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Evaluating Quantile-Bounded and Expectile-Bounded Interval Forecasts 

Abstract 

In many different contexts, decision making is improved by the availability of probabilistic 

predictions. The accuracy of probabilistic forecasting methods can be compared using scoring 

functions, and insight provided by calibration tests. These tests evaluate the consistency of 

predictions with the observations. Our main agenda in this paper is interval forecasts and their 

evaluation. Such forecasts are usually bounded by two quantile forecasts. However, a limitation 

of quantiles is that they convey no information regarding the size of potential exceedances. By 

contrast, the location of an expectile is dictated by the whole distribution. This prompts us to 

propose expectile-bounded intervals. We provide interpretation, a consistent scoring function 

and a calibration test. Before doing this, we reflect on the evaluation of forecasts of quantile-

bounded intervals and expectiles, and suggest extensions of previously proposed calibration 

tests in order to guard against strategic forecasting. We illustrate ideas using day-ahead 

electricity price forecasting. 

Keywords: Quantiles; Expectiles; Intervals; Scoring Functions; Calibration Tests; Electricity 

Prices. 
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1. Introduction 

Probabilistic forecasts enhance decision making. In some applications, a prediction of 

the full probability distribution is required (Gneiting and Katzfuss, 2014), while in others, a 

prediction of a quantile or expectile may be needed as a measure of tail risk (Ziegel, 2016), or 

as the optimal point forecast when an asymmetric loss function is appropriate (Gneiting, 2011). 

Often, a probabilistic prediction is summarised by an interval forecast, in order to provide a 

simple way to convey forecast uncertainty (see, for example, Makridakis et al., 2018).  

The evaluation of forecast accuracy enables the user to understand the quality of a 

method and to compare methods. Our main agenda in this paper is the evaluation of interval 

forecasts, which are usually defined as being bounded by two quantile forecasts. However, a 

quantile has the disadvantage of conveying no information regarding the potential magnitude 

of exceedances beyond the quantile. By contrast, the location of an expectile is dictated by the 

whole distribution (Koenker, 2005). For example, a change to the tail of the distribution beyond 

a quantile will not change that quantile, but it will affect all the expectiles. As another example, 

a change to one tail of a distribution does not change the quantiles of the other tail, but it does 

affect all the expectiles. A practical implication of this is that increased asymmetry in a 

distribution can be more easily detected by monitoring an extreme expectile than an extreme 

quantile. The advantages of expectiles motivates us to propose expectile-bounded intervals as 

a new way to convey forecast uncertainty. Given that an interval is often presented with a point 

forecast for the mean, an expectile-bounded interval has appeal, as the mean is itself the central 

expectile. For a quantile-bounded interval, it would be more consistent to provide a point 

forecast for the median than the mean. For some distributions, a quantile-bounded interval may 

not even contain the mean. In our analysis of expectile-bounded intervals, we consider their 

interpretability, as we acknowledge that expectiles are not as well understood, or indeed as 

intuitive, as quantiles.  

Our consideration of this new form of interval forecast, and the evaluation of its 
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accuracy, is our main contribution. However, as a basis for this, we first review forecast 

evaluation for quantiles, quantile-bounded intervals and expectiles. 

Forecasts from different methods can be compared using scoring functions (scores). 

For example, the quantile regression loss function is a scoring function for a quantile. A scoring 

function is said to be consistent if it is minimised by the true value of the functional1. An 

elicitable functional is one for which there exists a consistent score. For quantiles and 

expectiles, Gneiting (2011) provides the full set of consistent scoring functions. Both quantiles 

and expectiles have been used as measures of risk in finance. A risk measure is coherent if it 

has a set of attractive properties, such as subadditivity, which means that the measure for a 

portfolio cannot be greater than the sum of the measure for the constituent parts of the portfolio 

(Artzner et al., 1999). Quantiles are not coherent. In fact, expectiles are the only elicitable and 

coherent risk measures (Ziegel, 2016). This provides further motivation for considering 

expectile-bounded intervals to summarise forecast uncertainty. 

As a complement to scoring functions, calibration tests provide insight that can 

potentially be used to improve accuracy. For example, for a forecast of the  quantile, a test of 

conditional calibrated examines whether the conditional probability of an observation falling 

below the forecast is equal to  Nolde and Ziegel (2017) present a framework for calibration 

testing. Previously proposed calibration tests can be presented in this framework, such as the 

quantile calibration test of Engle and Manganelli (2004). This includes a term to guard against 

a strategic forecasting process that manipulates the forecast purely to pass the test. Examples 

of strategic forecasting in other contexts are discussed by Lichtendahl et al. (2013), Olszewski 

(2015) and Taylor (2020), who considers strategic predictive distributions. Although strategic 

forecasts are exposed as poor by a consistent score, there are several reasons why it is important 

that calibration tests cannot be gamed. Firstly, a seemingly calibrated strategic forecaster may 

1 A functional is a mapping from a class of probability distributions to the real line, for which the mean, quantiles 
and expectiles are examples (Gneiting and Katzfuss, 2014). 
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be viewed as outperforming a competitor that has a better score but fails the calibration test. 

Secondly, a forecaster that behaves strategically to some extent, or for some of the time, may 

be competitive in terms of both a calibration test and score. Thirdly, forecasts are sometimes 

evaluated using only calibration. We show how strategic prediction is a concern for the existing 

tests of forecasts of quantile-bounded intervals and expectiles. To address this, we use the 

framework of Nolde and Ziegel (2017) to present new calibration tests. Throughout this paper, 

the new tests that we propose guard against the only strategic forecasts that we can envisage. 

