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Forecast Combinations for Value at Risk and Expected Shortfall 

Abstract 

Combining provides a pragmatic way of synthesising the information provided by individual 

forecasting methods. In the context of forecasting the mean, numerous studies have shown 

that combining often leads to improvements in accuracy. Despite the importance of the value 

at risk (VaR), though, few papers have considered quantile forecast combinations. One risk 

measure that is receiving an increasing amount of attention is the expected shortfall (ES), 

which is the expectation of the exceedances beyond the VaR. There have been no previous 

studies on combining ES predictions, presumably due to there being no suitable loss function 

for ES. However, it has been shown recently that a set of scoring functions exist for the joint 

estimation or backtesting of VaR and ES forecasts. We use such scoring functions to estimate 

combining weights for VaR and ES prediction. The results from five stock indices show that 

combining outperforms the individual methods for the 1% and 5% probability levels. 

Keywords: Value at risk; expected shortfall; combining; elicitability; scoring functions. 
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1. Introduction 

The value at risk (VaR) has been used widely as a measure of financial market risk for 

both regulatory purposes and internal risk management. VaR is a conditional quantile in the 

lower tail of the distribution of the return on a portfolio. While straightforward to interpret, 

VaR has the limitation that is provides no information regarding potential exceedances 

beyond the quantile. Recently, the expected shortfall (ES) has been receiving increasing 

attention as an alternative risk measure, and it is now recommended as a risk measure by the 

Basel Committee on Banking Supervision (Basel Committee, 2016). ES is the conditional 

expectation of exceedances beyond the VaR. Artzner, Delbaen, Eber, and Heath (1999) point 

out that, in contrast to the VaR, ES has the appealing property of subadditivity, which means 

that the measure for a portfolio cannot be greater than the sum of the measures for the 

constituent parts of the portfolio. One apparent disadvantage of ES is that it is not elicitable, 

which means that the correct ES forecast is not the unique minimiser of the expectation of 

any loss function. This presents a challenge for estimating and backtesting ES. Fissler and 

Ziegel (2016) address this by providing a set of joint loss functions for VaR and ES for which 

these two measures are jointly elicitable. The present paper uses these loss functions in the 

context of forecast combinations.  

The essential motivation for combining forecasts is that, when competing forecasts 

are available, a combination can enable a pragmatic synthesis of the information that is 

inherent in the individual predictions. Another perspective is that the combination provides a 

potentially diversified portfolio of the different forecasts. Since the seminal work of Bates 

and Granger (1969), a large body of literature has developed on combining forecasts of the 

conditional mean, with empirical support being available across a variety of applications. An 

interesting empirical finding is that typically a simple average is very competitive. For 

forecasting the mean, least squares provides a natural approach to optimizing convex 

combining weights, or perhaps unconstrained weights in a model where individual forecasts 
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can be viewed as regressors. Building on this, Granger (1989) and Granger, White, and 

Kamstra (1989) suggest that quantile forecasts could be combined using quantile regression. 

Taylor and Bunn (1998) consider the appeal of constraining the quantile regression 

parameters. They consider a zero intercept term and convex combining weights, as has been 

common for combinations of forecasts of the mean. Giacomini and Komunjer (2005) use the 

quantile regression framework to enable tests of quantile forecast encompassing, which 

provides a theoretical justification for combining in cases where one forecast does not 

encompass another. Shan and Yang (2009) calculate weights based on the inverse of the 

quantile regression loss function. 

In the VaR context, it is perhaps surprising that there has not been more consideration 

of forecast combinations, given the variety of different quantile forecasting methods 

available. In their recent review of the VaR literature, Nieto and Ruiz (2016) report just a 

handful of studies on combining. McAleer, Jiménez-Martín, and Pérez-Amaral (2013a,b) 

look at selecting the maximum, minimum or median of a set of forecasts. Halbleib and 

Pohlmeier (2012) derive combining weights by maximizing the conditional coverage, as well 

as by quantile regression. Jeon and Taylor (2013) and Fuertes and Olmo (2013) also use 

quantile regression. They combine individual forecasts constructed from different 

information sources, including historical daily returns, the option-implied volatility, the 

realized volatility and the intraday range.  

Although there has been an increased interest in forecasting ES in recent years, we are 

not aware of any studies that have looked at combining ES forecasts, presumably due to ES 

not being elicitable. This paper proposes the use of Fissler and Ziegel’s (2016) joint VaR and 

ES loss functions for estimating combining weights for VaR and ES prediction. Elliott and 

Timmermann (2004) show that the question of whether combining weights should be equal 

depends on the loss function, implying that empirical evidence from the literature on 
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forecasting the mean, where a squared loss function is appropriate, may not transfer to VaR 

and ES forecasting. Our paper presents some empirical results in this regard. 

If VaR and ES predictions are obtained from density forecasts, an alternative to 

combining VaR and ES predictions would be to combine the density forecasts (see for 

example Hall & Mitchell, 2007; Jore, Mitchell, & Vahey, 2010). Opschoor, Van Dijk, & van 

der Wel (2017) describe how the combining method can be adapted to focus on a particular 

part of the density, such as the left tail when VaR and ES are of interest. However, this 

combining approach is of no use when combining VaR and ES forecasting methods that are 

not based on density forecasts. This is our interest in the present paper. For example, VaR 

and ES forecasts could be produced by autoregressive quantile or expectile models, as indeed 

is the case in our empirical analysis. We feel that it is important to consider this more general 

case because forecast combinations are particularly useful when the forecasts are produced by 

methods that are based on different information or use the information in notably different 

ways. 

Section 2 briefly reviews loss functions for VaR and ES prediction. Section 3 

describes the two combining formulations that we propose. Section 4 presents an empirical 

study based on daily stock indices. Section 5 provides a simulation study. Finally, Section 6 

summarises and concludes the paper. 

2. Scoring functions for VaR and ES 

Scoring function is the term used in decision theory to describe a loss function that is 

used to evaluate a forecast of some measure of a probability distribution, such as a quantile. 

As we explained in the previous section, a measure is described as elicitable if the correct 

forecast of the measure is the unique minimiser of the expectation of at least one scoring 

function. Such scoring functions are called strictly consistent for the measure (Fissler & 

Ziegel, 2016). A strictly consistent scoring function can be used as the loss function in model 
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estimation (Gneiting & Raftery, 2007). We now describe strictly consistent scoring functions 

that we propose to use for estimating forecast combining weights for VaR and ES. 

2.1. Scoring functions for VaR 

VaR is an elicitable risk measure. Consistent scoring functions for VaR are of the 

following form (Gneiting & Raftery, 2007):  

         ,t t t t t tS Q y I y Q G y G Q    , 

where yt is the variable of interest; Qt is the quantile with probability level ; I is the indicator 

function; and G is a weakly increasing function. If G is strictly increasing, the scoring 

function is strictly consistent (Gneiting, 2011). Selecting G to be the identity function leads to 

the quantile score of the following expression:  

     tttttt QyQyIyQS  , .   (1) 

This score is used widely in the VaR literature due to both its simplicity and its familiarity as 

the quantile regression loss function. Averaging the score across a sample gives a measure for 

evaluating quantile forecasts. 

