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Abstract 

The COVID-19 pandemic has placed forecasting models at the forefront of health policy making. 

Predictions of mortality, cases and hospitalisations help governments meet planning and resource 

allocation challenges. In this paper, we consider the weekly forecasting of the cumulative mortality due 

to COVID-19 at the national and state level in the U.S. Optimal decision-making requires a forecast of 

a probability distribution, rather than just a single point forecast. Interval forecasts are also important, 

as they can support decision making and provide situational awareness. We consider the case where 

probabilistic forecasts have been provided by multiple forecasting teams, and we combine the forecasts 

to extract the wisdom of the crowd. We use a dataset that has been made publicly available from the 

COVID-19 Forecast Hub. A notable feature of the dataset is that the availability of forecasts from 

participating teams varies greatly across the 40 weeks in our study. We evaluate the accuracy of 

combining methods that have been previously proposed for interval forecasts and predictions of 

probability distributions. These include the use of the simple average, the median, and trimming 

methods. In addition, we propose several new weighted combining methods. Our results show that, 

although the median was very useful for the early weeks of the pandemic, the simple average was 

preferable thereafter, and that, as a history of forecast accuracy accumulates, the best results can be 

produced by a weighted combining method that uses weights that are inversely proportional to the 

historical accuracy of the individual forecasting teams. 

Keywords: OR in health services; COVID-19; forecast combining; distributional forecasts; interval 

forecasts. 
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1. Introduction 

The coronavirus 2019 (COVID-19) was declared a pandemic by the World Health Organisation 

on 11 March 2020 (WHO, 2020). By the end of January 2021, over 102 million individuals had been 

infected, and COVID-19 had caused over 2.2 million deaths worldwide (WHO, 2021). The COVID-19 

pandemic has created enormous planning and resource allocation challenges. Governments are relying 

upon predictions of the numbers of COVID-19 cases, people hospitalised and deaths to help decide 

what actions to take (Adam, 2020; Nikolopoulos et al., 2021; Phelan et al., 2020). In this paper, we 

consider the short-term forecasting of reported deaths from COVID-19. 

Forecasting methods are well established in providing predictions of uncertain events to 

decision makers across a variety of settings, ranging from energy providers and individuals relying on 

the weather outlook, to investors eager to gain insight into future economic conditions. Epidemiological 

forecasting models have been applied to both vector-borne diseases, including Dengue disease (Shi et 

al., 2016) and the Zika virus (Kobres et al., 2019), and contagious infectious diseases. These include 

the Severe Acute Respiratory Syndrome (SARS) (Ng et al., 2003), Ebola (Viboud et al., 2017) and the 

Middle East respiratory syndrome (MERS) (Da’ar et al., 2018). Numerous COVID-19 models have 

emerged (Adam, 2020; COVID-19 Forecast Hub, 2020; Nikolopoulos et al., 2021). These models are 

based on different assumptions and therefore answer different questions (Holmdahl and Buckee, 2020). 

Due to the lack of data, assumptions have to be made about several factors including the extent of 

immunity, transmission among people who are asymptomatic and how the public will react to new 

government restrictions. Paucity of data is a common challenge in forecasting infectious diseases (Lauer 

et al., 2020). Policy makers need to be aware of the limitations of the models, and need to be conscious 

of the uncertainty in predictions from these models (Sridhar and Majumder, 2020). 

Gneiting and Katzfuss (2014) describe how optimal decision-making relies on the availability 

of a forecast of a probability distribution, rather than a single point forecast (see, for example, Gianfreda 

and Bunn, 2018). We refer to such a probabilistic forecast as a distributional forecast. Probabilistic 

predictions can also take the form of interval forecasts. A variety of definitions exist for interval 

forecasts (Brehmer and Gneiting, 2020). In this paper we use the most common, which is that a (1-) 

interval forecast is an interval predicted to contain the true outcome with probability (1-), and equal 

probability of being above or below the interval. Interval forecasts are valuable, as they can support 

real-time decision making and provide situational awareness (see, for example, Grushka-Cockayne and 

Jose, 2020; Bracher et al., 2021). In this paper, we consider the case where probabilistic forecasts of 

COVID-19 deaths are provided by multiple forecasters. We combine the forecasts to extract the wisdom 

of the crowd. Combining provides a pragmatic approach to synthesising the information underlying 

different forecasting methods. It also enables diversification of the risk inherent in selecting a single 

forecaster who may turn out to be poor, and it offsets statistical bias associated with individual 

forecasters who tend to be under- or overconfident. Harnessing the wisdom of a crowd has been found 

to be useful in many forecasting applications, ranging from sports betting to economics to weather and 
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climate modelling (see Brown and Reade, 2019; Budescu and Chen, 2015; Mote et al., 2016). 

Since the early work by Bates and Granger (1969) on combining point forecasts, a variety of 

simplistic and sophisticated combining methods have been proposed. Recent work has involved 

combining probabilistic forecasts. Winkler et al. (2019) predicts that probabilistic forecast combining 

will become more common due to developments in the field, the rising popularity of forecasting 

competitions, and raised awareness by increased reporting of probabilistic predictions in the media.  

In this paper, we evaluate combining methods applied to multiple probabilistic forecasts of 

cumulative COVID-19 mortality at the state and national level in the U.S, using data made publicly 

available (see COVID-19 Forecast Hub, 2020). A notable characteristic of this dataset is that the 

availability of forecasts from the participating forecasting teams varies greatly across the duration of 

the dataset. Without a comparable record of past accuracy, it is not clear how best to implement a 

weighted combining method. This situation has led researchers to focus on combining methods that do 

not rely on the historical accuracy of the individual forecasters. An example is the simple average. Its 

success for combining point forecasts has motivated its use for probabilistic forecasts. The median and 

trimmed means have also been proposed for forecasts of interval and distributional forecasts, as they 

provide simple, robust alternatives to the mean (Hora et al., 2013; Gaba et al., 2017). In this paper, we 

evaluate these combining methods for the COVID-19 dataset. We also introduce several weighted 

combining methods. These address whether it is beneficial to allocate weights using the historical 

accuracy of each forecaster when these accuracies are not directly comparable.  

In Section 2, we describe the dataset and the rise in mortality due to COVID-19 in the U.S. We 

consider interval forecast combining in Section 3, and the combination of distributional forecasts in 

Section 4. We separate our consideration of interval and distributional forecasting because the 

combining methods differ for these two forms of probabilistic forecasts. Section 5 provides a summary 

and concluding comments.  

2. The COVID-19 Mortality Dataset 

In this section, we first summarise the progression in mortality due to COVID-19 across the 

U.S. We then describe the forecasts in the dataset, and the criteria that we applied to select forecasts 

from this dataset for inclusion in our analysis.  

The COVID-19 Forecast Hub is curated by a group led by Nicholas Reich (COVID-19 Forecast 

Hub, 2020). The Hub provides open access to weekly observations and forecasts for the cumulative 

total of reported COVID-19 deaths, as well as observations and forecasts for the total deaths each week 

(incident deaths). These data are available for the U.S. both at the national and state levels. The forecasts 

are submitted by multiple forecasting teams from academia, industry and government affiliated groups.  

2.1. Reported COVID-19 Mortality  

The actual number of deaths from COVID-19 will be under-reported due to various factors 
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including reporting delays and the lack of testing. There will also be indirect deaths as hospitals, 

overwhelmed by COVID-19, have had to delay diagnosis and treatment for other conditions, such as 

cancer. Therefore, the impact of COVID-19 will be judged ultimately in terms of the excess mortality, 

that is, the number of deaths above the number that would have been expected (Weinberger, et al 2020). 

The actual cumulative deaths described in this paper are obtained from the COVID-19 Forecast Hub. 

These data are from the daily reports issued by the Centre for Systems Science and Engineering at Johns 

Hopkins University. Based on these data, the first reported death due to COVID-19 in the U.S. was in 

the State of Washington, in the week ending 29 February 2020. On 30 January 2021, the total number 

of COVID-19 deaths in the U.S. had risen to 439,530. Figure 1 shows the number of deaths across the 

U.S. on this date. Figure 2 shows the rise in the cumulative total number of COVID-19 deaths in the 

five states with highest cumulative total on this date. 

Figure 1. Number of reported COVID-19 deaths in the U.S. up to 30 January 2021. 

Figure 2. Rise in COVID-19 deaths in the five states with highest cumulative total on 30 January 2021. 

2.2. Forecasts of COVID-19 Mortality 

The curators of the COVID-19 Forecast Hub ask forecasting teams to submit forecasts for one-

week periods ending at midnight on Saturday evenings. The weeks are numbered starting with Week 0 

defined as the week ending on Saturday 21 December 2019. At the end of each week, the numbers of 

incident and cumulative deaths are published, and with that week as forecast origin, the teams submit 

forecasts for 1 to 4 weeks ahead. For each of these lead times, and for incident and cumulative deaths, 
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the teams provide a forecast of the probability distribution, which we refer to as the distributional 

forecast. It is provided in the form of forecasts of the quantiles corresponding to the following 23 

probability levels: 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 

70%, 75%, 80%, 85%, 90%, 95%, 97.5% and 99%. In addition, each team provides a point forecast of 

the central tendency of the distribution, which often coincides with their forecast of the median. The 

COVID-19 Forecast Hub provides data visualisations for the incident and cumulative numbers of deaths 

each week, with interactive plots so that the forecasts of different teams may be compared (see 

https://viz.covid19forecasthub.org/).  Visualisations of the forecasts are also available from the website 

of the Centers for Disease Control and Prevention, and Nate Silver’s FiveThirtyEight website.   

As weekly cumulative and incident deaths are related, for simplicity, we focus only on 

cumulative deaths. Although the COVID-19 Forecast Hub provides forecasts for all U.S. states and 

territories, we followed the convention adopted for the Hub’s visualisation by considering only the 50 

states and the District of Columbia. For conciseness, we refer to these as 51 states. Given that we are 

also considering the national total, our dataset consists of 52 time series and associated forecasts. 

Figure 3. One week-ahead distributional forecasts produced with Week 28 as forecast origin. 

In Figure 3, we give examples of distributional forecasts for the national level of cumulative 

mortality, and for the states of New York and Florida. In each plot, the distribution function shown as 

the dashed line is a forecast combination, proposed and made available by the curators of the Hub. They 

refer to it as the ensemble forecast, and explain that, up to Week 31, it was the simple average of 

forecasts provided by the individual participating teams, and after that date, it was the median of these 

forecasts. The median distributional forecast is highlighted in black in each plot. Figure 3 shows that 

there is considerable variation among the distributional forecasts in terms of their location, spread and 

shape. It is also interesting to note that, at least for New York and Florida, there are a number of outlying 

distributional forecasts, which motivates consideration of alternative combining methods, based on 

robust estimation, such as the median and trimming. We discuss this further in Sections 3 and 4. 

The COVID-19 Forecast Hub provides information regarding the methods used by the various 

forecasting teams and licensing conditions for the use of each team’s data. The supplementary material 

to this paper summarises this information. Approximately half of the teams use compartmental models. 

