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Supplementary File for ‘Using TeleTriage to Model the Risk of Hospital 

Admission at the Time of Registration in an Emergency Department’ 

Figure A1. Word cloud for top 10 chief complaints for attendances at the JR hospital during the 
training period.  
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Figure A2. Plots of population-level features for Oxfordshire recorded daily. Panel 1a: COVID-19 
cases, 1b: COVID-19 hospitalizations at the Oxford University Hospitals (OUH), 1c: number of 
mechanical ventilator beds in use at the OUH, 1d: mobility data from Google for (i) retail and recreation, 
(ii) grocery and pharmacy, (iii) parks, (iv) transit stations, and (v) workplace, 1e: Stringency index, and 
1f: Percentage vaccinated. The data is presented for the period 1 March 19-30 Sept 21, inclusive.  

Note: Google mobility data was not available for the pre-pandemic period and was thus treated as zero. 
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Random Forests (RFs) 

In addition to RF with priors, we investigated two other approaches to deal with class imbalance, 

namely RUSBoost and RF and ADASYN, which are discussed below: 

RUSBoost – This algorithm of Seiffert et al. (2010) is a hybrid approach based on the concept of 

random undersampling (RUS) and boosting. It comprises two steps: (1) Using only the training data, 

we randomly undersample observations from the majority class (without replacement) until both classes 

had the same number of observations. (2) Boosting is used to train the classification trees iteratively 

using the resampled (balanced) dataset (Freund and Schapire 1996). Initially, all training observations 

are assigned equal weight. With each iteration, misclassified observations are given a higher weight. 

With subsequent iterations, the model focuses more on observations that are harder to classify correctly. 

After the iterations, a weighted voting scheme is used across the classification trees to issue a final 

prediction. This algorithm required the estimation of the number of trees, the minimum size of the leaf 

node, the number of features to use for split-point selection, and a learning rate for shrinkage. 

RF with ADASYN – A drawback of under-sampling approaches is a loss of information. 

Oversampling algorithms mitigate this by replicating observations from the minority class. We 

employed the adaptive synthetic (ADASYN) oversampling approach that generates synthetic data by 

performing slight perturbations on the minority class observations (He et al. 2008). An attractive feature 

of ADASYN is that it generates more synthetic data for those minority class observations that are harder 

to learn by adaptively shifting the decision boundary (i.e., the surface that corresponds to the 

demarcation of observations from the two classes). ADASYN calculates the number of synthetic 

observations to be generated using a k-nearest neighbour approach to achieve a predefined balance, 

which we set as 50:50. The synthetic observations are generated by linear combining two minority 

observations that belong to the same neighbourhood. ADASYN required the estimation of k (number 

of nearest neighbours), the number of trees, the minimum size of the leaf node, and the number of 

features for split-point selection.
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Table A1. Out-of-sample mean AUC (and 95% confidence intervals) for predicting the risk of hospital 
admission from the ED at the JR using the methods RUSBoost, RF with ADASYN, and RF with priors, 
and feature matrices 𝑋1, 𝑋1 U 𝑋2, and 𝑋1 U 𝑋2 U 𝑋3.  

Internal Validation: The JR Hospital 

Method 𝑋1 𝑋1 U 𝑋2 𝑋1 U 𝑋2 U 𝑋3

RUSBoost 0.605 (0.601-0.608) 0.838 (0.836-0.840) 0.836 (0.834-0.838) 

RF with ADASYN  0.721 (0.718-0.724) 0.871 (0.869-0.872) 0.877 (0.875-0.879) 

RF with priors 0.728 (0.725-0.731) 0.881 (0.879-0.883) 0.882 (0.880-0.884) 

Note: Higher values of the AUC are better. Bold indicates the best result in each column. 
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Table A2. Internal validation: Out-of-sample AUC values (95% CI) for forecasting risk of patient 
admission at the JR hospital using: RUSBoost, RF with ADASYN, and RF with priors, whereby for 
each classifier, we employ: only 𝑋1, only 𝑋1U𝑋2, and 𝑋1U𝑋2U𝑋3. AUC for a perfect classifier is 1. 