2.2. Joint scoring functions for VaR and ES 

The ES is not an elicitable risk measure (Gneiting, 2011), meaning that no suitable 

scoring function exists for the sole purpose of estimating or evaluating ES forecasts. 

However, a measure that is not elicitable individually may be elicitable jointly with another 

measure. This is the case for the variance, which is only elicitable jointly (with the mean). 

With regard to the ES, Fissler and Ziegel (2016) prove that it is elicitable jointly with the 

VaR. They show that consistent scoring functions, for evaluating VaR and ES forecasts 

jointly, are of the following form:  
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    

      
     (2) 

where ESt is the ES; and G1, G2, 2 and a are functions that satisfy a number of conditions, 

including the properties that G2 = 2  , G1 is increasing, and 2 is increasing and convex. The 

scoring function is strictly consistent if 2 is strictly increasing and strictly concave. (The 

domain of 2 contains only negative values, because we are considering < 50%, which 

implies that ESt is negative.) Fissler and Ziegel (2016) note that the scoring function in Eq. 

(2) remains strictly consistent for the case of G1 = 0. In Eq. (2), the terms involving G1

collectively form a consistent scoring function for a quantile, with the other terms assessing 

both the quantile and ES (Fissler, Ziegel, & Gneiting, 2016). Therefore, one can reduce the 

emphasis on the quantile accuracy by setting G1 = 0, as indeed has been the choice in several 

studies. Table 1 presents four scoring functions, of the form of Eq. (2), that have been 

proposed. We discuss them in the remainder of this section. 

Table 1 
Functions used within the joint VaR and ES scoring function of Eq. (2) to give four different 
versions of the score: the AL, NZ, FZG and AS scores. 

G1(x) G2(x) ζ2(x) a(y) 

AL 0 –1/x –ln(–x) 1 – ln(1 – ) 

NZ 0 ½(–x)–½ –(–x)½ 0 

FZG x exp(x)/(1 + exp(x)) ln(1 + exp(x)) ln(2) 

AS –½Wx2 x ½x2 0 

Taylor (2019) points out that, if G1 = 0, G2 = –1/x, x) = –ln(–x) and a = 1 – ln(1 – 

), the scoring function is equal to the negative of the log-likelihood function of an 

asymmetric Laplace (AL) density with time-varying location and scale parameters. The use 

of this scoring function for model estimation has some appeal because it can be viewed as a 

relatively minor extension of quantile regression, which is equivalent to maximizing an AL 

likelihood with a time-varying location and constant scale. We refer to Taylor’s (2019) 
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proposed score as the AL score. Taylor (2019) uses the score to estimate dynamic joint 

models for VaR and ES, and this proposal is given theoretical support by the recent work of 

Patton, Ziegel, and Chen (2019). 

Nolde and Ziegel (2017) consider comparative backtests for risk measures. Their 

numerical study essentially uses the AL score, as well as the score that results from setting G1

= 0, G2 = ½(–x)–½, x) = –(–x)½ and a = 0 in Eq. (2), which we refer to as the NZ score.  

In their empirical analysis, Fissler et al. (2016) use the scoring function produced by 

using the following functions in Eq. (2): G1(x) = x, G2 = exp(x)/(1 + exp(x)), 2(x) = ln(1 + 

exp(x)) and a = 0. In our empirical work, we found that the first three significant figures of 

the values of this score did not differ between forecasting methods. This meant that it was 

difficult to distinguish between the methods when comparing relative measures, which we 

computed in order to average the performances across a set of stock indices, as we describe in 

detail in Section 4.3.2. To make the relative measures easier to compare, we set a = ln(2) in 

Eq. (2). We refer to this as the FZG score. 

Another example of a joint scoring function is proposed by Acerbi and Székeley 

(2014), and we refer to it as the AS score. It is produced by setting G1(x) = –½Wx2, G2(x) = 

x, 2(x) = ½x2 and a = 0 in Eq. (2). Fissler and Ziegel (2016) explain that the score is 

strictly consistent, provided that the parameter W is chosen such that WQt < ESt. (Recall that 

ESt < 0 and Qt < 0 because < 50%.) In our empirical analysis, we used W = 4, as this was 

the smallest integer that ensured WQt < ESt for all pairs of forecasts of ESt and Qt from all 

methods in our study. We did not use the AS score for estimation because we could not 

guarantee that our chosen value of W would lead to WQt < ESt for all resulting pairs of 

forecasts of ESt and Qt. 

We present the AL, NZ, FZG and AS scoring functions in Table 1. Our proposal is to 

use the first three of these to estimate forecast combining weights for the prediction of VaR 

and ES. In using such joint scoring functions for estimation, our work has similarities to that 
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of Taylor (2019) and Patton et al. (2019), who use the AL score to estimate dynamic models, 

and Dimitriadis and Bayer (2017), who present a regression framework for VaR and ES.  

3.  Methods for combining forecasts 

3.1. Minimum score combining  

This paper addresses the situation where we have a set of individual methods that 

each produces a forecast for the VaR and ES. As the quality of a method’s VaR and ES 

forecasts may differ, it seems desirable to allow the combining weights for the VaR and ES to 

differ. However, it is not possible to distinguish the VaR accuracy from the ES accuracy, as 

the ES is equal to the sum of the VaR and the mean of the exceedances beyond the VaR. In 

view of this, our proposal is a formulation that does not combine ES forecasts, but instead 

combines forecasts of the difference between ES and VaR. We call this difference spacing. 

We refer to the method as minimum score combining, and express it as follows:   

1

ˆ ˆ
M

Q
ct i it

i

Q w Q


 ,  (3) 

1

ˆ ˆ
M

S
ct itct i it

i

ES Q w ES Q
 



 
   

 
 ,  (4) 

where M is the number of individual methods; itQ̂  is the quantile forecast and itES


 the ES 

forecast produced by the ith individual method; ctQ̂  is the combined quantile forecast; ctES


is the combined ES forecast; Q
iw  is the combining weight for the quantile forecast from the 

ith method; and S
iw  is the combining weight for the spacing between the ES and quantile 

forecasts from the ith method. We constrain the Q
iw  to be non-negative and to sum to 1, and 

impose the same constraints on the S
iw . In addition to convex weights being common and 
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intuitively appealing, they ensure that ctES


 will exceed ctQ̂ , which is not easy to ensure if 

ctES


 is constructed as a convex combination of the individual ES forecasts.  