These involve the estimation of the rates at which the population, or sectors of the population, transfer 
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between the states of being susceptible, exposed, infected and recovered/removed. Hence, they are 

widely referred to as SEIR or SIR models. The other forecasting teams used a variety of approaches, 

including agent-based simulation, statistical models, and deep learning. The use of data-driven machine 

learning methods is consistent with the increasing use of such methods in healthcare (see Guha and 

Kumar, 2018). Surowiecki (2004) describes conditions under which wisdom can best be extracted from 

a crowd. These include independent contributors, diversity of opinions, and a trustworthy central 

convenor to collate the information provided. Forecasts from the Hub satisfy these conditions.  

2.3. Inclusion Criteria for the Forecasts 

In our analysis, we considered forecasts made with forecast origins as Week 18 up to Week 57, 

that is, from the week ending 25 April 2020 to the week ending 23 January 2021. In terms of observed 

values with which to compare the forecasts, we used weekly data up to Week 58. Week 18 seemed a 

reasonable starting point for our analysis because levels of mortality were relatively low prior to this, 

and it was the first forecast origin for which the ensemble forecast was included in the Hub’s 

visualisation. From Week 20, the curators of the Hub have produced files listing the forecasts that they 

did not include in their ensemble, based on several data screening checks. We omitted these forecasts 

from our analysis, and also followed the curators by treating as ineligible any submission that did not 

provide forecasts for all 23 quantiles and all four lead times. Unless this criterion was not met, we 

included forecasts not recorded as being assessed for eligibility because we felt we had no clear 

justification for omitting them. We considered data screening checks for these forecasts, but concluded 

that setting our own thresholds for inclusion would be arbitrary. Consequently, we applied combining 

methods to a dataset of forecasts that included 11% more forecasts than were included in the ensemble 

combining method. 

Figure 4 shows the total number of forecasting teams included in our study for each forecast 

origin from Weeks 18 to 57. For each week, the figure also shows the split between the number of teams 

that used compartmental models and the number using alternatives. Note that the number of teams 

shown for each week in Figure 4 is an upper bound for the number available for combining for any one 

time series. This is because some teams either did not provide forecasts or did not provide eligible 

forecasts for all time series. 

For each of the 49 forecasting teams that submitted forecasts, Figure 5 shows, for each week, 

whether we were able to include that team in the combined forecasts for at least one series. A break in 

the horizontal line for any team indicates that, from the first week when the team submitted forecasts, 

it was not the case that forecasts from that team were available and eligible in all the following weeks. 

The circles in Figure 5 give an indication of the extent to which each forecasting team featured in our 

study. The figure shows that, even when a record of past historical accuracy becomes available for all 

teams, accuracy will not be available for the same past periods and same time series. This has potential 

implications for how to implement a weighted combining method based on the historical accuracy of 
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each method.  

It would be interesting to compare the accuracy of the forecasts produced by the different teams. 

However, as Figure 5 shows, for most forecasting teams, forecasts were not available for many of the 

52 series and 40 forecast origins in our study. Indeed, a full set of forecasts for all series and forecast 

origins were not available from any of the teams.  

Figure 4. Number of forecasting teams included in our study for each forecast origin. The stacked bars 
indicate the split between teams using compartmental models, and alternatives. 

Figure 5. Timeline showing whether forecasts from each team were included in our study for each 
forecast origin. The circles indicate the number of the 52 series for which forecasts were available and 
eligible. Black, grey, white and small black circles indicate: all 52 time series, either 51 or 50, between 
49 and 26, and 25 or fewer, respectively. 
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3. Combining Interval Forecasts of COVID-19 Mortality 

In this section, we empirically compare a variety of interval forecast combining methods. After 

describing the structure of our empirical study, we discuss measures used to evaluate interval forecasts. 

We then review the literature on interval forecast combining methods, before introducing new weighted 

methods. We summarise the methods that we implemented, and then report the empirical results.  

3.1. Structure of the Empirical Study 

As we explained in Section 2.3, we used forecasts produced at Weeks 18 to 57, which amounted 

to 40 forecast origins. Some of the combining methods require parameter estimation, and for this we 

opted to use at least 10 weeks. Therefore, we evaluated out-of-sample forecasts for the final 30 weeks 

of our dataset. As we moved the forecast origin through the out-of-sample period, we re-estimated 

parameters using all weeks up to and including the forecast origin. As the parameter optimisation and 

several combinations involve forecast accuracy measures, we now discuss interval forecast evaluation.  

3.2. Evaluation Measures for Interval Forecasts 

In this paper, our interest is in (1-) intervals that are bounded by the /2 and (1-/2) quantiles. 

We consider =5% and 50%, which correspond to 95% and 50% intervals, respectively. Our choice of 

these intervals reflects those presented in the visualisation of the COVID-19 Forecast Hub.  

The accuracy of a set of interval forecasts can be assessed by evaluating the forecasts of the 

quantiles bounding the interval. A simple measure of accuracy of forecasts of the  quantile is to check 

the percentage of observations that fall below the forecast. We refer to this as the hit percentage. If this 

is equal to , the forecast is said to be calibrated. More precisely, we should refer to this as 

unconditional calibration, with conditional calibration being the property that the conditional 

expectation of the hit percentage is equal to  (Nolde and Ziegel, 2017). Given the short length of the 

time series considered in our analysis, we assess only unconditional calibration. 

In addition to calibration, a quantile forecast should be evaluated using a score. A score can be 

viewed as a measure of how closely the forecast varies over time with the actual quantile. The score is 

said to be consistent if it is minimised by the true quantile. The use of a consistent score ensures honest 

reporting by a forecaster (Gneiting and Raftery, 2007). For quantile forecasts, the most widely used 

consistent score is the quantile regression loss function (see Koenker and Machado, 1999; Taylor, 

1999). We refer to it as the quantile score, and present it as follows: 

     ( ), ( ) ( )q
t t t t t tS q y I y q y q          (1) 

where yt is the observation in period t, qt() is the  quantile, and I{·} is the indicator function. When 

=50%, the score reduces to the absolute error, showing that the widely used mean absolute error is an 

appropriate score for a point forecast defined as a prediction of the median. To summarise forecasting 

performance across a time series, the average of the score is computed. A consistent score for an interval 

forecast is produced by summing the quantile score for the quantiles bounding the interval (Gneiting 
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and Raftery, 2007). For an interval bounded by qt() and qt(1-), if we sum the quantile scores and 

divide by , we get the following interval score (Winkler, 1972): 

         
2 2

, ,INT

t t t t t t t t t t t t tS l u y u l I y l l y I y u y u
 

          (2) 

where lt is the interval’s lower bound qt() and ut is its upper bound qt(1-). The score has the 

intuitive interpretation that it rewards narrow intervals, with observations that fall outside the interval 

incurring a penalty, the magnitude of which depends on the value of  (Gneiting and Raftery, 2007). In 

an application to influenza forecasting, Bracher et al. (2021) use this interpretation to seek insight into 

why the interval score for one forecasting model is lower than another. 

In reporting both interval and distributional forecasting results in this paper, we average results 

across the four lead times. We do this for three reasons. Firstly, the relative performances of the methods 

were similar across the four lead times. Secondly, with many results to report, we felt it impractical to 

provide results for each lead time. Thirdly, we have a relatively small out-of-sample period, which is of 

particular concern when evaluating forecasts of extreme quantiles, such as the 2.5% and 97.5% 

quantiles. To show that the results are consistent across the lead times, in Section 4.6, we provide 

empirical results for distributional forecasting for each lead time. This also enables us to report the 

results of statistical tests, which are not available for our results averaged across lead times. 

3.3. A Review of Combining Methods for Interval Forecasts 

The literature on combining interval forecasts is dominated by applications, such as ours, where 

there is a sizeable group of individual forecasters and a record of past accuracy is not available for the 

same past periods. The methods that have been proposed consider each bound of the interval separately. 

An obvious simplistic approach is to use the simple average of the forecasts. In the vast literature on 

combining point forecasts, it is well established that the simple average can be very competitive in a 

variety of applications. Interestingly, this is true regardless of whether a record of historical accuracy is 

available to enable far more sophisticated combining methods to be fitted (Larrick and Soll, 2006). An 

advantage of the simple average is its simplicity, and robustness to changes over time in the relative 

performance of the individual methods. However, consideration of robustness prompts the use of 

combining methods that are robust to outliers, with the obvious candidate being the median. The simple 

average and the median are both considered by Park and Budescu (2015) and Gaba et al. (2017). 

Extending the idea of robustness to outliers, Park and Budescu (2015) propose that, for each 

bound, a chosen percentage of the highest and lowest forecasts are discarded, followed by averaging of 

the rest. We refer to this as symmetric trimming. The median is an extreme version of symmetric 

trimming, where all but one forecast is trimmed.  

Rather than having robustness as motivation, Gaba et al. (2017) use trimming to address the 

situation where the individual forecasters tend to be either under- or overconfident. We refer to their 

methods as asymmetric trimming. Their exterior trimming involves removing a percentage of the 
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highest-valued upper bounds and lowest-valued lower bounds, with the combination computed by 

averaging the remaining upper and lower bounds, respectively. This approach is suitable when the 

forecasters have tended to be underconfident, with interval forecasts that are generally too wide. Gaba 

et al. (2017) also suggest interior trimming, which involves removing a percentage of the lowest-valued 

upper bounds and highest-valued lower bounds, followed by averaging. This approach to combining is 

suitable when the forecasters are overconfident. They also propose an extreme version of interior 

trimming, which involves discarding all but the highest upper bound and lowest lower bound. They 

refer to this as the envelope method. In addition, Gaba et al. (2017) describe a heuristic approach that 

views the bounds of each forecaster as having been produced based on a normal distribution. 

The empirical studies of Park and Budescu (2015) involved 80% and 90% interval forecasts 

produced judgmentally by volunteers in experiments, where the interval forecasts related to general 

knowledge questions and estimates of financial and economic quantities. They found that the simple 

average and median were outperformed by trimming, and that symmetric was preferable to asymmetric 

trimming. Gaba et al. (2017) considered 90% interval forecasts produced for financial quantities by 

employees at a financial brokerage firm, and for macroeconomic variables by participants in the Federal 

Reserve Bank of Philadelphia’s Survey of Professional Forecasters. These forecasts are produced using 

a variety of methods, including statistical models, expert judgment, and a mixture of the two. They 

found that exterior trimming performs very well for some of their data, but that the ranking of combining 

methods is dependent on the characteristics of the individual forecasts, such as under- or 

overconfidence. In a recent paper, Grushka-Cockayne and Jose (2020) compared combinations of 95% 

interval forecasts produced by time series methods for the 100,000 series from the M4-Competition. 

Overall, the best results were achieved with median combining and interior asymmetric trimming. 

In our implementation of the combinations involving trimming, we optimised the percentage 

of forecasts to trim, represented by the parameter , by finding the value that minimised the sum of the 

interval score of expression (2) for all lead times for all periods up to and including the forecast origin. 

