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ABSTRACT
Probabilistic forecasting of electricity demand (load) facilitates the efficient manage-
ment and operations of energy systems. Weather is a key determinant of load. How-
ever, modelling load using weather is challenging because the relationship cannot be
assumed to be linear. Although numerous studies have focused on load forecasting,
the literature on using the uncertainty in weather while estimating the load prob-
ability distribution is scarce. In this study, we model load for Great Britain using
weather ensemble predictions, for lead times from one to six days ahead. A weather
ensemble comprises a range of plausible future scenarios for a weather variable. It
has been shown that the ensembles from weather models tend to be biased and
underdispersed, which requires that the ensembles are post-processed. Surprisingly,
the post-processing of weather ensembles has not yet been employed for probabilistic
load forecasting. We post-process ensembles based on: (1) ensemble model output
statistics: to correct for bias and dispersion errors by calibrating the ensembles, and
(2) ensemble copula coupling: to ensure that ensembles remain physically consistent
scenarios after calibration. The proposed approach compares favourably to the case
when no weather information, raw weather ensembles or post-processed ensembles
without ensemble copula coupling are used during the load modelling.

KEYWORDS
Probabilistic forecasting; electricity demand; weather predictions; ensemble model
output statistics; ensemble copula coupling.

1. Introduction

Grid operators of electric utilities rely on accurate load forecasts to make informed
decisions regarding electricity transmission and distribution. Over the past few years,
modelling load has become increasingly challenging with the advancements in low car-
bon technologies, integration of renewable energy, and growth in unmetered and dis-
tributed small-scale renewable generation sources, all of which introduce more volatil-
ity into the energy system. Moreover, load and renewable energy supplies vary with
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weather seasons (Taylor, 2003), and load also depends on human behaviour, which
is often rather stochastic. To cope with these uncertainties, probabilistic forecasting
of load at different hierarchies of the energy system has garnered attention (Arora &
Taylor, 2016; Guo et al., 2018; Haben et al., 2019; Taieb et al., 2020; Taylor & Buizza,
2002; Taylor & Buizza, 2003; van der Meer et al., 2018). Probabilistic forecasts aim
to quantify the uncertainty in the form of probability distributions over possible fu-
ture events, which allows for informed decision-making compared to the case when
only a point forecast is communicated. In the context of this study, probabilistic load
forecasts are of particular interest for a range of energy applications, including relia-
bility planning (Billinton & Huang, 2008), probabilistic load flow (Chen et al., 2008),
stochastic unit commitment (Wang et al., 2011), and probabilistic energy price fore-
casting (Nowotarski & Weron, 2018).

Load at the national level exhibits prominent variability, due largely to periodic
cyclicality and variations in weather patterns. While some studies do not use ex-
plicit weather information at all (Hu, 2017; Hu & Jiang, 2017), it is imperative, when
modelling load in terms of weather as the basis for probabilistic load forecasting, to
propagate the uncertainty from the weather variables through the load forecasting
model (see, for example, Haupt et al., 2019). This can be achieved through the use of
weather ensemble predictions generated from Numerical Weather Prediction (NWP)
models.

In recent years, NWP models have become state-of-the-art in meteorology, with
modern computing power allowing complex physical models to be run at a high reso-
lution. These weather models describe the atmospheric processes using first principles,
and, due to their nonlinearity and complexity, are solved with numerical approxima-
tions (Al-Yahyai et al., 2010). The outcome of a NWP model highly depends on the
initial state of the atmosphere and the model’s physical processes. To quantify these
sources of uncertainty, the NWP model is run several times, with different initial con-
ditions and/or a differently parameterized physical representation of the atmosphere.
Each run of the NWP model provides a different scenario for the future of the weather
variable, which is referred to as an ensemble member. Overall, the weather ensemble
prediction encapsulates the degree of uncertainty in weather variables.

Tremendous advancements have been made in the area of NWP over the past few
years. It has been shown that the forecast skill for lead times from three to 10-days
ahead has been increasing by around one day per decade (Bauer et al., 2015). The
improvements in weather predictions have primarily been attributed to progress in:
(1) modelling the physical process - a detailed representation of the atmosphere, (2)
ensemble forecasting - which encapsulates the uncertainty in initial conditions and
model processes for a nonlinear complex system, and (3) model initialization - deriving
the current state of the atmosphere and Earth’s surface based on four-dimensional
variational (4D-Var) data assimilation techniques that have been described as a major
milestone in the field. For details, see Bauer et al. (2015) and Alley et al. (2019).

Unfortunately, raw ensemble predictions obtained from the NWP models are sub-
ject to underdispersion and bias. To deal with these shortcomings, statistical post-
processing methods have been proposed for calibrating the weather ensembles (e. g.
Baran & Lerch, 2018; Ben Bouallègue et al., 2016; Feldmann et al., 2015; Möller

et al., 2015; Scheuerer & Buermann, 2014). Of these, two of the most commonly used
methods for post-processing include Bayesian Model Averaging (see Raftery et al.,
2005) and Ensemble Model Output Statistics (EMOS), originally also known as non-
homogeneous Gaussian regression (NGR) (see Gneiting et al., 2007). Both of these
post-processing methods have been shown to substantially improve the accuracy of
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NWP ensemble predictions (Hagedorn et al., 2012; Wilks & Hamill, 2007).
It is worth noting that the raw ensemble outputs from the NWP model represent a

multivariate dependence structure, as specified by the model equations. If the weather
ensembles are treated as being independent during the post-processing, we end up
with several univariate and independent distributions, which may be practically un-
realistic. It is thus important to take into account the temporal dependencies, as well
as dependencies between the weather variables during ensemble post-processing (Hu
et al., 2016; Schefzik et al., 2013). This problem is well known in the meteorological
literature, and studies have proposed methods to create dependent distributions via
empirical copula approaches, most notably the Schaake shuffle (see Clark et al., 2004)
and different forms of Ensemble Copula Coupling (ECC) (Schefzik et al., 2013).