We estimated the two sets of combining weights, Q
iw  and S

iw , in a single step by 

minimising a chosen scoring function. The optimal combining weights are those that lead to 

in-sample estimates for ctQ̂  and ctES


 that minimise the scoring function. We describe the 

minimisation further in Section 4.2. 

3.2. Relative score combining 

A simple method that is used to combine forecasts of the mean is to set convex 

combining weights to be inversely proportional to the mean squared error (MSE) (see Bates 

& Granger, 1969). This has the appeal of robustness when the estimation sample is small or 

there are many predictors (see for example Stock & Watson, 2001). Shan and Yang (2009) 

use the approach to combine quantile forecasts, but they use the quantile score to measure the 

accuracy instead of the MSE. We apply this idea to our VaR and ES context by using the 

joint scoring functions of Eq. (2) to measure the accuracy. The method leads to a single set of 

weights wi for both VaR and ES prediction. We refer to the method as relative score 

combining, and present it as follows: 

1

ˆ ˆ
M

ct i it
i

Q w Q


 ,   (5) 

1

M

ct iti
i

ES w ES
 


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where S is the chosen joint scoring function, which is computed in each period j for each 

method i and then summed for all t – 1 in-sample observations; and  > 0 is a tuning 

parameter that is included in the combining formulations of Shan and Yang (2009) and Stock 

and Watson (2001) for controlling how much the combining weights depend on the scoring 

function. A value of  that is close to zero reduces the method to the simple average, while a 

high value of  results in the selection of the individual method with the best historical 

accuracy. In our work, we optimised the value of  by minimising the in-sample values of a 

chosen scoring function. We describe the optimisation further in Section 4.2. 

4. Empirical analysis 

Our empirical study considered the day-ahead forecasting of the 1% and 5% VaR and 

ES for daily log-returns of the following five stock indices: CAC 40, DAX 30, FTSE 100, 

NIKKEI 225 and S&P 500. We downloaded the data from Bloomberg. Each series consisted 

of the 6,000 daily observations, ending on 31 May 2017. The start dates for the five indices 

differed due to different holiday periods in each country, being 26 October 1993, 27 

September 1993, 1 September 1993, 4 January 1993 and 4 August 1993 for the CAC 40, 

DAX 30, FTSE 100, NIKKEI 225 and S&P 500, respectively. Figure 1 shows the FTSE 100 

returns, with the financial crisis being evident around 2008.1

1 Our decision to plot the FTSE 100 was made arbitrarily, as the time series of the other four indices showed 
similar features. 
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Figure 1. The series of 6,000 FTSE 100 returns ending on 31 May 2017. 

We used a rolling window of 2,000 days, which we moved forward by one day at a 

time, for repeated re-estimation of the parameters of the individual forecasting methods. This 

enabled us to produce out-of-sample forecasts from each of these methods for the final 4,000 

days in each series. Our combining methods focused on this period of 4,000 days, with a 

rolling window of 2,000 days being used for repeated re-estimation of the combining 

weights. The final 2,000 days were used to compare the out-of-sample forecast accuracies of 

the various methods. Prior to applying the VaR and ES estimation methods, we applied an 

autoregressive model of order 1 as an initial filter. The parameters of this filter were estimated 

using each rolling window of 2,000 returns.  

4.1. Individual methods 

As combining has the greatest potential when the individual methods use different 

information or use information in different ways, we implemented a diverse set of individual 

methods, including nonparametric, parametric and semiparametric time series methods, as 

well as a method based on intraday data. We now describe these methods. 
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4.1.1. Historical simulation 

As a simple nonparametric method, we used historical simulation based on the 250 

observations up to and including the forecast origin. We also considered the use of 100, 500 

or 2,000 observations, but these did not lead to overall improvements in the forecast 

accuracy.  

4.1.2. GJR-GARCH 

As a common parametric method, we implemented a GJR-GARCH(1,1) model based 

on a Student t distribution. This asymmetric model was notably more accurate than a 

GARCH(1,1) model. We also considered filtered historical simulation, which applied 

historical simulation to the standardised residuals, as well as the method of McNeil and Frey 

(2000), which applies peaks-over-threshold extreme value theory (EVT) to the standardised 

residuals. However, these methods did not deliver substantial improvements, and so we used 

the Student t distribution, as this allowed us to have a fully parametric approach in our study. 

4.1.3 CAViaR-AS-EVT 

Conditional autoregressive value at risk (CAViaR) models are autoregressive quantile 

models that are estimated using quantile regression (see Engle & Manganelli, 2004). 

Although modelling VaR directly is appealing, it provides no insights regarding the ES. This 

limitation is addressed by Manganelli and Engle (2004), who estimate a CAViaR model for 

the 7.5% quantile and then apply peaks-over-threshold EVT to the exceedances after 

standardising by the corresponding quantile estimates. The fitted extreme value distribution is 

then used to obtain the VaR and ES estimates. We implemented this approach, and, in view 

of the superior performance of the asymmetric GJR-GARCH model relative to the GARCH 
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model, used the asymmetric slope (AS) CAViaR model, which we present in the following 

expression:2

   0 1 1 1 2 1 1 3 10 0t t t t t tQ I y y I y y Q             . 

4.1.4. CARE-AS 

Expectiles are estimated by asymmetric least squares, and generalise the mean just as 

quantiles generalise the median (Nolde & Ziegel, 2017). They were introduced by Newey and 

Powell (1987), who explained that “expectiles are determined by tail expectations in the same 

way that quantiles are determined by the distribution”. The computational convenience of 

expectiles motivated Efron (1991) to suggest that they could be used to approximate 

quantiles. Drawing on this, Taylor (2008) proposed the use of a conditional autoregressive 

expectile (CARE) model for estimating VaR, and as the ES can be expressed as a simple 

function of the expectile, the CARE model can also be used to deliver a forecast for the ES. 

We implemented this approach in our study. An important issue is the choice of the 

expectile to use to approximate the  quantile. We optimised  by following the approach of 

Taylor (2008), which involves re-estimating CARE models repeatedly, reducing the  by 

0.0001 each time, until the proportion of in-sample exceedances beyond the fitted expectile is 

closer to  than a predefined tolerance. Following initial experimentation, we started this 

procedure with values of = 0.0018 and = 0.0167 for the 1% and 5% probability levels, 

respectively. In view of our choice of the asymmetric GARCH and CAViaR models, we used 

the following asymmetric slope (AS) CARE model: 

   0 1 1 1 2 1 1 3 10 0t t t t t tI y y I y y               , 

2 The estimation of the parameters i proceeded by first sampling 104 candidate parameter vectors from uniform 
distributions with lower and upper bounds based on initial experimentation. As an additional candidate, we also 
included the parameter vector that had been optimised for the previous window of observations. From the set of 
candidate vectors, each of the three that gave the lowest values of the quantile score was used, in turn, as the 
initial vector in a quasi-Newton algorithm. The resulting vector with the lowest score was chosen as the final 
parameter vector. 
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where t is the expectile. We estimated the parameters i using the same approach that we 

described in Section 4.1.3 for the CAViaR model, with the one difference being that we 

replaced the quantile score with the following expectile score: 

     
2

,t t t t t tS y I y y       . 