3.4. New Score-Based Weighted Combining Methods for Interval Forecasts 

For point forecasting, many combining methods have been proposed that allocate weights 

according to the historical accuracy of the forecasters. Analogous methods have been proposed for 

probabilistic forecasts. However, we are not aware of approaches to weighting probabilistic forecasts 

when historical accuracy is not available for each forecaster for the same past periods, which is the case 

in our study. Capistrán and Timmermann (2009) address this situation for point forecasts from a survey 

of macroeconomic forecasters that had “frequent entry and exit” of forecasters. We draw on their ideas 

to propose weighted combinations for probabilistic forecasts. Each method is based on historical 

accuracy, and pragmatically disregards the fact that this accuracy has not been assessed using the same 

past periods for each forecaster. We do not consider the approach of Capistrán and Timmermann (2009) 

that involves imputation of the missing forecasts, as it is not clear how to adapt it for probabilistic 
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forecasts, and in any case, imputation is less appealing for short time series with many missing forecasts. 

A simple suggestion of Capistrán and Timmermann (2009) is to select the forecaster with best 

historical accuracy. We implemented this previous best approach by selecting the forecasting team for 

which the in-sample interval score was lowest. With the shortest in-sample period being 10 weeks, we 

considered only forecasting teams for which we had forecasts for at least five past forecast origins. We 

imposed the same requirement on all the weighted combining methods. Clearly, five periods is a small 

number with which to assess interval forecast accuracy, but larger numbers led to the elimination of 

many forecasters for the early weeks in our out-of-sample period. 

Capistrán and Timmermann (2009) implement the proposal of Bates and Granger (1969) to 

combine point forecasts using a convex combination with weights inversely proportional to the mean 

squared error. Stock and Watson (2001) explain that this simple method has the appeal of robustness 

when the estimation sample is small or there are many predictors, which are both issues in our study. 

Shan and Yang (2009) use the approach to combine quantile forecasts, with the weights computed by 

replacing squared error with the quantile score. A similar approach is adopted by Taylor (2020) in a 

study of value at risk and expected shortfall forecasting for financial data. We implemented inverse 

score combining using the interval score of expression (2), and the quantile score of expression (1).  

The inverse score approach requires no parameter optimisation, which is appealing because our 

time series are quite short. However, with little past data, a simple average may be preferable. In view 

of this, we implemented a form of shrinkage, used for point forecasting by Stock and Watson (2004) 

and Capistrán and Timmermann (2009), which has the potential to reduce the combination to the simple 

average. The shrinkage forecast is a weighted average of the forecasts from the simple average and an 

inverse score method. We estimated the weight by minimising the interval score, after forecasts had 

become available for the inverse score method for a reasonable number of weeks. We set this to be the 

first 10 weeks of our 30-week out-of-sample period. This produced forecasts for the final 20 weeks of 

the out-of-sample period. For the first 10 weeks, we set the forecasts to be those of the inverse score 

method. We implemented shrinkage with the inverse interval score method, and separately with the 

inverse quantile score method.  

Stock and Watson (2001), Shan and Yang (2009) and Taylor (2020) incorporate a tuning

parameter  > 0 in the inverse score approach to control the influence of the score on the combining 

weights. Expression (3) presents the resulting combining weight for forecaster i at forecast origin t:  
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where MSi,t is the historical mean of the score computed at forecast origin t from forecaster i, and J is 

the number of forecasting teams included in the combination. If  is close to zero, the combination 

reduces to a simple average, whereas a large value for  leads to the selection of the team with best 

historical accuracy. We followed the same approach that we used for the shrinkage method to estimate 
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 and produce forecasts for the first 10 weeks of the out-of-sample period. We implemented the tuning 

method based on the interval score and another version of the method based on the quantile score. 

The inverse quantile score methods, as well as asymmetric exterior trimming, sometimes 

delivered a lower bound above the upper bound. In this situation, we replaced the two bounds by their 

mean. Although the interval then has zero width, it is better than the upper bound being below the lower. 

3.5. Interval Forecast Combining Methods Implemented in this Study 

For each mortality series, forecast origin and lead time, we applied the following methods: 

Ensemble: This is the combination produced by the COVID-19 Forecast Hub. For the first 13 of the 40 

forecast origins in our study, the forecast for each bound was the simple average of the individual 

forecasts of that bound, and thereafter, it was the median. As noted in Section 2.3, the ensemble was 

computed from a subset of the forecasts used in the other combining methods that we consider. 

Simple average: For each bound, we computed the arithmetic average of forecasts of this bound. We 

used our full set of forecasts for this and the other combining methods described below. 

Geometric mean: For each bound, we computed the geometric mean of forecasts. This was the only 

combination using the geometric mean. It was motivated by the potentially exponential rise in mortality.  

Median: For each bound, we computed the median of forecasts of this bound. 

Symmetric trimming: For each bound, we averaged the forecasts remaining after the removal of the N

lowest-valued and N highest-valued forecasts, where N is the largest integer less than or equal to the 

product of /2 and the total number of forecasts, and  is the percentage of forecasts to trim.  

Asymmetric exterior trimming: We first removed the N lowest-valued lower bound forecasts, as well 

as the N highest-valued upper bound forecasts, where N is the largest integer less than or equal to the 

product of  and the number of forecasts. For each bound, we averaged the remaining forecasts.  

Asymmetric interior trimming: We removed the N highest-valued lower bound forecasts, as well as the 

N lowest-valued upper bounds, where N is defined as for asymmetric exterior trimming. For each bound, 

we averaged the remaining forecasts. 

Envelope: This uses the lowest-valued lower bound forecast and highest-valued upper bound forecast. 

Previous best: The interval forecast is provided by the forecasting team for which the interval score was 

the lowest when computed using the weeks up to and including the forecast origin. 

Inverse interval score: This is a convex combination of forecasts, where the weights are inversely 

proportional to the interval score computed using the weeks up to and including the forecast origin. 

Inverse interval score shrinkage: This is a weighted average of the simple average and inverse interval 

score combining methods. 

Inverse interval score tuning: This applies a tuning parameter to the weights of the inverse interval 

score method, as shown in expression (3). 

Inverse quantile score: This is a convex combination of forecasts, where the weights on the forecasts 

of each bound are inversely proportional to the quantile score computed for the forecasts of that bound 
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using the weeks up to and including the forecast origin. 

Inverse quantile score shrinkage: The forecast for each bound is a weighted average of the forecasts 

of that bound from the simple average and inverse quantile score combining methods. 

Inverse quantile score tuning: This weighted combining method applies a tuning parameter to the 

weights of the inverse quantile score method, as shown in expression (3). 

3.6. Interval Forecasting Results 

As we explained in Section 3.2, we averaged the results across the lead times. However, with 

the level of mortality varying greatly across the series, it is inevitable that averaging will lead to the 

interval score being dominated by its value for the high mortality series. In view of this, we report 

results for the following four categories of the series: all 52 series; the 17 series with the highest 

cumulative mortality at end of the final week of our dataset, which corresponded to 16 states and the 

national U.S. series; the 17 states with the next highest cumulative mortality at the end of the final week; 

and the 18 states with lowest cumulative mortality at the end of the final week. We refer to these 

categories as: all, high, medium and low. 

For the four categories of series, the mean of the interval score for 95% interval forecasts is 

presented in the first four columns of values in Table 1. The unit of the score is deaths, and lower values 

of the score reflect greater accuracy. To summarise performance within each category of series, we 

calculated the geometric mean of the ratios of the (arithmetic) mean score for each method to the 

(arithmetic) mean score for the simple average method, then subtracted this from 1, and multiplied the 

result by 100. This can be viewed as an average skill score for each category, reflecting the percentage 

by which a method is more accurate than the simple average. We present this measure in the final four 

columns of Table 1. The first four rows of results correspond to simple benchmark combining methods. 

Of these, the simple average was the best for all four categories of the series. In the next four rows of 

results, we see that asymmetric interior trimming was the most successful trimming method. This 

method produced similar results to the simple average. The envelope method performed poorly. Turning 

to the score-based methods in the final seven rows, we find that the ‘previous best’ method was 

relatively poor, and the inverse interval score and inverse quantile score methods performed well. We 

note that incorporating shrinkage was only beneficial for the low mortality series, and tuning was not 

useful for any of the four categories of series. Overall, Table 1 shows that the best results were produced 

by the inverse score methods, with their improvements over the simple average being particularly good 

for the high and medium mortality series. As we said in Section 3.2, statistical tests are not available 

for the score averaged over lead times. (We return to the issue of statistical testing in Section 4.6.) 

As we noted in Section 2.3, for most forecasting teams, forecasts were not available for many 

of the 52 series and 40 forecast origins in our study. Indeed, for the out-of-sample 30-week period, a 

full set of forecasts for each series and forecast origin were available from only one team. The results 

for this team were very poor, and so we have not included them in Table 1. (We return to the issue of 
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evaluating the individual forecasting teams in Section 4.6.) 

Table 1. Interval score for 95% interval forecasts, averaged over the 30-week out-of-sample period. 

Interval Score Skill Score (%) 

All High Medium Low All High Medium Low 

Simple benchmarks 

   Ensemble 1402 3423 689 166  -10.9 -9.3 -14.8 -8.9 

   Simple average 1199 2942 577 140 0.0 0.0 0.0 0.0 

   Geometric mean 1308 3163 601 224  -16.3 -11.9 -2.6 -35.8 

   Median 1505 3730 697 165 -11.3 -9.7 -17.1 -7.4

Trimming methods 

   Sym trim 1380 3392 665 156 -7.9 -8.3 -12.9 -3.1 

   Asym ext trim 1507 3641 768 190  -27.2 -23.3 -35.3 -23.6 

   Asym int trim 1179 2874 582 141 -0.2 0.4 -0.1 -0.8

   Envelope 3986 10054 1569 538 -240.1 -217.0 -210.3 -296.3

Score-based methods 

   Previous best 1761 4062 1026 283 -70.1 -44.9 -84.6 -83.2 

   Inv interval score 1087 2614 558 145 3.8 9.5 2.2 -0.3 

   Inv interval score shrink 1114 2703 558 138  4.3 8.0 2.4 2.4 

   Inv interval score tuning 1246 3075 574 154 -0.4 6.9 -0.9 -7.3 

   Inv quantile score  1070 2581 533 149 3.6 9.2 4.5 -2.8 

   Inv quantile score shrink 1086 2635 539 141 4.9 9.4 4.4 0.9 

   Inv quantile score tuning 1101 2644 553 161 -0.9 5.8 1.7 -10.5 

Note: The unit of the score is deaths. Lower values of the score and higher values of the skill score are better. Bold 
indicates the best three methods in each column. 

Table 2. Interval score for 50% interval forecasts, averaged over the 30-week out-of-sample period. 