JR Hospital Performance Score (AUC) –Top 5 reasons for admissions 

Chief Complaint AUC1:𝑋1 AUC2: 𝑋1U𝑋2 AUC3: 𝑋1U𝑋2U𝑋3

1. Abdominal pain 

RUSBoost 
RF with ADASYN 
RF with priors 

0.547-0.569 
0.608-0.629 
0.612-0.632 

0.633-0.655 
0.681-0.702 
0.686-0.708 

0.635-0.654 
0.683-0.703 
0.688-0.709 

2. Dyspnoea 

RUSBoost 
RF with ADASYN 
RF with priors 

0.579-0.605 
0.725-0.750 
0.731-0.756 

0.701-0.727 
0.824-0.845 
0.841-0.860 

0.735-0.760 
0.837-0.855 
0.842-0.860 

3. Chest pain 

RUSBoost 
RF with ADASYN 
RF with priors 

0.535-0.557 
0.623-0.644 
0.633-0.653 

0.577-0.599 
0.685-0.708 
0.705-0.724 

0.568-0.589 
0.699-0.718 
0.713-0.733 

4. Injury of lower limb 

RUSBoost 
RF with ADASYN 
RF with priors 

0.672-0.701 
0.869-0.888 
0.867-0.887 

0.948-0.956 
0.956-0.963 
0.958-0.964

0.945-0.953 
0.957-0.964 
0.957-0.965 

5. Instability of gait 

RUSBoost 
RF with ADASYN 
RF with priors 

0.526-0.574 
0.601-0.648 
0.617-0.661 

0.613-0.660 
0.653-0.697 
0.653-0.696 

0.608-0.654 
0.656-0.696 
0.661-0.705 

Note: Highest AUC values using only 𝑋1, only 𝑋1U𝑋2, and 𝑋1U𝑋2U𝑋3 are highlighted in bold. 
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Table A3. Internal and external validation: out-of-sample Brier score, calibration-in-the-large, and 
calibration slope values, for forecasting the risk of patient admission at the JR and HG hospital using: 
RF with ADASYN and RF with priors, whereby for each classifier, we employ: only 𝑋1, only 𝑋1U𝑋2, 
and 𝑋1U𝑋2U𝑋3.  

A. Internal Validation: The JR Hospital 

Brier score 

Method 𝑋1 𝑋1U𝑋2 𝑋1U𝑋2U𝑋3

RF with ADASYN 0.196 0.137 0.132
RF with priors 0.188 0.130 0.130 

Calibration intercept 

Method 𝑋1 𝑋1U𝑋2 𝑋1U𝑋2U𝑋3

RF with ADASYN -0.365 -0.377 -0.140
RF with priors -0.050  -0.002 0.048 

Calibration slope 

Method 𝑿𝟏 𝑿𝟏𝐔𝑿𝟐 𝑿𝟏𝐔𝑿𝟐𝐔𝑿𝟑

RF with ADASYN 1.038 1.050 1.274
RF with priors 0.958 1.070 1.207 

B. External Validation: The HG Hospital 

Brier Score 

Method 𝑋1 𝑋1U𝑋2 𝑋1U𝑋2U𝑋3

RF with ADASYN 0.159 0.153 0.127
RF with priors 0.148 0.111 0.113 

Calibration intercept 

Method 𝑋1 𝑋1U𝑋2 𝑋1U𝑋2U𝑋3

RF with ADASYN -0.858 -1.366 -1.064
RF with priors -0.667 -0.545 -0.607 

Calibration slope 

Method 𝑋1 𝑋1U𝑋2 𝑋1U𝑋2U𝑋3

RF with ADASYN 1.459 1.097 1.559
RF with priors 1.358 1.340 1.458 
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Figure A3. Calibration plots for out-of-sample probability forecasts of hospital admission from the ED 
at the JR for RF with priors, using feature matrices 𝑋1 and 𝑋1 U 𝑋2. 

Figure A4. Calibration plots and evaluation of costs associated with decision-making for the out-of-
sample probability forecasts of hospital admission from the ED at the JR and HG for RF with priors 
using 𝑋1U𝑋2. 
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Table A4. Confusion matrix for predicting the triage category. 

Prediction 

Major injury Minor injury Urgent care 

A
ct

u
al

Major injury 80.0% 18.8% 11.2% 

Minor injury 21.8% 77.1% 1.1% 

Urgent care 41.3% 53.3% 5.4% 

Note: higher values along the diagonal are better.  

Confusion matrix to assess the out-of-sample accuracy for predicting the triage category. The triage 

category, as assigned by the clinical staff, was assumed to be the actual “gold standard” (or the label). 