4.1.5. HAR-Range 

Intraday data have been found to be useful in estimating features of the distribution of 

daily returns. For example, the realized volatility has been used widely as a basis for 

forecasting the daily volatility. The heterogeneous autoregressive (HAR) model of the 

realized volatility is a simple and pragmatic approach, where a volatility forecast is 

constructed from the realized volatility over different time horizons (Corsi, 2009). However, 

intraday data can be expensive, and resources are required for pre-processing. Given the 

ready availability of the daily high and low prices, an alternative way of capturing the 

intraday volatility is to use the intraday range (see for example Alizadeh, Brandt, & Diebold, 

2002; Gerlach & Chen, 2014). We take this approach, and follow Brownlees and Gallo 

(2010) by implementing the HAR model with the realized volatility replaced by the intraday 

range, as in the following expressions: 

1 2 1 3 1 4 1
w m

t t t t tRange Range Range Range           , 

5

1
1

1

5
w
t t i

i

Range Range 


  , 

22

1
1

1

22
m
t t i

i

Range Range 


  , 

where Ranget is the difference between the highest and lowest log prices on day t; w
tRange 1

and m
tRange 1  are averages of Ranget over a week and month, respectively; t is an i.i.d. error 

term with zero mean; and thei are parameters that are estimated using least squares. The 

conditional variance is then expressed as a linear function of the square of Ranget, where the 
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intercept and the coefficient are estimated using maximum likelihoods based on a Student t

distribution. This model is then used to produce a variance forecast, and VaR and ES 

forecasts are obtained by multiplying the forecast of the standard deviation by the VaR and 

ES of the Student t distribution. 

4.2. Combining methods 

We combined forecasts using the minimum score and relative score methods of 

Section 3, as well as simple averaging. We combined two different sets of forecasts. The first 

set included all five individual methods in Section 4.1. Even though the historical simulation 

method is known to be uncompetitive (see for example Chen, Gerlach, Hwang, & McAlee, 

2012), we included it in the combination in order to check that the relative score and 

minimum score combining methods would produce sets of weights that would account for its 

weakness. The outcome should be that these combining methods outperform the simple 

average. Nevertheless, including a poor method in a combination increases the parameter 

estimation error unnecessarily, which can have a detrimental impact on the accuracy. Indeed, 

in practice, a method that is known to be poor is unlikely to be included. In view of this, we 

also applied the combining methods to a second set of individual methods that included just 

the four sophisticated methods, excluding historical simulation. 

We estimated the combining weights using four different approaches, corresponding 

to the minimisation of the quantile score and the AL, NZ and FZG joint scoring functions. 

We obtained similar results when optimising with each of the joint scoring functions, and 

these results were better, or at least no worse, than those obtained by optimising the quantile 

score. In view of this, we report only the results produced using the AL score, to save 
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space.3,4

In the minimum score combining method of Eqs. (3) and (4), we experimented with 

setting S
iw = Q

iw  for each i, which implies the use of the same set of combining weights for 

the VaR and ES. The results were quite similar to those without the constraint, and so we 

report the results only for the unconstrained minimisation, to save space.  

Figures 2 and 3 present the minimum score VaR and ES combining weights, 

respectively, for a combination of the five individual methods for the 5% probability level of 

the FTSE 100.5 For each of the 2,000 out-of-sample periods, the figures show the weights 

estimated by minimising the AL score using the 2,000 observations up to and including the 

forecast origin. Figure 2 also shows the minimised in-sample AL score plotted against the 

secondary y-axis. Although the ES weights are reasonably volatile over the out-of-sample 

period, the minimised AL score evolves smoothly, providing reassurance that the volatile ES 

weights are not due to a faulty optimisation procedure. For most of the out-of-sample period, 

CAViaR-AS-EVT and HAR-Range have the largest combining weights in Figures 2 and 3. 

The corresponding combining weights for the relative score method are shown in 

Figure 4. Recall that, for this method, the set of weights for VaR combining is the same as 

that for ES combining. The figure shows GJR-GARCH and HAR-Range as having the largest 

weights for the first half of the plot. Interestingly, historical simulation has non-zero weights 

in Figures 2 to 4, even though it is the least accurate of the individual methods, as we show in 

Section 4.3. 

3 For the combining methods, we used an optimisation approach similar to that described in Section 4.1.3 for the 
CAViaR model. For minimum score combining, we used 105 candidate parameter vectors, with entries sampled 
from uniform distributions between 0 and 1. We also included, as an additional candidate, the parameter vector 
that had been optimised for the previous window of observations. The 10 candidate vectors with the lowest 
values of the scoring function were then each used as the initial vector in a quasi-Newton algorithm. The 
resulting vector with the lowest scoring function, was chosen as the final parameter vector. For relative score 
combining, which has only the one parameter , we used 104 candidate values. 
4 An online appendix contains out-of-sample results for the combining methods with weights estimated using 
the quantile score, and the NZ and FZG scoring functions. 
5 Our decision to focus here on the FTSE 100 was made arbitrarily. We do not present the corresponding figures 
for the other four indices, as this would take considerable additional space, without providing significant useful 
additional insight. 
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Figure 2. Minimum score combining weights Q
iw  for the VaR combining of Eq. (3) used to 

combine five methods for the 5% probability level of the FTSE 100. The weights are 
optimised by minimising the in-sample AL score, which is also shown in the plot. 
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Figure 3. Minimum score combining weights S
iw  for the spacings combination of Eq. (4) 

used to combine five methods for the 5% probability level of the FTSE 100. The weights are 
optimised by minimising the in-sample AL score. 
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Figure 4. Relative score combining weights of Eqs. (5) to (7), used to combine five methods 
for the 5% probability level of the FTSE 100. The method is optimised by minimising the in-
sample AL score, which is also shown in the plot. 
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4.3. Backtesting VaR and ES forecasts 

Traditionally, VaR and ES forecasts have tended to be evaluated using tests that 

Nolde and Ziegel (2017) describe as unconditional and conditional calibration tests. We use 

these in Section 4.3.1, and then consider scoring functions in Sections 4.3.2. Our out-of-

sample evaluation focuses on the final 2,000 periods of each series, as we have out-of-sample 

forecasts for each of these periods from all of the individual and combining methods.  