However, we acknowledge that we cannot be sure that other strategic forecasts may exist.  

Section 2 reviews scoring functions and calibration testing for quantiles. Section 3 

focuses on quantile-bounded intervals, and presents a new calibration test. Section 4 considers 

the evaluation of expectile forecasts, and extends an existing calibration test to guard against 

strategic forecasting. Section 5 proposes expectile-bounded intervals, provides interpretation 

for this form of interval, and introduces a scoring function and a calibration test. Section 6 uses 

electricity price data to illustrate the different forms of interval forecast and their evaluation. 

Section 7 provides a brief simulation study. Section 8 summarises and concludes the paper. 

2. Quantile Forecasts 

In this section, we review scoring functions and calibration tests for quantile forecasts. 

This material is not new, but we present it here as useful background for future sections.

2.1. Scoring Functions for Quantile Forecasts 

The most widely used consistent quantile score is the quantile regression loss function 

(see Koenker and Machado, 1999; Taylor, 1999). We refer to it as the quantile score, and 

present it as follows: 

     ( ), ( ) ( )q
t t t t t tS q y I y q y q         (1) 
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where yt is the observation in period t, qt() is the quantile for probability level , and I{·} is 

the indicator function. Gneiting (2011) gives the general form of consistent scoring function 

for a quantile. 

2.2. Calibration for Quantile Forecasts 

A functional is identifiable if there exists a function for which the expectation is zero 

when the correct forecast of the functional is used as the argument. The function is termed an 

identification function. Nolde and Ziegel (2017) use these functions as the basis of calibration 

tests. If a consistent score is smooth with respect to the functional, its derivative is an 

identification function (Gneiting, 2011). An identification function for a quantile is given by: 

   ( ), ( )q
t t t tV q y I y q      . 

A forecast is unconditionally calibrated if the unconditional expectation of the 

identification function is zero, and conditionally calibrated if the conditional expectation is 

zero (Nolde and Ziegel, 2017). In this paper, the term “conditional” is synonymous with 

“conditional on information available at time t-1”. Unconditional calibration implies that, for 

probability level , the proportion of observations falling below the quantile forecasts is . 

However, this is achieved by a strategic forecast set equal to unattainably high and low values 

for proportions  and 1-, respectively, of the observations. Conditional calibration implies 

that  ˆPr ( )t ty q    . Christoffersen (1998) tests this by examining whether ˆ( ( ), )q
t tV q y 

has zero mean and no autocorrelation. However, this is achieved for any data generating 

process (DGP) using Engle and Manganelli’s (2004) strategic forecast of expression (2).  









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


  (2) 

where At and Bt are values chosen to be above and below the possible values for yt; and the vt

are outcomes of independent Bernoulli trials with probability of  for vt=1. As )),(ˆ( t
s
t

q yqV 
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has zero mean and no autocorrelation, Christoffersen’s (1998) test is passed. However, ˆ ( )s
tq 

is not conditionally calibrated, as )),(ˆ( t
s
t

q yqV   has non-zero conditional expectation. This is 

because, once )(ˆ s
tq  is known, )),(ˆ( t

s
t

q yqV   is known. To address this, Engle and Manganelli 

(2004) introduce the dynamic quantile test, which tests whether )),(ˆ( tt
q yqV   has zero mean, 

no autocorrelation, and is independent of the forecast ˆ ( )tq  . For the strategic forecast of 

expression (2), this hypothesis is rejected because )),(ˆ( tt
q yqV   is not independent of ˆ ( )tq  .  

Nolde and Ziegel (2017) consider conditional calibration in a general setting for 

forecasts t̂r  of a k-vector rt of risk measures with ℝk-valued identification function ˆ( , )t tV r y . 

They explain that conditional calibration requires that  1
ˆ( , ) | 0t t tE V r y   , where t-1 is the 

information set available at period t-1. They note that this is, almost surely, equivalent to the 

statement  ˆ( , ) 0t t tE h V r y  , for all ℝk-valued ht based on t-1. Different ht can be stacked in 

an m×k matrix ht, which they call a test function. This leads to the test statistic in expression 

(3). They draw on the results of Giacomini and White (2006) to show that this test statistic is 

2
m -distributed asymptotically under the hypothesis of conditional calibration. 

   1

1 1

1 1ˆˆ ˆ, , ,
n n

t t t n t t t
t t

n V r y V r y
n n



 

   
   

   
 h h  (3) 

where       
1

1ˆ ˆ ˆ, ,
n

n t t t t t t
t

V r y V r y
n 

   h h . 

This framework relies on a suitable choice for ht. The dynamic quantile test of Engle 

and Manganelli (2004) corresponds to k=1, rt=qt(), ˆ( , )t tV r y = )),(ˆ( tt
q yqV  , and the following 

test function:  1 1
ˆ ˆ1, ( ( ), ), ( )    q

t t t tV q y qh . 
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3. Quantile-Bounded Interval Forecasts 

In this section, for quantile-bounded interval forecasts, we review scoring functions and 

calibration tests, and then present a new calibration test using the framework of Nolde and 

Ziegel (2017). For simplicity, we consider only the symmetric case, where the interval is 

bounded by quantile forecasts with probability levels  and 1- (with <0.5). The asymmetric 

case is a straightforward generalisation of the results we present. 

3.1. Scoring Functions for Quantile-Bounded Interval Forecasts 

For a quantile-bounded interval, a consistent score is produced by summing consistent 

scores for the quantiles bounding the interval (Gneiting and Raftery, 2007). Consider an 

interval with lower bound )(tq  and upper bound )1( tq . Using the quantile score of 

expression (1) leads to the quantile-bounded interval score of expression (4) (Winkler, 1972). 

        

  

1
( ), (1 ), (1 ) ( ) ( )

1
(1 ) (1 )

qINT

t t t t t t t t t

t t t t

S q q y q q I y q q y

I y q y q


     



 


      

    

        (4) 

The score rewards narrow intervals, with observations that fall outside the interval incurring a 

penalty, the magnitude of which depends on the value of  (Gneiting and Raftery, 2007). 

3.2. Calibration for Quantile-Bounded Interval Forecasts 

An interval forecast can be said to be conditionally calibrated if the conditional 

probabilities of falling below )(ˆ tq  and above )1(ˆ tq  are both equal to . Using a Markov 

Chain framework, Christoffersen (1998, Section 4.2) presents a test that amounts to the null 

hypothesis that the variables ))(ˆ( tt qyI   and ( (1- ))ˆt tI y q α  possess no autocorrelation, no 

temporal cross-correlation, and both have means of . However, for any DGP, we note that 

one can game the system to pass this test by drawing on the strategic quantile forecast of 
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expression (2) to produce the following strategic quantile-bounded interval forecast: 

 












3if
2if
1if

ˆ

tt

tt

tt
s
t

B
B
A

q




            and           












3if
2if
1if

1ˆ

tt

tt

tt
s
t

A
B
A

q




  (5) 

where At and Bt are values above and below the range of possible yt values; and vt is i.i.d. with 

categorical distribution that has probabilities of ,  and 1-2 for outcomes 1, 2 and 3, 

respectively. This forecast will pass Christoffersen’s (1998) test because a proportion  of the 

observations yt fall below )(ˆ s
tq , the same proportion fall above )1(ˆ s

tq , and these 

exceedances occur with no autocorrelation, and no temporal cross-correlation.  

The strategic interval forecast of expression (5) prompts us to introduce a new 

calibration test, which can be viewed as a synthesis of Christoffersen’s (1998) test, and Engle 

and Manganelli’s (2004) dynamic quantile test for individual quantiles. We use the framework 

of Nolde and Ziegel (2017), which involves the test statistic of expression (3). With k=2 and 

rt=  ( ) , (1 )t tq q  , the identification function is: 

,1

1

( ( ), )
( ( ), (1 ), )

( (1 ), )

q
q t t

t t t q
t t

V q y
V q q y

V q y


 




 






 
   

 
 (6) 

and the test function is  1 2t t t
h h h , where: 

1 1 1 1 1
1

ˆ ˆ ˆ1 ( ( ), ) ( (1 ), ) ( )

0 0 0 0

q q
t t t t t

t

V q y V q y q       
 

  
 

h ,   (7) 

2

1 1 1 1 1

0 0 0 0

ˆ ˆ ˆ1 ( (1 ), ) ( ( ), ) (1 )t q q
t t t t tV q y V q y q       

 
  

  
h .  (8) 

1th  enables  ˆ ( )t tI y q   to be tested for mean of , no autocorrelation, and no dependency 

on the lag of  ˆ (1 )t tI y q   . 2th  enables similar testing for  ˆ (1 ) t tI y q . Note that if 

the test function is chosen simply as  1 1t  h , the test examines the unconditional 

calibration of the interval using the hypothesis     ˆ ˆ(1 ) ( ) 1 2       
t t t t

E I y q I y q . 
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4. Expectile Forecasts 

In this section, we review expectile scoring functions and calibration tests. We then 

extend calibration testing to guard against strategic prediction. An important additional aim of 

this section is to provide background as a basis for our more novel contribution in Section 5. 

4.1. Scoring Functions for Expectile Forecasts 

An expectile is the solution of an asymmetric least squares minimisation (Newey and 

Powell, 1987). Just as quantiles generalise the median, expectiles generalise the mean (Nolde 

and Ziegel, 2017). A consistent score for an expectile is the following loss function: 

     
2

( ), ( ) ( )e

t t t t t t
S e y I y e y e        .              (9) 

where )(te  is the expectile with expectile level , which controls the asymmetry. We term this 

the expectile score. Gneiting (2011) gives the general form of consistent score for expectiles. 

4.2. Calibration for Expectile Forecasts 

An identification function for an expectile is given by (Gneiting, 2011): 

     ( ), ( ) ( )e
t t t t t tV e y I y e y e        . 

The expectation of this function is zero for only the true expectile, and this is the focus of 

calibration tests. Note that the identification function can be rewritten as 

    ( ), ( ) ( )e
t t t t t tV e y I y e y e        . 

Calibration requires that the expectation of the identification function is zero: 

   ( ) ( ) 0t t t tE I y e y e      .             (10) 

This can be rewritten as: 

  
 

( ) ( )

( )

t t t t

t t

E I y e y e

E y e

 




 



           (11) 
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and  
  
  

( ) ( )

1( ) ( )

t t t t

t t t t

E I y e y e

E I y e y e

  

 

 


 
.             (12) 

We refer to the left-hand side of expression (11) as the expectile calibration ratio. Newey and 

Powell (1987) compare expression (12) to the following analogous expression for a quantile: 

F(qt())/(1-F(qt())=/(1-), where Ft is the distribution function. They conclude that 

“expectiles are determined by tail expectations in the same way that quantiles are determined 

by the distribution”. Expression (12) can be rewritten as expression (13).2 Fig. 1 illustrates this 

expression, showing that the expectile marks the point on the distribution function Ft for which 

the ratio of area Z1 to area Z2 equals /(1-). 

 

 
 

( )

11 ( )

t

t

e

t

t
e

F y dy

F y dy


















           (13) 

Fig. 1. For distribution Ft, an expectile et() is such that the ratio of area Z1 to area Z2 equals /(1-). 

Nolde and Ziegel (2017) describe a calibration test for yt expressed as yt=t+tzt, where 

t is the mean, t is the standard deviation, and zt is a sequence of i.i.d. random variables. The 

expectile forecast of zt is ,
ˆ ˆ ˆ ˆ( ) ( ( ) ) ,    z t t t te e  where t̂  and t̂  are mean and standard 

deviation forecasts. Nolde and Ziegel (2017) propose that ,
ˆ( ( ), )e

z t tV e z   is tested for zero mean, 

but it is natural also to test that it is i.i.d. However, for any DGP, the following strategic 

expectile forecast for yt satisfies both these conditions, even though it is a poor forecast: 

2 Expression (12) is the basis on which Taylor (2008) uses expectiles, in a non-standard way, to obtain estimates 
of value at risk and expected shortfall (see also Gerlach and Wang, 2020). 

0

1

et(t)

Z1

Z2
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 
ˆ ˆ if 0

ˆ
ˆ ˆ if 1
t t ts

t

t t t

B
e

A

  


  

 
 

 

which can also be expressed as a strategic expectile forecast for zt: 

 ,

if 0
ˆ

if 1
ts

z t

t

B
e

A







 


           (14) 

where vt is the outcome of a sequence of independent Bernoulli trials with probability of  for 

vt=1; and A and B are values above and below the possible values for zt satisfying the following:  

 
 1

1
B A



 


 


.             (15) 

 can be any chosen value between 0 and 1. For example, if =, we get B=-A, or if =0.5, we 

get B=-(1-A/. Expression (15) implies that ,
ˆ( ( ), )e s

z t tV e z   has zero mean, and ,
ˆ( ( ), )e s

z t tV e z 

has no autocorrelation because zt falls below ,
ˆ ( )s

z te   randomly. Therefore, a calibration test 

should not simply test for zero mean and no autocorrelation in the identification function. 

To address the problem of the strategic forecast, we propose a conditional calibration 

test similar in spirit to Engle and Manganelli’s (2004) dynamic quantile test. We express this 

new test using the framework of Nolde and Ziegel (2017), discussed in relation to expression 

(3). We set k=1, rt= , ( )z te  and ˆ( , )t tV r z = ,
ˆ( ( ), )e

z t tV e z  , and use the following test function: 

 , 1 1 ,
ˆ ˆ1, ( ( ), ) , ( )e

t z t t z tV e z e   h . 

The first entry in th  corresponds to the calibration test of Nolde and Ziegel (2017), which has 

 ,
ˆ( ( ), ) 0e

z t tE V e z    as the hypothesis. The second entry in th  enables the testing for 

autocorrelation in the identification function ,
ˆ( ( ), )e

z t tV e z  , and the third entry guards against 

the strategic forecast of expression (14). We call this the dynamic expectile test.  
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5. Expectile-Bounded Interval Forecasts 

The most common way to express forecast uncertainty is a quantile-bounded interval. 

In this section, as an alternative, we introduce expectile-bounded intervals. We consider 

symmetric expectile bounds with expectile levels  and 1-, where <0.5. We first informally 

compare quantile-bounded and expectile-bounded intervals. We then introduce a scoring 

function and calibration test for this new form of interval forecast. 

5.1. An Informal Comparison of Quantile-Bounded and Expectile-Bounded Intervals 

In Section 1, we discussed the appeal of using expectile-bounded intervals. A 

fundamental motivation is that, relative to expectiles, quantiles have the disadvantage of not 

conveying information regarding the size of potential exceedances beyond the quantile. To 

expand on this, we now briefly compare quantiles and expectiles. Yao and Tong (1996) show 

that the quantile qt() is equal to the expectile et() if  is given by the following expression:  

 

 

( ) ( )
( )

( ) 2 ( ) (1 2 ) ( )

t

t

q

t t

q

t t t

q ydF y

E y ydF y q





 
 

 








  




           (16) 

Following Kuan et al. (2009), Fig. 2 plots the function () for the following 

distributions: normal, Student t distribution with 4 degrees of freedom, and the skewed t 

distribution described by Christoffersen (2012, Chapter 6, Section 7), with parameters d1=4 

and d2=0.3. For the normal and Student t distributions, the curves are below the 450 line for 

<0.5, and above the line for >0.5, while for the skewed t distribution, the curve lies mostly 

below the 450 line. For a normal distribution, expression (16) and Fig. 2 indicate that the 

interval bounded by qt() and qt(1-) with =0.01 is equal to the interval bounded by et() and 

et(1-) with =0.00145; the quantile-bounded interval corresponding to =0.025 is equal to the 

expectile-bounded interval corresponding to =0.00477; and the quantile-bounded interval for 

=0.10 is equal to the expectile-bounded interval for =0.03438.  
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Fig. 2. Empirical illustration of the function ( of expression (16). ( is the expectile level for which 
the expectile et(() is equal to the quantile qt(). 