The model could predict patients with ‘major injury’, ‘minor injury’, and ‘urgent care’ with an accuracy 

of 80%, 77.1%, and 5.4%, respectively. Note that Patients triaged as ‘urgent care’ comprised only 3.4% 

of visits in the out-of-sample period.  

To predict the triage category, we implemented a single classification tree with default 

hyperparameters (a minimum leaf size of one). For random forests, artificial neural networks (ANNs), 

and logistic regression, we estimated model hyperparameters using the last month of the training data 

as the cross-validation hold-out sample. For random forests, the selected hyperparameters were as 

follows: number of trees = 10, minimum leaf size = 5, number of features to use for split point selection 

= square root of the total number of features considered (rounded to the nearest integer). For ANNs, the 

selected architecture was as follows: number of hidden layers = 1, and number of nodes in a hidden 

layer = 5. The out-of-sample model performance for this multi-class classification problem was 

quantified using accuracy, which is calculated by dividing the correct predictions (true positive + true 

negative) by the total number of observations (true positive + true negative + false positive + false 

negative). The out-of-sample accuracy for the four modelling approaches was as follows (in brackets): 

classification tree (0.76), random forests (0.72), ANNs (0.67), and logistic regression (0.68). We 

acknowledge that finer tuning of the hyperparameter selection process and trying different activation 

functions for ANNs may have improved the performance of the sophisticated approaches. Nonetheless, 

we used a single classification tree due to its ease of implementation and interpretation. 
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Table A5. Patient group number, brief description, and the corresponding attendances (as a percentage 
of the total attendances for the JR hospital, calculated using only the training data). 

Patient Group Number: Brief description and corresponding attendance (as %) 

10: road traffic accident 0.8% 

20: assault 1.6% 

30: deliberate self-harm 2.3%   

40: sports injury 0.6% 

50: fireworks injury < 0.001% 

60: other accident  94.3% 

70: brought in dead 0% 

80: other than above 0.3% 

Figure A5. Relative frequencies of the total length of stay for the original dataset and model simulation 
generated under risk scenarios. 

Figure A5 presents the original LOS with corresponding LOS obtained from model simulations for 

different values of threshold (𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) used to decide if a patient would need admission. Note that a 

patient is admitted if the predicted probability is higher than the pre-defined threshold (𝑝 > 𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙). 

In the above figure, we keep penalty (δ) fixed at 2.5 minutes and vary 𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙. The figure shows that 

lower values of 𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 are associated with incentivizing an early intervention to admit a patient, which 

results in early decision-making (at the time of patient registration), while a higher value of 𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 is 

associated with a slightly delayed LOS. For all values of 𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 considered in this study, the impact 

of the 4-hour waiting time target on the LOS distribution was less prominent compared to the actual 

dataset. 
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Figure A6. Relative frequencies of the total length of stay (along with corresponding ECDFs in the 
inset) for the original dataset and model simulation. Simulation results are presented for a risk-neutral 
strategy (𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 0.5) and a penalty (δ) of 1 minute. 

In Figure A6, compared to the original LOS distribution, the simulated LOS is lower, and the 

distribution is relatively smoother, with a higher proportion of patients being admitted around the time 

of registration. The inset in Figure A6 presents the empirical cumulative distribution function (ECDF) 

of the original and simulated LOS, showing that the stratification of patients using admission-risk at 

registration would be the preferred option based on comparison of the two ECDFs using a probabilistic 

approach (i.e., stochastic dominance). However, for a large penalty associated with decision-making (δ

of 10 minutes), the simulated LOS is slightly higher, as shown in Figure A7. This result suggests that 

for higher penalty (δ), there is little value in using model prediction to decide if a patient needs 

admission at the time of registration (compared to admitting a patient based on clinical assessment). 

Figure A7. Relative frequencies of the total length of stay (along with corresponding ECDFs in the 
inset) for the original dataset and model simulation. Simulation results are presented for a risk-neutral 
strategy (𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 0.5) and a penalty (δ) of 10 minutes. 
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Figure A8. Mean and standard deviation of LOS (in minutes) resulting from the simulation for patients 
triaged as ‘urgent care’ in the out-of-sample period along with corresponding actual LOS. Different 
values considered (on the x-axes) for the penalty δ (in minutes) associated with a false positive and a 
false negative. Predictions were generated using the feature matrix, 𝑋1 U 𝑋2, using the integrated dataset 
from the two ED sites. The simulated LOS is presented using blue vertical lines, where the blue circles 
in the centre denote the mean and the horizontal bars at the end denote one standard deviation from the 
mean. 

