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Figure Al. Word cloud for top 10 chief complaints for attendances at the JR hospital during the
training period.
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Figure A2. Plots of population-level features for Oxfordshire recorded daily. Panel 1a: COVID-19
cases, 1b: COVID-19 hospitalizations at the Oxford University Hospitals (OUH), 1c: number of
mechanical ventilator beds in use at the OUH, 1d: mobility data from Google for (i) retail and recreation,
(ii) grocery and pharmacy, (iii) parks, (iv) transit stations, and (v) workplace, le: Stringency index, and
1f: Percentage vaccinated. The data is presented for the period 1 March 19-30 Sept 21, inclusive.
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Note: Google mobility data was not available for the pre-pandemic period and was thus treated as zero.



Random Forests (RFs)

In addition to RF with priors, we investigated two other approaches to deal with class imbalance,
namely RUSBoost and RF and ADASYN, which are discussed below:

RUSBoost — This algorithm of Seiffert et al. (2010) is a hybrid approach based on the concept of
random undersampling (RUS) and boosting. It comprises two steps: (1) Using only the training data,
we randomly undersample observations from the majority class (without replacement) until both classes
had the same number of observations. (2) Boosting is used to train the classification trees iteratively
using the resampled (balanced) dataset (Freund and Schapire 1996). Initially, all training observations
are assigned equal weight. With each iteration, misclassified observations are given a higher weight.
With subsequent iterations, the model focuses more on observations that are harder to classify correctly.
After the iterations, a weighted voting scheme is used across the classification trees to issue a final
prediction. This algorithm required the estimation of the number of trees, the minimum size of the leaf

node, the number of features to use for split-point selection, and a learning rate for shrinkage.

RF with ADASYN - A drawback of under-sampling approaches is a loss of information.
Oversampling algorithms mitigate this by replicating observations from the minority class. We
employed the adaptive synthetic (ADASYN) oversampling approach that generates synthetic data by
performing slight perturbations on the minority class observations (He et al. 2008). An attractive feature
of ADASYN is that it generates more synthetic data for those minority class observations that are harder
to learn by adaptively shifting the decision boundary (i.e., the surface that corresponds to the
demarcation of observations from the two classes). ADASYN calculates the number of synthetic
observations to be generated using a k-nearest neighbour approach to achieve a predefined balance,
which we set as 50:50. The synthetic observations are generated by linear combining two minority
observations that belong to the same neighbourhood. ADASYN required the estimation of k (number
of nearest neighbours), the number of trees, the minimum size of the leaf node, and the number of

features for split-point selection.



Table Al. Out-of-sample mean AUC (and 95% confidence intervals) for predicting the risk of hospital
admission from the ED at the JR using the methods RUSBoost, RF with ADASYN, and RF with priors,
and feature matrices X, X; U X,, and X; U X, U X;.

Internal Validation: The JR Hospital

Method X, X, UX, X, UX, UX,
RUSBoost 0.605 (0.601-0.608)  0.838 (0.836-0.840)  0.836 (0.834-0.838)
RF with ADASYN 0.721 (0.718-0.724)  0.871(0.869-0.872)  0.877 (0.875-0.879)
RF with priors 0.728 (0.725-0.731)  0.881 (0.879-0.883)  0.882 (0.880-0.884)

Note: Higher values of the AUC are better. Bold indicates the best result in each column.



Table A2. Internal validation: Out-of-sample AUC values (95% CI) for forecasting risk of patient
admission at the JR hospital using: RUSBoost, RF with ADASYN, and RF with priors, whereby for
each classifier, we employ: only X1, only X, UX,, and X; UX,UX3. AUC for a perfect classifier is 1.

JR Hospital Performance Score (AUC) —Top 5 reasons for admissions
Chlef Complalnt AUC1:X1 AUCZ: XIUXZ AUC3: XIUXZUX3
1. Abdominal pain

RUSBoost 0.547-0.569 0.633-0.655 0.635-0.654
RF with ADASYN 0.608-0.629 0.681-0.702 0.683-0.703
RF with priors 0.612-0.632 0.686-0.708 0.688-0.709
2. Dyspnoea

RUSBoost 0.579-0.605 0.701-0.727 0.735-0.760
RE with ADASYN 0.725-0.750 0.824-0.845 0.837-0.855
RF with priors 0.731-0.756 0.841-0.860 0.842-0.860
3. Chest pain

RUSBoost 0.535-0.557 0.577-0.599 0.568-0.589
RF with ADASYN 0.623-0.644 0.685-0.708 0.699-0.718
RF with priors 0.633-0.653 0.705-0.724 0.713-0.733
4. Injury of lower limb

RUSBoost 0.672-0.701 0.948-0.956 0.945-0.953
RF with ADASYN 0.869-0.888 0.956-0.963 0.957-0.964
RF with priors 0.867-0.887 0.958-0.964 0.957-0.965
5. Instability of gait

RUSBoost 0.526-0.574 0.613-0.660 0.608-0.654
RF with ADASYN 0.601-0.648 0.653-0.697 0.656-0.696
RF with priors 0.617-0.661 0.653-0.696 0.661-0.705

Note: Highest AUC values using only X;, only X; UX,, and X; UX,UX;5 are highlighted in bold.



Table A3. Internal and external validation: out-of-sample Brier score, calibration-in-the-large, and
calibration slope values, for forecasting the risk of patient admission at the JR and HG hospital using:
RF with ADASYN and RF with priors, whereby for each classifier, we employ: only X;, only X; UX,,

and X;UX,UX;.
A Internal Validation: The JR Hospital
Brier score
Method X1 X,UX, X1UX,UX;
RF with ADASYN 0.196 0.137 0.132
RF with priors 0.188 0.130 0.130
Calibration intercept
Method X; X,UX, X;UX,UX;
RF with ADASYN -0.365 -0.377 -0.140
RF with priors -0.050 -0.002 0.048
Calibration slope
Method X4 X,1UX, X,1UX,UX;
RF with ADASYN 1.038 1.050 1.274
RF with priors 0.958 1.070 1.207
B. External Validation: The HG Hospital
Brier Score
Method Xi X,UX, X;UX,UX;
RF with ADASYN 0.159 0.153 0.127
RF with priors 0.148 0.111 0.113
Calibration intercept
Method Xi X,UX, X;UX,UX;
RF with ADASYN -0.858 -1.366 -1.064
RF with priors -0.667 -0.545 -0.607
Calibration slope

Method Xi X,UX, X;UX,UX;
RF with ADASYN 1.459 1.097 1.559
RF with priors 1.358 1.340 1.458




Figure A3. Calibration plots for out-of-sample probability forecasts of hospital admission from the ED
at the JR for RF with priors, using feature matrices X; and X; U X,.
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Figure A4. Calibration plots and evaluation of costs associated with decision-making for the out-of-
sample probability forecasts of hospital admission from the ED at the JR and HG for RF with priors
using X, UX,.
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Table A4. Confusion matrix for predicting the triage category.

Prediction
Major injury Minor injury Urgent care
_ Major injury 80.0% 18.8% 11.2%
% Minor injury 21.8% 77.1% 1.1%
< Urgent care 41.3% 53.3% 5.4%

Note: higher values along the diagonal are better.

Confusion matrix to assess the out-of-sample accuracy for predicting the triage category. The triage
category, as assigned by the clinical staff, was assumed to be the actual “gold standard” (or the label).
The model could predict patients with ‘major injury’, “‘minor injury’, and “urgent care’ with an accuracy
of 80%, 77.1%, and 5.4%, respectively. Note that Patients triaged as ‘urgent care’ comprised only 3.4%
of visits in the out-of-sample period.