4.3.1. Backtesting VaR and ES forecasts with calibration tests 

Typically, VaR forecasts are evaluated using calibration tests. For probability level , 

a quantile forecast tQ̂  is unconditionally calibrated if the variable )ˆ( ttt QyIHit   has 

zero unconditional expectation, and is conditionally calibrated if Hitt has zero conditional 

expectation. We evaluated the unconditional calibration using a test based on the binomial 

distribution to test whether the mean of Hitt was significantly different from zero. Following 

common practice, our calibration testing did not attempt to incorporate parameter estimation 

error (see Escanciano & Olmo, 2010). For unconditional calibration, Table 2 summarises the 

test results for the five indices at the 1% and 5% probability levels in the columns labelled 

‘VaR hit %’. The values reported are the numbers of indices for which the test was 

significant at the 5% significance level. Throughout Table 2, lower values are better. The 

table shows that, in the columns headed VaR hit %, there are non-zero entries only for the 

historical simulation, GJR-GARCH and HAR-Range methods.   

We tested for VaR conditional calibration by implementing Engle and Manganelli’s 

(2004) dynamic quantile test with four lags in the test’s regression, and summarise the results 

for the five indices in Table 2. For the 1% probability level, the historical simulation and 

HAR-Range methods are the worst-performing methods, while for the 5% VaR, the poorest 

results are for historical simulation.  
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Table 2 
Results of calibration tests for the five stock indices.  

1% probability level 5% probability level 

VaR 
 hit %

VaR  
dynamic 
quantile 

ES 
bootstrap 

test 

VaR
 hit %

VaR  
dynamic 
quantile 

ES 
bootstrap 

test 

Individual methods 

   Historical simulation 3 5 3 0 5 1 

   GJR-GARCH 1 0 1 0 0 3 

   HAR-Range 2 2 0 1 0 1 

   CARE-AS 0 0 0 0 1 0 

   CAViaR-AS-EVT 0 0 0 0 0 0 

Combining all

   Simple average 0 1 0 0 0 0 

   Relative score 0 0 0 0 0 1 

   Minimum score 0 0 0 0 0 1 

Combining all except historical simulation

   Simple average 0 0 1 0 0 0 

   Relative score 0 0 0 0 0 1 

   Minimum score 0 0 0 0 0 1 

Notes: The values presented are the numbers of indices for which the test was significant at the 5% significance 
level. Lower values are better, in that they indicate smaller numbers of tests for which calibration was rejected. 
The tests are described in Section 4.3.1. 

Following the approach of McNeil and Frey (2000), we evaluated the ES forecasts by 

testing for a zero mean in the discrepancy between the observed return and the ES forecast 

for the periods in which the return exceeds the VaR forecast. We standardised by dividing 

each discrepancy by the corresponding VaR estimate. The test examines whether the 

standardised discrepancies have a zero unconditional expectation. We avoided any 

assumptions about the distributions of the standardized discrepancies by using the dependent 

circular block bootstrap used by Jalal and Rockinger (2008). The results are presented in 

Table 2. The table shows that historical simulation performs relatively poorly for the 1% 

probability level, while the GJR-GARCH model performed the worst for the 5% probability 

level. 

4.3.2. Backtesting VaR and ES forecasts with scoring functions 
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We evaluated the VaR forecast accuracy by calculating the quantile score, then 

calculated the quantile skill score for each method as the ratio of the score to that of the 

historical simulation method. We then subtracted this ratio from 1, and multiplied the result 

by 100. We report the skill scores in Table 3 for the 1% probability level. For all skill scores, 

higher values are preferable. We summarised performances across the five stock indices by 

calculating the geometric mean of the ratios of the score of each method to the score for the 

historical simulation reference method, then subtracting this from one and multiplying the 

result by 100. The resulting values are presented in the final column of the table.  

Table 3 
1% VaR evaluated using the quantile skill score (%). 

CAC DAX FTSE NIKKEI S&P 
Geo. 
mean 

Individual methods 

   Historical simulation 0.0 0.0 0.0 0.0 0.0 0.0 

   GJR-GARCH 16.4 16.5 21.1 22.0 24.4 20.0 

   HAR-Range 18.3 20.6 20.2 18.8 26.4 20.8 

   CARE-AS 17.8 18.7 21.9 21.0 25.4 20.9 

   CAViaR-AS-EVT 17.0 17.3 21.3 21.5 23.7 20.1 

Combining all 

   Simple average 18.9 20.6 21.5 21.6 24.3 21.4 

   Relative score 18.9 20.9 21.3 22.6 25.9 21.9 

   Minimum score 18.8 21.2 22.2 22.2 24.5 21.8 

Combining all except historical simulation

   Simple average 18.7 20.4 22.4 23.3 26.2 22.2 

   Relative score 18.9 21.2 21.1 22.6 26.6 22.1 

   Minimum score 19.3 20.9 22.1 22.8 26.8 22.4 

Notes: The quantile score is presented in Eq. (1). Higher skill score values are better. Bold indicates the best 
method(s) in each column.  

As we discussed in Sections 1 and 2, although ES is not elicitable by itself, it is 

elicitable jointly with VaR. Therefore, in terms of scoring functions, we must evaluate ES 

jointly with VaR. We do this using the AL score. However, as the AL score takes negative 

values, we computed its skill score slightly differently from the quantile skill score. That is, 

we calculated the AL skill score of each method as the ratio of the score to that of the 
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historical simulation method, then subtracted 1 from this ratio and multiplied the result by 

100. Table 4 presents the AL skill scores for the 1% probability level.

Table 4 
1% VaR and ES evaluated using AL skill score (%). 

CAC DAX FTSE NIKKEI S&P 
Geo. 
mean 

Individual methods 

   Historical simulation 0.0 0.0 0.0 0.0 0.0 0.0 

   GJR-GARCH 6.6 6.4 8.6 12.9 8.9 8.7 

   HAR-Range 9.0 9.6 8.9 10.7 10.8 9.8 

   CARE-AS 7.6 7.6 8.9 13.2 10.6 9.5 

   CAViaR-AS-EVT 7.3 7.4 8.7 12.4 9.2 9.0 

Combining all

   Simple average 8.7 9.0 9.2 13.0 10.2 10.0 

   Relative score 8.7 9.3 9.0 13.7 10.3 10.2 

   Minimum score 8.8 9.3 9.6 13.5 10.0 10.2 

Combining all except historical simulation

   Simple average 8.3 9.1 9.5 14.1 10.5 10.3 

   Relative score 8.7 9.6 8.9 13.7 10.6 10.3 

   Minimum score 9.1 9.3 9.6 13.8 10.6 10.5 

Notes: Table 1 defines the AL score, which is a version of the joint VaR and ES score of Eq. (2). Higher skill 
score values are better. Bold indicates the best method(s) in each column. 