In Figure A8, we see that the model can help reduce waiting times for patients triaged as ‘urgent care’ 

that need admission (panel a1) if the penalty imposed for a wrong decision to admit/not admit a patient 

is less than around 5.5 minutes (using δ𝐹𝑃 = δ𝐹𝑁). This improvement, however, comes at a cost of an 

increase in waiting times for patients (with the same triage category) that do not need admission (panel 

a2), for all values of the penalties considered in this study. These findings are overall consistent with 

patients who were triaged as ‘major injury’, as discussed in Section 5.2. 
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Figure A9. Length of stay (LoS, in minutes) for the JR and HG hospital sites for a range of penalty 
values (in minutes) associated with a false positive and a false negative. Predictions were generated 
using RF with priors (with 𝑋1 and 𝑋2) using the joint dataset from the two ED sites. LoS (mean and 
standard deviation) is presented for patients in the out-of-sample period. The decision to admit a patient 
were based on a risk-averse strategy (𝑝𝑐𝑟𝑖𝑡 = 0.4). 

Note: lower LOS values are better. Black and grey lines denote the mean and one standard deviation from the 
mean of the original LOS, respectively. Blue error bars indicate LOS from simulations for different penalties. 

In Figure A9, we present the original and simulated LOS for different penalties associated with a 

wrong decision to admit/not admit a patient. We use a lower threshold for admitting a patient (risk-

averse strategy, 𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 0.4). Note that lower values of  𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 incentivizes admission, which, as 

expected, translates into a further improvement in the LOS for high admission risk patients. However, 

this comes at the cost of a higher increase in LOS for low admission risk patients. Similarly, using a 

higher threshold to admit a patient (less risk-averse strategy, 𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 0.6) results in a smaller 

improvement in LOS for high admission risk patients as a higher 𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 disincentivizes admission at 

the time of registration, as presented in Figure A10.
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Figure A10. Length of stay (LoS, in minutes) for the JR and HG hospital sites for a range of penalty 
values (in minutes) associated with a false positive and a false negative. Predictions were generated 
using RF with priors (with 𝑋1 and 𝑋2) using the joint dataset from the two ED sites. LoS (mean and 
standard deviation) is presented for patients in the out-of-sample period. The decision to admit a patient 
were based on a less risk-averse strategy (𝑝𝑐𝑟𝑖𝑡 = 0.6). 

Note: lower LOS values are better. Black and grey lines denote the mean and one standard deviation from the 
mean of the original LOS, respectively. Blue error bars indicate LOS from simulations for different penalties.  
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Figure A11. Mean and standard deviation of LOS (in minutes) resulting from the simulation for patients 
in the out-of-sample period along with corresponding actual LOS. Three different scenarios are 
considered (on the x-axes): (1) δ𝐹𝑃 = δ𝐹𝑁, (2) δ𝐹𝑃 = 0.5× δ𝐹𝑁, and (3) δ𝐹𝑃 =1.5× δ𝐹𝑁, for the penalty 
δ𝐹𝑁 chosen as ten minutes. Predictions were generated using the feature matrix, 𝑋1 U 𝑋2, using the 
integrated dataset from the two ED sites, for a risk-neutral strategy (𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 0.5) and the highest 
penalty value, δ𝐹𝑁 = 10 minutes. The simulated LOS is presented using blue vertical lines, where the 
blue circles in the centre denote the mean and the horizontal bars at the end denote one standard 
deviation from the mean. 
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Table A6. Out-of-sample MAE and RMSE for estimating the number of bed requests from the EDs to 
the hospital at the JR and HG using triage category that is clinician-administered and digitally assessed, 
calculated using a 2-hour moving window. 

Triage Category Clinician-administered Digitally assessed (TeleTriage) 

MAE RMSE MAE RMSE
Integrated dataset 1.84 2.41 2.31 3.08 

JR dataset 1.69 2.22 1.93 2.57 
HG dataset 0.93 1.21 1.01 1.33 

Table A7. Out-of-sample MAE and RMSE for estimating the number of bed requests from the EDs to 
the hospital at the JR and HG using triage category that is clinician-administered and digitally assessed, 
calculated using a 3-hour moving window. 

