finally, to complete the synthesis: