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Abstract

Several procedures to forecast daily risk measures in cryptocurrency markets
have been recently implemented in the literature. Among them, long-memory pro-
cesses, procedures taking into account the presence of extreme observations, proce-
dures that include more than a single regime, as well as quantile regression-based
models have performed substantially better than standard methods in terms of
forecasting risk measures. Those procedures are revisited in this paper, and their
Value-at-Risk and Expected Shortfall forecasting performance are evaluated using
recent Bitcoin and Ethereum data that includes periods of turbulence due to the
COVID-19 pandemic, the third halving of Bitcoin and the Lexia class action. Ad-
ditionally, in order to mitigate the influence of model misspecification and enhance
the forecasting performance obtained by individual models, we evaluate the use
of several forecast combining strategies. Our results, based on a comprehensive
backtesting exercise, reveal that, for Bitcoin, there is no single procedure outper-
forming all other models, but for Ethereum, there is evidence showing that the GAS
model is a suitable alternative for forecasting both risk measures. We found that
the combining methods were not able to outperform the better of the individual
models.
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1 Introduction

Bitcoin, the first and major cryptocurrency, was introduced in 2008 by Nakamoto (2008)

as a way to facilitate electronic payments between individuals without going through a

third party. Since its inception, the cryptocurrency market has increased considerably

and up to now, there are more than 21,000 cryptocurrencies, summing up to a total

market capitalisation of more than nine hundred billion dollars1.

The development and expansion of digital currencies around the world are attributed,

among other reasons, to their decentralised nature, their low transaction cost and the

loss of trust by individuals in the monetary system. See; for instance Dyhrberg (2016),

Bouri et al. (2017) and Luther and Salter (2017) for detailed discussions.

The impressive growth in cryptocurrency markets in recent years has attracted the

attention of investors, financial regulators, policy-makers, companies, central banks and

country governments. For instance; a number of markets, including the Chicago Mercan-

tile Exchange, NASDAQ and the Tokyo Financial Exchange started to trade cryptocur-

rencies some months ago; the number of crypto-exchanges (platforms where cryptocur-

rencies are traded) is rising worldwide; El Salvador adopted Bitcoin as a legal tender

and the crypto ATMs industry is expanding worldwide2. These pieces of evidence reflect

the increasing interest in cryptocurrency markets as well as the important role they are

playing nowadays.

Whilst traditional markets are regulated and risk measures are widely used in finan-

cial institutions and also required by the Basel II and Basel III accords, cryptocurrency

markets are not regulated yet and the formal use of risk measures is not required. How-

ever, the study of risk measures in cryptocurrency markets is important from the point

of view of investors, hedge funds, market makers, and traders, since they are useful for

placing better order limits, devising option pricing strategies, and developing trading sys-

tems. Furthermore, consideration of risk measurement for cryptocurrencies is crucial for

defining future regulatory policies.

Unlike traditional markets where several procedures to estimate risk measures have

been successfully applied, only a few procedures have been shown to be useful in cryp-

tocurrency markets. The lack of fit obtained by several volatility models is attributed

1Source: coinmarketcap.com, 20 September 2022.
2According to coinatmradar.com, on September 20 of 2022, there are more than 38500 crypto ATMs

spread over 78 countries.
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to the presence of extreme observations and regime changes in the volatility dynamics,

two characteristics observed in the cryptocurrency data. See; for instance, Troster et al.

(2019), Ardia et al. (2019b), Alexander and Dakos (2020), Trućıos (2019), Caporale and

Zekokh (2019), Liu et al. (2020) and Maciel (2020).

The fact that extreme observations and structural breaks can badly affect volatility

model forecasting performance is discussed, in a broader context, by Hillebrand (2005),

Bauwens et al. (2010), Carnero et al. (2012), Boudt et al. (2013), Trućıos and Hotta

(2016), Ardia et al. (2018), Hotta and Trućıos (2018) among others. This poor perfor-

mance is explained by the fact that after crisis periods or large shocks (where outliers

and/or structural breaks arise) risk tends to be overestimated, because the influence of

those observations remains in the estimation period for a long time, affecting drastically

the volatility estimation and consequently the risk forecasts. See; Danielsson (2011) and

Harvey (2013) for interesting related discussions.

As mentioned previously, several procedures to forecast risk measures in cryptocur-

rency data have been implemented in recent years, but only a few have been shown

to be useful. For instance, in a Bitcoin volatility context, Troster et al. (2019) and

Trućıos (2019) make a comprehensive comparison of several volatility models and con-

clude that robust-to-outliers procedures outperform non-robust ones. Both provide ev-

idence in favour of generalised autoregressive score (GAS) models (Harvey, 2013; Creal

et al., 2013) while Trućıos (2019) also provides evidence supporting the use of a ro-

bust bootstrap GARCH-based model. On the other hand, Ardia et al. (2019b) compares

regime-switching models against single-regime ones and concludes that the former outper-

form the latter. The findings of Ardia et al. (2019b) are also supported by Alexander and

Dakos (2020) who reach the same conclusion considering prices of Bitcoin and Ethereum

in several crypto-exchanges such as, Bitfinex, Coinbase, Gemini, Kraken and Poloniex.

In terms of Value-at-Risk (VaR) forecasting accuracy for cryptocurrency data, Ardia

et al. (2019b), Caporale and Zekokh (2019) and Maciel (2020) conclude that multiple-

regime models are better than single-regime for cryptocurrency data. Troster et al. (2019)

reports evidence in favour of GAS against GARCH-type models when forecasting the VaR

of Bitcoin. Trućıos (2019) shows that the robust bootstrap procedure of Trućıos et al.

(2017) forecasts the VaR of Bitcoin more accurately than GAS and GARCH-type models.

Liu et al. (2020) concludes that IGAS models (a GAS analogue of IGARCH models) are
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good alternatives to predict the VaR of Bitcoin, Ethereum and Litecoin. Soylu et al.

(2020) finds evidence favourable to long-memory volatility processes over short-memory

ones. Additionally, Li et al. (2021) find benefit in forecasting the VaR of Bitcoin using

quantile regression-based models, namely the conditional autoregressive value at risk

(CAViaR) models of Engle and Manganelli (2004).

In an Expected Shortfall (ES) context, the cryptocurrency literature is even more

scarce, with only a small number of studies having been performed. Acereda et al. (2020)

uses GARCH-type models under different innovation distributions and concludes that

NAGARCH and CGARCH models with heavy tailed distribution are good alternatives

to forecast the ES. Soylu et al. (2020) finds evidence favourable to long-memory volatility

processes, and Caporale and Zekokh (2019) and Maciel (2020) conclude that multiple-

regime models outperform single-regime ones for cryptocurrency data.

Although the literature provides some evidence in support of certain individual models

for forecasting risk measures for cryptocurrency data, there is no clear consensus about

which model is best. In terms of building a better model based on the more successful

individual models, it is not obvious how to proceed. In light of the good results obtained in

several fields when applying forecast combination strategies (for example, see Atiya, 2020;

Thomson et al., 2019) and due to its ability to reduce the misspecification influence of

individual models as well as synthesise the diverse sources of information (Timmermann,

2006), we evaluate the use of forecast combining to improve the VaR and ES forecasting

performance obtained by individual models. In our cryptocurrency case, where it is

not clear which of a diverse set of models is best for forecasting risk measures for daily

data, forecast combination is an interesting approach to deal with model uncertainty and

exploit the information provided by each individual model.

The contribution of this paper is threefold. First, in the context of ES forecasting,

we evaluate the accuracy of GAS, CAViaR and robust bootstrap GARCH-based models,

which have been found useful for forecasting the VaR. Second, we revisit some methods

advocated for forecasting risk measures for cryptocurrency data, and compare their VaR

and ES forecasting performance under periods of turbulence that include the COVID-19

period, the third halving of Bitcoin3 and the Lexia class action4. Third, we evaluate

3The halving of Bitcoin is an event where the reward given to Bitcoin miners for processing transac-
tions is halved. The third halving occurred on May 11, 2020

4On May 19, 2021, the law firm Lexia in collaboration with the Swiss Blockchain Consortium, filed a
class action against Binance.
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the use of forecast combining as a way to deal with model misspecification and improve

forecast accuracy.

The rest of the paper is organised as follows. In Section 2, we introduce the concepts

of VaR and ES, and describe the individual forecasting methods that we apply to our

cryptocurrency data. Section 3 describes the benefits of forecast combination as well as

forecast combining strategies that we use. In Section 4, the data description and results

are reported. Finally, Section 5 concludes.

2 VaR and ES forecasting

For a given cryptocurrency, let Pt be the daily closing price at time t and let rt =

100×log(Pt/Pt−1) be its corresponding percentage log-return (hereafter called the return).

Assuming that returns follow a continuous distribution, the one-step-ahead VaR and ES

for a given risk level α are defined as:

VaRα
T+1 := Sup{x ∈ R : F(x|FT) ≤ α}

ESαT+1 := E[rT+1|rT+1 ≤ VaRα
T+1,FT]

where F is the conditional returns distribution and FT stands for the information available

up to time T . For a chosen horizon, which in our case is a day-ahead, the probability of

observing a return less than or equal to the VaR is α, while the ES is the expected value

of exceedances beyond the VaR.

Although there are several methods to forecast the VaR and ES in the literature (see,

Righi and Ceretta, 2015; Nieto and Ruiz, 2016; Bayer and Dimitriadis, 2020; Calmon

et al., 2020, for interesting reviews), only a few procedures have shown good performance

in cryptocurrency markets. Those procedures are briefly described next.

Without loss of generality, we assume zero-mean and serially uncorrelated returns,

rt = σtεt,

where {εt}t∈Z is a zero-mean unit-variance iid random variable (hereafter called the in-

novations) and σt stands for volatility. In cases where the returns are not zero-mean,

returns are first centred or an ARMA(p,q) filter is previously fitted on the returns de-
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pending whether the mean is constant over time or not.

2.1 NAGARCH model

Acereda et al. (2020) use the nonlinear asymmetric GARCH (NAGARCH) model of

Engle and Ng (1993) to forecast the ES for Bitcoin and three other cryptocurrencies.

The NAGARCH(1,1) volatility equation is given by

σ2
t+1 = ω + δ(rt − cσt)2 + βσ2

t (1)

with parameters ω, δ, β, c satisfying stationarity conditions and where the parameter c

accounts for the leverage effect.

We estimate the parameters by maximum likelihood under the assumption that the

innovations (εt) follow a skew-t distribution. The NAGARCH model with the same

distributional assumption was previously used by Acereda et al. (2020) to forecast the

ES of Bitcoin and other cryptocurrencies and the results were encouraging.

We use this model to forecast not only the ES as in Acereda et al. (2020) but also to

forecast the VaR. The day-ahead VaR and ES forecasts are given by

V̂aRα
T+1 = F̂−1T+1(α)

ÊSαT+1 =
1

α

∫ V̂aRαT+1

−∞
xfT+1(x)dx,

(2)

where F̂−1T+1(α) is the α-quantile of the estimated conditional return distribution and

fT+1 is the conditional return density function. Expression (2) holds regardless of the

continuous innovation distribution used. For our skew-t distribution case, those values

are obtained by numerical approximation and adaptive quadrature numerical integration

using the algorithms of Hill (1970) and Piessens et al. (2012), respectively.

2.2 FIGARCH model

The fractionally integrated GARCH (FIGARCH) model with heavy tailed innovation

distribution was previously used by Soylu et al. (2020) to forecast the VaR and ES of

Bitcoin, Ethereum and Ripple and the results suggest that this model is useful to forecast

both risk measures. The FIGARCH model (Baillie et al., 1996) is a long memory volatility
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model, which means that volatility exhibits long-range dependence, a feature not captured

by classical GARCH models. The FIGARCH(1,d,1) volatility equation is given by

σ2
t = ω + βσ2

t−1 + [1− βL− δL(1− L)d]r2t ,

where L is the lag operator and the parameters ω, β and δ satisfy stationarity condi-

tions. We estimate the parameters by maximum likelihood assuming a skew-t innovation

distribution as in Soylu et al. (2020) and the one-step-ahead VaR and ES forecasts are

obtained as in (2).

2.3 Robust bootstrap GARCH-based model

A robust bootstrap GARCH-based model has been proposed by Trućıos et al. (2017) and

used to forecast the VaR of Bitcoin by Trućıos (2019). The promising results obtained

motivate us in this paper to extend it to the ES context. The procedure mitigates the

effects of additive outliers in the estimation of volatilities and densities of returns. A key

aspect of the approach relies on the following volatility equation of Boudt et al. (2013)

σ2
t = ω + δγcrc

(
r2t−1
σ2
t−1

)
σ2
t−1 + βσ2

t−1, (3)

where ω, δ and β are parameters satisfying stationarity conditions, γc is a constant to

guarantee Fisher consistency and rc(·) is a robust filter (with a tuning parameter c) given

by5

rc(x) =

1, if x > c,

x, if x ≤ c.

The robust bootstrap procedure can be summarised in the following four steps:

• Step 1: Estimate the GARCH model in a robust way using Equation (3) and the M-

estimator of Boudt et al. (2013). Then, obtain the standardised residuals ε̂t = rt/σ̂t

and denote by F̂ε their empirical distribution.

5The robust filter used by Boudt et al. (2013) is slightly different, but results in Trućıos et al. (2015,
2017) reveal that better forecasting performance is achieved using the filter defined here. As in Trućıos
et al. (2017) and Trućıos (2019), we use c = 9.
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• Step 2: Generate bootstrap series through the following recursion:

r∗t = σ∗t ε
∗
t and σ∗2t+1 = ω̂ + δ̂γcrc

(
r∗2t
σ∗2t

)
σ∗2t + β̂σ∗2t ,

where σ∗21 = σ̂2
1, rc(·) is a filter similar to the one used in Equation (3) but replac-

ing large values by new squared bootstrap extractions from F̂ε and the estimated

parameters (ω̂, δ̂, β̂) are those obtained in Step 1.

• Step 3 : Obtain one-step-ahead forecasts as

r̂∗T+1 = σ̂∗T+1ε
∗
T+1 and σ̂∗2T+1 = ω̂∗ + δ̂∗γcrc

(
r∗2T
σ̂∗2T

)
σ̂∗2T + β̂∗σ̂∗2T ,

where r̂∗T = rT , ε∗T+1 are bootstrap extractions from F̂ε and for t = 2, ..., T

σ̂∗2t = ω̂∗ + δ̂∗γcrc

(
r2t−1
σ̂∗2t−1

)
σ̂∗2t−1 + β̂∗σ̂∗2t−1,

with σ̂∗21 = σ̂2
1 and (ω̂∗, δ̂∗, β̂∗) being the estimates obtained from the bootstrap

series using the same estimation procedure in Step 1.

• Step 4: Repeat steps 2 and 3 B times to obtain B bootstrap replicates, then

estimate the VaRα
T+1 and ESαT+1 as the α-quantile of the bootstrap replicates and

the average returns smaller than VaRα
T+1, respectively.

2.4 GAS models

Generalised autoregressive score (GAS) models have previously been used to forecast

the VaR in cryptocurrency data by Troster et al. (2019), and Liu et al. (2020), among

others with interesting and promising results. In this paper, we extend their use to ES

forecasting. GAS models (Harvey, 2013; Creal et al., 2013) use the score of the conditional

distribution instead of the squared returns in the volatility equation (as commonly used

in GARCH-type models). Its volatility equation is given by

σ2
t+1 = ω + βσ2

t + δst

[
∂ log f(rt|σ2

t )

∂σ2
t

]
,

where st is a scaling function for the score and f(·) is the density function of the assumed

distribution. Typically, st = I−1t , with It being the Fisher information. This choice is
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very natural in a volatility modelling context and encompasses, for instance, the popular

GARCH model. The GAS structure allows information in the whole distribution to be

taken into account, rather than only the second-order moments.

The parameters are estimated by maximum likelihood assuming a skew-t innovation

distribution. This choice is particularly useful since it provides robustness against extreme

observations. The one-step-ahead VaR and ES forecasts are obtained as in (2).

2.5 MSGARCH

The Markov-Switching GARCH models (MSGARCH) of Haas et al. (2004) have previ-

ously been used to forecast risk measures in cryptocurrency data by Ardia et al. (2019b),

Caporale and Zekokh (2019), Alexander and Dakos (2020) and Maciel (2020). They

deal with structural breaks in the volatility process, which cause quick changes in the

volatility. Such breaks can lead to high persistence in volatility observed empirically with

single-regime models.

The procedure proposed by Haas et al. (2004) allows the volatility equation in each

regime to evolve independently. Assuming that all regimes follow a GARCH(1,1) process,

the variance equation on regime πt = k is given by

σ2
k,t = ωk + δkr

2
t−1 + βkσ

2
k,t−1,

with parameters ωk, δk, βk satisfying stationarity conditions. The hidden sequence πt =

1, . . . , k evolves according to a first-order ergodic homogeneous Markov chain with tran-

sition probability matrix P = {pij}kj=1, with elements pij = P (πt = j|πt−1 = i).

As in Ardia et al. (2019b), Caporale and Zekokh (2019) and Maciel (2020), the es-

timation is made in a Bayesian framework via MCMC using the adaptive procedure of

Hoogerheide and van Dijk (2010). The MSGARCH model, under different GARCH-type

specifications, has previously been used to forecast the VaR and/or ES in cryptocurrency

data by Ardia et al. (2019b) and Caporale and Zekokh (2019), Alexander and Dakos

(2020) and Maciel (2020). Here, we follow Alexander and Dakos (2020) and consider

two regimes with each one following a GARCH(1,1) process under a skew-t innovation

distribution.
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2.6 CAViaR-RegressionForES

The conditional autoregressive VaR model (CAViaR) proposed by Engle and Manganelli

(2004) have recently been used to forecast the VaR of Bitcoin by Li et al. (2021). The

promising results obtained motivate us to use this methodology not only to forecast the

VaR but also the ES. CAViaR models use a quantile regression framework to forecast

the VaR with no need to estimate volatility as in Sections 2.1 – 2.5. Using the so-called

symmetric absolute value CAViaR specification6, the VaR for a given risk level α is

modelled by

VaRα
t = β0 + β1|rt−1|+ β2VaRα

t−1, (4)

where the parameters β0, β1 and β2 are estimated by minimising

1

T

T∑
t=1

[
α− I(rt ≤ VaRα

t )
][
rt − VaRα

t

]
. (5)

CAViaR has only previously been used to forecast the VaR of Bitcoin, and not other

cryptocurrencies, and it has not been used as the basis for predicting the ES of any

cryptocurrencies. Therefore, we extend the study of Li et al. (2021) and forecast both

VaR and ES of Bitcoin and Ethereum. Notwithstanding CAViaR does not provide a

direct way to estimate the ES, we follow Manganelli and Engle (2004) and estimate the

ES through

ÊSαt = φ̂V̂aRα
t, for t = 1, . . . , T + 1,

where φ̂ is the estimated parameter obtained by regressing the returns exceedance beyond

the estimated VaR against its corresponding estimated VaR. For simplicity, this method

is referred as CAViaR in the empirical application.

2.7 CAViaR-EVT

Extending the results in Li et al. (2021), we evaluate whether incorporating extreme value

theory (EVT) into the CAViaR framework, as proposed by Manganelli and Engle (2004),

is useful for forecasting the VaR and ES for Bitcoin and Ethereum

6There are other specifications that could be used in a CAViaR context, but we prefer to use the
simplest one since Li et al. (2021) does not report evidence that complex specifications outperform the
simplest one for the Bitcoin case.
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The procedure proposed by Manganelli and Engle (2004) is based on the EVT method

of McNeil and Frey (2000) and can be summarised in the following three steps:

• Step 1: Use the CAViaR model to estimate the VaR for a risk level θ not as extreme

as the desired risk level α. Then, calculate the standardised quantile residuals

through rt/V̂aRθ
t − 1.

• Step 2: Fit the generalised Pareto distribution to the positive standardised quantile

residuals and obtain ϑ̂ and ε̂, the respective estimated scale and shape parameters.

• Step 3: For a given risk level α and for t = 1, . . . , T + 1, obtain the VaR and ES

estimates by

V̂aRα
t = V̂aRθ

t

(
1 +

ϑ̂

ε̂

[( θ
α

)ε̂
− 1
])

and

ÊSαt = V̂aRθ
t

(
1 +

ϑ̂

ε̂

[( θ
α

)ε̂
− 1
]

+ ϑ̂

1− ε̂

)
.

Following Manganelli and Engle (2004) and Taylor (2019), we use θ equal to 7.5%.

2.8 CAViaR-ALD

Extending the study of Li et al. (2021) and motivated by the recently proposed quantile

regression approach of Taylor (2019) that estimate both VaR and ES jointly, we evaluate

whether this method is useful to forecast both risk measures for Bitcoin and Ethereum.