Table 1 
Bounds on three quantile-bounded intervals for distributions with zero mean and unit variance.   

Normal Student t Skewed t 

  qt(0.01) -2.33 -2.65 -1.99 

  qt(0.99) 2.33 2.65 3.16 

  qt(0.025) -1.96 -1.96 -1.56 

  qt(0.975) 1.96 1.96 2.27 

  qt(0.10) -1.28 -1.08 -0.99 

  qt(0.90) 1.28 1.08 1.14 

Table 2 
Bounds on three expectile-bounded intervals for distributions with zero mean and unit variance.   

Normal Student t Skewed t 

  et(0.00145) -2.33 -3.48 -2.42 

  et(0.99855) 2.33 3.48 4.36 

  et(0.00477) -1.96 -2.50 -1.81 

  et(0.99523) 1.96 2.50 3.07 

  et(0.03438) -1.28 -1.32 -1.05 

  et(0.96562) 1.28 1.32 1.54 

Table 1 presents three quantile-bounded intervals for the same three distributions: 

normal, Student t and skewed t. Note that we have set all three to have zero mean and unit 

variance. Table 2 provides intervals bounded by the expectiles et() and et(1-) with =0.00145, 

0.00477 and 0.03438, which are the values of  that we identified in the previous paragraph. 

For the normal distribution, the first column of values in Table 2 confirms that these expectile-
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bounded intervals are identical to the quantile-bounded intervals in the first column of values 

in Table 1. For the Student t distribution, comparing the second columns of values in Tables 1 

and 2, we see that moving from the normal distribution to this fat tailed distribution has a 

greater impact on the widening of the expectile-bounded intervals than the quantile-bounded 

intervals. For the skewed t distribution, comparing the tables shows that moving from the 

symmetric distributions to this skewed distribution has a greater impact on the asymmetry of 

the expectile-bounded interval than the quantile-bounded interval.  

A practical implication of the numerical illustrations in this section is that, if the kurtosis 

or skewness in a distribution change over time, it is likely to be more apparent from an 

expectile-bounded interval than a quantile-bounded interval. 

5.2. Scoring Functions for Expectile-Bounded Interval Forecasts 

By analogy with the quantile-bounded interval, a consistent score for an expectile-

bounded interval can be produced by summing consistent scores for the expectiles, et() and 

et(1-), bounding the interval. Using the expectile score of expression (9) leads to the following 

new expectile-bounded interval score: 

          

      

      

2 2

2

2

, 1 , 1

1
1 2

1
1 1 2 1 .

eINT

t t t t t t t

t t t t

t t t t

S e e y y e y e

I y e y e

I y e y e


   

  


  


     

   

     

            (17) 

The last two terms in this expression impose penalties when an observation falls outside the 

interval. If these terms were removed, the score would be minimised by setting both bounds to 

be the mean of yt. The score, therefore, rewards narrow intervals subject to penalties for interval 

exceedance, which was also the case for the quantile-bounded interval score of expression (4). 
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5.3. Calibration for Expectile-Bounded Interval Forecasts 

Using expression (10) for each interval bound, ( )te   and )1( te , we have the 

following conditions for calibration at each bound: 

   ( ) ( ) 0t t t tE I y e y e      ,             (18) 

   1 (1 ) (1 ) 0t t t tE I y e y e         .             (19) 

Subtracting expression (19) from expression (18) leads to expression (20). We term the 

left-hand side of this expression the expectile-bounded interval calibration ratio. 

    
 

( ) ( ) (1 ) (1 ) 2

(1 ) ( ) 2 1 2

t t t t t t t t

t t

E I y e y e I y e y e

e e

    

  

      


  
            (20) 

This expression provides insight and helps with the interpretability of an expectile-bounded 

interval. It is the ratio of the expectation of the size of interval exceedances to half the interval 

width, which is the average distance of a point within the interval to the interval bounds. As 

the ratio equals 2 (1 2 )  , we view expression (20) as the analogue of an expression for a 

quantile-bounded interval involving a ratio of the expected number of observations outside the 

interval to the expected number within.  

Rewriting expression (20) in terms of the distribution function Ft gives expression (21), 

which we feel also helps provide insight and interpretability for expectile-bounded intervals. 

Fig. 3 represents this expression graphically, showing that the expectile bounds are such that 

2 (1 2 )   is equal to the ratio of the sum of areas Z1 and Z2 to half the interval width. 
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Fig. 3. For distribution Ft, the interval bounded by expectiles et() and et(1-) is such that the ratio of 
the sum of areas Z2 and Z1 to half the interval width is equal to 2/(1-2. 

We now introduce a conditional calibration test for expectile-bounded interval 

forecasts. The test draws on the calibration test for quantile-bounded interval forecasts of 

Section 3.2, and the dynamic expectile calibration test of Section 4.2. We again use the 

framework of Nolde and Ziegel (2017), which involves the test statistic of expression (3). With 

k=2 and rt=  ˆ ˆ( ) , (1 )zt zte e  , the identification function is: 

,1

1

ˆ( ( ), )
ˆ ˆ( ( ), (1 ), )

ˆ( (1 ), )

e
e zt t

zt zt t e
zt t

V e z
V e e z

V e z


 




 






 
   

 
           (22) 

and the test function is  1 2t t t
h h h , where: 

1 1 1 1 1
1

ˆ ˆ ˆ1 ( ( ), ) ( (1 ), ) ( )

0 0 0 0

e e
zt t zt t zt

t

V e z V e z e       
 

  
 

h ,            (23)  

2

1 1 1 1 1

0 0 0 0

ˆ ˆ ˆ1 ( (1 ), ) ( ( ), ) (1 )t e e
zt t zt t ztV e z V e z e       

 
  

  
h .            (24) 

Note that if the test function is chosen simply as  1 1t  h , the resultant test examines the 

unconditional calibration of the interval with expression (20) as the null hypothesis. 