Advancements in the NWP models over the years have, unfortunately, not ade-
quately translated into more accurate modelling of load. In the energy forecasting lit-
erature, studies using ensemble weather information as model input are rare, although
e. g. Al-Yahyai et al. (2010) show that NWPs are superior to station-based weather in-
formation. Even when weather ensemble predictions are used for forecasting in a range
of diverse applications such as: e. g. wind power (Gensler, 2019; Heppelmann et al.,
2015; Heppelmann et al., 2017; Nielsen et al., 2004), wind ramp events (Bossavy et al.,
2013), solar power plant output (Thorey et al., 2018; Zamo et al., 2014) or load (Taylor
& Buizza, 2002; Taylor & Buizza, 2003), the need for calibration and maintaining the
dependency structures among the weather ensemble predictions is neglected, which is a
major limitation in the modelling. Only Heppelmann et al. (2017) use post-processing
and an approach to capture the dependencies, however, they investigate probabilistic
wind power forecasts.

This study aims to bridge the gap between the field of meteorology (focusing on
weather ensemble predictions from NWP models) and energy modelling by proposing
and implementing the following set of best practices: (1) calibrating the raw weather
ensemble predictions to correct for biases and dispersion errors; (2) maintaining the
temporal and multivariate dependencies between the calibrated ensemble members;
and (3) using the post-processed weather ensemble predictions to estimate the fore-
cast distribution of load (as opposed to just producing a point estimate or a set of
pre-specified discrete scenarios of load). Our post-processing comprises a two-stage
approach, in the first stage we use EMOS for calibration, and in the second stage,
we use ECC to ensure that the calibrated weather ensemble predictions remain physi-
cally consistent scenarios. Moreover, we are essentially revising the approach taken by
Taylor and Buizza (2002) and Taylor and Buizza (2003), who employed raw weather
ensemble predictions to generate multiple scenarios of load, which were then post-
processed. We compare the out-of-sample load forecast accuracy obtained using the
raw weather ensemble predictions (current practice) versus using post-processed en-
sembles (as proposed in this study). To the best of our knowledge, this is the first
study that employs ensemble post-processing for probabilistic load forecasting.

The remainder of the paper is structured as follows. We introduce our data in
Section 2 and describe the post-processing in Section 3. We present our forecasting
methodology in Section 4. We evaluate the point and probabilistic forecast accuracy
in Section 5 and finally, we conclude in Section 6.
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2. National Load and Weather in Great Britain

In this section, we first describe the data for load followed by weather ensemble pre-
dictions.

2.1. Load Data

We employ load for Great Britain (GB), from 2006 to 2017, inclusive. The data is
sampled every hour and obtained from National Grid (NG), the company responsible
for the transmission of electricity in GB. As evident from Figure 1, load exhibits a
prominent recurring within-year pattern (intrayear seasonality), whereby the demand
is higher in winter than in summer. The national load is a summary of all flows on
the transmission grid in GB, and therefore, it does not capture all distributed energy
sources. With the recent growth in unmetered and small-scale renewable generation
sources, this form of measuring national demand has resulted in an overall downward
trend and increased variability in the load time series.
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Figure 1. Load observed at midday in Great Britain for the period 1 January 2006 to 31 December 2017. The

vertical dashed line denotes the non-overlapping split of the load time series into an in-sample data (2006-2016)
and an out-of-sample data (2017).

Figure 2 presents the average daily load profiles. It can be seen that load is higher
during typical working hours of the day and late evenings, and load on weekends is
usually lower than on working days. Moreover, load exhibits a recurring within-week
and within-day pattern. Load is overall lower on special days (such as public holidays)
and proximity days (days adjacent or close to a public holiday that are not public
holidays) compared to normal working days. Previous studies have typically focused
on modelling the load for normal days while ignoring load on special days (Taylor
& Buizza, 2002; Taylor & Buizza, 2003). Accommodating the special and proximity
day effects during the modelling has been shown to result in improved load forecast
accuracy across all days in the out-of-sample period (Arora & Taylor, 2018). We thus
model load observed during both normal and anomalous periods.

In this study, we focus on modelling the load observed at midday. This is particularly
relevant as the peak demand during summer months occurs around midday in GB. We
use the first 10 years of data to train the model before testing it on the last available
year 2017 1. The last year of the training data is used as the cross-validation hold-out
sample. We generate forecasts by rolling the forecast origin through each midday in the
one-year out-of-sample period. We identified 18 special and proximity days in the out-
of-sample data. Although we focus on generating multi-step ahead load predictions for

1Although load data for 2018 is available, the corresponding weather data was not complete at the time, and

we thus restricted the analysis to the complete data set we could obtain from both sources.
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Figure 2. Average daily load profile for the following different day types: normal weekday, normal weekend,

proximity day, and special day.

midday, the proposed methodology could easily be adapted for forecasting load across
all periods of the day.