Interval Score Skill Score (%) 

All High Medium Low  All High Medium Low 

Simple benchmarks methods 

   Ensemble 559 1374 260 72  -1.3 -1.2 -3.1 0.2 

   Simple average 555 1371 252 72 0.0 0.0 0.0 0.0

   Geometric mean 571 1406 255 80  -6.0 -3.9 -1.2 -12.9 

   Median 579 1429 263 73 -2.3 -2.8 -4.5 0.1

Trimming methods 

   Sym trim 575 1424 258 72  -1.5 -2.9 -2.6 0.7 

   Asym ext trim 592 1463 267 76  -4.9 -4.2 -6.8 -3.8 

   Asym int trim 565 1399 254 72 -1.5 -2.8 -0.9 -0.9

   Envelope 1540 3743 723 231 -228.8 -240.3 -198.7 -248.5

Score-based methods 

   Previous best 578 1312 355 95 -29.0 -18.6 -34.6 -34.0 

   Inv interval score 520 1265 251 71  2.2 4.9 0.5 1.2 

   Inv interval score shrink 522 1272 251 71  1.9 4.6 0.5 0.5

   Inv interval score tuning 477 1134 250 71  2.5 6.1 0.6 0.8 

   Inv quantile score  512 1241 250 71 2.2 5.0 0.5 1.1 

   Inv quantile score shrink 515 1249 250 71 2.0 4.7 0.6 0.6

   Inv quantile score tuning 490 1172 252 72  1.7 4.7 0.2 0.2 

Note: The unit of the score is deaths. Lower values of the score and higher values of the skill score are better. Bold 
indicates the best three methods in each column. 
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Table 2 presents the interval score results for the 50% interval forecasts. The results are broadly 

consistent with those for the 95% interval. One difference is that, for the 50% intervals, the tuning forms 

of the inverse score methods were the most accurate for the all and high categories of series. Further 

investigation revealed that this was due to very good accuracy for the national U.S. mortality series.  

Figure 6 summarises calibration using Q-Q plots to report the hit percentages for the bounds of 

the 50% and 95% interval forecasts, which are forecasts of the quantiles with probability levels =2.5%, 

25%, 75% and 97.5%. To ensure readability, we present the results for just four methods. We chose 

three of the simple benchmark methods and the inverse interval score method. This was the simplest of 

the inverse score methods, all of which performed well in terms of the interval score. Similar calibration 

results were produced by the other inverse score methods. In each plot, the dashed line indicates the 

ideal performance. The plots show that the ensemble and median are slightly outperformed by the 

simple average and inverse interval score, which have particularly good calibration for the 2.5% and 

97.5% quantiles. For the 25% and 75% quantiles, the hit percentages for all four methods were too low, 

indicating that the forecasts of these quantiles tended to be too low. 

Figure 6. Calibration hit percentages for bounds on 50% and 95% intervals, computed using the 30-
week out-of-sample period. 
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4. Combining Distributional Forecasts of COVID-19 Mortality 

This section empirically compares combining methods for distributional forecasts. We first 

briefly discuss the structure of our empirical analysis, and describe measures used to evaluate 

distributional forecasts. We then review combining methods that have been proposed in the literature 

for data of the type that we consider, and present new weighted methods. We then summarise the 

combining methods that we implemented, and present our empirical results.  

4.1. Structure of the Empirical Study 

Our empirical analysis of distributional forecasts followed the same structure as our study of 

interval forecasts. The first 10 weeks of data were used as the initial estimation period, and out-of-

sample forecasts were evaluated for the final 30 weeks. For each forecast origin, we re-estimated 

parameters using all weeks up to and including the forecast origin. To help us describe parameter 

optimisation and several combining methods, we next discuss distributional forecast evaluation. 

4.2. Evaluation Measures for Distributional Forecasts 

Gneiting et al. (2007) describe how the aim of distributional forecasting is to maximise 

sharpness subject to calibration. Sharpness concerns the concentration of the distributional forecast, 

and calibration assesses its statistical consistency with the data. Randomly sampled values from a 

calibrated distributional forecast are indistinguishable from the observations (Gneiting and Katzfuss, 

2014). To evaluate calibration for distributional forecasts in our study, we computed the hit percentage 

for each of the 23 quantiles. 

A score summarises calibration and sharpness, and is said to be proper if it is minimised by the 

true distribution. As with consistent scoring functions for quantiles, proper distributional scores are 

recommended to ensure forecasters report honest predictions (Gneiting and Raftery, 2007). A widely 

used proper score for distributions of continuous random variables is the continuous ranked probability 

score (CRPS) (see Gneiting and Raftery, 2007). It can be viewed in several different ways, including 

the integral of the quantile score of expression (1), with respect to the probability level . For our 

application, where we have quantile forecasts for just 23 different values of , we use the linear quantile 

score (LQS) (see Grushka-Cockayne et al., 2017) in expression (4), which is the sum of the quantile 

scores for the 23 quantile forecasts: 
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      (4) 

This is a proper score, and this can be seen by viewing it as a quantile-weighted version of the CRPS 

(see Gneiting and Ranjan, 2011). We note that Bracher et al. (2021) present it as a weighted sum of the 

interval score of expression (2) and the quantile score of expression (1) for the median. 

Although our main interest in this paper is probabilistic forecasting, we also consider point 

predictions of the median, as this conveys the accuracy of the centre of location of the distributional 
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forecasts, and of course such point forecasts are often the main focus of attention. We evaluate these 

point forecasts using the mean absolute error (MAE). 

4.3. A Review of Combining Methods for Distributional Forecasts 

In this brief review of distributional forecast combining methods, we focus on the literature that 

has considered applications, like ours, where there is a large group of individual forecasters, and there 

is not a sizeable record of past accuracy available for each forecaster for the same past periods.  

The simple average is a well-established approach for combining distributional forecasts (see, 

for example, Stone, 1961). It has typically taken the form of the linear opinion pool, which, for any 

chosen value of the random variable, is the average of the corresponding cumulative probabilities 

obtained from the distributional forecasts. However, this form of averaging has been criticised because, 

even when the quantiles of the individual distributions are calibrated, the linear opinion pool will not 

itself provide perfect calibration (Hora, 2004; Ranjan and Gneiting, 2010). It has been noted that, when 

there is diversity among the means of the individual forecasts, this will tend to lead to an exaggerated 

variance in the forecast of the linear opinion pool (see, for example, Dawid, 1995). To address these 

problems, Lichtendahl et al. (2013) propose that, instead of averaging the cumulative probabilities, the 

distributional forecasts should be averaged by taking the mean of their corresponding quantile forecasts. 

In other words, for a chosen probability level , they suggest that combining is performed by averaging 

forecasts of the quantile qt() provided by each individual distributional forecast. They show how this 

leads to more attractive theoretical properties than the linear opinion pool. For our application in this 

paper, it provides a more convenient approach to averaging because each forecasting team submits the 

distributional forecast in terms of quantile forecasts for the same 23 values of the probability . 

To provide robust combining, Hora et al. (2013) propose that the median is used. For any chosen 

value of the random variable, their approach finds the median of the corresponding values of the 

cumulative probability forecasts. In fact, they show that this delivers the same combined distributional 

forecast as an approach that uses the median of forecasts of the quantile qt() for a chosen . 

As with interval forecast combining, trimming has also been proposed for distributional 

forecasts. Jose et al. (2014) propose interior and exterior trimming approaches, which involve trimming 

the innermost and outermost distributions, respectively, from a set of distributional forecasts. To enable 

the trimming, the distributional forecasts must essentially be ordered in some way, and for this, they 

propose two alternative approaches: the CDF approach (CA) and mean approach (MA). MA orders 

the distributional forecasts according to their means, and involves trimming entire distributional 

forecasts. After a proportion have been trimmed, the authors use a linear opinion pool to average the 

rest. CA orders the distributional forecasts separately for each of a set of values of the random variable. 

After the trimming is performed, the combined forecast is computed as the average of the cumulative 

probabilities given by the remaining distributional forecasts. Jose et al. (2014) note that CA could be 

adapted so that the trimming and averaging is performed on forecasts of the quantile qt() for any chosen 
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value of the probability , which would be more consistent with the advice of Lichtendahl et al. (2013) 

to average quantiles, rather than probabilities. For our application, this is a more convenient way to 

implement CA, as our distributional forecasts have each been provided in the form of a set of quantile 

forecasts. Following similar reasoning, we avoided the linear opinion pool with MA, so that following 

trimming, quantile forecasts are averaged.  

For interval forecast combining, symmetric trimming is motivated by robustness, and 

asymmetric trimming enables the impact to be reduced of a tendency among the individual forecasters 

to be either under- or overconfident. It is worth noting that analogous asymmetric methods are not 

straightforward for distributional forecasts because of the need to ensure that the resulting distribution 

function is monotonically increasing. It is also interesting to note that, although the trimming methods 

proposed by Jose et al. (2014) are all symmetric, and hence their exterior trimming will enable the 

removal of outliers, their main motivation for trimming is to address under- or overconfidence among 

the individual forecasters. For example, in an application to forecasts from a survey of professional 

economic forecasters, they show that, in comparison with the linear opinion pool, exterior trimming 

enables the impact to be reduced of underconfident forecasts of inflation, while interior trimming allows 

the combined distributional forecast to reduce the impact of overconfident forecasts of growth. 

Grushka-Cockayne et al. (2017) investigate the theoretical properties of CA with exterior trimming, and 

compare it with the linear opinion pool. They show that exterior trimming can overcome the tendency 

for the linear opinion pool to produce an underconfident forecast when the individual distributional 

forecasts have diverse means. They demonstrate this with an ensemble of distributional forecasts from 

a quantile regression forest. They show that the tendency for this machine learning method to overfit 

leads to diverse means among the ensemble, which can be addressed by CA with exterior trimming. 

In our study, for the distributional forecast combining methods that involve trimming, we 

optimised the trimming percentage  by finding the value that minimised the sum of the LQS of 

expression (4) for all four lead times using all periods up to and including the forecast origin. 

4.4. New Score-Based Weighted Combining Methods for Distributional Forecasts 

For distributional forecasting, we implemented a set of score-based combining methods 

analogous to those described in Section 3.4 for interval forecasting. For the ‘previous best’ and inverse 

interval score weighted combining methods, we replaced the use of the interval score by the LQS. The 

other three combining methods in Section 3.4 produced a forecast for each interval bound, based on the 

inverse of the quantile score. For distributional forecasting, we implemented these methods for each of 

the 23 quantiles that underlie each distributional forecast. Four of the inverse score combining methods 

in Section 3.4 involved a parameter, which we optimised using the interval score. For the analogous 

methods for distributional forecasting, we used the same optimisation procedure with the interval score 

replaced by the LQS. The inverse quantile score methods sometimes gave forecasts for the 23 quantiles 

that were not monotonically increasing with , the probability level. When this occurred for the quantile 
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forecasts corresponding to two adjacent values of , we replaced both quantile forecasts by their mean. 

4.5. Distributional Forecast Combining Methods Implemented in this Study 

For each mortality series, forecast origin and lead time, we implemented the following methods: 

Ensemble: This is the combination produced by the COVID-19 Forecast Hub. For the first 13 of the 40 

forecast origins in our study, the ensemble forecast of each of the 23 quantiles was the simple average 

of the corresponding quantile forecasts, and thereafter, it was the median. As noted in Section 2.3, the 

ensemble used a subset of the forecasts included in all other combining methods that we considered. 

Simple average: For each of the 23 quantiles, we used the arithmetic mean of the corresponding quantile 

forecasts. We used our full set of forecasts for this and the other combining methods described below. 

Geometric mean: For each of the 23 quantiles, we used the geometric mean of the corresponding 

quantile forecasts. This was the only combining method involving the geometric mean. 

Median: For each of the 23 quantiles, we found the median of the quantile forecasts.  

CA exterior trimming: For each of the 23 quantiles, we averaged the quantile forecasts remaining after 

we had removed the N lowest-valued and N highest-valued quantile forecasts, where N is the largest 

integer less than or equal to the product of /2 and the total number of forecasts, and  is the percentage 

of forecasts to trim. For each bound, we averaged the remaining forecasts. 