Based on the results of Koenker and Machado (1999) and using the fact that the

asymmetric Laplace density (ALD) can be written as

f(rt) =
α− 1

ESαt
exp

((rt − VaRα
t

)(
α− I(rt ≤ VaRα

t )
)

αESαt

)
, (6)

Taylor (2019) proposes to maximise the likelihood of the aforementioned distribution

considering that the VaR component follows a CAViaR model (hence the name CAViaR-

ALD) and the ES, in its simplest form, is given by

ESαt = (1 + exp(γ0))VaRα
t . (7)

The parametrisation used in the density function (6) as well as the relationship between
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ES and VaR given in Equation (7) allow us to estimate the VaR and ES jointly avoiding

the ES crossing the VaR. Additionally, it is worth mentioning that this method does not

assume that returns follow an asymmetric Laplace distribution, since α is not estimated

but a chosen fixed value equal to the risk level desired.

3 Forecast Combinations

Forecast combining provides a pragmatic way to deal with model misspecification and

to synthesise the information extracted from the data by individual models. Its use in

a risk measurement context has been less exploited than in other fields, but there are

several studies providing empirical evidence in support of combining. See; for instance,

Giacomini and Komunjer (2005), Halbleib and Pohlmeier (2012), Bayer (2018), Taylor

(2020) and Happersberger et al. (2020). Those approaches can be divided into basic and

scoring function minimisation strategies, which are briefly described next.

3.1 Basic combining strategies

The first group consists of basic strategies, which are fast and easy to implement. They

rely on the computation of the average, median, maximum and minimum values. The

average and median are standard approaches in the forecast combining literature, while

the maximum and minimum are potentially of interest in the risk context, as they provide

more and less conservative choices from a set of forecasts.

Let M be the number of individual forecasting methods and let V̂aRi
T+1 and ÊSi

T+1

(i = 1, ...,M) be the corresponding day-ahead VaR and ES forecasts obtained by the i-th

method. The basic combining strategies are defined as follows

(i) Simple average (AVG)

V̂aRc
T+1 =

M∑
i=1

V̂aRi
T+1

M
and ÊSc

T+1 =
M∑
i=1

ÊSi
T+1

M
.
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(ii) Median value (MED)

V̂aRc
T+1 = Med{V̂aR1

T+1, . . . , V̂aRM
T+1} and

ÊSc
T+1 = Med{ÊS1

T+1, . . . , ÊSM
T+1}.

(iii) Maximum value (MAX)

V̂aRc
T+1 = Max{V̂aR1

T+1, . . . , V̂aRM
T+1} and

ÊSc
T+1 = Max{ÊS1

T+1, . . . , ÊSM
T+1}.

(iv) Minimum value (MIN)

V̂aRc
T+1 = Min{V̂aR1

T+1, . . . , V̂aRM
T+1} and

ÊSc
T+1 = Min{ÊS1

T+1, . . . , ÊSM
T+1}.

While the AVG strategy has been used by Taylor (2020) for both VaR and ES fore-

casting, the other three strategies have been used only for VaR forecasting (McAleer

et al., 2013a,b; Bayer, 2018; Buczyński and Chlebus, 2019). Their applicability for ES

forecast combining is assessed here.

3.2 Combining strategies based on scoring function minimisa-

tion

Based on the results of Fissler and Ziegel (2016), Taylor (2020) proposes two forecast com-

bination strategies to deal with VaR and ES, namely, minimum score combining (MSC)

and relative score combining (RSC). Those strategies rely on the combining weights being

estimated by the minimisation of a scoring function of the form

S(VaRt,ESt, rr) = (I(rt ≤ VaRt)− α)G1(VaRt)− I(rt ≤ VaRt)G1(rt)

+G2(ESt)(ESt − VaRt + I(rt ≤ VaRt)(VaRt − rt)/α)

+ζ2(ESt) + a(rt),

(8)

where α is the risk level; and the functions G1, G2, ζ2 and a satisfy certain conditions

such as G1 and ζ2 are increasing, ζ2 is convex, and G2 = ζ ′2. See; Fissler and Ziegel (2016)

and Dimitriadis and Bayer (2019) for further details.
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In the MSC strategy, the combined estimators are given by

V̂aRc
T+1 =

M∑
i=1

τiV̂aRi
T+1 and

ÊSc
T+1 = V̂aRc

T+1 +
M∑
i=1

κi(ÊSi
T+1 − V̂aRi

T+1),

(9)

where the two sets of combining weights τi and κi (i = 1, ...,M) are obtained in a

single step by minimising the sum of the in-sample values of the chosen scoring function

belonging to the class presented in expression (8) subject to the constraints τi, κi ≥ 0,∑M
i=1 τi = 1 and

∑M
i=1 κi = 1. The structure of the expression for the ES ensures that the

ES combined forecast exceeds the VaR combined forecast, which would not be guaranteed

if the ES combined forecast was simply a linear combination of the individual ES forecasts.

The other strategy proposed by Taylor (2020) is the RSC strategy, which is computa-

tionally lighter than the MSC and leads to a single set of weights for both VaR and ES.

In this case, the combined estimators are obtained by

V̂aRc
T+1 =

M∑
i=1

ηiV̂aRi
T+1 and

ÊSc
T+1 =

M∑
i=1

ηiÊSi
T+1,

(10)

where

ηi =

exp

(
−λ

T∑
j=1

S
(

V̂aRi
j, ÊSi

j, rj

))
M∑
i=1

exp

(
−λ

T∑
j=1

S
(

V̂aRi
j, ÊSi

j, rj

)) ,

with the tuning parameter λ > 0 being the value that minimises the sum of the in-sample

values of the scoring function.

Note that a value of λ close to zero leads to a simple average where all forecasting

methods have the same weight, while a large value of λ leads to the selection of a single

method with the best historical performance. As with the MSC method, the structure of

the RCS combining expressions ensures that the ES combined forecast exceeds the VaR

combined forecast.

In our empirical study, we consider three different versions of both the MSC and

14



RSC combining strategies. Those versions correspond to the parameters estimated using

three different forms of the scoring function of expression (8). We considered the scoring

functions proposed by Fissler and Ziegel (2016), Nolde et al. (2017) and Taylor (2019),

which we denote here as FZG, NZ and AL, respectively. The AL scoring function is equal

to the negative of the log of the ALD likelihood of expression (8). We refer to the different

versions of the combining strategies as MSCFZG, MSCNZ, MSCAL, RSCFZG, RSCNZ and

RSCAL.

4 Empirical Study

4.1 Data

We analyse daily closing prices7 of Bitcoin and Ethereum, the two major cryptocurren-

cies, which represent more than 50% of the cryptocurrency market capitalisation. Prices

spanning from August 17, 2017, to July 22, 2022, were obtained from Binance, one of

the largest crypto-exchanges around the world. Binance started its operations in August

2017 with Bitcoin and Ethereum being the firsts cryptocurrencies to be traded. Although

there are several other cryptocurrencies being traded on Binance nowadays, they were

not considered in our analysis because there is so little historical data available.