Table 5 summarises the out-of-sample results for the quantile score and the four joint 

scoring functions that we presented in Table 1, which evaluate the VaR and ES forecast 

accuracies jointly. For each scoring function, the table shows the skill scores averaged across 

the five indices. For the 1% probability level, the results for the quantile score and the AL 

score were also reported in the final columns of Tables 3 and 4. As the NZ, FZG and AS 

scores are all positive-valued, we computed their skill scores using the same approach that we 

used for the quantile score. An alternative to our use of a finite set of joint scoring functions 

is proposed by Ziegel, Krüger, Jordan, and Fernando (2017), who build on the work of Ehm, 

Gneiting, Jordan, and Krüger (2016) by using Murphy diagrams to establish whether one 

method dominates another in terms of a class of joint scoring functions. 
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Table 5 
VaR evaluated using the quantile skill score (%), and VaR and ES evaluated jointly using the 
AL, NZ, FZG and AS skill scores (%).  

1% probability level 5% probability level 

Quantile 
score 

AL NZ FZG AS 
Quantile 

score 
AL NZ FZG AS 

Individual methods 

   Historical simulation 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 

   GJR-GARCH 20.0 8.7 11.4 20.0 33.0 11.1 4.2 6.6 11.2 19.2 

   HAR-Range 20.8 9.8 12.4 20.8 33.4 10.5 4.2 6.4 10.6 18.2 

   CARE-AS 20.9 9.5 12.2 21.0 34.1 11.6 4.4 6.9 11.7 19.8 

   CAViaR-AS-EVT 20.1 9.0 11.7 20.1 31.9 11.6 4.4 6.8 11.7 19.8 

Combining all

   Simple average 21.4 10.0 12.6 21.4 34.2 11.7 4.6 7.0 11.8 20.0 

   Relative score 21.9 10.2 12.9 21.9 35.1 11.9 4.6 7.1 12.0 20.5 

   Minimum score 21.8 10.2 12.9 21.8 34.7 11.9 4.6 7.1 12.0 20.4 

Combining all except historical simulation

   Simple average 22.2 10.3 13.1 22.2 35.3  12.1 4.7 7.2 12.2 20.6 

   Relative score 22.1 10.3 13.0 22.1 35.3 11.9 4.6 7.1 12.0 20.4 

   Minimum score 22.4 10.5 13.2 22.4 35.6 12.0 4.7 7.2 12.1 20.5 

Notes: The quantile score is presented in Eq. (1). Table 1 defines the AL, NZ, FZG and AS scores, which are 
versions of the joint VaR and ES score of Eq. (2). The values presented here are the result of averaging skill 
scores across the five indices. Bold indicates the best method(s) in each column. 

We have the following comments regarding Tables 3 to 5: 

(i) The results are reasonably consistent across the five indices. 

(ii) The results are reasonably consistent across the quantile score and the four joint VaR 

and ES scores. 

(iii) For the 1% probability level, the best of the five individual methods were the HAR-

Range approach and the CARE method. 

(iv) For the 5% probability level, the best of the five individual methods were the CARE 

and CAViaR-based methods.  

(v) For both the 1% and 5% probability levels, all of the combining methods 

outperformed all of the individual methods. 

(vi) For the 1% probability level, minimum score combining of the four competitive 

individual methods was the most accurate approach.  
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(vii) For the 5% probability level, the simple average of the four competitive individual 

methods was the most accurate approach, just slightly outperforming minimum score 

combining. To try to provide some explanation for why the simple average is more 

competitive for the 5% probability level than for the 1% probability level, we first 

note that the other two combining methods were optimised by minimising the AL 

score. Looking at the columns of Table 5 that correspond to the AL score, we see that 

the results for the four sophisticated individual methods differ notably for the 1% 

probability level, but are quite similar for the 5% probability level. Thus, it is not too 

surprising that the simple average was a reasonable approach for the 5% probability 

level, while a weighted average combination was preferable for the 1% probability 

level. 

(viii) Perhaps unsurprisingly, the simple average was affected more by the inclusion of the 

historical simulation approach in the combination than the other combining methods. 

However, interestingly the other two combining methods were also affected to a 

certain degree, with the minimum score approach producing notably better results for 

the 1% probability level when historical simulation was excluded. This supports the 

view that it is unwise to include a poor method in a combination. 

The model confidence set (MCS) testing framework of Hansen, Lunde, and Nason 

(2011) enables one to obtain a set of models for which there is a pre-specified probability that 

the set contains the best model, when judged by a chosen loss function. If a model is not 

contained in the MCS, it is considered to be less likely to be the best model than those that 

are included in the MCS. We implemented MCS testing separately based on the quantile 

score and the four joint scoring functions, which evaluate the VaR and ES forecast accuracies 

jointly. In each MCS test, we used the equivalence test based on the Diebold-Mariano test 

and the one-sided elimination rule described as Tmax,M by Hansen et al. (2011). We followed 

Hansen et al. (2011) by considering 75% and 90% confidence levels, and we report the 
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results of the tests in Tables 6 and 7, respectively. For each scoring function, the tables report 

the numbers of indices for which each method was included in the MCS. As we have five 

indices in our study, the best possible value in each table is 5. With five indices, five scoring 

functions, two probability levels and two confidence levels, we applied the MCS test 100 

times. Historical simulation was clearly the worst method, while the other four individual 

methods were included in most of the sets. This is perhaps not surprising, as we chose these 

methods because we felt that they would be competitive, meaning that they might be useful in 

a combination. In the rows of Tables 6 and 7 that corresponding to the combining methods, 

only one entry is not 5, indicating that the combining methods were excluded from just one 

MCS out of the 100 that we constructed. 

Table 6 
VaR evaluated using model confidence sets based on the quantile score, and VaR and ES 
evaluated jointly using model confidence sets based on the AL, NZ, FZG and AS scores. The 
values presented are the numbers of indices for which each method is within the model 
confidence set for a 75% confidence level.

1% probability level 5% probability level 

Quantile 
score 

AL NZ FZG AS 
Quantile 

score 
AL NZ FZG AS 

Individual methods 

   Historical simulation 0 0 0 0 0 0 0 0 0 0 

   GJR-GARCH 4 3 3 4 4 4 4 4 4 3 

   HAR-Range 5 5 5 5 5 4 5 4 4 3 

   CARE-AS 5 3 4 5 5 5 5 5 5 4 

   CAViaR-AS-EVT 4 3 4 4 3 5 5 5 5 5 

Combining all

   Simple average 5 5 5 5 5 5 5 5 5 5 

   Relative score 5 5 5 5 5 5 5 5 5 5 

   Minimum score 5 5 5 5 4 5 5 5 5 5 

Combining all except historical simulation

   Simple average 5 5 5 5 5 5 5 5 5 5 

   Relative score 5 5 5 5 5 5 5 5 5 5 

   Minimum score 5 5 5 5 5 5 5 5 5 5 

Notes: The quantile score is presented in Eq. (1). Table 1 defines the AL, NZ, FZG and AS scores, which are 
versions of the joint VaR and ES score in Eq. (2). Higher values in this table are better, with 5 being the highest 
possible. 
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Table 7 
VaR evaluated using model confidence sets based on the quantile score, and VaR and ES 
evaluated jointly using model confidence sets based on the AL, NZ, FZG and AS scores. The 
values presented are the numbers of indices for which each method is within the model 
confidence set for a 90% confidence level.