CA interior trimming: With this method, for each of the 23 quantiles, the innermost quantile forecasts 

were trimmed. The combination was computed as the average of the quantile forecasts that were either 

among the N lowest-valued or N highest-valued quantile forecasts, where N is the largest integer less 

than or equal to the product of (1-/2 and the total number of forecasts.  

MA exterior trimming: This method involved trimming entire distributional forecasts. The trimming 

was based on the mean of each distributional forecast, which we estimated using the average of the 23 

quantile forecasts. The forecast combination was computed by averaging the distributional forecasts 

that remain after the removal of the N distributional forecasts with lowest-valued mean and the N

distributional forecasts with highest-valued mean, where N is the largest integer less than or equal to 

the product of /2 and the total number of forecasts. 

MA interior trimming: This was similar to MA exterior trimming, except the innermost distributional 

forecasts were trimmed. The combination was computed as the average of the distributional forecasts 

that were among the N distributional forecasts with lowest-valued mean and the N distributional 

forecasts with highest-valued mean, where N is the largest integer less than or equal to the product of 

(1-/2 and the total number of forecasts. 

Previous best: The distributional forecast is provided by the forecasting team for which the LQS was 

the lowest when computed for the weeks up to and including the forecast origin. 

Inverse LQS: This is a convex combination of forecasts, where the weights are inversely proportional 

to the LQS computed for the weeks up to and including the forecast origin. 

Inverse LQS shrinkage: This is a weighted average of the simple average and inverse LQS methods. 
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Inverse LQS tuning: This applies a tuning parameter to the weights of the inverse LQS method.  

Inverse quantile score: This is a convex combination of forecasts, where the weights on the forecasts 

of each of the 23 quantiles are inversely proportional to the quantile score computed for each quantile 

forecast using the weeks up to and including the forecast origin. 

Inverse quantile score shrinkage: The forecast for each quantile is a weighted average of the forecasts 

of that quantile from the simple average and inverse quantile score combining methods. 

Inverse quantile score tuning: This applies a tuning parameter to the weights of the inverse quantile 

score method. 

4.6. Distributional Forecasting Results 

Table 3 presents the mean of the LQS for the four categories of series, along with skill scores. 

The unit of the LQS is the number of deaths, and lower values of the score reflect greater accuracy. 

There are similarities between the results of Table 3 and the interval score results of Tables 1 and 2, 

with the simple average being the best of the four simple benchmarks; the trimming methods performing 

reasonably but unremarkably; the previous best method doing poorly; and the best results produced by 

the inverse score methods. For the medium and low mortality series, Table 3 shows that the inverse 

score methods performed similarly, while for the high mortality series, incorporating tuning was 

beneficial. Closer inspection revealed that this finding for the high mortality series was due to tuning 

improving accuracy for the national U.S. series. The incorporation of shrinkage was not beneficial.  

Table 3. LQS for the distributional forecasts, averaged over the 30-week out-of-sample period. 

LQS Skill Score (%) 

All High Medium Low All High Medium Low 

Simple benchmarks methods 

   Ensemble 1296 3182 606 168 -2.0 -1.7 -3.4 -0.9 

   Simple average 1274 3142 581 164 0.0 0.0 0.0 0.0

   Geometric mean 1312 3227 587 188 -6.8 -4.4 -0.9 -15.3 

   Median 1344 3320 614 168 -2.7 -3.1 -4.8 -0.5

Trimming methods 

   CDF ext trim 1317 3253 600 165 -1.7 -3.3 -2.8 0.8 

   CDF int trim 1330 3311 582 166 -2.7 -7.1 -0.2 -1.0 

   Mean ext trim 1308 3230 596 166 -0.9 -1.6 -1.9 0.6

   Mean int trim 1298 3212 584 166 -1.2 -2.5 -0.4 -0.9

Score-based methods 

   Previous best 1495 3496 833 229 -33.3 -24.2 -36.6 -39.4 

   Inv LQS 1194 2901 579 163 2.3 5.3 0.6 0.9 

   Inv LQS shrink 1200 2920 579 163 2.1 4.9 0.5 0.9 

   Inv LQS tuning 1115 2658 579 163 2.0 5.8 0.3 0.0

   Inv quantile score  1179 2859 573 163 2.5 5.5 1.3 0.8

   Inv quantile score shrink 1197 2911 578 163 2.2 5.1 0.7 1.0 

   Inv quantile score tuning 1125 2690 580 163 2.0 4.6 0.6 0.9 

Note: The unit of the score is deaths. Lower values of the score and higher values of the skill score are better. Bold 
indicates the best three methods in each column.
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As we explained in Section 3.6, for the out-of-sample 30-week period, a full set of forecasts for 

each series and forecast origin were available from only one of the individual forecasting teams. That 

team performed very poorly in terms of interval forecasting, and also for distributional forecasting. To 

gain some insight into the relative accuracy of the individual teams, we computed the skill scores, as in 

Table 3, for each team using the periods for which forecasts were available from that team. This led to 

a wide range of skill scores, due partly to the instability of this measure when forecasts were available 

from a team for only a small number of periods. Nevertheless, it was interesting to find that the best 

skill scores computed for the individual teams for the all, high, medium and low categories of series 

were -1.3%, -1.3%, -8.6% and -6.1%, respectively. These negative values indicate that the best 

individual team for each category was less accurate than the simple average combining method. 

To look in more detail at the LQS results, Figure 7 reports the LQS for each of the 52 series for 

the simple average and the inverse LQS method, which is a simple form of inverse score method, 

involving no parameter estimation. The inverse LQS method can be seen to be slightly better than the 

simple average for most of the series, with this being most evident for the national U.S. series. 

Figure 7. Comparison of the LQS for the simple average and inverse LQS combining methods for each 
of the 52 mortality series. LQS averaged over the 30-week out-of-sample period. 

We also evaluated the distributional forecast combining methods of Table 3 in terms of their 

accuracy for producing 95% and 50% interval forecasts. The interval forecasts from the simple 

benchmarks were the same as those produced from these methods in our interval forecasting study of 

Section 3. However, this was not the case for the other methods in Table 3. We found that the best of 

the trimming methods in Table 3 was outperformed by the best of the interval forecast trimming 

methods in Section 3. For the inverse score methods, the best interval forecast accuracy achieved by the 
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methods of Table 3 was similar to the accuracy of the best of the inverse score methods in Section 3. 

For the four categories of series, Figure 8 presents Q-Q plots to summarise the calibration hit 

percentages for each of the 23 quantiles. To ensure legibility, we include just four methods in each plot: 

three simple benchmarks and the inverse LQS method, which was one of the most competitive methods 

in terms of the LQS. The other inverse score methods delivered similar calibration results. All the Q-Q 

plots show good calibration for all four methods for the extreme quantiles, with forecasts for the other 

quantiles being, on average, too low. The figure shows that the methods performed similarly for the 

medium and low mortality series, while for the high mortality series and all 52 series considered 

together, there was better calibration from the simple average and inverse LQS method, with the simple 

average being the better calibrated for the lower quantiles. 

Figure 8. Calibration of distributional forecasts assessed using hit percentages for the 23 quantile 
probability levels . Hit percentages computed using the 30-week out-of-sample period. 

In Table 4, we evaluate point forecast accuracy for forecasts of the median using the MAE 

averaged across the four lead times. The unit of the MAE is the number of deaths. The relative 

performances of the methods in Table 4 are similar to those in Table 3 for the LQS. This is quite 

common when there is sizeable variation over time in the location of the probability distribution, 

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

H
it

 p
er

ce
n

ta
ge

Quantile probability level q

All 52 mortality series

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

H
it

 p
er

ce
n

ta
ge

Quantile probability level q

High mortality series

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

H
it

 p
er

ce
n

ta
ge

Quantile probability level q

Medium mortality series

Simple average Ensemble Median Inv LQS Ideal

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

H
it

 p
er

ce
n

ta
ge

Quantile probability level q

Low mortality series



23 

because inaccuracy in the prediction of the distribution’s location will affect the accuracy of all the 

quantiles, and hence the whole distribution.  

Table 4. MAE for the median point forecasts derived from the distributional forecasts. MAE averaged 
over the 30-week out-of-sample period. 

MAE Skill Score (%) 

All High Medium Low All High Medium Low 

Simple benchmarks methods 

   Ensemble 171 420 79 23 -0.6 -0.5 -1.2 -0.3 

   Simple average 170 420 77 22 0.0 0.0 0.0 0.0

   Geometric mean 174 428 78 24 -4.9 -3.0 -1.0 -10.7 

   Median 175 431 79 22 -1.0 -1.5 -2.2 0.5

Trimming methods 

   CDF ext trim 174 430 79 22 -0.9 -2.8 -1.4 1.4 

   CDF int trim 177 440 77 22 -2.2 -6.1 -0.2 -0.6 

   Mean ext trim 173 427 79 22 -0.2 -1.1 -1.3 1.5 

   Mean int trim 173 427 78 22 -1.0 -1.9 -0.5 -0.5

Score-based methods 

   Previous best 184 431 102 29 -24.7 -16.6 -26.1 -31.6 

   Inv LQS  160 389 77 22 2.0 4.5 0.3 1.2

   Inv LQS shrink 161 391 77 22 1.9 4.2 0.3 1.1

   Inv LQS tuning 147 349 77 22 1.9 5.3 0.5 -0.1

   Inv quantile score  161 393 77 22 2.1 4.3 0.5 1.6 

   Inv quantile score shrink 161 392 77 22 1.9 4.3 0.3 1.1

   Inv quantile score tuning 150 357 77 22 2.5 4.2 0.4 2.9 

Note: The unit of the score is deaths. Lower values of the score and higher values of the skill score are better. Bold 
indicates the best three methods in each column. 

In the rest of this section, we extend our empirical analysis to consider the following issues: 

statistical testing, consistency of the results across lead times and across the 40 week-period, model 

diversity, use of different numbers of forecasts in the combination, and evaluation of average ranks. 

In this paper, we have presented results averaged across lead times. As far as we are aware, 

statistical tests are not available to compare results averaged in this way from different methods. The 

work of Quaedvlieg (2021) considers multi-horizon comparisons, but it is not applicable to our study 

where we expand the length of the estimation sample for each new forecast origin, which we feel would 

be done in practice because our time series are short. To consider statistical testing, we focus on each 

lead time separately. This also enables us to compare accuracy across lead times. Table 5 presents LQS 

results for each of the four lead times for a subgroup of the combining methods. The symbols * and † 

indicate methods with LQS that is significantly less than the simple average and median combinations, 

respectively, using a 5% significance level.1 For all the series considered together and the high mortality 

1 We based our test on the Diebold-Mariano test, for which the test statistic is the difference between the mean of 
an accuracy measure for two methods for a single time series (Diebold and Mariano, 2002). We needed to compare 
the difference averaged across multiple series. For this test statistic, we computed the variance of the sampling 
distribution by first summing each variance of the sampling distribution from the Diebold-Mariano test applied to 
each series, and then dividing this by the square of the number of series. 
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series, the table shows that the inverse score methods were generally significantly more accurate than 

the simple average and the median. For the medium mortality series, the inverse score methods were 

significantly more accurate than the median, but generally not significantly more accurate than the 

simple average. There are no cases of significance for the low mortality series. Finally, we note the 

table shows similar rankings of the methods for each lead time. 