Triage Category Clinician-administered Digitally assessed (TeleTriage) 

MAE RMSE MAE RMSE
Integrated dataset 2.34 3.04 3.14 4.15 

JR dataset 2.24 2.90 1.93 2.57 
HG dataset 1.16 1.52 1.30 1.72 
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Table A8. TRIPOD checklist

Section/Topic Item Checklist Item Page
Title and abstract

Title 1 D;V 
Identify the study as developing and/or validating a multivariable prediction model, the target 
population, and the outcome to be predicted.

1 

Abstract 2 D;V 
Provide a summary of objectives, study design, setting, participants, sample size, predictors, 
outcome, statistical analysis, results, and conclusions.

1 

Introduction

Background and 
objectives

3a D;V 
Explain the medical context (including whether diagnostic or prognostic) and rationale for 
developing or validating the multivariable prediction model, including references to existing 
models.

2-5 

3b D;V 
Specify the objectives, including whether the study describes the development or validation of 
the model or both.

2-5 

Methods

Source of data
4a D;V 

Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), 
separately for the development and validation data sets, if applicable.

5-8 

4b D;V 
Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end 
of follow-up. 

9 

Participants
5a D;V 

Specify key elements of the study setting (e.g., primary care, secondary care, general 
population) including number and location of centres.

5-8 

5b D;V Describe eligibility criteria for participants. 9
5c D;V Give details of treatments received, if relevant. 9-10

Outcome
6a D;V 

Clearly define the outcome that is predicted by the prediction model, including how and when 
assessed. 

3-5 

6b D;V Report any actions to blind assessment of the outcome to be predicted. -

Predictors 
7a D;V 

Clearly define all predictors used in developing or validating the multivariable prediction 
model, including how and when they were measured.

11-12

7b D;V Report any actions to blind assessment of predictors for the outcome and other predictors. -
Sample size 8 D;V Explain how the study size was arrived at. 9-10

Missing data 9 D;V 
Describe how missing data were handled (e.g., complete-case analysis, single imputation, 
multiple imputation) with details of any imputation method. 

9-10 

Statistical 
analysis 
methods 

10a D Describe how predictors were handled in the analyses. 11-12

10b D 
Specify type of model, all model-building procedures (including any predictor selection), and 
method for internal validation.

13 

10c V For validation, describe how the predictions were calculated. 14-16

10d D;V 
Specify all measures used to assess model performance and, if relevant, to compare multiple 
models. 

14-19 

10e V Describe any model updating (e.g., recalibration) arising from the validation, if done. 13
Risk groups 11 D;V Provide details on how risk groups were created, if done. 9
Development 
vs. validation

12 V 
For validation, identify any differences from the development data in setting, eligibility criteria, 
outcome, and predictors. 

14-19 

Results

Participants

13a D;V 
Describe the flow of participants through the study, including the number of participants with 
and without the outcome and, if applicable, a summary of the follow-up time. A diagram may 
be helpful. 

5-8 

13b D;V 
Describe the characteristics of the participants (basic demographics, clinical features, 
available predictors), including the number of participants with missing data for predictors and 
outcome. 

9-10 

13c V 
For validation, show a comparison with the development data of the distribution of important 
variables (demographics, predictors and outcome). 

- 

Model 
development 

14a D Specify the number of participants and outcome events in each analysis. 9-10
14b D If done, report the unadjusted association between each candidate predictor and outcome. -

Model 
specification 

15a D 
Present the full prediction model to allow predictions for individuals (i.e., all regression 
coefficients, and model intercept or baseline survival at a given time point).

- 

15b D Explain how to the use the prediction model. 13
Model 
performance

16 D;V Report performance measures (with CIs) for the prediction model. 
16-17, 

25

Model-updating 17 V 
If done, report the results from any model updating (i.e., model specification, model 
performance).

14-25 

Discussion

Limitations 18 D;V 
Discuss any limitations of the study (such as nonrepresentative sample, few events per 
predictor, missing data). 

31, 33-
34

Interpretation
19a V 

For validation, discuss the results with reference to performance in the development data, 
and any other validation data. 

16-25 

19b D;V 
Give an overall interpretation of the results, considering objectives, limitations, results from 
similar studies, and other relevant evidence. 

16-25 

Implications 20 D;V Discuss the potential clinical use of the model and implications for future research. 20-32
Other information

Supplementary 
information

21 D;V 
Provide information about the availability of supplementary resources, such as study protocol, 
Web calculator, and data sets. 

S1 

Funding 22 D;V Give the source of funding and the role of the funders for the present study. 34
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