1% probability level 5% probability level 

Quantile 
score 

AL NZ FZG AS 
Quantile 

score 
AL NZ FZG AS 

Individual methods 

   Historical simulation 0 0 0 0 0 0 0 0 0 0 

   GJR-GARCH 4 4 4 4 4 4 4 4 5 5 

   HAR-Range 5 5 5 5 5 5 5 5 5 5 

   CARE-AS 5 5 5 5 5 5 5 5 5 5 

   CAViaR-AS-EVT 4 5 5 4 4 5 5 5 5 5 

Combining all

   Simple average 5 5 5 5 5 5 5 5 5 5 

   Relative score 5 5 5 5 5 5 5 5 5 5 

   Minimum score 5 5 5 5 5 5 5 5 5 5 

Combining all except historical simulation

   Simple average 5 5 5 5 5 5 5 5 5 5 

   Relative score 5 5 5 5 5 5 5 5 5 5 

   Minimum score 5 5 5 5 5 5 5 5 5 5 

Notes: The quantile score is presented in Eq. (1). Table 1 defines the AL, NZ, FZG and AS scores, which are 
versions of the joint VaR and ES score in Eq. (2). Higher values in this table are better, with 5 being the highest 
possible.  

Our comparison of methods has been based on the final 2,000 observations in each 

series. With the financial crisis beginning not long before the start of this period, Figure 1 

shows that the first half of this period is perhaps more volatile than the second half. Table 8 

compares the results for the two halves of the out-of-sample period, focusing on the AL skill 

score, which evaluates both VaR and ES forecast accuracies. The results in this table confirm 

that the rankings of methods were broadly similar for both halves of our out-of-sample 

period. 
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Table 8 
VaR and ES evaluated using the AL skill score (%) for different out-of-sample periods.  

1% probability level 5% probability level 

Penultimate 
1,000  
days 

Final 
1,000  
days 

All 
2,000 
days

Penultimate 
1,000  
days 

Final 
1,000  
days 

All 
2,000 
days 

Individual methods 

   Historical simulation 0.0 0.0 0.0 0.0 0.0 0.0 

   GJR-GARCH 12.8 4.9 8.7 5.7 2.8 4.2 

   HAR-Range 13.6 6.4 9.8 5.8 2.7 4.2 

   CARE-AS 14.3 5.2 9.5 6.5 2.6 4.4 

   CAViaR-AS-EVT 12.8 5.6 9.0 6.1 2.8 4.4 

Combining all

   Simple average 13.9 6.6 10.0 6.4 2.9 4.6 

   Relative score 14.2 6.5 10.2 6.4 3.0 4.6 

   Minimum score 14.2 6.7 10.2 6.5 3.0 4.6 

Combining all except historical simulation

   Simple average 14.5 6.5 10.3 6.5 3.1 4.7 

   Relative score 14.4 6.6 10.3 6.3 3.0 4.6 

   Minimum score 14.7 6.7 10.5 6.5 3.0 4.7 

Notes: Table 1 defines the AL score, which is a version of the joint VaR and ES score in Eq. (2). The values 
presented here are the result of averaging skill scores across the five indices. Higher skill score values are better. 
Bold indicates the best method(s) in each column.  

5. Simulation study 

We investigated the combining methods further by implementing an empirical study 

using data simulated from the following three data generating processes (DGP): 

DGP1: This is a GJR-GARCH(1,1) process with a Student t distribution. We chose the 

parameters to be the average of the 2,000 sets of parameter values that we had 

estimated for the filtered FTSE 100 returns using the 2,000 rolling windows.  

DGP2: We generated data from a GJR-GARCH(1,1) process with the error term drawn 

alternately from a Student t distribution with three degrees of freedom and a Gamma 

distribution with its shape and scale parameters equal to 2 and 0.5, respectively. The 

values drawn from the Gamma distribution were standardised so that they had a zero 

mean and unit variance. We used the same GJR-GARCH model parameters as in 
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DGP1. Note that this process and DGP3 were used by Manganelli and Engle (2004) 

in their study of VaR and ES. 

DGP3: This process was based on an asymmetric slope CAViaR process with a probability 

level of 15%. We chose this model because it is used in one of the individual 

methods that is included in our empirical analysis. We used parameters that were the 

average of those estimated using the rolling windows for the filtered FTSE 100 

returns. Starting with initial values q0 and y0 for the quantile and the observation, we 

used the CAViaR process to generate q1, the value of the quantile for the first period. 

The simulated value y1 for this period was then generated from a distribution with a 

quantile equal to q1. This was achieved by multiplying a randomly-generated value 

by a standard deviation equal to q1 divided by the quantile of the distribution that is 

used to generate the random value. We generated the random values by sequentially 

using Student t distributions with three and four degrees of freedom, and a Gamma 

distribution with its shape and scale parameters equal to 2 and 0.5, respectively. We 

then repeated this procedure using qt – 1 and yt – 1 in the CAViaR model for 

generating qt, which is then used with a randomly-sampled value to produce yt.

We generated one series of 6,000 observations from each of the three DGPs. The 

structure of our study matched our analysis of the stock indices, with rolling windows of 

2,000 periods being used for repeated re-estimation of parameters. The final 2,000 periods 

were then used for comparing the out-of-sample forecast accuracy. We implemented the 

same individual methods that we considered for the stock indices, with the exception of the 

HAR-Range method, which relies on intraday data. We considered combinations of all four 

individual methods, as well as combinations that excluded historical simulation. Tables 9 to 

11 present out-of-sample skill scores for the simulated series. We have the following 

comments regarding these results: 
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(i) For DGP1, the GJR-GARCH model is optimal, and so it was to be expected that this 

method would perform well. However, it is noticeable that its results were matched by 

those from the relative score and minimum score combining methods. 

(ii) For DGP1, the simple average benefitted from the removal of historical simulation. 

For DGP2 and DGP3, the same was true only for the 5% probability level. 

(iii) For all three processes, removing historical simulation from the combination failed to 

improve the results of the relative score and minimum score combining methods 

noticeably. 

(iv) For DGP2, simple average combining was the best method for the 1% probability 

level. For the 5% probability level, all combining methods performed well, with the 

best results being achieved by the simple average with historical simulation excluded. 

(v) Given the nature of DGP3, it is not surprising to see that the CAViaR-AS-EVT 

method performed well for this process. However, comparable results were achieved 

by simple average combining for the 1% probability level. For the 5% probability 

level, all of the combining methods performed very well, with the exception of the 

simple average with historical simulation included. 
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Table 9 
For simulated data from DGP1, VaR evaluated using the quantile skill score (%), and VaR 
and ES evaluated jointly using the AL, NZ, FZG and AS skill scores (%).  