To predict the triage category, we implemented a single classification tree with default
hyperparameters (a minimum leaf size of one). For random forests, artificial neural networks (ANNS),
and logistic regression, we estimated model hyperparameters using the last month of the training data
as the cross-validation hold-out sample. For random forests, the selected hyperparameters were as
follows: number of trees = 10, minimum leaf size =5, number of features to use for split point selection
= square root of the total number of features considered (rounded to the nearest integer). For ANNSs, the
selected architecture was as follows: number of hidden layers = 1, and number of nodes in a hidden
layer = 5. The out-of-sample model performance for this multi-class classification problem was
guantified using accuracy, which is calculated by dividing the correct predictions (true positive + true
negative) by the total number of observations (true positive + true negative + false positive + false
negative). The out-of-sample accuracy for the four modelling approaches was as follows (in brackets):
classification tree (0.76), random forests (0.72), ANNs (0.67), and logistic regression (0.68). We
acknowledge that finer tuning of the hyperparameter selection process and trying different activation
functions for ANNs may have improved the performance of the sophisticated approaches. Nonetheless,

we used a single classification tree due to its ease of implementation and interpretation.



Table A5. Patient group number, brief description, and the corresponding attendances (as a percentage
of the total attendances for the JR hospital, calculated using only the training data).

Patient Group Number: Brief description and corresponding attendance (as %)

10: road traffic accident 0.8%

20: assault 1.6%

30: deliberate self-harm 2.3%

40: sports injury 0.6%

50: fireworks injury <0.001%
60: other accident 94.3%
70: brought in dead 0%

80: other than above 0.3%

Figure A5. Relative frequencies of the total length of stay for the original dataset and model simulation
generated under risk scenarios.
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Figure A5 presents the original LOS with corresponding LOS obtained from model simulations for
different values of threshold (p.,iticqr) USed to decide if a patient would need admission. Note that a
patient is admitted if the predicted probability is higher than the pre-defined threshold (p > pcriticar)-
In the above figure, we keep penalty (0) fixed at 2.5 minutes and vary periticqr- 1he figure shows that
lower values of p.,i+icq; are associated with incentivizing an early intervention to admit a patient, which
results in early decision-making (at the time of patient registration), while a higher value of p.,itica: 1S
associated with a slightly delayed LOS. For all values of p_,iticq; COnsidered in this study, the impact
of the 4-hour waiting time target on the LOS distribution was less prominent compared to the actual

dataset.



Figure A6. Relative frequencies of the total length of stay (along with corresponding ECDFs in the
inset) for the original dataset and model simulation. Simulation results are presented for a risk-neutral
strategy (Pcriticar = 0-5) and a penalty (8) of 1 minute.
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In Figure A6, compared to the original LOS distribution, the simulated LOS is lower, and the

distribution is relatively smoother, with a higher proportion of patients being admitted around the time

of registration. The inset in Figure A6 presents the empirical cumulative distribution function (ECDF)

of the original and simulated LOS, showing that the stratification of patients using admission-risk at

registration would be the preferred option based on comparison of the two ECDFs using a probabilistic

approach (i.e., stochastic dominance). However, for a large penalty associated with decision-making (6

of 10 minutes), the simulated LOS is slightly higher, as shown in Figure A7. This result suggests that

for higher penalty (5), there is little value in using model prediction to decide if a patient needs

admission at the time of registration (compared to admitting a patient based on clinical assessment).

Figure A7. Relative frequencies of the total length of stay (along with corresponding ECDFs in the
inset) for the original dataset and model simulation. Simulation results are presented for a risk-neutral
strategy (Pcriticar = 0-5) and a penalty (8) of 10 minutes.
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Figure A8. Mean and standard deviation of LOS (in minutes) resulting from the simulation for patients
triaged as ‘urgent care’ in the out-of-sample period along with corresponding actual LOS. Different
values considered (on the x-axes) for the penalty & (in minutes) associated with a false positive and a
false negative. Predictions were generated using the feature matrix, X; U X,, using the integrated dataset
from the two ED sites. The simulated LOS is presented using blue vertical lines, where the blue circles
in the centre denote the mean and the horizontal bars at the end denote one standard deviation from the
mean.
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In Figure A8, we see that the model can help reduce waiting times for patients triaged as ‘urgent care’
that need admission (panel al) if the penalty imposed for a wrong decision to admit/not admit a patient
is less than around 5.5 minutes (using 6zp = 8zy). This improvement, however, comes at a cost of an
increase in waiting times for patients (with the same triage category) that do not need admission (panel
a2), for all values of the penalties considered in this study. These findings are overall consistent with

patients who were triaged as ‘major injury’, as discussed in Section 5.2.