6. Empirical Illustration of Interval Forecasts and Their Evaluation 

We now use electricity price data to illustrate the ideas of Sections 3 and 5 regarding 

interval forecasts. Electricity prices exhibit time-variation in both the mean and volatility, with 

a common feature being the presence of sizeable spikes. Nowotarksi and Weron (2018) 
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describe how interest is rapidly growing in the use of probabilistic forecasting of electricity 

prices, with (quantile-bounded) interval forecasts commonly used to summarise risk. 

6.1. Electricity Price Data  

We used hourly Nord Pool market clearing prices for 2013 to 2018, inclusive, 

downloaded from the Nordic power exchange website (www.nordpoolgroup.com/). Each day, 

the price is set for each hour of the following day. In view of this, we follow Weron and 

Misiorek (2008) by forecasting the Nord Pool price separately for each hour of the day using 

historical data for only that hour. For each hour, we used a three-year rolling window, each 

consisting of 3×52×7=1092 daily observations, for repeated re-estimation of method 

parameters. This led to day-ahead out-of-sample forecasts for the final 1255 days. The daily 

series of prices for the twelfth hour of the day is plotted in Fig. 4. The plot shows that the series 

has time-varying mean and variance, and is positively skewed. 

Fig. 4. Daily Nord pool electricity prices (EUR/MWh) for the twelfth hour of the day. 

6.2. Probabilistic Forecasting Methods 

Many different methods have been considered for the probabilistic forecasting of day-

ahead electricity prices (Nowotarski and Weron, 2018). In this paper, for our illustrative 

purposes, we implement relatively simple approaches, based on the model of expression (25), 
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which Weron and Misiorek (2008) find to be competitive for Nord pool prices. A similar model 

is considered by Nowotarski and Weron (2018).  

, ,0 ,1 , 1 ,2 , 2 ,3 , 7 ,4 1 ,1 , ,2 , ,3 , ,                h t h h h t h h t h h t h t h Mon t h Sat t h Sun t h tp p p p mp d D d D d D

(25) 

where ,h tp  is the log price for hour h on day t; tmp  is the minimum value of the log price on 

day t; ,Mon tD , ,Sat tD  and ,Sun tD  are binary variables indicating whether day t is a Monday, 

Saturday or Sunday, respectively; the ,h i  and ,h id  are parameters; and, for each h, the ,h t  are 

independent and Gaussian, with zero mean and constant variance. Our use of the log 

transformation was to stabilise the variance (see Uniejewski et al., 2017). We estimated the 

model using least squares. Weron and Misiorek (2008) consider the inclusion of a temperature 

variable as a proxy for temperature forecasts, but it does not lead to improved forecast accuracy, 

and so, for simplicity, we did not consider this in our analysis.  

We produced probabilistic forecasts from the model of expression (25) using four 

different approaches. The first two were considered by Weron and Misiorek (2008). The first 

used a Gaussian assumption for the log prices, and we term this the AR-N method. The second 

approach produced a distributional forecast for the log price using the empirical distribution of 

the residuals from the model, centred at the model’s forecast of the mean. We refer to this as 

the AR-Emp method. We also estimated expression (25) with ,h t  specified as the skewed t 

distribution described by Christoffersen (2012, Chapter 6, Section 7), with variance modelled 

using the asymmetric GJR-GARCH model of Glosten et al. (1993). We refer to this third 

approach as the AR-GJR-GARCH-SkewT method. Asymmetric GARCH models have been 

considered previously for electricity prices (see, for example, Knittel and Roberts, 2005). We 

also produced distributional forecasts using the empirical distribution of the standardised 

residuals. We refer to this fourth approach as the AR-GJR-GARCH-Emp method.  

The four methods that we have described produce distributional forecasts for log price. 

For the AR-N and AR-GJR-GARCH-SkewT methods, we simulated 104 values from the log 
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price distribution, and applied the exponential transformation to generate simulated values 

from which we produced distributional, quantile and expectile forecasts for price. To estimate 

an expectile from the 104 simulated values, we used iteratively reweighted least squares to 

minimise the expectile score of expression (9) summed over the estimation sample (see Newey 

and Powell, 1987). For the AR-Emp and AR-GJR-GARCH-Emp methods, we followed the same 

procedure based on the empirically constructed sample of log price values.  

6.3. Quantile-Bounded and Expectile-Bounded Interval Forecasts 

To illustrate each type of interval forecast, quantile-bounded and expectile-bounded, 

we felt it would be useful to consider two different intervals. For quantile-bounded intervals, 

we estimated intervals bounded by the quantiles (0.025)tq  and (0.975)tq , and narrower intervals 

bounded by (0.10)tq  and (0.90)tq . For expectile-bounded intervals, we chose to consider two 

intervals of similar widths to the quantile-bounded intervals. To achieve this, we experimented 

with different choices of the expectile level  in order to find expectile-bounded intervals that 

contained approximately 95% and 80% of the observations. This led us to consider intervals 

bounded by (0.01)te  and (0.99)te , and narrower intervals bounded by (0.05)te  and (0.95)te .  