2.2. Weather Ensemble Predictions

We employ the actual weather data and corresponding ensemble predictions from the
NWP model of the European Centre for Medium-Range Weather Forecasts (ECMWF).
The actual weather is represented by the reanalysis data, while the uncertainty in the
weather forecasts is represented by the ensemble forecasts. Weather predictions from
the ECMWF comprise 51 ensemble members, whereby 50 ensemble members are con-
structed by perturbing the initial conditions and/or model processes, and one ensemble
member is generated using the best estimate of the initial condition/process (CNT:
ensemble control member). We additionally use the high resolution deterministic fore-
cast (HRES) of the ECMWF in our ensemble. We employ ensemble predictions for the
following weather variables: temperature (at 2m above ground), wind speed (perpen-
dicular u- and v-components at 10m above ground) and total cloud cover. The wind
speed is calculated from the u- and v-components with windspeed =

√
u2 + v2.

While high-resolution spatial weather data is available in a grid format from the
ECMWF, we use only weather data for the seven GB locations considered by NG.
These are chosen to reflect the regions with highest load. The locations are shown
in Figure 3. Using the weights shown in Figure 3, a weighted average of the weather
data for these locations is used by NG as input to their load forecasting models. We
follow the same approach, with a key difference being that, while NG consider only
point forecasts for the weather variables, we use weather ensemble predictions. We
obtain the ensemble predictions from ECMWF at each of the seven locations and
calculate a weighted average over each ensemble member at all locations to give one
set of ensemble predictions for each time point. This weighted average set of ensemble
predictions is then used in the further post-processing and forecasting steps.

To capture the influence of weather on load adequately, we use the original weather
variables from the NWP and, following NG, we additionally derive two new variables,
namely effective temperature and cooling power of wind. We calculate the effective
temperature as done in Taylor and Buizza (2003) using

TEt =
1

2
TOt +

1

2
TEt−1.

where for a given period t, TOt denotes the average spot temperature of the previous
four time steps, resulting in TEt being an exponential smoothed form of TOt. The
rationale of using a smoothed form of temperature (TEt) is to try and accommodate
the slow and gradual change in human behaviour (and resulting demand response) to
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Figure 3. Map of Great Britain with dots indicating the grid points that were used for the extraction of

weather information. The points size indicated their corresponding weight, as also summarised in the table.

changes in the outside temperature. Additionally, the cooling power of wind variable,
is based on the idea that wind speed changes electricity consumption behaviour only
if the outside temperature is below a certain threshold. We again use the definition
provided by NG, and used by Taylor and Buizza (2003), with this threshold at 18.3 ◦C

CPt =

{
W

1

2

t (18.3− TOt) if TOt < 18.3 ◦C

0 if TOt ≥ 18.3 ◦C,

where for a given period t, CPt denotes the cooling power of wind, Wt denotes the
wind speed, and TOt represents the average temperature. These two new variables
(TEt and CPt) have a strong correlation with load, as evident from Figure 4. It can
also be seen in Figure 4 that load and temperature have a nonlinear relationship,
which could potentially be approximated using an asymmetric quadratic function. The
correlation between the effective temperature and load shows that the rise in load is
sharper during the winter months than in the summer months. This can be attributed
to the higher use of electrical equipment for heating during winter (compared to the
use of cooling equipment during summer) in GB. A rise in the cooling power of wind
is associated with an overall increase in electricity demand. Additionally, although
the load is generally higher during the weekdays as compared to the weekend, the
correlation is strong in both cases.

3. Weather Ensemble Post-Processing

The raw weather ensemble predictions from the ECMWF are biased (Atger, 2003;
Mass, 2003) and underdispersed (Eckel & Walters, 1998; Hamill & Colucci, 1997).
The weather ensemble predictions thus need to be calibrated using post-processing
methods. As pointed out by Gneiting and Katzfuss (2014), ensemble calibration aims
to correct for the dispersion errors and biases in raw weather ensemble predictions, with
the overall goal of maximizing the sharpness of post-processed ensemble prediction
distributions subject to calibration. Calibration refers to the statistical consistency
between the forecast distribution and actual observations, while sharpness refers to the
concentration (or spread) of the forecast distribution. Rank histograms (also known as
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Figure 4. Scatter plot of load with effective temperature and cooling power of wind. Note: data for weekdays

and weekends are denoted by grey and black dots, respectively.
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Figure 5. Rank histogram of the one-step-ahead raw temperature ensembles before any post-processing at

midday.

Talagrand diagrams) can be used to assess the calibration of a probabilistic forecasting
system. In an ideal forecasting system the verifying observations are equally likely to
fall within any bin constructed from two ordered neighbouring ensemble members. The
rank histogram distribution is thus ideally symmetric and flat with equal numbers of
observations in each bin. However, while the uniform rank histogram is a necessary
condition for calibration, it is not sufficient. The rank histogram of one-step-ahead
raw temperature ensembles, as shown in Figure 5, is asymmetric, which indicates the
presence of bias. The U-shape in Figure 5 indicates that the ensemble predictions are
underdispersed. The presence of bias and dispersion errors in the weather ensemble
predictions could result in a poor estimation of the load forecast distribution. To deal
with this issue, we adopt a two-stage post-processing scheme. In the first stage, we
calibrate the weather ensemble predictions using Ensemble Model Output Statistics
(EMOS). In the second stage, we retain the multivariate dependency structures in
calibrated weather ensemble predictions using Ensemble Copula Coupling (ECC). For
ensemble post-processing, we use weather data for the period 1 January 2016 up to
31 December 2017, inclusive. We now describe the post-processing method.

3.1. Ensemble Model Output Statistics

EMOS addresses the issue of both bias and underdispersion in raw weather ensemble
predictions (Gneiting et al., 2005). Specifically, EMOS calibrates past ensembles using
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the corresponding actual historical weather data, whereby the estimated parameters
(from the training data) are used for calibrating the future ensemble members. This
calibration is performed by estimating a distribution for the raw weather ensemble
predictions, x1, . . . xM with M members, using a parametric distributional regression
approach. In our post-processing, we use the distributions for temperature and wind
speed as proposed by Gneiting (2014). The temperature ensembles are calibrated using
a normal distribution N (µ, σ2) and the wind speed is modelled using a truncated
normal distribution N0(µ, σ2), where µ and σ2 are calculated as

µ = a0 + aHRESxHRES + aCNTxCNT + aENS
1

50

50∑
m=1

xm

and

σ2 = b0 + b1
1

50

50∑
m=1

(
xm −

1

50

50∑
m=1

xm

)2

.

The EMOS location parameters a >= 0 correct for the bias in the raw weather ensem-
ble predictions, while the scale parameters b >= 0 adjust the spread and potentially
tackle the issue of underdispersion. Cloud cover is post-processed with a multinomial
logistic regression following the approach by Baran et al. (2021), Hemri et al. (2016)
using the same intervals for quantization of the forecast values in order to correspond
to oktas (see Table A4). We implement the same MLR as Baran et al. (2021) and refer
to their paper for more detail.

To evaluate if EMOS helps improve the calibration of our weather variables, we
investigate the Probability Integral Transform (PIT) of calibrated ensembles. If F
denotes a fixed, non-random predictive CDF for an observation Y, the PIT is the
random variable ZF = F (Y ). It is known that if F is continuous and Y ∼ F then ZF
is standard uniform. The PIT for the temperature variable is shown in Figure 6. For a
perfectly calibrated ensemble, all bins would have the same height (as denoted by the
dashed red line). Compared to the relative frequency of raw ensemble as shown earlier
(Figure 5), the ensemble distribution after calibration is more uniform (Figure 6).
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Figure 6. The probability integral transform for temperature after post-processing.

We train the EMOS parameters on the past 30 days and re-estimate every day.
We tested different length of days for training (ranging from 10 to 100) and found
that 30 days performed best on the test set in 2016. Figure 7 shows an example of a
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Figure 7. A trajectory of the original weather ensemble predictions (red) and the sampled realisations after

post-processing (black) of a randomly selected six day period in the training data set.

post-processed ensemble trajectory over a randomly selected six day period.

3.2. Ensemble Copula Coupling

After calibrating the weather ensemble predictions based on univariate distributions,
as specified using EMOS, we could potentially draw independent samples from the cal-
ibrated ensemble distributions, and use them as inputs in the load forecasting model.
However, this could result in combinations of weather variables that are unlikely to
happen in reality, because treating calibrated ensembles as being independent would
result in a loss of the multivariate dependency structures of the raw ensembles. Thus,
to ensure that the calibrated weather ensemble predictions maintain the original de-
pendency structures, we use a reordering based ECC scheme similar to the Shaake
shuffle (Schefzik et al., 2013) and the stratified sampling ECC (ECC-SS) approach by
Hu et al. (2016).

ECC is based on the appropriate copula being defined in the form of a reordering
process. The idea is that given a dependence structure “template” (Schefzik, 2017),
the samples that are drawn from multiple univariate EMOS distributions can be re-
ordered in such a way that their rank ordering resembles the rank ordering of the
raw ensemble members for the same variables. The templates are based on the raw
weather ensemble predictions, where we assume that the raw ensembles capture the
correlations sufficiently. While several variants exist, we use a slightly adapted version
of the stratified sampling ECC (ECC-SS) proposed by Hu et al. (2016).

The ECC-SS procedure essentially includes three steps. Figure 8 illustrates these
steps in a scenario with six ensemble members, which are used to describe three dis-
tributions of weather variables at two different time steps. In the first step, we rank
the ensemble member values. Thus, the raw ensemble members x1, . . . , xM with their
order statistics x(1) ≤ . . . ≤ x(M) are used to generate a rank dependence structure at
each time horizon via a permutation π, with π(m) := rank(xm) for m ∈ {1, . . . ,M}
(see Table (A) in Figure 8). In the second step, we impose this rank structure on the
calibrated weather ensemble predictions. As we are left with a conditional distribution
function following EMOS, we impose the rank order by first splitting the calibrated
ensemble distribution into M equally spaced quantiles. Each quantile then represents
a rank in the raw ensemble and thus M has the same size as the raw ensembles (see
(B) and (C) in Figure 8). We chose the 0 and 100% quantiles to be equal to one stan-
dard deviation below the minimum and one standard deviation above the maximum,
respectively. In the third step, we draw realisations x̃ from bins, i. e. the intervals be-
tween the quantiles to obtain more than M total samples and to efficiently sample
from the tails of the distribution. In contrast to Hu et al. (2016), we do not fix the
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(A)
t = 1 t = 2

v y z v y z

π(1) 1 1 3 4 6 1

π(2) 2 5 2 4 3 4
π(3) 5 6 6 1 4 3

π(4) 6 3 1 6 5 4

π(5) 3 4 5 5 3 5
π(6) 4 2 4 3 2 6

(B) t = 1

v y z

(C) t = 2

v y z

Figure 8. Symbolic explanation of ensemble copula coupling. The table (A) denotes the rank ordering of

six ensemble members x1, . . . , x6 for three weather variables (v, y, z), across two horizons (t = 1, 2). The rank

ordering in the table is derived from the raw ensembles (first step of ECC-SS). (B) and (C) show the EMOS
output distributions at t = 1 and t = 2 respectively. To maintain the rank ordering of the six raw ensembles (as

shown in A), we split the post-processed distributions into six equally spaced quantiles, whereby each quantile

denotes a rank order (second step of ECC-SS). While drawing realisations from the multivariate weather
distributions across different horizons (t = 1, 2), we impose the original rank ordering (from A) to ensure that

both the variable and temporal dependencies are maintained (third step of ECC-SS).

interval size to 1
n , but use the quantiles such that the width of the bins adapt with the

density. We then draw the realisations dependent on the rank structure from the raw
ensembles, such that the calibrated and reordered ensemble x̂1, . . . , x̂M is given by

x̂1 := x̃(π(1)), . . . , x̂M := x̃(π(M)).

Thus, we draw from the multivariate weather distributions at different time steps,
while maintaining their dependency structures across both the weather variables and
time.

4. Probabilistic Modelling of Load

To generate probabilistic load forecasts using post-processed weather ensemble pre-
dictions, we adopt a two-stage linear regression model. We adopt this approach as it
is based on the model used in practice at the NG, and was also employed by Taylor
and Buizza (2003). The first stage of the linear regression model can be described as

yt = β0 +

N∑
i=1

αixt,i +

M∑
j=1

βjDt,j +

K∑
k=1

γkCt,k + εt,

where yt is the dependent variable which in our case is the national electricity demand,
xt,i are other variables describing the load and weather, Dt,j are dummy variables.
In our setting, the dummy variables include Friday, Saturday, Sunday, dummies for
special days (e. g. public and bank holidays) and proximity days and dummy variables
for the summer months (June, July, August) and winter months (December, January,
February). The interaction terms Ct,k are either between two variables or between
a variable and a dummy variable, such as the interaction between temperature and
wind, and the interaction between temperature and the weekend dummy.

The load variables xt,i can be modelled as a function of a time-specific component
and a weather-specific component. For example, the time-specific component includes
a counter of the day in a year, and an overall day counter for the whole data set, as well
as quadratic and cubic terms of these counters. These time counters help accommodate
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the seasonal patterns in load time series. The weather-specific component comprises
weather variables to capture variations in load due to changing weather patterns. The
model is trained on actual historical weather data for the three weather variables
wind speed, temperature and cloud cover to describe the real relationship among the
variables without introducing any bias through forecast values.

In the second stage, the error from the first stage is modelled with the help of
autoregressive terms (using lags up to 4 weeks) in the form of

εt = a0 + a1εt−1 + . . .+ a28εt−28 + ηt, ηt ∼ N (0, σ2).

While a typical load forecasting strategy relies on using a single point forecast for each
weather variable, we want to accommodate the uncertainty in weather predictions
using the post-processed ensembles. Thus, the multivariate weather distributions are
converted into load forecast distributions using Monte Carlo. We draw 1000 samples at
each time step for each forecast horizon from the post-processed weather distributions
while maintaining rank ordering (see Section 3.2) and use these as input into the linear
regression model, resulting in our load forecast distribution.

Although we adopt a linear model, the transformation used for weather variables
(such as, cooling power of wind) helps accommodate the nonlinear relationship
between the weather variables and load. The objective of this study is not to
compare different modelling approaches, instead, for a given well-established model
(linear regression model in this case), we aim to assess the efficacy of post-
processing weather ensemble predictions for probabilistic modelling of load. Thus,
we compare the forecast accuracy of the linear regression model using a different set
of input variables during the modelling, based on the following five alternative criteria:

Approach 1: No Weather - not incorporating any weather-related information in
the modelling. A model with weather information would be expected to outperform
this baseline model.

Approach 2: Actuals - using actual weather data as predictor variables. Although
this information is not accessible at the time of forecasting, we use this model to
provide an estimate of the upper limit on the load forecast accuracy that could
theoretically be attained if perfect future weather information was available.

Approach 3: Raw Ensembles - using the raw weather ensemble predictions from
the NWP models as predictor variables.

Approach 4: EMOS Ensembles - employing the post-processed (only EMOS)
weather ensemble predictions.

Approach 5: ECC Ensembles - employing the post-processed (EMOS and ECC)
weather ensemble predictions. This is our proposed approach.

The linear regression model (for the above five approaches) is trained using only
the data from 2006 to 2016, and validated using the data from 2017. For the ap-
proaches with weather (Approach 2-5) and without weather (Approach 1) the pa-
rameters (β0, αi, βj , γk) are estimated independently while using the same set of none
weather-related variables, i. e., using the same set of dummy and load variables. In
total, we consider 53 predictor variables including weather (Approach 2-5) and 47 pre-
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dictor variables without weather (Approach 1) for modelling load. In ordinary least
squares regression, this variety of features can lead to low predictive power and reduce
model inference due to problems such as over-fitting, presence of noisy (or irrelevant)
predictors, and multicollinearity. A common choice to overcome these problems is to
use a regularisation technique, such as the LASSO (least absolute shrinkage and se-
lection operator) (Hastie et al., 2013; Tibshirani, 1996). The LASSO regression forces
the model coefficients of less salient features to go to zero. Although this shrinkage
increases the bias, it improves the forecasting accuracy (Ludwig et al., 2015).

In contrast to other regularisation techniques, the LASSO technique uses an L1

penalty term, which sets some coefficients to exactly zero (Hastie et al., 2013). The
LASSO can, therefore, be used as a feature selection method. However, to efficiently
use the LASSO method, the choice of the shrinkage parameter (λ) is essential. In
our case, we use k-fold cross-validation on the training data set and choose λ as the
largest value of λ such that the error is within one standard error of the minimum.
Using LASSO, we select a total of 39 variables with non-zero coefficients in our model
with weather variables (Approaches 2-5) and 34 in the model without weather variables
(Approach 1). The full list of variables with non-zero coefficients (Table A2), as well
as those with a coefficient of zero (Table A3), can be found in the supplementary
materials.