11



Figure A9. Length of stay (LoS, in minutes) for the JR and HG hospital sites for a range of penalty
values (in minutes) associated with a false positive and a false negative. Predictions were generated
using RF with priors (with X; and X,) using the joint dataset from the two ED sites. LoS (mean and
standard deviation) is presented for patients in the out-of-sample period. The decision to admit a patient
were based on a risk-averse strategy (p¢rir = 0.4).
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Note: lower LOS values are better. Black and grey lines denote the mean and one standard deviation from the
mean of the original LOS, respectively. Blue error bars indicate LOS from simulations for different penalties.

In Figure A9, we present the original and simulated LOS for different penalties associated with a
wrong decision to admit/not admit a patient. We use a lower threshold for admitting a patient (risk-
averse strategy, periticar = 0-4). Note that lower values of piticq; iNCeNtivizes admission, which, as
expected, translates into a further improvement in the LOS for high admission risk patients. However,
this comes at the cost of a higher increase in LOS for low admission risk patients. Similarly, using a
higher threshold to admit a patient (less risk-averse strategy, periticar = 0.6) results in a smaller
improvement in LOS for high admission risk patients as a higher p.,iticq; disincentivizes admission at

the time of registration, as presented in Figure A10.

12



Figure A10. Length of stay (LoS, in minutes) for the JR and HG hospital sites for a range of penalty
values (in minutes) associated with a false positive and a false negative. Predictions were generated
using RF with priors (with X; and X,) using the joint dataset from the two ED sites. LoS (mean and
standard deviation) is presented for patients in the out-of-sample period. The decision to admit a patient
were based on a less risk-averse strategy (pcrir = 0.6).
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Note: lower LOS values are better. Black and grey lines denote the mean and one standard deviation from the
mean of the original LOS, respectively. Blue error bars indicate LOS from simulations for different penalties.
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Figure All. Mean and standard deviation of LOS (in minutes) resulting from the simulation for patients
in the out-of-sample period along with corresponding actual LOS. Three different scenarios are
considered (on the x-axes): (1) 6gp = Spp, (2) Spp = 0.5X Spy, and (3) 8zp =1.5X 8y, for the penalty
Sgn chosen as ten minutes. Predictions were generated using the feature matrix, X; U X,, using the
integrated dataset from the two ED sites, for a risk-neutral strategy (peritica; = 0.5) and the highest
penalty value, 6zy = 10 minutes. The simulated LOS is presented using blue vertical lines, where the
blue circles in the centre denote the mean and the horizontal bars at the end denote one standard
deviation from the mean.
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Table A6. Out-of-sample MAE and RMSE for estimating the number of bed requests from the EDs to
the hospital at the JR and HG using triage category that is clinician-administered and digitally assessed,
calculated using a 2-hour moving window.

Triage Category Clinician-administered Digitally assessed (TeleTriage)
MAE RMSE MAE RMSE
Integrated dataset 1.84 241 2.31 3.08
JR dataset 1.69 2.22 1.93 2.57
HG dataset 0.93 1.21 1.01 1.33

Table A7. Out-of-sample MAE and RMSE for estimating the number of bed requests from the EDs to
the hospital at the JR and HG using triage category that is clinician-administered and digitally assessed,
calculated using a 3-hour moving window.