All analyses were performed using R software (R Core Team, 2021) and the volatility

models were implemented using the R packages rugarch (Ghalanos, 2020), GAS (Ar-

dia et al., 2019c), MSGARCH (Ardia et al., 2019a), RobGARCHBoot (Trucios, 2020)

and self implemented routines. For reproducibility purposes, the codes as well as the

data used in the paper are available on the Github repository github.com/ctruciosm/

CryptoForeComb.

We used a rolling window scheme with window size of 1000 days, which led to an

out-of-sample period of 800 days. For each window, we estimated parameters for the

individual models and the combining methods, and then produced day-ahead VaR and

ES forecasts. We then moved the window forward one day, and repeated the estimation

and forecasting procedure. The same procedure is done until no more data is available.

Table 1 reports the descriptive statistics of Bitcoin and Ethereum daily returns and

Figure 1 displays the daily returns (left panel), the sample auto-correlation function of

7Cryptocurrencies are traded 24/7 and the last price traded on the day is considered as closing price.
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returns (middle panel) and the sample auto-correlation function of squared returns (right

panel). The autocorrelations are reported with their respective 95% confidence bands,

computed using the generalised non-parametric Bartlett’s formula (Francq and Zaköıan,

2009) and the Bartlett’s formula (Bartlett, 1946) for the returns and squared returns,

respectively. Classical ±zα/2/
√
n bands are also reported, in dotted lines, for return’s

autocorrelations. The vertical dashed lines in the left panel of Figure 1 indicate the

beginning of the out-of-sample period (May 14, 2020).

Both series report extreme observations with maximum returns larger than 20% and

minimum returns less than -50%. The minimum values all occur on March 12, 2020, one

day after the World Health Organisation announced that COVID-19 can be characterised

as a pandemic.

Bitcoin reports an annualised volatility of 80.8% (4.23% ×
√

365) while Ethereum

an annualised volatility of 102.4% (5.36% ×
√

365). Both cryptocurrencies report high

kurtosis, which can be partially explained by the presence of extreme observations. Addi-

tionally, both series report positive mean and median values as well as negative skewness.

Min Q1 Median Mean Q3 Max S.D Skew Kurtosis
Bitcoin -50.26 -1.71 0.15 0.09 1.94 20.30 4.23 -1.03 16.33

Ethereum -59.05 -2.25 0.13 0.09 2.84 23.38 5.36 -1.03 13.65

Table 1: Descriptive statistics of daily returns. Q1 and Q3 stand for the first and third
quartiles while S.D stands for the standard deviation.

From Figure 1, we can observe that both series of returns exhibit a non negligible

serial correlation. So, in order to forecast the VaR and ES we first apply an appropriate

AR(p) filter and then the procedures described in Section 2 are applied on the residuals.

For each window, the autoregressive order p was selected as p = 0, 1 or 2, using the Akaike

information criterion. Additionally to the models described in Section 2, we included the

widely known GARCH (Bollerslev, 1986) and GJR (Glosten et al., 1993) models with a

skew-t innovation distribution as benchmarks. We then applied the combining methods

from Section 3.

As pointed out by Atiya (2020) and Taylor (2019), forecast combination is a powerful

tool when different information is used by the models or when the same information is

used by the models in different ways. In those cases, we say that the models are diverse,

and a good example of this is when we use models based on different assumptions. In
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our case, the models implemented are built using the same information but are based on

different assumptions, and are therefore a reasonably diverse set of models to combine.

4.2 Out-of-sample results

In our empirical study, we evaluate the one-step-ahead forecast of the VaR and ES for

the 2.5% and 5% risk levels. Although the 1% risk level is quite often considered, we do

not include it here because the small size of the out-of-sample period (800 trading days)

renders the statistical tests inconclusive.

To evaluate the VaR and ES forecasting performance in the out-of-sample period, we

use a comprehensive back-testing exercise based on both calibration tests (to evaluate

whether the forecasts are valid or not) and scoring functions (to evaluate the precision

of the forecasts). In addition to the widely-used quantile loss (QL) function (González-

Rivera et al., 2004), we also use the scoring functions proposed by Fissler et al. (2016),

Nolde et al. (2017) and Taylor (2019), which are all particular cases of Equation (8).

These scoring functions are denoted here as FZG, NZ and AL, respectively. The QL

scoring function considers only the VaR, while the other scoring functions consider VaR

and ES jointly. The implemented calibration tests are commonly used in the financial

econometrics literature and are listed in Table 2. Roughly speaking, the null hypothesis

in all calibration tests can be interpreted as ‘the risk measure (namely, VaR and/or ES)

is correctly specified’, where different definitions for the term correct are used in each

hypothesis test. For a brief explanation of those tests we refer to Nieto and Ruiz (2016),

Righi and Ceretta (2015) and Hallin and Trućıos (2021).

Tables 3 and 4 report the percentage of hits (returns smaller than VaR), the p-values

of the calibrations tests and the average scoring function of the individual and combining

methods. Shaded rows indicate procedures delivering satisfactory calibration test results

(i.e., fail to reject the null hypothesis at 5% significance level in all calibration tests).

To compare the precision of the forecasts, we use the model confidence set approach of

Hansen et al. (2011) at 5% significance level on the four scoring functions previously

mentioned (QL, FZG, NZ and AL). For Bitcoin and Ethereum, the model confidence set

at 5% significance does not distinguish between the global performance obtained by the

various procedures implemented. Almost all of them belong to the model confidence set,

and so we do not report the results in the tables.
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As pointed out by Giacomini and Rossi (2010), in periods of instability, the global

forecasting performance can hide important information about the performance of the

competing models over time. Bearing in mind that our out-of-sample period is charac-

terised by instabilities in the cryptocurrency market such as the COVID-19 pandemic

period, the third halving of Bitcoin and the Lexia class action, we go one step further

than previously done in the cryptocurrency literature and perform the fluctuation test

of Giacomini and Rossi (2010) to compare, between those methods with satisfactory

calibration test results, the relative superiority over time of their scoring function values.

It is worth mentioning that procedures that do not deliver satisfactory calibration

test results are not appropriate for forecasting the risk measures, even if they produce the

smallest scoring functions. On the other hand, for procedures with satisfactory calibration

test results, the one with the smallest scoring functions is preferred. Therefore, better

methods are those for which the percentage of hits is close to the nominal risk level; the

null hypotheses in the calibration tests are not rejected; and, between those methods, the

scoring functions have lower values.

Test Proposed by Used to evaluate

Conditional coverage (CC) Christoffersen (1998) VaR
Dynamic quantile (DQ) Engle and Manganelli (2004) VaR
VaR quantile regression (VQ) Gaglianone et al. (2011) VaR
Exceedance residuals (ER) McNeil and Frey (2000) ES and VaR
Conditional calibration (CoC) Nolde et al. (2017) ES and VaR
Exceedance shortfall regression (ESR) Bayer and Dimitriadis (2020) ES

Table 2: Calibration tests used to evaluate VaR and ES accuracy.

Out-of-sample results for Bitcoin

Results for Bitcoin are reported in Table 3. For the 2.5% risk level, four individual

models (GARCH, GAS, FIGARCH and CAViaRALD) and three combining strategies

(MAX, MSCAL, RSCAL) deliver satisfactory calibration test results. For the 5% risk

level, three individual models (GARCH, MSGARCH, FIGARCH) and three combining

strategies (MED, RSCFZG, RSCAL) deliver satisfactory calibration test results.