We generate probabilistic load forecasts by rolling the forecast origin through each
day in the out-of-sample period (2017). After each week, we re-estimate the regression
coefficients for the linear regression model. As we stated earlier, the parameters for
EMOS are estimated once using the cross-validation hold-out sample (2016).

5. Forecast Evaluation

In this section, we evaluate the out-of-sample point and probabilistic load forecast
accuracy using the following three performance scores: the mean absolute percentage
error (MAPE), the root mean squared error (RMSE), and the continuous ranked prob-
ability score (CRPS). While the first two error measures quantify the point forecast
accuracy, with the MAPE being scale independent and the RMSE putting a heav-
ier penalty on large deviations, the CRPS quantifies probabilistic forecast accuracy
summarising calibration and sharpness. The MAPE and RMSE are defined as

MAPE =
1

N

N∑
t=1

∣∣∣∣yt − ŷtyt

∣∣∣∣,
RMSE =

√√√√ 1

N

N∑
t=1

(yt − ŷt)2,

with yt being the actual load at time point t and ŷt being the forecast load value at
this time point, while N denotes the number of observations. It has been shown by
Gneiting (2011) that for model evaluation based on a quadratic loss function, the mean
of the density forecast is the optimal forecast. Similarly, if the evaluation is based on a
symmetric piecewise linear loss function, then the optimal forecast is the median of the
density forecast. Thus, for evaluation using the RMSE and MAPE, we use the mean
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Figure 9. Probabilistic load forecasts for one-day-ahead with 95% prediction interval (grey area) and the

median forecast (in orange) along with corresponding true load (in blue). Note: the forecasts were generated
using the linear model with post-processed weather ensemble predictions.

and median of the distributional forecast, respectively. The CRPS is then defined as

CRPS =
1

N

N∑
i=1

CRPS(Fi, yi),

where

CRPS(F, y) =

∫
R

(F (z)− 1{y ≤ z})2 dz,

with F being the predictive cumulative distribution function of load, y the verifying
observation and 1 denoting an indicator function. A lower value for the CRPS indicates
greater probabilistic forecast accuracy. We report the average CRPS computed over all
observations in the out-of-sample period. Additionally, as we want to assess whether we
can improve the forecasting accuracy through post-processed ensembles, we calculate
a CRPS skill score. A skill score is the percentage by which a model is more accurate
than a baseline model.

Using the approach with post-processed weather ensemble predictions, we sum-
marize the one-step-ahead probabilistic load forecasts for the out-of-sample data in
Figure 9, where we plot the 95% prediction interval (grey area) and the median fore-
cast (in orange) along with corresponding actual load observations (in blue). It is
encouraging to see that the prediction intervals encapsulate the majority of actual ob-
servations. The reliability diagram across all horizons for the best performing model
is shown in Figure 11. For each probability level, the reliability diagram presents the
proportion of out-of-sample observations that fell below the corresponding quantile
forecasts. In our case, we can see that less than 95% of the observations fall into the
95% prediction interval.

In Table 1, we present the MAPE, RMSE, CRPS and CRPS skill score for lead times
ranging from one day to six days ahead. For the skill scores, we use the model with no
weather information as the baseline (Approach 1: No Weather). Crucially, the in-
corporation of weather information resulted in a substantial improvement in both the
point and probabilistic load forecast accuracy across all lead times considered in this
study. This result highlights the importance of using weather information in load fore-
casting models. Encouragingly, the model with ECC post-processed weather ensemble
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Table 1. Comparison of results for different scores, models and forecast horizons for the linear regression

models. The best performing model using ensemble weather information is highlighted in bold.

Model Horizon MAPE RMSE CRPS CRPS Skill

Actuals 1 4.53 1806.16 1045.96 49.82

ECC Ensembles 1 5.01 1993.27 1171.71 33.74
EMOS Ensembles 1 5.40 2172.49 1283.95 22.05

Raw Ensembles 1 5.49 2203.80 1315.65 19.11
No Weather 1 6.71 2699.47 1567.06 0.00

Actuals 2 4.54 1798.55 1047.64 49.86
ECC Ensembles 2 5.17 2065.18 1199.69 30.86

EMOS Ensembles 2 5.51 2202.39 1285.11 22.16

Raw Ensembles 2 5.46 2200.43 1291.19 21.59
No Weather 2 6.75 2703.62 1569.95 0.00

Actuals 3 4.44 1770.47 1034.63 55.59

ECC Ensembles 3 5.05 1984.02 1161.49 38.60

EMOS Ensembles 3 5.46 2178.88 1279.54 25.81
Raw Ensembles 3 5.51 2185.80 1300.82 23.75

No Weather 3 6.85 2768.88 1609.83 0.00

Actuals 4 4.56 1792.64 1054.74 53.56

ECC Ensembles 4 5.17 2020.67 1174.88 37.86
EMOS Ensembles 4 5.40 2144.26 1248.97 29.68

Raw Ensembles 4 5.44 2163.35 1257.70 28.78

No Weather 4 6.91 2780.69 1619.69 0.00

Actuals 5 4.50 1778.50 1036.36 56.87
ECC Ensembles 5 5.13 2027.18 1161.87 39.92

EMOS Ensembles 5 5.39 2160.75 1241.04 31.00

Raw Ensembles 5 5.30 2145.39 1226.87 32.51
No Weather 5 6.89 2777.34 1625.71 0.00

Actuals 6 4.42 1753.50 1019.43 57.04

ECC Ensembles 6 5.30 2098.22 1233.68 29.76

EMOS Ensembles 6 5.42 2178.61 1277.93 25.27
Raw Ensembles 6 5.32 2149.30 1262.16 26.84

No Weather 6 6.87 2736.51 1600.88 0.00

predictions outperformed the model with raw ensembles and EMOS post-processed en-
sembles overall, which points towards the need to post-process the weather ensemble
predictions accounting for dependency structures for load forecasting applications.