1% probability level 5% probability level 

Quantile 
score 

AL NZ FZG AS 
Quantile 

score 
AL NZ FZG AS 

Individual methods 

   Historical simulation 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 

   GJR-GARCH 25.1 8.9 14.1 24.9 41.1 14.2 4.7 8.1 14.1 23.0 

   CARE-AS 24.2 8.6 13.5 24.0 40.5 13.8 4.5 7.9 13.7 22.2 

   CAViaR-AS-EVT 23.3 8.3 13.1 23.1 37.7 14.0 4.6 8.0 13.9 22.5 

Combining all

   Simple average 21.9 7.7 12.3 21.7 36.4 12.9 4.1 7.2 12.8 21.5 

   Relative score 25.2 8.9 14.1 25.0 41.1 14.2 4.7 8.1 14.1 23.0 

   Minimum score 24.4 8.7 13.7 24.2 39.5 14.1 4.6 8.1 14.0 22.9 

Combining all except historical simulation

   Simple average 25.1 8.8 14.0 24.8 41.8 14.1 4.6 8.1 14.0 22.7 

   Relative score 25.2 8.9 14.1 25.0 41.1 14.2 4.7 8.1 14.1 23.0 

   Minimum score 25.2 8.9 14.1 24.9 41.2 14.2 4.7 8.1 14.1 23.0 

Notes: The quantile score is presented in Eq. (1). Table 1 defines the AL, NZ, FZG and AS scores, which are 
versions of the joint VaR and ES score in Eq. (2). Higher skill score values are better. Bold indicates the best 
method(s) in each column.  

Table 10 
For simulated data from DGP2, VaR evaluated using the quantile skill score (%), and VaR 
and ES evaluated jointly using the AL, NZ, FZG and AS skill scores (%).  

1% probability level 5% probability level 

Quantile 
score 

AL NZ FZG AS 
Quantile 

score 
AL NZ FZG AS 

Individual methods 

   Historical simulation 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 

   GJR-GARCH 14.4 8.7 10.0 14.5 19.8 10.5 5.4 7.4 10.6 12.6 

   CARE-AS 14.8 8.0 9.7 14.9 18.2 10.6 5.3 7.3 10.8 12.9 

   CAViaR-AS-EVT 14.8 8.9 10.4 15.0 17.5 10.2 5.3 7.2 10.3 11.6 

Combining all

   Simple average 16.8 9.4 11.2 16.9 22.2 9.8 5.1 7.0 9.9 12.1 

   Relative score 14.7 8.8 10.2 14.8 20.1 10.7 5.5 7.6 10.8 12.9 

   Minimum score 14.9 8.7 10.2 15.0 20.1 10.5 5.4 7.4 10.7 12.8 

Combining all except historical simulation

   Simple average 16.2 9.5 11.1 16.4 20.4 10.8 5.6 7.7 11.0 13.0 

   Relative score 14.6 8.7 10.2 14.8 20.1 10.7 5.5 7.6 10.8 12.9 

   Minimum score 14.6 8.6 10.0 14.7 19.4 10.7 5.5 7.5 10.8 12.9 

Notes: The quantile score is presented in Eq. (1). Table 1 defines the AL, NZ, FZG and AS scores, which are 
versions of the joint VaR and ES score in Eq. (2). Higher skill score values are better. Bold indicates the best 
method in each column. 
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Table 11 
For simulated data from DGP3, VaR evaluated using the quantile skill score (%), and VaR 
and ES evaluated jointly using the AL, NZ, FZG and AS skill scores (%).  

1% probability level 5% probability level 

Quantile 
score 

AL NZ FZG AS 
Quantile 

score 
AL NZ FZG AS 

Individual methods 

   Historical simulation 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 

   GJR-GARCH 17.6 13.1 12.7 17.8 23.1 13.4 6.8 9.0 13.5 16.8 

   CARE-AS 18.6 13.8 13.4 18.7 22.9 12.8 6.5 8.6 12.9 16.1 

   CAViaR-AS-EVT 19.4 14.8 14.2 19.6 23.8 13.5 7.2 9.3 13.6 16.5 

Combining all

   Simple average 19.4 13.6 13.5 19.5 24.9 12.8 6.3 8.5 12.9 17.0 

   Relative score 18.3 13.5 13.2 18.5 22.5 13.4 6.9 9.1 13.6 17.0 

   Minimum score 18.6 13.5 13.2 18.7 23.5 13.5 6.9 9.1 13.6 17.1 

Combining all except historical simulation

   Simple average 19.7 14.6 14.2 19.8 24.7 13.7 7.1 9.3 13.8 17.2 

   Relative score 18.5 13.9 13.5 18.7 23.1 13.5 7.1 9.2 13.6 16.9 

   Minimum score 17.8 13.5 13.0 18.0 21.6 13.6 7.1 9.3 13.7 17.0 

Notes: The quantile score is presented in Eq. (1). Table 1 defines the AL, NZ, FZG and AS scores, which are 
versions of the joint VaR and ES score in Eq. (2). Higher skill score values are better. Bold indicates the best 
method(s) in each column.  

6. Summary and concluding comments 

This paper has introduced forecast combination to ES prediction. As ES is not 

elicitable, we estimate combining weights for VaR and ES simultaneously using recently-

proposed joint scoring functions. Our minimum score combining approach allows convex 

combining weights to differ for VaR and ES prediction. We also considered a relative score 

combining approach that has the appeal of requiring the estimation of only one parameter.  

Our empirical study of stock indices focused on the scoring functions for comparing 

the methods. We combined parametric, nonparametric and semiparametric time series 

methods, as well as a method based on the intraday range. Looking at the average 

performances across our set of stock indices, we found that all of the individual methods were 

outperformed by all of the combining methods. For the 1% probability level, the best results 

were provided by weighted combining approaches. The simple average also performed well, 

particularly for the 5% probability level, provided that the poorly-performing historical 
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simulation method was omitted from the combination. A simulation study provided support 

for the combining methods. 

In future work, it would be interesting to consider alternative combining methods, and 

different sets of individual methods. Multi-step-ahead prediction is another potential area for 

future work. Combining weights for multiple lead times could be estimated by minimising a 

joint score summed over different lead times, or the weights could be estimated separately for 

each lead time, which seems appealing, as the relative performances of methods can vary 

across lead times. It would also be interesting to compare forecast accuracies using the 

Murphy diagrams of Ziegel et al. (2017), and perhaps also measures of economic 

significance. 

Acknowledgements 

We are very grateful to an associate editor and two referees for providing comments 

that helped to improve the paper greatly.  

Appendix A. Supplementary data 

Supplementary material related to this article can be found online at 
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