Although some combining strategies deliver satisfactory calibration tests results for

each risk level, the model confidence set at 5% significance level does not distinguish

between the global performance obtained between the individual models and combining
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Table 3: One-step-ahead VaR and ES backtesting for Bitcoin at 2.5% and 5% risk levels.
Shaded rows indicate procedures with p-values larger than 0.05 in all calibration tests.
Smallest average scoring functions values are underlined.

Calibration test p-values Average scoring functions

Hits CC DQ VQ ER CoC ESR QL FZG NZ AL

GARCH 2.4 0.613 0.839 0.175 0.856 0.121 0.920 0.273 0.964 3.297 3.413

GJR 2.5 0.598 0.871 0.000 0.855 0.163 0.882 0.274 0.965 3.308 3.422

GAS 3.1 0.246 0.495 0.312 0.636 0.475 0.476 0.275 0.965 3.297 3.407

MSGARCH 2.0 0.464 0.666 0.032 0.714 0.454 0.906 0.279 0.969 3.328 3.432

Boot. 2.8 0.486 0.597 0.327 0.994 0.000 0.962 0.279 0.970 3.343 3.443

FIGARCH 2.4 0.613 0.828 0.222 0.865 0.107 0.916 0.274 0.964 3.299 3.415

NGARCH 2.1 0.542 0.706 0.014 0.666 0.253 0.895 0.276 0.966 3.321 3.431

CAViaR 2.9 0.406 0.262 0.038 0.856 0.243 0.734 0.279 0.969 3.332 3.436

CAViaREVT 2.8 0.486 0.768 0.000 0.984 0.001 0.929 0.277 0.968 3.329 3.436

Indiv.

CAViaRALD 2.5 0.598 0.127 0.097 0.842 0.151 0.929 0.281 0.971 3.357 3.459

AVG 2.2 0.594 0.836 0.013 0.822 0.190 0.835 0.275 0.965 3.305 3.418

MED 2.5 0.598 0.885 0.002 0.884 0.093 0.830 0.273 0.963 3.294 3.411

MAX 3.5 0.084 0.076 0.117 0.704 0.254 0.388 0.280 0.970 3.334 3.434

MIN 1.6 0.193 0.801 0.000 0.957 0.000 0.991 0.281 0.972 3.369 3.466

MSCFZG 2.8 0.486 0.530 0.001 0.942 0.035 0.903 0.278 0.969 3.331 3.437

MSCNZ 3.0 0.323 0.235 0.053 0.933 0.035 0.882 0.278 0.969 3.338 3.447

MSCAL 2.6 0.553 0.322 0.090 0.844 0.118 0.891 0.279 0.969 3.341 3.448

RSCFZG 2.6 0.553 0.349 0.034 0.778 0.222 0.853 0.282 0.972 3.355 3.452

RSCNZ 2.6 0.553 0.086 0.045 0.718 0.406 0.846 0.284 0.974 3.372 3.468

2.5%

Comb.

RSCAL 2.6 0.553 0.082 0.065 0.787 0.245 0.888 0.283 0.974 3.370 3.467

GARCH 5.4 0.869 0.574 0.186 0.853 0.202 0.838 0.440 1.127 2.952 3.217

GJR 6.4 0.210 0.216 0.039 0.958 0.021 0.820 0.443 1.130 2.964 3.227

GAS 6.0 0.362 0.123 0.041 0.540 0.453 0.414 0.447 1.134 2.971 3.227

MSGARCH 5.6 0.681 0.215 0.069 0.945 0.065 0.897 0.444 1.131 2.964 3.226

Boot. 5.4 0.501 0.077 0.025 0.974 0.002 0.990 0.448 1.135 2.985 3.240

FIGARCH 5.5 0.759 0.512 0.104 0.877 0.142 0.862 0.441 1.128 2.957 3.221

NGARCH 6.1 0.194 0.070 0.146 0.949 0.022 0.876 0.443 1.130 2.968 3.230

CAViaR 5.8 0.452 0.199 0.008 0.742 0.389 0.630 0.446 1.133 2.969 3.227

CAViaREVT 6.1 0.311 0.154 0.067 0.978 0.005 0.935 0.447 1.134 2.980 3.239

Indiv.

CAViaRALD 5.8 0.452 0.223 0.068 0.949 0.033 0.921 0.447 1.135 2.979 3.238

AVG 5.8 0.452 0.227 0.047 0.926 0.069 0.858 0.443 1.130 2.960 3.222

MED 5.8 0.452 0.255 0.119 0.889 0.114 0.813 0.442 1.129 2.957 3.219

MAX 7.1 0.030 0.019 0.039 0.787 0.047 0.251 0.450 1.137 2.985 3.240

MIN 4.4 0.661 0.265 0.000 0.970 0.000 1.000 0.446 1.133 2.985 3.246

MSCFZG 6.0 0.362 0.109 0.016 0.937 0.027 0.875 0.448 1.135 2.986 3.246

MSCNZ 6.1 0.311 0.130 0.033 0.963 0.023 0.867 0.448 1.136 2.983 3.241

MSCAL 6.0 0.362 0.180 0.048 0.962 0.027 0.882 0.448 1.135 2.981 3.239

RSCFZG 6.0 0.362 0.206 0.057 0.899 0.077 0.804 0.448 1.136 2.982 3.241

RSCNZ 6.0 0.362 0.192 0.040 0.910 0.073 0.811 0.448 1.136 2.983 3.242

5%

Comb.

RSCAL 5.9 0.411 0.184 0.061 0.917 0.065 0.857 0.448 1.136 2.983 3.242

strategies implemented. Actually, the model confidence set does not distinguish between

the global performance obtained between all procedures implemented, pointing them out

as statistically equal (as mentioned in the previous Section, almost all procedures are in

the model confidence set).

The fluctuation test of Giacomini and Rossi (2010) was applied to investigate whether

there was statistical difference over time in the scoring functions of the methods that

had the best calibration test results. For the 2.5% risk level, Figure 2 compares the

GAS procedure and the MSCAL combining strategy. The figure shows the fluctuation

statistic (solid green line) with their corresponding two-sided 5% critical values (dashed
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Figure 2: For Bitcoin, fluctuation test comparing the 2.5% VaR and ES forecasting
performance of the GAS model and MSCAL combining strategy according to four scoring
functions. Vertical dashed lines indicate the Lexia class action. Dashed horizontal black
lines indicate the two-sided 5% fluctuation test critical values.

horizontal black lines). A fluctuation statistic above/below the upper/lower critical value

line indicates that the first model (GAS) is outperformed by/outperforms the second one

(i.e, the MSCAL combining strategy) for that period of time. The results in Figure 2

indicate that, in two out of the four scoring functions, the GAS procedure outperforms

the MSCAL combining strategy for a short period of time (the solid line crosses the

inferior dashed line). For the other pairwise comparisons, the fluctuation test indicates

no superiority of one model against another over time8 (those results are not showed here

to save space but are available in Figures S1–S20 of the supplementary material). For the

5% risk level, the fluctuation test also reveals no statistically significant difference over

time in the scoring function results for all pairwise comparisons (see Figures S21–S35 of

the supplementary material).