To summarize the performance of different models across multiple lead times, we
present the MAPE, RMSE and CRPS skill scores in Figure 10.

We expect all methods that include weather information to have a positive skill
score. It can be seen from Figure 10 that the ECC (Approach 5) and EMOS (Approach
4) post-processed weather ensembles, as well as the raw weather ensemble predictions
(Approach 3) perform significantly better than the baseline that uses no weather data.
The ECC post-processed weather ensembles outperform the raw ensembles, as well as
EMOS post-processed ensembles based on all three skill scores. Only for a forecasting
horizon of 6 days ahead do the raw ensembles achieve a slightly higher MAPE accu-
racy. However this is not a significant difference to the other post-processed ensemble
MAPE scores. Overall, compared to the baseline model, using post-processed weather
ensemble predictions can improve the point and probabilistic load forecast accuracy of
the model by up to 40% with the ECC post-processed ensembles performing best. To
ensure that the differences between the forecast models are statistically significant, we
compare the models pairwise using the Diebold-Mariano test (Diebold et al., 1995).
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Figure 10. Skill scores for CRPS, RMSE and MAPE for the different weather inputs and all forecast horizons.

For our approach, the ECC ensembles, we can reject the null hypothesis that this
model performs worse or equal to another model, for all models except the one using
actual weather data. The test statistics and their corresponding p-values for horizon
one can be found in Table A1. Finally, we also take a look at the quantile decomposi-

tion of the CRPS score for horizon one across all models using CRPS
f
n =

∫ 1
0 QS(α)dz

with

QS
f
N (α) =

1

N

N∑
t=1

QSα(F̂t(α)−1, yt), and

QSα(F−1(α), y) = 2(1{y ≤ F−1(α)} − α)(F−1(α)− y).

Following (Gneiting & Ranjan, 2011) we plot the mean quantile score against α show-
ing the quantile decompositions of the mean CRPS score (see Figure 11).
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Figure 11. Quantile decomposition of the mean continuous probability score for the different models (left)
and coverage rate for the best performing ensemble forecast model (ECC Ensembles) over all horizons (right).

15



6. Conclusion

In this study, we proposed and implemented a best practice to generate probabilistic
forecasts of electricity demand using weather ensemble predictions. We used data for
three weather variables (temperature, wind speed, and cloud cover), obtained from
a 51-member ensemble system and a high resolution deterministic forecast. For load
forecasting, we investigated the efficacy of using ensemble post-processing, as opposed
to using raw weather ensemble predictions from NWP systems. This paper has shown
how to post-process the weather ensemble predictions by accounting for temporal cor-
relations and correlations between the weather variables. We showed that calibrating
the weather ensemble predictions while accounting for their multivariate dependen-
cies using a copula-based coupling approach improves the probabilistic load forecast
accuracy, resulting in a CRPS that is noticeably better than a model that does not
include any weather information. The post-processed ensembles outperform the raw
ensembles, which highlights the advantage of careful post-processing for improved load
forecast accuracy.

The proposed modelling framework could potentially be adapted to other energy
applications, such as wind and solar power generation. A useful line of future work
would be to investigate this post-processing approach for modelling electricity demand
at different layers of the energy hierarchy, including the low voltage level or at various
locations also accounting for spatial dependencies. It would also be worth investigating
the use of machine learning for accommodating the nonlinear relationship between
post-processed weather ensemble predictions and load in a nonparametric modelling
framework.
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Möller, A., Thorarinsdottir, T. L., Lenkoski, A., & Gneiting, T. (2015). Spatially adaptive,
bayesian estimation for probabilistic temperature forecasts. http://arxiv.org/pdf/
1507.05066v3

Nielsen, H. A., Madsen, H., Nielsen, T. S., Badger, J., Giebel, G., Landberg, L., Sattler, K.,
& Feddersen, H. (2004). Wind power ensemble forecasting, In Proceedings of the 2004
global windpower conference and exhibition.

18



Nowotarski, J., & Weron, R. (2018). Recent advances in electricity price forecasting: A review
of probabilistic forecasting. Renewable and Sustainable Energy Reviews, 81, 1548–1568.
https://doi.org/10.1016/j.rser.2017.05.234

Raftery, A. E., Gneiting, T., Balabdaoui, F., & Polakowski, M. (2005). Using bayesian model
averaging to calibrate forecast ensembles. Monthly Weather Review, 133 (5), 1155–
1174. https://doi.org/10.1175/MWR2906.1

Schefzik, R. (2017). Ensemble calibration with preserved correlations: Unifying and comparing
ensemble copula coupling and member-by-member postprocessing. Quarterly Journal
of the Royal Meteorological Society, 143 (703), 999–1008. https://doi.org/10.1002/qj.
2984

Schefzik, R., Thorarinsdottir, T. L., & Gneiting, T. (2013). Uncertainty quantification in com-
plex simulation models using ensemble copula coupling. Statistical Science, 28 (4),
616–640. https://doi.org/10.1214/13-STS443