Triage Category Clinician-administered Digitally assessed (TeleTriage)
MAE RMSE MAE RMSE
Integrated dataset 2.34 3.04 3.14 4.15
JR dataset 2.24 2.90 1.93 2.57
HG dataset 1.16 1.52 1.30 1.72
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Table A8. TRIPOD checklist

Section/Topic Item Checklist Item Page
Title and abstract
Title 1 DV Identify the study as developing and/or validating a multivariable prediction model, the target

population, and the outcome to be predicted.

Provide a summary of objectives, study design, setting, participants, sample size, predictors,

Abstract 2 D;v L f :
outcome, statistical analysis, results, and conclusions.

Introduction

Explain the medical context (including whether diagnostic or prognostic) and rationale for

Background and 3a DV gqec;/(;aécljsplng or validating the multivariable prediction model, including references to existing
objectives . Specify the objectives, including whether the study describes the development or validation of
3b D;v
the model or both.
Methods
. Describe the study design or source of data (e.g., randomized trial, cohort, or registry data),
4a D;v o ) "
separately for the development and validation data sets, if applicable.
Source of data - - - - - - -
ab DV Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end
’ of follow-up.
5a DV Specify key elements of the study setting (e.g., primary care, secondary care, general
Participant ’ population) including number and location of centres.
articipants 5b DV Describe eligibility criteria for participants.
5¢c D;V Give details of treatments received, if relevant.
6a DV Clearly define the outcome that is predicted by the prediction model, including how and when
Outcome ' assessed.
6b DV Report any actions to blind assessment of the outcome to be predicted.
. Clearly define all predictors used in developing or validating the multivariable prediction
. 7a DAY h .
Predictors model, including how and when they were measured.
7b DV Report any actions to blind assessment of predictors for the outcome and other predictors.
Sample size 8 DV Explain how the study size was arrived at.
Missing data 9 DV Desgrlbe_ how mllssmg.data were handk_ed (e.g.j complete-case analysis, single imputation,
multiple imputation) with details of any imputation method.
10a D Describe how predictors were handled in the analyses.
Specify type of model, all model-building procedures (including any predictor selection), and
. 10b D - R
Statistical method for internal validation.
analysis 10c Vv For validation, describe how the predictions were calculated.
methods 10d DV Specify all measures used to assess model performance and, if relevant, to compare multiple
' models.
10e \ Describe any model updating (e.g., recalibration) arising from the validation, if done.
Risk groups 11 DV Provide details on how risk groups were created, if done.
Development 12 v For validation, identify any differences from the development data in setting, eligibility criteria,
vs. validation outcome, and predictors.

Results

Describe the flow of participants through the study, including the number of participants with
13a DAY and without the outcome and, if applicable, a summary of the follow-up time. A diagram may
be helpful.

Describe the characteristics of the participants (basic demographics, clinical features,
13b DAY available predictors), including the number of participants with missing data for predictors and
outcome.

Participants

For validation, show a comparison with the development data of the distribution of important

13c \% ) . )
variables (demographics, predictors and outcome).
Model 14a D Specify the number of participants and outcome events in each analysis.
development 14b D If done, report the unadjusted association between each candidate predictor and outcome.
Model 152 D Present the full prediction model to allow predictions for individuals (i.e., all regression
specification coefficients, and model intercept or baseline survival at a given time point).
p 15b D Explain how to the use the prediction model.
Model 16 DAY Report performance measures (with Cls) for the prediction model.
performance
Model-updating 17 v If done, report the results from any model updating (i.e., model specification, model
performance).
Discussion
Limitations 18 DV Discuss any limitations of the study (such as nonrepresentative sample, few events per

predictor, missing data).

For validation, discuss the results with reference to performance in the development data,

19a \% A
. and any other validation data.
Interpretation - - - — —— —
. Give an overall interpretation of the results, considering objectives, limitations, results from
19b DV - ; -
similar studies, and other relevant evidence.
Implications 20 DV Discuss the potential clinical use of the model and implications for future research.
Other information

Supplementary . Provide information about the availability of supplementary resources, such as study protocol,
; ) 21 DAY
information Web calculator, and data sets.
Funding 22 D;V_ | Give the source of funding and the role of the funders for the present study.
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