In general, for any risk level, there is no single approach outperforming all other

procedures neither globally nor over time. Nevertheless, some individual and combining

strategies have a good performance for forecasting both risk measures, with three of them

suitable for both risk levels, namely, GARCH, FIGARCH and RSCAL procedures.

8For the GAS and CAViaRALD models, the fluctuation statistic is on the borderline (in favour of
the GAS model) for one out of the four scoring functions.
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Table 4: One-step-ahead VaR and ES backtesting for Ethereum at 2.5% and 5% risk
levels. Shaded rows indicate procedures with p-values larger than 0.05 in all calibration
tests. Smallest average scoring functions values are underlined.

Calibration test p-values Average scoring functions

Hits CC DQ VQ ER CoC ESR QL FZG NZ AL

GARCH 1.8 0.278 0.774 0.192 0.636 0.214 0.893 0.356 1.043 3.727 3.650

GJR 2.0 0.464 0.163 0.350 0.810 0.200 0.857 0.354 1.041 3.717 3.644

GAS 2.4 0.749 0.274 0.837 0.486 0.967 0.538 0.354 1.041 3.702 3.627

MSGARCH 1.5 0.123 0.551 0.210 0.554 0.068 0.959 0.366 1.053 3.795 3.693

Boot. 2.1 0.542 0.187 0.213 0.918 0.080 0.911 0.371 1.058 3.813 3.698

FIGARCH 1.8 0.278 0.778 0.245 0.805 0.078 0.946 0.356 1.042 3.728 3.652

NGARCH 1.8 0.278 0.778 0.246 0.671 0.191 0.885 0.355 1.042 3.724 3.649

CAViaR 2.5 0.814 0.002 0.007 0.753 0.393 0.873 0.374 1.061 3.851 3.732

CAViaREVT 2.4 0.749 0.037 0.088 0.910 0.077 0.954 0.370 1.057 3.808 3.698

Indiv.

CAViaRALD 2.5 0.814 0.001 0.003 0.729 0.440 0.918 0.385 1.073 3.935 3.795

AVG 2.0 0.464 0.133 0.332 0.772 0.296 0.829 0.362 1.048 3.758 3.667

MED 2.0 0.464 0.149 0.311 0.799 0.222 0.897 0.358 1.045 3.742 3.659

MAX 3.2 0.068 0.000 0.340 0.554 0.488 0.328 0.371 1.058 3.837 3.733

MIN 1.5 0.123 0.539 0.019 0.931 0.002 0.921 0.376 1.063 3.850 3.722

MSCFZG 2.1 0.524 0.140 0.425 0.658 0.631 0.817 0.362 1.049 3.762 3.669

MSCNZ 2.1 0.524 0.140 0.466 0.840 0.315 0.819 0.363 1.050 3.763 3.669

MSCAL 2.1 0.542 0.201 0.350 0.860 0.248 0.869 0.359 1.046 3.742 3.657

RSCFZG 2.2 0.594 0.001 0.050 0.720 0.511 0.834 0.374 1.060 3.830 3.710

RSCNZ 2.4 0.749 0.001 0.035 0.753 0.435 0.866 0.375 1.062 3.844 3.720

2.5%

Comb.

RSCAL 2.2 0.647 0.084 0.058 0.737 0.403 0.917 0.372 1.059 3.829 3.712

GARCH 5.5 0.759 0.832 0.465 0.934 0.052 0.933 0.568 1.248 3.323 3.447

GJR 5.4 0.802 0.548 0.191 0.919 0.062 0.939 0.569 1.249 3.325 3.448

GAS 6.2 0.259 0.101 0.193 0.822 0.194 0.565 0.573 1.254 3.331 3.448

MSGARCH 5.0 1.000 0.862 0.629 0.934 0.062 0.974 0.576 1.257 3.359 3.475

Boot. 4.5 0.476 0.264 0.045 0.854 0.086 0.973 0.587 1.267 3.387 3.490

FIGARCH 5.2 0.822 0.821 0.300 0.949 0.024 0.972 0.570 1.250 3.330 3.452

NGARCH 5.4 0.802 0.605 0.504 0.926 0.060 0.935 0.568 1.249 3.325 3.449

CAViaR 5.2 0.486 0.144 0.222 0.912 0.118 0.960 0.581 1.261 3.371 3.482

CAViaREVT 5.9 0.233 0.019 0.011 0.958 0.016 0.973 0.586 1.267 3.392 3.498

Indiv.

CAViaRALD 5.2 0.822 0.077 0.112 0.947 0.044 0.986 0.583 1.264 3.380 3.488

AVG 5.1 0.816 0.630 0.315 0.913 0.097 0.948 0.573 1.253 3.341 3.460

MED 5.4 0.802 0.713 0.325 0.938 0.059 0.954 0.571 1.251 3.333 3.454

MAX 7.0 0.042 0.025 0.016 0.823 0.051 0.407 0.584 1.264 3.372 3.479

MIN 3.6 0.173 0.214 0.006 0.894 0.002 1.000 0.586 1.266 3.393 3.497

MSCFZG 5.4 0.501 0.257 0.221 0.854 0.276 0.881 0.581 1.261 3.368 3.479

MSCNZ 5.5 0.499 0.106 0.193 0.959 0.071 0.942 0.582 1.262 3.362 3.470

MSCAL 5.6 0.247 0.072 0.134 0.971 0.044 0.962 0.580 1.261 3.360 3.469

RSCFZG 5.4 0.501 0.078 0.112 0.861 0.202 0.914 0.581 1.262 3.368 3.478

RSCNZ 5.2 0.486 0.084 0.128 0.872 0.151 0.947 0.582 1.262 3.371 3.480

5%

Comb.

RSCAL 5.2 0.822 0.145 0.144 0.914 0.088 0.959 0.580 1.260 3.365 3.476

Out-of-sample results for Ethereum

Results for Ethereum are reported in Table 4 and reveal that a number of individual

models, useful for forecasting both risk measures in previous studies, remain useful for

forecasting the risk measures for this recent set of data.

For the 2.5% risk level, all individual procedures, except the quantile regression-based

ones, deliver satisfactory calibration test results. Additionally, six out of the ten combin-

ing strategies also deliver satisfactory calibration test results. The model confidence set

at 5% significance level, as mentioned previously, does not distinguish between the global

performance obtained between implemented methods. However, the fluctuation test re-
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Figure 3: For Ethereum, fluctuation test comparing the 2.5% VaR and ES forecasting
performance of the GAS model and GARCH model according to four scoring functions.
Vertical dashed lines indicate the Lexia class action. Dashed horizontal black lines indi-
cate the two-sided 5% fluctuation test critical values.

veals that the GAS model outperforms all other procedures with satisfactory calibration

test results in at least one period of time, and is never outperformed by the competitor

models. Figures 3 - 6 report the fluctuation test for the GAS model against GARCH,

MSGARCH, AVG and MSCAL procedures. The other pairwise comparisons are reported

in the Figures S36–S43 of the supplementary material.