Table 5. LQS for the distributional forecasts for each of the four lead times, averaged over the 30-week 
out-of-sample period.  

LQS Skill Score (%) 

All High Medium Low All High Medium Low 

1 week-ahead 

   Ensemble 592 1450 284 74 2.7 8.0 -0.9 1.1 

   Simple average 617 1532 276 74 0.0 0.0 0.0 0.0 

   Geometric mean 641 1591 280 84 -5.4 -3.6 -1.7 -10.9 

   Median 597 1466 284 73 3.1 8.0 -1.1 2.3 

   Inv LQS  570* 1395* 272† 72 4.8 8.7 2.6 3.0 

   Inv LQS tuning 538*† 1297* 272† 72 4.9 10.5 2.5 1.7 

   Inv quantile score 563* 1378* 270† 72 4.8 9.1 2.7 2.6 

   Inv quantile score tuning 534*† 1284*† 273† 72 5.0 10.4 1.9 2.6 

2 weeks-ahead 

   Ensemble 1003† 2458† 472 132 -1.2 1.3 -4.2 -0.6 

   Simple average 993 2449 450† 130 0.0 0.0 0.0 0.0 

   Geometric mean 1022 2514 456† 149 -4.9 -3.2 -1.2 -10.2 

   Median 1033 2544 476 131 -1.5 0.6 -5.3 0.0 

   Inv LQS 935*† 2272*† 449*† 130 2.2 5.8 0.5 0.3 

   Inv LQS tuning 862*† 2050*† 450† 129 2.8 8.6 0.1 -0.3 

   Inv quantile score 925*† 2245*† 446† 130 2.4 6.1 0.8 0.3

   Inv quantile score tuning 872*† 2078*† 451† 129  2.8 7.7 0.3 0.5 

3 weeks-ahead 

   Ensemble 1492† 3664† 698† 192 -2.8 -2.9 -4.0 -1.6 

   Simple average 1453 3580 666† 188 0.0 0.0 0.0 0.0 

   Geometric mean 1496 3670 673† 220 -7.2 -2.5 -1.1 -18.2 

   Median 1551 3833 708 193 -3.9 -4.5 -5.7 -1.7 

   Inv LQS 1371*† 3328*† 666† 188 1.3 4.1 0.1 -0.3 

   Inv LQS tuning 1273† 3025† 668† 188 0.9 4.7 -0.4 -1.7 

   Inv quantile score 1352*† 3277*† 660† 188 1.5 4.3 0.5 -0.3 

   Inv quantile score tuning 1292*† 3085*† 668† 188  0.9 3.4 0.1 -0.7

4 weeks-ahead 

   Ensemble 2097† 5156† 969† 274 -3.0 -5.1 -3.3 -0.9 

   Simple average 2034† 5007 933† 266 0.0 0.0 0.0 0.0

   Geometric mean 2089 5133 940† 298 -6.3 -5.0 -0.5 -13.3

   Median 2194 5435 985 274 -4.1 -7.1 -5.0 -0.5

   Inv LQS 1902*† 4608*† 931† 263 2.3 4.9 0.5 1.4

   Inv LQS tuning 1787† 4261† 927† 261 1.7 4.0 0.2 0.8

   Inv quantile score 1874*† 4536*† 916† 264 2.6 4.9 1.8 1.3

   Inv quantile score tuning 1804*† 4312*† 928† 262 1.7 2.6 0.8 1.7 

Note: The unit of LQS is deaths. Lower LQS values are better. For each lead time, bold indicates the best method 
for each of the four categories of series: all series, high, medium and low. * and † indicate a score significantly 
lower than the simple average and median, respectively, at the 5% significance level.
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Table 6. LQS for the distributional forecasts, averaged over each 10-week period. 

LQS Skill Score (%) 

All High Medium Low All High Medium Low 

Weeks 1-10 

   Ensemble 1349 3528 476 114 -0.8 -3.1 -4.6 4.9 

   Simple average 1254 3256 455 117 0.0 0.0 0.0 0.0 

   Geometric mean 1212 3210 397 95  13.0 7.9 14.1 16.7 

   Median 1220 3270 369 86 20.3 10.9 20.1 28.5

   Inv LQS NA NA NA NA NA NA NA NA 

   Inv LQS tuning NA NA NA NA NA NA NA NA 

   Inv quantile score NA NA NA NA NA NA NA NA 

   Inv quantile score tuning NA NA NA NA NA NA NA NA 

Weeks 11-20 

   Ensemble 832 2166 311 65 13.6 17.6 8.4 14.4 

   Simple average 855 2208 329 75 0.0 0.0 0.0 0.0 

   Geometric mean 930 2366 334 138  -16.7 -8.7 -1.8 -42.0 

   Median 865 2254 320 67  12.8 17.5 6.3 14.3 

   Inv LQS 786 2007 321 71 8.2 14.5 3.5 6.5 

   Inv LQS tuning 786 2007 321 71 8.2 14.5 3.5 6.5 

   Inv quantile score 777 1982 320 70 8.9 14.7 4.2 7.5 

   Inv quantile score tuning 777 1982 320 70 8.9 14.7 4.2 7.5 

Weeks 21-30 

   Ensemble 1120 2623 611 182 -9.5 -9.8 -7.9 -10.8 

   Simple average 1041 2460 548 166 0.0 0.0 0.0 0.0 

   Geometric mean 1048 2466 557 173 -0.8 0.2 0.0 -2.5 

   Median 1138 2673 614 182 -9.2 -9.0 -8.6 -10.0 

   Inv LQS 971 2233 558 170 -0.6 3.4 -1.0 -4.2 

   Inv LQS tuning 849 1856 560 172 -0.2 6.6 -1.5 -5.9 

   Inv quantile score 954 2195 543 170 0.1 3.5 1.3 -4.5 

   Inv quantile score tuning 878 1945 555 174 -1.2 4.3 -0.9 -7.0

Weeks 31-40 

   Ensemble 2107 5187 966 276 -2.4 -4.3 -3.3 0.2 

   Simple average 2099 5192 939 273 0.0 0.0 0.0 0.0

   Geometric mean 2130 5291 943 266 0.7 -1.2 -0.5 3.5

   Median 2212 5500 978 272 -3.4 -7.2 -5.1 1.5

   Inv LQS 1991 4879 929 267 1.6 1.8 0.4 2.5

   Inv LQS tuning 1868 4510 927 262 0.9 0.3 0.8 1.6

   Inv quantile score 1970 4811 928 270 1.3 1.5 0.2 2.1

   Inv quantile score tuning 1881 4542 937 261 1.1 -0.5 0.0 3.7 

Note: The unit of LQS is deaths. Lower LQS values are better. NA indicates not available. For each 10-week period, 
bold indicates the best method for each of the four categories of series: all series, high, medium and low.  

To address whether the ranking of the methods varies over the 40 weeks of our dataset, Table 

6 presents the LQS separately for the four successive 10-week periods. We have averaged the LQS 

across lead times, and we consider the same subgroup of methods as in Table 5. Note that the trimming 

and inverse score methods were not available for the first 10-week period, as this was the first in-sample 

estimation period for these methods. Although insight is limited from such short periods, especially for 

probabilistic forecasts, it is interesting to see that the inverse score methods were reasonably consistent 
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in performing well across the 10-week periods, and the median was very competitive for the first two 

10-week periods.  

In Section 2, we discussed the different methods used by the individual forecasting teams. We 

described how compartmental models were used by approximately half the teams, and we illustrated 

this in Figure 4. We were curious to see how the combining methods would perform if they were applied 

to only the teams using compartmental models. Given their widespread use by epidemiologists, one 

might surmise that combining only these models would be adequate, and that a combination using only 

the other types of models would deliver poor results. We investigate these issues in Table 7, where we 

report LQS results produced by applying each of the combining methods to the following three different 

sets of the individual forecasting teams: all the teams, the teams using compartmental models, and the 

teams not using compartmental models. For the low mortality series, Table 7 shows that combining 

only compartmental models was most accurate. For the medium mortality series, combining only 

compartmental models was more accurate than combining only non-compartmental models, and there 

was only a small benefit in including the latter in a combination with the former. For the high mortality 

series, the best results were produced by combining both types of model. 

Table 7. LQS for the distributional forecasts, averaged over the 30-week out-of-sample period, for 
combining methods applied to three different sets of individual forecasts: all, compartmental models 
only, and non-compartmental models. 

All series High Medium   Low 

All Comp 
Non-
Comp

 All Comp 
Non-
Comp 

 All Comp
Non-
Comp

 All Comp
Non-
Comp

Simple benchmarks methods

   Ensemble 1296 NA NA  3182 NA NA  606 NA NA  168 NA NA 

   Simple average 1274 1327 1381  3142 3294 3394  581 594 634  164 161 187 

   Geometric mean 1312 1351 1401  3227 3360 3432  587 601 637  188 163 206 

   Median 1344 1390 1431  3320 3445 3536  614 632 650  168 165 180 

Trimming methods

   CDF ext trim 1317 1369 1374  3253 3403 3380  600 614 631  165 162 182 

   CDF int trim 1330 1353 1464  3311 3367 3600  582 598 668  166 163 198 

   Mean ext trim 1308 1368 1380  3230 3403 3393  596 609 636  166 163 181 

   Mean int trim 1298 1356 1441  3212 3373 3549  584 603 650  166 163 196 

Score-based methods

   Previous best 1495 1474 1520  3496 3463 3510  833 803 887  229 229 238 

   Inv LQS 1194 1277 1239  2901 3153 2972  579 582 630  163 162 178 

   Inv LQS shrink 1200 1279 1244  2920 3151 2991  579 588 627  163 163 177 

   Inv LQS tuning 1115 1163 1195 2658 2799 2833  579 582 636  163 166 177 

   Inv quantile score  1179 1253 1230  2859 3087 2946  573 576 626  163 161 179 

   Inv quantile score shrink 1197 1277 1243  2911 3145 2988  578 587 628  163 163 177 

   Inv quantile score tuning 1125 1212 1211 2690 2947 2876  580 582 641  163 167 178 

Note: The unit of LQS is deaths. Lower LQS values are better. NA indicates not available. Bold indicates the best 
three methods for each of the four categories of series: all series, high, medium and low.
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Figure 9. LQS for distributional forecasts from simple average combinations of different numbers of 
forecasts. LQS averaged over the 30-week out-of-sample period. 

We investigated the impact on distributional forecast accuracy of using different numbers of 

forecasts in the combinations. We represent this number by K. In Section 2.3, we described how the 

availability of the forecasting teams varied across the series and forecast origins. The number of teams 

available varied between 6 and 36, with a median of 27. To investigate different values of K, for each 

location and forecast origin, we sampled K forecasts, with replacement, from the available forecasts, 

and evaluated combinations of the K forecasts. We did this 1,000 times for K=2 to 36. For each value 

of K, and simple average combining, Figure 9 uses a Box plot to summarise the resulting 1,000 LQS 

values. Each panel shows a noticeable improvement in the LQS as K increases to about 20. In fact, the 

LQS for each of the four categories of series continued to improve slightly up to about K=30, indicating 

the benefit of using a large pool of forecasts. 