Scheuerer, M., & Buermann, L. (2014). Spatially adaptive post-processing of ensemble forecasts
for temperature. Journal of the Royal Statistical Society: Series C (Applied Statistics),
63 (3), 405–422. https://doi.org/10.1111/rssc.12040

Taieb, S. B., Taylor, J. W., & Hyndman, R. J. (2020). Hierarchical probabilistic forecast-
ing of electricity demand with smart meter data. Journal of the American Statistical
Association, 1–17. https://doi.org/10.1080/01621459.2020.1736081

Taylor, J. W. (2003). Short-term electricity demand forecasting using double seasonal ex-
ponential smoothing. Journal of the Operational Research Society, 54 (8), 799–805.
https://doi.org/10.1057/palgrave.jors.2601589

Taylor, J. W., & Buizza, R. (2002). Neural network load forecasting with weather ensemble
predictions. IEEE Transactions on Power Systems, 17 (3), 626–632. https://doi.org/
10.1109/TPWRS.2002.800906

Taylor, J. W., & Buizza, R. (2003). Using weather ensemble predictions in electricity demand
forecasting. International Journal of Forecasting, 19 (1), 57–70. https://doi.org/10.
1016/S0169-2070(01)00123-6

Thorey, J., Chaussin, C., & Mallet, V. (2018). Ensemble forecast of photovoltaic power with
online crps learning. International Journal of Forecasting, 34 (4), 762–773. https://
doi.org/10.1016/j.ijforecast.2018.05.007

Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the Royal
Statistical Society. Series B (Methodological), 58 (1), 267–288. http://www.jstor.org/
stable/2346178

van der Meer, D. W., Shepero, M., Svensson, A., Widén, J., & Munkhammar, J. (2018).
Probabilistic forecasting of electricity consumption, photovoltaic power generation and
net demand of an individual building using gaussian processes. Applied Energy, 213,
195–207. https://doi.org/10.1016/j.apenergy.2017.12.104

Wang, Y., Xia, Q., & Kang, C. (2011). Unit commitment with volatile node injections by
using interval optimization. IEEE Transactions on Power Systems, 26 (3), 1705–1713.
https://doi.org/10.1109/TPWRS.2010.2100050

Wilks, D. S., & Hamill, T. M. (2007). Comparison of ensemble-mos methods using gfs re-
forecasts. Monthly Weather Review, 135 (6), 2379–2390. https://doi .org/10.1175/
MWR3402.1

Zamo, M., Mestre, O., Arbogast, P., & Pannekoucke, O. (2014). A benchmark of statistical
regression methods for short-term forecasting of photovoltaic electricity production.
part ii: Probabilistic forecast of daily production. Solar Energy, 105, 804–816.

19



Appendix A. Supplementary Material

Table A1. For the CRPS, pairwise Diebold-Mariano test statistic and corresponding p-values for all models

for 1 day-ahead prediction. We use a one-sided test with the null hypothesis that the performance of the model
named in the column heading is at most as accurate as the model named in the row. Hypothesis rejection

(p < 0.05) is indicated in bold.

Models Actuals ECC Ensembles EMOS Ensembles Raw Ensembles No Weather

Actuals -4.32 (1.00) -5.85 (1.00) -6.45 (1.00) -6.83 (1.00)
ECC Ensembles 4.32 (0.00) -3.89 (1.00) -4.16 (1.00) -5.49 (1.00)

EMOS Ensembles 5.85 (0.00) 3.89 (0.00) -1.94 (0.97) -3.57 (1.00)

Raw Ensembles 6.45 (0.00) 4.16 (0.00) 1.94 (0.03) -3.2 (1.00)
No Weather 6.83 (0.00) 5.49 (0.00) 3.57 (0.00) 3.2 (0.00)

Table A2. List of all variables with a non-zero coefficient in the LASSO regression with λ = 9.46, where ×
denotes interaction terms.

1 April 16 Lag Year (t− 365) 31 Spring Bank Holiday

2 Christmas 17 March 32 Summer Bank Holiday
3 day count × days 18 May 33 Sunday

4 (day count × days)3 19 May Day 34 Temperature at 2m

5 Cooling power of wind 20 New Years Day 35 Temperature × Weekend
6 day count 21 November 36 Total Cloud Cover

7 (day count)2 22 October 37 Whit Monday

8 days per year (days)a 23 Proximity Days (PD) 38 Winter
9 Easter 24 PD × Friday 39 Wind Speed

10 February 25 PD × Saturday

11 Friday 26 PD × Sunday
12 Heatingb 27 PD × Winter

13 July 28 Special Days (SD)

14 June 29 SD × Winter
15 Lag Week (t− 7) 30 Smoothc

a Days per year is an indicator for leap years and either 365 or 366.
b Heating is a dummy variable indicating the heating season from October to March.
c Smooth is a moving average over the past seven days of load.

Table A3. List of all variables with a coefficient of zero in the LASSO regression with λ = 9.46, where ×
denotes interaction terms.

1 (days per year)2 6 Saturday 11 New Years Eve
2 (days per year)3 7 September 12 SD × Summer

3 (day count)3 8 December 13 Proximity Day × Summer

4 (count × days)2 9 Summer 14 Effective Temperature
5 Eta 10 Ascension
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Table A4. Oktas and the corresponding intervals used for quantization of total cloud cover.

Okta Interval

0 [0, 0.01[

1 [0.01, 0.1875[

2 [0.1875, 0.3125[
3 [0.3125, 0.4375[

4 [0.4375, 0.5625[

5 [0.5625, 0.6875[
6 [0.6875, 0.8125[

7 [0.8125, 0.99[

8 [0.99, 1]
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