For the 5% risk level, six individual models (GARCH, GJR, GAS, MSGARCH,

NGARCH and CAViaR) and seven combining strategies (AVG, MED, MSCFZG, MSCNZ,

RSCFZG, RSCNZ and RSCAL) deliver satisfactory calibration test results with none of

them being preferable according to the model confidence set at 5% of significance level

(almost all procedures belong to the model confidence set). Nevertheless, the fluctuation

test reveals that, at least for one scoring function considered, the GAS model outperforms

all other procedures with satisfactory calibration test results, and is never outperformed

by the competitor models. Figures 7 - 9 report the fluctuation test for the GAS model

against MSGARCH, CAViaR and RSCFZG procedures. The other pairwise comparisons

are reported in Figures S44–S52 of the supplementary material.

In summary, for Ethereum, the GAS model performed particularly well. It delivers

satisfactory calibration test results for both risk levels and, at least for a period of time,
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Figure 4: For Ethereum, fluctuation test comparing the 2.5% VaR and ES forecasting
performance of the GAS model and MSGARCH model according to four scoring func-
tions. Vertical dashed lines indicate the Lexia class action. Dashed horizontal black lines
indicate the two-sided 5% fluctuation test critical values.
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Figure 5: For Ethereum, fluctuation test comparing the 2.5% VaR and ES forecasting
performance of the GAS model and AVG combining strategy according to four scoring
functions. Vertical dashed lines indicate the Lexia class action. Dashed horizontal black
lines indicate the two-sided 5% fluctuation test critical values.
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Figure 6: For Ethereum, fluctuation test comparing the 2.5% VaR and ES forecasting
performance of the GAS model and MSCAL combining strategy according to four scoring
functions. Vertical dashed lines indicate the Lexia class action. Dashed horizontal black
lines indicate the two-sided 5% fluctuation test critical values.
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Figure 7: For Ethereum, fluctuation test comparing the 5% VaR and ES forecasting
performance of the GAS model and MSGARCH model according to four scoring func-
tions. Vertical dashed lines indicate the Lexia class action. Dashed horizontal black lines
indicate the two-sided 5% fluctuation test critical values.
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Figure 8: For Ethereum, fluctuation test comparing the 5% VaR and ES forecasting
performance of the GAS model and CAViaR model according to four scoring functions.
Vertical dashed lines indicate the Lexia class action. Dashed horizontal black lines indi-
cate the two-sided 5% fluctuation test critical values.
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Figure 9: For Ethereum, fluctuation test comparing the 5% VaR and ES forecasting
performance of the GAS model and RSCFZG combining strategy according to four scoring
functions. Vertical dashed lines indicate the Lexia class action. Dashed horizontal black
lines indicate the two-sided 5% fluctuation test critical values.
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outperforms other procedures with satisfactory calibration test results.

5 Conclusions and further research

We use recent cryptocurrency data that includes periods of turbulence due to the COVID-

19 pandemic, the third halving of Bitcoin and the Lexia class action, to evaluate whether

the VaR and ES forecasting performance of models, shown to be useful for forecasting

risk measures in the past, remain useful in more recent times for cryptocurrencies. We

also evaluate whether the robust bootstrap approach of Trućıos et al. (2017), the GAS

model (Harvey, 2013; Creal et al., 2013), as well as the CAViaR model (Engle and Man-

ganelli, 2004), found to be useful for forecasting the VaR of cryptocurrencies in previous

studies, are also useful for forecasting the ES of cryptocurrencies. Finally, we evaluate

whether forecast combination strategies can improve the VaR and ES forecasts obtained

by individual models.

Regarding the individual models, the best performing models differed for the two

cryptocurrencies. For Bitcoin, a full set of satisfactory calibration test results is produced

by some individual and combining strategies with none of them being superior to the

others according to the calibration and fluctuation tests on the scoring functions. For

Ethereum, several procedures deliver satisfactory calibration test results for both risk

levels, with the GAS model the only one outperforming all its competitor in at least one

period of time.

Combining strategies performed reasonably, but they were unable to outperform all

individual models, neither globally nor over time. It was perhaps a little surprising that

we did not obtain better results with the more sophisticated combining strategies. One

explanation for this is the presence of outliers in the cryptocurrency returns series. In ad-

dition to having a detrimental effect on some of the individual models in the combination,

it can also have an unhelpful influence on the estimation of the combining weights. A

further explanation for the combining methods not outperforming all individual models is

that the context may not be as fertile for forecast combination as other applications. We

must acknowledge that, although there were notable differences in the specifications of

the individual models, they were all univariate time series models, which limits the diver-

sity of information provided by each model, and hence limits the potential for improved

27



accuracy from forecast combining.

In terms of future research, it would be interesting to see research into the impact

of outliers on VaR and ES models. A model needs to be robust to outliers, but not so

robust that the VaR and ES forecasts do not capture the possibility of such extremes.

Our reflections on the limitations of combining models in this application motivates future

consideration of models that capture relevant information provided by other sources of

data when modelling the cryptocurrency returns. Another interesting research direction

would be consideration of other forms of combining models, such as the recent paper

by Lu et al. (2021), which applies machine learning to combine forecasts of VaR and

ES. A final comment on future research is that, as time passes, longer time series will

obviously become available, which will potentially enable researchers to develop a revised

understanding of which individual models and combining strategies are most useful.
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Hotta, L. K. and Trućıos, C. (2018). Inference in (M)GARCH Models in the Presence of

Additive Outliers: Specification, Estimation and Prediction. In Lavor, C. and Neto, F. A.

M. G., editors, Advances in Mathematics and Applications, pages 179–202. Springer.

Koenker, R. and Machado, J. A. (1999). Goodness of fit and related inference processes for

quantile regression. Journal of the American Statistical Association, 94(448):1296–1310.

31



Li, Z., Dong, H., Floros, C., Charemis, A., and Failler, P. (2021). Re-examining bitcoin volatility:

A CAViaR-based approach. Emerging Markets Finance and Trade, pages 1–19.

Liu, W., Semeyutin, A., Lau, C. K. M., and Gozgor, G. (2020). Forecasting value-at-risk

of cryptocurrencies with riskmetrics type models. Research in International Business and

Finance, 54:101259.

Lu, X., Liu, C., Lai, K. K., and Cui, H. (2021). Risk measurement in Bitcoin market by fusing

LSTM with the joint-regression-combined forecasting model. Kybernetes.

Luther, W. J. and Salter, A. W. (2017). Bitcoin and the bailout. The Quarterly Review of

Economics and Finance, 66:50–56.

Maciel, L. (2020). Cryptocurrencies value-at-risk and expected shortfall: Do regime-switching

volatility models improve forecasting? International Journal of Finance & Economics.

Manganelli, S. and Engle, R. F. (2004). A comparison of value-at-risk models in finance. In

Risk measures for the 21st century, pages 123–144. Wiley, Chichester.

McAleer, M., Jimenez-Martin, J.-A., and Perez-Amaral, T. (2013a). GFC- risk management

strategies under the Basel accord. International Review of Economics & Finance, 27:97–111.
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