Our final set of results consists of ranks of the methods, averaged over the series within each 

of the four categories. Table 8 reports the average ranks for the LQS and MAE. (Prior to computing the 

ranks, each score was averaged across the four lead times.) Lower ranks are better. The average ranks 

provide a similar message to the average scores in Tables 3 and 4, with the inverse score methods 

performing the best. We implemented the statistical test for average ranks proposed by Koning et al. 

(Section 2.2, 2005) to enable multiple comparisons with the best method in each column of Table 8. In 

each column, the best average rank is highlighted in bold, and * indicates a method that has average 

rank significantly worse than the best method in that column, using a 5% significance level. Significance 

can be seen in all cases for the ‘previous best’ method, and in most cases for the median combining 

method.  
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Table 8. Average ranks of the LQS and MAE computed for the 30-week out-of-sample period. 

LQS MAE 

All High Medium Low All High Medium Low 

Simple benchmarks methods

   Ensemble 9.4* 9.7 9.3 9.2 8.8 9.2 7.8 9.4 

   Simple average 6.7 7.2 6.5 6.4 6.9 7.1 5.9 7.6 

   Geometric mean 8.9* 8.8 8.9 9.1 9.2* 9.7 8.7 9.2 

   Median 10.2* 11.5* 11.3* 7.9 9.5* 10.6* 9.8 8.2 

Trimming methods

   CDF ext trim 9.6* 11.2* 9.9 7.6 9.1 11.3* 8.9 7.2 

   CDF int trim 7.7 8.3 6.9 7.9 7.8 8.9 6.5 8.1 

   Mean ext trim 8.4 9.0 8.6 7.6 8.3 9.2 8.7 7.1 

   Mean int trim 8.0 8.4 7.9 7.7 7.8 8.8 7.2 7.3 

Score-based methods

   Previous best 13.7* 12.6* 14.5* 14.0* 12.9* 11.6* 12.8* 14.1* 

   Inv LQS  5.8 4.5 5.8 7.0 6.8 4.9 7.8 7.7

   Inv LQS shrink 6.3 5.0 6.8 6.9 6.9 5.6 7.4 7.6 

   Inv LQS tuning 6.9 6.4 6.4 7.8 6.9 5.6 7.6 7.4 

   Inv quantile score  5.9 5.3 5.2 7.0 6.2 5.4 6.6 6.5

   Inv quantile score shrink 5.9 5.0 6.1 6.6 6.7 5.7 7.2 7.2 

   Inv quantile score tuning 6.6 6.8 5.7 7.3 6.2 6.2 7.1 5.4

Note: Lower values are better. In each column, bold indicates the best method, and * indicates a value significantly 
worse than the best method, at the 5% significance level.

5. Summary and Concluding Comments 

We have provided an empirical comparison of combining methods for interval and 

distributional forecasts of cumulative mortality due to COVID-19. The forecasts were produced by 

teams using a variety of approaches, including compartmental and statistical models. Combining 

provides a pragmatic way to synthesise the diverse information underlying these models. For combining 

probabilistic forecasting, methods proposed in the literature include the simple average, which is a 

natural benchmark, as well as the median and trimming methods, which enable robust estimation and 

adjustment for the case where forecasters tend to be under- or overconfident. For applications, such as 

ours, where there is frequent entry and exit of participating forecasting teams, it is not clear how best to 

form weighted forecast combinations, as a comparable history of accuracy is not available for the teams. 

We took a pragmatic approach and implemented weighted combinations based on the inverse of 

appropriate scoring functions, computed using whatever historical forecasts were available for each 

method. We are not aware of previous studies that have used this approach for probabilistic forecasting 

with data that has frequent entry and exit of forecasters. For our out-of-sample period of the most recent 

30 weeks, these weighted combinations outperformed all other methods for high mortality series, while 

for the other series, accuracy of these methods matched the best of the other combining methods, which 

was the simple average. For the first 10 weeks of our dataset, insufficient historical accuracy was 

available with which to construct the weighted combinations. For these early weeks, the median was 

overall the most accurate method. 
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Supplementary Information 

The terms and conditions of the forecasts that were analysed are recorded in the forecasting groups’ supplementary files on the Reich Lab COVID-
19 Forecast GitHub website: https://github.com/reichlab/COVID19-forecast-hub/tree/master/data-processed.  
A number of the forecasting teams released their data under one of the following licences:   
https://creativecommons.org/licenses/by/4.0/, 
https://creativecommons.org/licenses/by-nc/4.0/,  
https://creativecommons.org/licenses/by-nc-sa/4.0/ 

Details of forecast models, ordered by model name 

Contributors and citations Model  
(short name)  

Model description* Access information  

Wattanachit N, Ray EL, Reich N 

https://www.medrxiv.org/content/10.1101/202
0.08.19.20177493v1 

https://www.medrxiv.org/content/10.1101/202
1.02.03.21250974v1 

COVID hub-ensemble An ensemble, or model average, of 
submitted forecasts to the COVID-19 
Forecast Hub. 

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/COVIDhub-
ensemble 

COMPARTMENTAL MODELS

Tomar V,  Jain C Auquan-SEIR Modified SEIR model with 
compartments for reported and 
unreported infections. Non-linear 
mixed effects curve-fitting. 

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/Auquan-SEIR 

Panano B. 

https://bobpagano.com/covid-19-modeling/ 

BPangano-RtDriven Projects infections and deaths for 223 
locations using an SIR model. 

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/BPagano-RtDriven 

Carlson E, Henderson M, Kelly C, Kofman I, 
Zhang X 

CovidActNow-SEIR_CAN SEIR model forecasts of cumulative 
deaths, incident deaths, incident 
hospitalizations by fitting predicted 
cases, deaths, and hospitalizations to 
the observations.

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/CovidActNow-
SEIR_CAN
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Contributors and citations Model  
(short name)  

Model description* Access information  

Li ML, Bouardi HT, Lami  OS, Trikalinos 
TA, Trichakis NK, Bertsimas D 

https://www.covidanalytics.io/DELPHI_docu
mentation_pdf 

CovidAnalytics-DELPHI SEIR model augmented with 
underdetection and interventions. 
Projections account for reopening and 
assume interventions would be re-
enacted if cases continue to climb. 

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/CovidAnalytics-
DELPHI 

Chhatwal J, Ayer T, Linas B, Dalgic O, 
Mueller P, Adee M, Ladd MA, Xiao J  
(Mass General Hospital, Harvard Medical 
School, Georgia Tech and Boston Medical 
Centre) 

Covid19Sim-Simulator An interactive tool that uses a 
validated SEIR compartment model. 

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/Covid19Sim-
Simulator 

Pei S, Yamana T, Kandula S, Yang W, 
Galanti M,  Shaman J 

https://doi.org/10.1101/2020.03.21.20040303 

CU-select Metapopulation county-level SEIR 
model for projecting future COVID-
19 incidence and deaths. This 
forecast is the scenario we believe to 
be most plausible given the current 
setting.

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/CU-select 

Pei S, Yamana T, Kandula S, Yang W, 
Galanti M,  Shaman J 

https://doi.org/10.1101/2020.03.21.20040303 

CU-nochange This metapopulation county-level 
SEIR model assumes that current 
contact 
  rates will remain unchanged in the 
future. 

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/CU-nochange 

Max A, Epshteyn A, Kang B, Li C-L, Sava D, 
Parish D, Miller D,  Kanal E,  Liu H, Nakhost 
H, Jones I, Lai J, Repenning J, Yoon J, 
Ramasamy K, Zhang L, Le L, Nikoltchev M, 
Siegler M, Dusenberry M, Yoder N, 
Rozenfeld O, Rangaswamy P, Sinha R, Xie R, 
Arik S, Singh S, Tsai T, Pfister T, Menon V, 
Karande V, Y, Li Y 

 https://arxiv.org/abs/2008.00646 

Google-Harvard-CPF Our model improves upon standard 
compartmental models by using 
temporally and spatially rich data, 
and integrating covariate encodings 
into compartment transitions via end-
to-end learning. 

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/Google_Harvard-
CPF 

Lemaitre JC, Bi Q , Hulse JD, Grabowski 
MK, Grantz KH, Kaminsky J, Lauer SA, Lee 
EC, Meredith HR, Perez-Saez J, Truelove SA, 

JHU_IDD-CovidSP County-level metapopulation model 
with commuting and stochastic SEIR 

https://github.com/reichlab/co
vid19-forecast-
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Contributors and citations Model  
(short name)  

Model description* Access information  

Keegan LT,  Kaminsky K, Shah S, Wills J, 
Aquilanti P-Y, Raman K, Subramaniyan A, 
Thursam G, Tran A. 

https://www.medrxiv.org/content/10.1101/202
0.06.11.20127894v1 

disease dynamics with social-
distancing indicators. 

hub/tree/master/data-
processed/JHU_IDD-CovidSP 

Kinsey M, Tallaksen K, Obrecht RF, Asher L, 
Costello C, Kelbaugh M, Wilson S 

JHUAPL_Bucky Metapopulation model using public 
mobility data. Local parameters (case 
reporting rates, doubling times, etc) 
are estimated using data from CSSE 
and CDC scenario 5. Primary output 
is case incidence.

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/JHUAPL-Bucky 

Baek J, Farias V, Georgescu A, Levi R, Sinha 
D, Wilde J, Zheng A 

https://arxiv.org/abs/2006.06373 

MITCovAlliance-SIR SIR model trained on public heath 
regions. SIR parameters are functions 
of static demographic and time-
varying mobility features. Two-stage 
approach that first learns magnitude 
of peak infections.

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/MITCovAlliance-
SIR 

Vespignani A, Chinazzi M, Davis JT, Mu K, 
Pastore y Piontti A, Samay N, Xiong X, 
Halloran ME, Longini IM, Dean NE, Viboud 
C, Sun K, Litvinova M, Gioannini C, Rossi L, 
Ajelli M 

https://uploads-
ssl.webflow.com/58e6558acc00ee8e4536c1f5/
5e8bab44f5baae4c1c2a75d2_GLEAM_web.p
df 

MOBS-GLEAM_COVID Metapopulation, age structured SLIR 
model.  Superimposed on the 
worldwide population and mobility 
layers is an agent-based epidemic 
model that defines the infection and 
population dynamics. Makes 
predictions about the future that are 
dependent on the assumption that 
current interventions continue. 

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/MOBS-
GLEAM_COVID 

Gao Z, Li C, Zheng S, Bian J, Xie X, LiuT-Y  MSRA-DeepST A deep spatio-temporal network with 
knowledge based SEIR as a 
regularier under the assumption of 
spatio-temporal process in pandemic 
of different regions.

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/MSRA-DeepST 

Espana G, Oidtman R, NotreDame-Mobility Ensemble of nine models that are 
identical except that they are driven 
by different mobility indices from 

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
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Contributors and citations Model  
(short name)  

Model description* Access information  

Cavany S, Costello A, Wieler A, Lerch A, 
Barbera C, Poterek M, Tran Q, Moore S, 
Perkins A

Apple and Google. The model 
underlying each is a deterministic, 
SEIR-like model.

processed/NotreDame-
mobility 

Koyluoglu U, Milliken J OliverWyman-Navigator Forecasts and scenario analysis for 
Detected and Undetected cases and 
death counts following a 
compartmental formulation with non-
stationary transition rates. 