For the twelfth hour of the day, and the first half of 2018, Fig. 5 shows intervals bounded 

by forecasts of (0.025)tq  and (0.975)tq , and by forecasts of (0.01)te  and (0.99)te , where all 

forecasts were out-of-sample predictions from the AR-GJR-GARCH-SkewT method. The plot 

shows that, for each day, the lower bounds of the two intervals are similar, but the upper bounds 

differ, with the upper expectile bound often more extreme than the upper quantile bound. This 

difference can be explained by there being more frequent extremes in the upper tail, and by the 

tendency for extremes to have a greater impact on expectiles than quantiles. This relates to our 

comment at the end of Section 5.1 that time-varying kurtosis and skewness are likely to be 

more apparent from an expectile-bounded interval than a quantile-bounded interval. 
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Fig. 5. Daily prices (EUR/MWh) for the twelfth hour of the day with intervals bounded by out-of-
sample forecasts of qt(0.025) and qt(0.975), and by out-of-sample forecasts of et(0.01) and et(0.99). Both 
sets of interval forecasts were produced by the AR-GJR-GARCH-SkewT method. 

6.4. Evaluation of Out-of-Sample Quantile-Bounded Interval Forecasts 

For each hour of the day, Fig. 6 summarises the results for the quantile-bounded interval 

score of expression (4). The figure presents skill scores, which were computed as 1 minus the 

ratio of a method’s mean score to that of the AR-N method. Higher values are preferable. The 

AR-GJR-GARCH methods clearly outperform the AR methods for both the wider and 

narrower intervals. 

Fig. 7 summarises unconditional calibration of the intervals, assessed by the percentage 

of the out-of-sample periods falling within the interval for each hour of the day. The ideal value 

is indicated in each of the two plots by the horizontal dashed line. With this in mind, the best 

results correspond to AR-GJR-GARCH-Emp. 

Fig. 8 presents p-values for the conditional calibration test based on expressions (6) to 

(8) and the framework of Nolde and Ziegel (2017). The p-values are generally rather small, 

indicating many cases of rejection of the hypothesis of conditional calibration. (This was 

consistent with our finding that conditional calibration was rejected for either or both of the 
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quantile forecasts bounding the interval when evaluated using the dynamic quantile test.)  

                    (a) qt(0.025) and qt(0.975)                                           (b) qt(0.10) and qt(0.90) 

Fig. 6. Skill scores for quantile-bounded intervals. Higher values are better. 

                   (a) qt(0.025) and qt(0.975)                                            (b) qt(0.10) and qt(0.90) 

Fig. 7. Unconditional calibration for quantile-bounded intervals assessed using interval coverage 
percentage. Ideal value is indicated by horizontal dashed line. 

                    (a) qt(0.025) and qt(0.975)                                           (b) qt(0.10) and qt(0.90) 

Fig. 8. Conditional calibration test p-values for quantile-bounded intervals. Higher values are better, 
with low values indicate rejection of conditional calibration. 
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                       (a) et(0.01) and et(0.99)                                            (b) et(0.05) and et(0.95) 

Fig. 9. Skill scores for expectile-bounded intervals. Higher values are better. 

                      (a) et(0.01) and et(0.99)                                             (b) et(0.05) and et(0.95) 

Fig. 10. Unconditional calibration for expectile-bounded intervals assessed using expectile-bounded 
interval calibration ratio of expression (20). Ideal value is indicated by horizontal dashed line. 

                       (a) et(0.01) and et(0.99)                                            (b) et(0.05) and et(0.95) 

Fig. 11. Conditional calibration test p-values for expectile-bounded intervals. Higher values are better, 
with low values indicate rejection of conditional calibration. 
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6.5. Evaluation of Out-of-Sample Expectile-Bounded Interval Forecasts 

Fig. 9 presents the skill score results for the expectile-bounded interval score of 

expression (17). The AR-GJR-GARCH methods outperform the AR methods. It is interesting 

to see that the relative performances of the four methods in Fig. 9 differ from the corresponding 

results for the quantile-bounded interval in Fig. 6. In contrast with Fig. 6, the results differ 

slightly for the two AR-GJR-GARCH methods in Fig. 9, with AR-GJR-GARCH-SkT 

performing better in terms of the expectile-bounded interval score. 

As a summary of unconditional calibration, Fig. 10 presents the sample estimate of the 

expectile-bounded interval calibration ratio of expression (20) computed from the out-of-

sample observations. The ideal value is 2/(1-2), and this is indicated in the plots of Fig. 10 

by the horizontal dashed lines. For the narrower interval (Fig. 10(b)), the ideal value is 0.111, 

which, as we discussed in Section 5.3, implies that the average size of interval exceedances 

should be about 11% of the average distance of a point within the interval to the interval 

bounds. The best results correspond to AR-GJR-GARCH-Emp, which is also the case with the 

unconditional calibration test results for the quantile-bounded intervals in Fig. 7.  

Fig. 11 presents p-values for the conditional calibration test based on expressions (22) 

to (24) and the framework of Nolde and Ziegel (2017). Overall, the p-values are larger than for 

the corresponding test for the quantile-bounded intervals in Fig. 8. In Fig. 11, for the wider 

interval (Fig. 11(a)), it is difficult to rank the methods, but for the narrower interval (Fig. 11(b)), 

the results are better for the two AR-GJR-GARCH methods. 

7. Simulation Study 

We used simulated data to provide a brief check on the measures and tests that we have 

considered in the paper. As our work draws heavily on the framework of Nolde and Ziegel 

(2017), we implemented a similar simulation study to the one that they present. This involved 

data generated from the following AR(1)-GARCH(1,1) process: 
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               (26) 

where the Zt form a sequence of independent random terms generated from a skewed t 

distribution of the type described by Christoffersen (2012, Chapter 6, Section 7), with 

parameters d1=4 and d2=0.3. These two parameters differ from those used by Nolde and Ziegel 

(2017), because they used a different formulation for the skewed t distribution. We followed 

Nolde and Ziegel (2017) in using a series of 5500 observations, with rolling windows of 500 

periods used for repeated re-estimation of parameters, and the final 5000 periods used to 

compare out-of-sample forecast accuracy. We implemented the same four individual methods 

that we considered for the electricity price data. As a benchmark, we also produced forecasts 

from the true data generating process, which we refer to as True DGP. Out-of-sample results 

for the quantile-bounded and expectile bounded interval forecasts are presented in Tables 3 and 

4, respectively.  

The rankings of methods in the two tables are similar for each of the three forms of 

evaluation. In both tables, the skill score results are comfortably better for the methods that 

employ AR-GARCH. As AR-GARCH-SkT and AR-GARCH-Emp use the correct choice of 

AR-GARCH model, it is not surprising to see them perform well. Indeed, although the true 

DGP has the highest skill score for the narrower intervals in Tables 3 and 4, it is actually 

slightly outperformed for the wider intervals. The conditional calibration test results are better 

in both tables for the methods that are based on AR-GARCH. In terms of unconditional 

calibration, the results for the True DGP are not particularly strong, with AR-Emp actually 

performing better overall. However, the skill score and conditional calibration results indicate 

that AR-Emp is only capturing the unconditional characteristics of the simulated data, but that 

it fails to time-varying features. 
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Table 3 
For simulated data, quantile-bounded interval forecasts evaluated using the skill score, and 
unconditional and conditional calibration.   

Quantiles bounding interval qt(0.025) & qt(0.975) qt(0.10) & qt(0.90) 

Skill scores 

   AR-N 0.0 0.0 

   AR-Emp 2.3 2.6 

   AR-GARCH-SkT 11.5 7.8 

   AR-GARCH-Emp 11.1 7.7 

   True DGP 11.2 8.3 

Unconditional calibration assessed using interval coverage percentage

   AR-N 94.2 86.3 

   AR-Emp 94.3 79.7 

   AR-GARCH-SkT 94.6 79.9 

   AR-GARCH-Emp 94.5 79.8 

   True DGP 94.1 78.9 

Conditional calibration test p-values for quantile-bounded intervals

   AR-N 0.00 0.00 

   AR-Emp 0.00 0.00 

   AR-GARCH-SkT 0.39 0.29 

   AR-GARCH-Emp 0.28 0.05 

   True DGP 0.26 0.36 

Notes: Higher skill scores are better. For unconditional calibration, ideal is 95% for interval bounded by qt(0.025) 
and qt(0.975), and 80% for interval bounded by qt(0.10) and qt(0.90). For conditional calibration, higher p-values 
are better.  
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Table 4 
For simulated data, expectile-bounded interval forecasts evaluated using the skill score, and 
unconditional and conditional calibration.   

Expectiles bounding interval et(0.01) & et(0.99) et(0.05) & et(0.95) 

Skill scores 

   AR-N 0.0 0.0 

   AR-Emp 8.3 1.3

   AR-GARCH-SkT 19.5 9.1

   AR-GARCH-Emp 19.7 8.7 

   True DGP 19.5 9.3 

Unconditional calibration assessed using expectile-bounded interval calibration ratio

   AR-N 0.042 0.122

   AR-Emp 0.023 0.117

   AR-GARCH-SkT 0.020 0.114 

   AR-GARCH-Emp 0.023 0.115

   True DGP 0.023 0.125

Conditional calibration test p-values for expectile-bounded intervals

   AR-N 0.00 0.00

   AR-Emp 0.05 0.00

   AR-GARCH-SkT 0.00 0.31

   AR-GARCH-Emp 0.00 0.20

   True DGP 0.06 0.31 

Notes: Higher skill scores are better. For unconditional calibration, ideal is 2/(1-2), which, for interval bounded 
by et(0.01) and et(0.99) is 0.020, and for interval bounded by et(0.05) and et(0.95) is 0.111. For conditional 
calibration, higher p-values are better. 

8. Concluding Comments 

In this paper, we have provided a review of scoring functions and calibration tests for 

quantiles, expectiles and interval forecasts. Using the framework of Nolde and Ziegel (2017), 

we have presented new conditional calibration tests for quantile-bounded interval forecasts and 

expectile forecasts, which include elements to guard against strategic forecasting. In view of 

the usefulness of interval forecasts, and the advantages of expectiles, we propose expectile-

bounded intervals. We present a scoring function, a calibration test, and an interpretation for 

this new type of interval forecast. We note that a broader generalisation of quantile-bounded 

intervals can be provided by using, as interval bounds, the M-quantiles of Breckling and 
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Chambers (1988). Expectile-bounded intervals are a special case of this. 
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