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/OliverWyman-
Navigator 

Turtle J, Ben-Nun M, Riley P  PSI-DRAFT A stochastic/deterministic, single-
population SEIRX model that 
stratifies by both age distribution and 
disease severity and includes generic 
intervention fitting.

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/PSI-DRAFT 

Shi Y, Shah T, Ban X 

https://www.medrxiv.org/content/10.1101/202
0.07.25.20162016v1 

RPI-UW-Mob_Collision A mobility-informed simplified SIR 
model motivated by collision theory. 

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/RPI-UW-Mob-
Collision

Snyder TL, Wilson DD SWC-TerminusCM Mechanistic compartmental model 
using disease parameter estimates 
from literature. It uses Bayesian 
inference to predict the most likely 
model parameters.

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/SWC-TerminusCM 

Cobey S, Arevalo P, Baskerville E, Carran S, 
Gostic K, McGough L, Ranjeva S, Wen F 

UChicago-COVIDIL Compartmental, age-structured SEIR 
model that infers past SARS-CoV-2 
transmission rates and forecasts 
mortality under current and 
hypothetical public health 
interventions.

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/UChicago-CovidIL 

Gu Q, Xu P, Chen J, Wang L, Zou D, Zhang 
W 

https://www.medrxiv.org/content/10.1101/202
0.05.24.20111989v1 

UCLA-SuEIR Variant of the SEIR model 
considering both untested and 
unreported cases. The model 
considers reopening and assumes 
susceptible population will increase 
after the reopen.

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/UCLA-SuEIR 

Chen YQ, Zhao Y, Guo L UCM-MESALab-
FoGSEIR

FoGSEIR model is a modification of 
integer order SEIR model considering 

https://github.com/reichlab/co
vid19-forecast-
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Contributors and citations Model  
(short name)  

Model description* Access information  

fractional integrals. The model 
considers the age structure and 
reopening intervention to minimize 
infections and deaths.

hub/tree/master/data-
processed/UCM_MESALab-
FoGSEIR 

Sheldon D, Gibson G, Reich N UMass-MechBayes Bayesian compartmental model with 
observations on cumulative case 
counts and cumulative deaths. Model 
is fit independently to each state. 
Model includes observation noise and 
a case detection rate.

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/UMass-MechBayes 

Mayo ML, Rowland MA,  Parno MD, 
Detwiller ID, Farthing MW, England WP 
George GE 

USACE-ERDC_SEIR The ERDC SEIR model makes 
predictions of several variables (e.g., 
reported new/cumulative cases per 
day, etc.). Model parameters are 
estimated using historical data using 
Bayesian inference.

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/USACE-
ERDC_SEIR 

Jain S, Tiwari A, Deva A, Kulkarni M,  Shingi 
S, Bannur N, White J, Merugu S, Raval A  

Wadhwani_AI-BayesOpt A novel model-agnostic Bayesian 
optimization ("BayesOpt") approach 
for learning the parameters of the 
SEIR model from observed data. 

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/Wadhwani_AI-
BayesOpt 

Gu Y 
https://covid19-projections.com/about/ 

YYG-ParamSearch Based on the SEIR model with 
hyperparameter optimization to make 
daily projections regarding COVID-
19 infections and deaths in 50 US 
states. The model accounts for state 
reopenings and its effects on 
infections and deaths.

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/YYG-ParamSearch 

OTHER MODELS

O’Dea E CEID-Walk A random walk model with drift. A 
least squares line is fitted to the tail 
observations of a target time series to 
estimate the drift and step variance of 
a random walk model. 

https://github.com/reichlab/co
vid19-forecast-
hub/blob/master/data-
processed/CEID-
Walk/metadata-CEID-
Walk.txt
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Contributors and citations Model  
(short name)  

Model description* Access information  

Wang Y, Zeng D, Wang Q, Xie S 

https://www.frontiersin.org/article/10.3389/fp
ubh.2020.00325 

Columbia_UNC-SurvCon Survival-convolution model with 
piece-wise transmission rates that 
incorporates latent incubation period 
and provides time-varying effective 
reproductive number. 

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/Columbia_UNC-
SurvCon 

Ray EL, Tibshirani R COVIDhub-baseline Baseline prediction model. https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/COVIDhub-
baseline 

Kalantari R, Zhou M. 

https://dds-covid19.github.io/ 

DDS-NBDS Jointly modeling daily deaths and 
cases using a negative binomial 
distribution based nonparametric 
Bayesian generalized linear 
dynamical system.

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/DDS-NBDS 

Sherratt K, Bosse N, Abbott S, Hellewell J,  
Meakin S, Munday J, Funk S 

https://doi.org/10.12688/wellcomeopenres.160
06.1 

epiforecasts-ensemble1 A deaths forecast using the renewal 
equation and time-series forecasts of 
the time-varying reproduction 
number. 

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/epiforecasts-
ensemble1 

Keskinocak P, Aglar BEO, Baxter A,  
Asplund J, Serban N 

GT_CHHS-COVID19 Agent-based simulation model to 
project COVID19 infection spread. 

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/GT_CHHS-
COVID19 

Prakash  BA,  Rodriguez A, Cui J, Tabassum 
A,  Adhikari B, Sun J,  Xiao D, Qiang C 

GT-DeepCOVID Data-driven approach based on deep 
learning for forecasting mortality and 
hospitalizations using syndromic, 
clinical, demographic, mobility and 
point-of-care data.

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/GT-DeepCOVID 

Murry C and the IHME-CurveFitTeam 

https://www.medrxiv.org/content/10.1101/202
0.03.27.20043752v1

IHME-CurveFit Non-linear mixed effects curve-
fitting. This model makes predictions 
about the future that are dependent on 
the assumption 

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/IHME-CurveFit
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Contributors and citations Model  
(short name)  

Model description* Access information  

that current interventions continue.  

Wang L, Wang G, Gao L, Li X, Yu S, Kim M, 
Wang Y, Gu Z. 

https://arxiv.org/abs/2004.14103 

IowaStateLW-STEM A nonparametric space-time disease 
transmission model.  
The projections assume that the data 
used is reliable, the future will 
continue to follow the current pattern, 
and current interventions will remain 
the same till the end of forecasting 
period.

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/IowaStateLW-
STEM 

Marshall M, Gardner L, Drew C, Burman E, 
Nixon K 

JHU_CSSE-DECOM County-level, empirical machine 
learning model driven by 
epidemiological, mobility, 
demographic, and behavioral data. 

https://github.com/reichlab/co
vid19-forecast-
hub/blob/master/data-
processed/JHU_CSSE-
DECOM

Karlem D. 

https://arxiv.org/abs/2007.07156 

Karlen-pypm python Population Modeller https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/Karlen-pypm

Osthus D, Del Valle S, Manore C, Weaver B, 
Castro L, Shelley S, Smith M, Spencer J, 
Fairchild G, Travis Pitts T, Gerts D, 
Dauelsberg L, Daughton A,    Gorris M, 
Hornbein B, Israel D, Parikh N, Shutt D, 
Ziemann A

LANL-GrowthRate Statistical dynamical growth model 
accounting for population 
susceptibility. Makes predictions 
about the future, unconditional on 
particular intervention strategies.  

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/LANL-GrowthRate 

Gao Z, Li C, Cao W, Zheng S, Bian J, Xie X, 
Liu T-Y, Zhang S, Lavista Ferres  J  

Microsoft-DeepSTIA A deep spatio-temporal network with 
intervention and hosptial gate under 
the assumption of spatio-temporal 
process in pandemic of different 
regions.

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/Microsoft-
DeepSTIA

Espana G, Oidtman R, Cavany S, Costello A, 
Wieler A, Lerch A, Barbera C, Poterek M, 
Tran Q, Moore S, Perkins A 

NotreDame-FRED Agent-based model developed for 
influenza with parameters modified 
to represent the natural history of 
COVID-19 

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/NotreDame-FRED 

Walraven R RobertWalraven-ESG Multiple skewed gaussian 
distribution peaks fitted to raw data.

https://github.com/reichlab/co
vid19-forecast-
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Contributors and citations Model  
(short name)  

Model description* Access information  

hub/tree/master/data-
processed/RobertWalraven-
ESG 

Nagraj VP, Turner SD, Hulme-Lowe C SigSci-TS Time series forecasting using 
ARIMA for case forecasts and lagged 
cases for death forecasts. 

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/SigSci-TS 

McConnell S, Donaldson B 

https://stevemcconnell.com/covid 

SteveMcConnell_COVID
Complete 

National level and state level, near-
term (1-4 week) fatality forecasts. 

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/SteveMcConnell-
CovidComplete 

Bieggel H, Lega J UA-EpiCovDA† SIR mechanistic model with data 
assimilation. EpiCovDA is an 
extension of the EpiGro model. 
Model parameters are fit to Covid-19 
data using a variational data 
assimilation method. A prior 
distribution of the parameters is 
estimated by fitting an SIR 
Incidence-Cumulative Cases curve to 
data from states that had at least 1000 
cases by 04/01/2020.

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/UA-EpiCovDA 

Wu D, Gao L, M Yian, Yu R, Vespignani A, 
Chinazzi M, Davis JT, Mu K, Pastore y 
Piontti A, Xiong X 

UCSD-
NEU_DeepGLEAM 

Combines the signal of a discrete 
stochastic epidemic computational 
model GLEAM with a deep learning 
spatiotemporal forecasting 
framework to further improve 
predictions.' 

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/UCSD_NEU-
DeepGLEAM 

Corsetti S, Schwarz T UMich-RidgeTfReg Nation-level model of confirmed 
cases and deaths based on ridge 
regression.  
No assumptions made about social 
distancing.

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/UMich-RidgeTfReg 
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Contributors and citations Model  
(short name)  

Model description* Access information  

Jin X, Wang Y-X, Yan  X  UCSB-ACTS Data-driven machine learning model 
makes predictions by referring to 
other regions with similar growth 
patterns and assuming the similar 
development will take place in the 
current region.

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/UCSB-ACTS 

Srivastava A, Prasanna VK, Tianjian Xu F. 

https://arxiv.org/abs/2007.05180 

USC-SI_kJalpha_RF A heterogeneous infection rate model 
with human mobility for epidemic 
modeling. The model adapts to 
changing trends and provide 
predictions of confirmed cases and 
deaths. 

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/USC-
SI_kJalpha_RF 

Woody S, et al. at the University of Texas UT-Mobility This model makes predictions 
assuming that social distancing 
patterns, as measured by anonymized 
mobile-phone GPS traces, remain 
constant in the future. Only models  
*first-wave deaths*.

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/UT-Mobility 

Mehrotra P, Ivan JI, and the Walmart Labs 
COVID-19 Team 

WalmartLabsML_LogFore
casting 

A logistic growth prophet forecasting 
model fit using case counts and 
deaths as features.The Model is built 
by Propeht model with logistic 
growths to forecast the US 
cumulative deaths. By sampling from 
uniform distribution to get the 
quantiles.

https://github.com/reichlab/co
vid19-forecast-
hub/tree/master/data-
processed/WalmartLabsML-
LogForecasting 

* Based on information recorded on the GIT Hub 
† Classed as other model as it is an extension to a non-linear growth model with a prior distribution SIR curve fitted.  


